xref: /openbmc/linux/drivers/watchdog/aspeed_wdt.c (revision fcbd8037f7df694aa7bfb7ce82c0c7f5e53e7b7b)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Copyright 2016 IBM Corporation
4  *
5  * Joel Stanley <joel@jms.id.au>
6  */
7 
8 #include <linux/delay.h>
9 #include <linux/io.h>
10 #include <linux/kernel.h>
11 #include <linux/module.h>
12 #include <linux/of.h>
13 #include <linux/platform_device.h>
14 #include <linux/watchdog.h>
15 
16 struct aspeed_wdt {
17 	struct watchdog_device	wdd;
18 	void __iomem		*base;
19 	u32			ctrl;
20 };
21 
22 struct aspeed_wdt_config {
23 	u32 ext_pulse_width_mask;
24 };
25 
26 static const struct aspeed_wdt_config ast2400_config = {
27 	.ext_pulse_width_mask = 0xff,
28 };
29 
30 static const struct aspeed_wdt_config ast2500_config = {
31 	.ext_pulse_width_mask = 0xfffff,
32 };
33 
34 static const struct of_device_id aspeed_wdt_of_table[] = {
35 	{ .compatible = "aspeed,ast2400-wdt", .data = &ast2400_config },
36 	{ .compatible = "aspeed,ast2500-wdt", .data = &ast2500_config },
37 	{ .compatible = "aspeed,ast2600-wdt", .data = &ast2500_config },
38 	{ },
39 };
40 MODULE_DEVICE_TABLE(of, aspeed_wdt_of_table);
41 
42 #define WDT_STATUS		0x00
43 #define WDT_RELOAD_VALUE	0x04
44 #define WDT_RESTART		0x08
45 #define WDT_CTRL		0x0C
46 #define   WDT_CTRL_BOOT_SECONDARY	BIT(7)
47 #define   WDT_CTRL_RESET_MODE_SOC	(0x00 << 5)
48 #define   WDT_CTRL_RESET_MODE_FULL_CHIP	(0x01 << 5)
49 #define   WDT_CTRL_RESET_MODE_ARM_CPU	(0x10 << 5)
50 #define   WDT_CTRL_1MHZ_CLK		BIT(4)
51 #define   WDT_CTRL_WDT_EXT		BIT(3)
52 #define   WDT_CTRL_WDT_INTR		BIT(2)
53 #define   WDT_CTRL_RESET_SYSTEM		BIT(1)
54 #define   WDT_CTRL_ENABLE		BIT(0)
55 #define WDT_TIMEOUT_STATUS	0x10
56 #define   WDT_TIMEOUT_STATUS_BOOT_SECONDARY	BIT(1)
57 #define WDT_CLEAR_TIMEOUT_STATUS	0x14
58 #define   WDT_CLEAR_TIMEOUT_AND_BOOT_CODE_SELECTION	BIT(0)
59 
60 /*
61  * WDT_RESET_WIDTH controls the characteristics of the external pulse (if
62  * enabled), specifically:
63  *
64  * * Pulse duration
65  * * Drive mode: push-pull vs open-drain
66  * * Polarity: Active high or active low
67  *
68  * Pulse duration configuration is available on both the AST2400 and AST2500,
69  * though the field changes between SoCs:
70  *
71  * AST2400: Bits 7:0
72  * AST2500: Bits 19:0
73  *
74  * This difference is captured in struct aspeed_wdt_config.
75  *
76  * The AST2500 exposes the drive mode and polarity options, but not in a
77  * regular fashion. For read purposes, bit 31 represents active high or low,
78  * and bit 30 represents push-pull or open-drain. With respect to write, magic
79  * values need to be written to the top byte to change the state of the drive
80  * mode and polarity bits. Any other value written to the top byte has no
81  * effect on the state of the drive mode or polarity bits. However, the pulse
82  * width value must be preserved (as desired) if written.
83  */
84 #define WDT_RESET_WIDTH		0x18
85 #define   WDT_RESET_WIDTH_ACTIVE_HIGH	BIT(31)
86 #define     WDT_ACTIVE_HIGH_MAGIC	(0xA5 << 24)
87 #define     WDT_ACTIVE_LOW_MAGIC	(0x5A << 24)
88 #define   WDT_RESET_WIDTH_PUSH_PULL	BIT(30)
89 #define     WDT_PUSH_PULL_MAGIC		(0xA8 << 24)
90 #define     WDT_OPEN_DRAIN_MAGIC	(0x8A << 24)
91 
92 #define WDT_RESTART_MAGIC	0x4755
93 
94 /* 32 bits at 1MHz, in milliseconds */
95 #define WDT_MAX_TIMEOUT_MS	4294967
96 #define WDT_DEFAULT_TIMEOUT	30
97 #define WDT_RATE_1MHZ		1000000
98 
99 static struct aspeed_wdt *to_aspeed_wdt(struct watchdog_device *wdd)
100 {
101 	return container_of(wdd, struct aspeed_wdt, wdd);
102 }
103 
104 static void aspeed_wdt_enable(struct aspeed_wdt *wdt, int count)
105 {
106 	wdt->ctrl |= WDT_CTRL_ENABLE;
107 
108 	writel(0, wdt->base + WDT_CTRL);
109 	writel(count, wdt->base + WDT_RELOAD_VALUE);
110 	writel(WDT_RESTART_MAGIC, wdt->base + WDT_RESTART);
111 	writel(wdt->ctrl, wdt->base + WDT_CTRL);
112 }
113 
114 static int aspeed_wdt_start(struct watchdog_device *wdd)
115 {
116 	struct aspeed_wdt *wdt = to_aspeed_wdt(wdd);
117 
118 	aspeed_wdt_enable(wdt, wdd->timeout * WDT_RATE_1MHZ);
119 
120 	return 0;
121 }
122 
123 static int aspeed_wdt_stop(struct watchdog_device *wdd)
124 {
125 	struct aspeed_wdt *wdt = to_aspeed_wdt(wdd);
126 
127 	wdt->ctrl &= ~WDT_CTRL_ENABLE;
128 	writel(wdt->ctrl, wdt->base + WDT_CTRL);
129 
130 	return 0;
131 }
132 
133 static int aspeed_wdt_ping(struct watchdog_device *wdd)
134 {
135 	struct aspeed_wdt *wdt = to_aspeed_wdt(wdd);
136 
137 	writel(WDT_RESTART_MAGIC, wdt->base + WDT_RESTART);
138 
139 	return 0;
140 }
141 
142 static int aspeed_wdt_set_timeout(struct watchdog_device *wdd,
143 				  unsigned int timeout)
144 {
145 	struct aspeed_wdt *wdt = to_aspeed_wdt(wdd);
146 	u32 actual;
147 
148 	wdd->timeout = timeout;
149 
150 	actual = min(timeout, wdd->max_hw_heartbeat_ms * 1000);
151 
152 	writel(actual * WDT_RATE_1MHZ, wdt->base + WDT_RELOAD_VALUE);
153 	writel(WDT_RESTART_MAGIC, wdt->base + WDT_RESTART);
154 
155 	return 0;
156 }
157 
158 static int aspeed_wdt_restart(struct watchdog_device *wdd,
159 			      unsigned long action, void *data)
160 {
161 	struct aspeed_wdt *wdt = to_aspeed_wdt(wdd);
162 
163 	wdt->ctrl &= ~WDT_CTRL_BOOT_SECONDARY;
164 	aspeed_wdt_enable(wdt, 128 * WDT_RATE_1MHZ / 1000);
165 
166 	mdelay(1000);
167 
168 	return 0;
169 }
170 
171 /* access_cs0 shows if cs0 is accessible, hence the reverted bit */
172 static ssize_t access_cs0_show(struct device *dev,
173 			       struct device_attribute *attr, char *buf)
174 {
175 	struct aspeed_wdt *wdt = dev_get_drvdata(dev);
176 	u32 status = readl(wdt->base + WDT_TIMEOUT_STATUS);
177 
178 	return sprintf(buf, "%u\n",
179 		      !(status & WDT_TIMEOUT_STATUS_BOOT_SECONDARY));
180 }
181 
182 static ssize_t access_cs0_store(struct device *dev,
183 				struct device_attribute *attr, const char *buf,
184 				size_t size)
185 {
186 	struct aspeed_wdt *wdt = dev_get_drvdata(dev);
187 	unsigned long val;
188 
189 	if (kstrtoul(buf, 10, &val))
190 		return -EINVAL;
191 
192 	if (val)
193 		writel(WDT_CLEAR_TIMEOUT_AND_BOOT_CODE_SELECTION,
194 		       wdt->base + WDT_CLEAR_TIMEOUT_STATUS);
195 
196 	return size;
197 }
198 
199 /*
200  * This attribute exists only if the system has booted from the alternate
201  * flash with 'alt-boot' option.
202  *
203  * At alternate flash the 'access_cs0' sysfs node provides:
204  *   ast2400: a way to get access to the primary SPI flash chip at CS0
205  *            after booting from the alternate chip at CS1.
206  *   ast2500: a way to restore the normal address mapping from
207  *            (CS0->CS1, CS1->CS0) to (CS0->CS0, CS1->CS1).
208  *
209  * Clearing the boot code selection and timeout counter also resets to the
210  * initial state the chip select line mapping. When the SoC is in normal
211  * mapping state (i.e. booted from CS0), clearing those bits does nothing for
212  * both versions of the SoC. For alternate boot mode (booted from CS1 due to
213  * wdt2 expiration) the behavior differs as described above.
214  *
215  * This option can be used with wdt2 (watchdog1) only.
216  */
217 static DEVICE_ATTR_RW(access_cs0);
218 
219 static struct attribute *bswitch_attrs[] = {
220 	&dev_attr_access_cs0.attr,
221 	NULL
222 };
223 ATTRIBUTE_GROUPS(bswitch);
224 
225 static const struct watchdog_ops aspeed_wdt_ops = {
226 	.start		= aspeed_wdt_start,
227 	.stop		= aspeed_wdt_stop,
228 	.ping		= aspeed_wdt_ping,
229 	.set_timeout	= aspeed_wdt_set_timeout,
230 	.restart	= aspeed_wdt_restart,
231 	.owner		= THIS_MODULE,
232 };
233 
234 static const struct watchdog_info aspeed_wdt_info = {
235 	.options	= WDIOF_KEEPALIVEPING
236 			| WDIOF_MAGICCLOSE
237 			| WDIOF_SETTIMEOUT,
238 	.identity	= KBUILD_MODNAME,
239 };
240 
241 static int aspeed_wdt_probe(struct platform_device *pdev)
242 {
243 	struct device *dev = &pdev->dev;
244 	const struct aspeed_wdt_config *config;
245 	const struct of_device_id *ofdid;
246 	struct aspeed_wdt *wdt;
247 	struct device_node *np;
248 	const char *reset_type;
249 	u32 duration;
250 	u32 status;
251 	int ret;
252 
253 	wdt = devm_kzalloc(dev, sizeof(*wdt), GFP_KERNEL);
254 	if (!wdt)
255 		return -ENOMEM;
256 
257 	wdt->base = devm_platform_ioremap_resource(pdev, 0);
258 	if (IS_ERR(wdt->base))
259 		return PTR_ERR(wdt->base);
260 
261 	/*
262 	 * The ast2400 wdt can run at PCLK, or 1MHz. The ast2500 only
263 	 * runs at 1MHz. We chose to always run at 1MHz, as there's no
264 	 * good reason to have a faster watchdog counter.
265 	 */
266 	wdt->wdd.info = &aspeed_wdt_info;
267 	wdt->wdd.ops = &aspeed_wdt_ops;
268 	wdt->wdd.max_hw_heartbeat_ms = WDT_MAX_TIMEOUT_MS;
269 	wdt->wdd.parent = dev;
270 
271 	wdt->wdd.timeout = WDT_DEFAULT_TIMEOUT;
272 	watchdog_init_timeout(&wdt->wdd, 0, dev);
273 
274 	np = dev->of_node;
275 
276 	ofdid = of_match_node(aspeed_wdt_of_table, np);
277 	if (!ofdid)
278 		return -EINVAL;
279 	config = ofdid->data;
280 
281 	wdt->ctrl = WDT_CTRL_1MHZ_CLK;
282 
283 	/*
284 	 * Control reset on a per-device basis to ensure the
285 	 * host is not affected by a BMC reboot
286 	 */
287 	ret = of_property_read_string(np, "aspeed,reset-type", &reset_type);
288 	if (ret) {
289 		wdt->ctrl |= WDT_CTRL_RESET_MODE_SOC | WDT_CTRL_RESET_SYSTEM;
290 	} else {
291 		if (!strcmp(reset_type, "cpu"))
292 			wdt->ctrl |= WDT_CTRL_RESET_MODE_ARM_CPU |
293 				     WDT_CTRL_RESET_SYSTEM;
294 		else if (!strcmp(reset_type, "soc"))
295 			wdt->ctrl |= WDT_CTRL_RESET_MODE_SOC |
296 				     WDT_CTRL_RESET_SYSTEM;
297 		else if (!strcmp(reset_type, "system"))
298 			wdt->ctrl |= WDT_CTRL_RESET_MODE_FULL_CHIP |
299 				     WDT_CTRL_RESET_SYSTEM;
300 		else if (strcmp(reset_type, "none"))
301 			return -EINVAL;
302 	}
303 	if (of_property_read_bool(np, "aspeed,external-signal"))
304 		wdt->ctrl |= WDT_CTRL_WDT_EXT;
305 	if (of_property_read_bool(np, "aspeed,alt-boot"))
306 		wdt->ctrl |= WDT_CTRL_BOOT_SECONDARY;
307 
308 	if (readl(wdt->base + WDT_CTRL) & WDT_CTRL_ENABLE)  {
309 		/*
310 		 * The watchdog is running, but invoke aspeed_wdt_start() to
311 		 * write wdt->ctrl to WDT_CTRL to ensure the watchdog's
312 		 * configuration conforms to the driver's expectations.
313 		 * Primarily, ensure we're using the 1MHz clock source.
314 		 */
315 		aspeed_wdt_start(&wdt->wdd);
316 		set_bit(WDOG_HW_RUNNING, &wdt->wdd.status);
317 	}
318 
319 	if ((of_device_is_compatible(np, "aspeed,ast2500-wdt")) ||
320 		(of_device_is_compatible(np, "aspeed,ast2600-wdt"))) {
321 		u32 reg = readl(wdt->base + WDT_RESET_WIDTH);
322 
323 		reg &= config->ext_pulse_width_mask;
324 		if (of_property_read_bool(np, "aspeed,ext-push-pull"))
325 			reg |= WDT_PUSH_PULL_MAGIC;
326 		else
327 			reg |= WDT_OPEN_DRAIN_MAGIC;
328 
329 		writel(reg, wdt->base + WDT_RESET_WIDTH);
330 
331 		reg &= config->ext_pulse_width_mask;
332 		if (of_property_read_bool(np, "aspeed,ext-active-high"))
333 			reg |= WDT_ACTIVE_HIGH_MAGIC;
334 		else
335 			reg |= WDT_ACTIVE_LOW_MAGIC;
336 
337 		writel(reg, wdt->base + WDT_RESET_WIDTH);
338 	}
339 
340 	if (!of_property_read_u32(np, "aspeed,ext-pulse-duration", &duration)) {
341 		u32 max_duration = config->ext_pulse_width_mask + 1;
342 
343 		if (duration == 0 || duration > max_duration) {
344 			dev_err(dev, "Invalid pulse duration: %uus\n",
345 				duration);
346 			duration = max(1U, min(max_duration, duration));
347 			dev_info(dev, "Pulse duration set to %uus\n",
348 				 duration);
349 		}
350 
351 		/*
352 		 * The watchdog is always configured with a 1MHz source, so
353 		 * there is no need to scale the microsecond value. However we
354 		 * need to offset it - from the datasheet:
355 		 *
356 		 * "This register decides the asserting duration of wdt_ext and
357 		 * wdt_rstarm signal. The default value is 0xFF. It means the
358 		 * default asserting duration of wdt_ext and wdt_rstarm is
359 		 * 256us."
360 		 *
361 		 * This implies a value of 0 gives a 1us pulse.
362 		 */
363 		writel(duration - 1, wdt->base + WDT_RESET_WIDTH);
364 	}
365 
366 	status = readl(wdt->base + WDT_TIMEOUT_STATUS);
367 	if (status & WDT_TIMEOUT_STATUS_BOOT_SECONDARY) {
368 		wdt->wdd.bootstatus = WDIOF_CARDRESET;
369 
370 		if (of_device_is_compatible(np, "aspeed,ast2400-wdt") ||
371 		    of_device_is_compatible(np, "aspeed,ast2500-wdt"))
372 			wdt->wdd.groups = bswitch_groups;
373 	}
374 
375 	dev_set_drvdata(dev, wdt);
376 
377 	return devm_watchdog_register_device(dev, &wdt->wdd);
378 }
379 
380 static struct platform_driver aspeed_watchdog_driver = {
381 	.probe = aspeed_wdt_probe,
382 	.driver = {
383 		.name = KBUILD_MODNAME,
384 		.of_match_table = of_match_ptr(aspeed_wdt_of_table),
385 	},
386 };
387 
388 static int __init aspeed_wdt_init(void)
389 {
390 	return platform_driver_register(&aspeed_watchdog_driver);
391 }
392 arch_initcall(aspeed_wdt_init);
393 
394 static void __exit aspeed_wdt_exit(void)
395 {
396 	platform_driver_unregister(&aspeed_watchdog_driver);
397 }
398 module_exit(aspeed_wdt_exit);
399 
400 MODULE_DESCRIPTION("Aspeed Watchdog Driver");
401 MODULE_LICENSE("GPL");
402