xref: /openbmc/linux/drivers/w1/slaves/w1_ds28e04.c (revision 94d964e5)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *	w1_ds28e04.c - w1 family 1C (DS28E04) driver
4  *
5  * Copyright (c) 2012 Markus Franke <franke.m@sebakmt.com>
6  */
7 
8 #include <linux/kernel.h>
9 #include <linux/module.h>
10 #include <linux/moduleparam.h>
11 #include <linux/device.h>
12 #include <linux/types.h>
13 #include <linux/delay.h>
14 #include <linux/slab.h>
15 #include <linux/crc16.h>
16 #include <linux/uaccess.h>
17 
18 #define CRC16_INIT		0
19 #define CRC16_VALID		0xb001
20 
21 #include <linux/w1.h>
22 
23 #define W1_FAMILY_DS28E04	0x1C
24 
25 /* Allow the strong pullup to be disabled, but default to enabled.
26  * If it was disabled a parasite powered device might not get the required
27  * current to copy the data from the scratchpad to EEPROM.  If it is enabled
28  * parasite powered devices have a better chance of getting the current
29  * required.
30  */
31 static int w1_strong_pullup = 1;
32 module_param_named(strong_pullup, w1_strong_pullup, int, 0);
33 
34 /* enable/disable CRC checking on DS28E04-100 memory accesses */
35 static bool w1_enable_crccheck = true;
36 
37 #define W1_EEPROM_SIZE		512
38 #define W1_PAGE_COUNT		16
39 #define W1_PAGE_SIZE		32
40 #define W1_PAGE_BITS		5
41 #define W1_PAGE_MASK		0x1F
42 
43 #define W1_F1C_READ_EEPROM	0xF0
44 #define W1_F1C_WRITE_SCRATCH	0x0F
45 #define W1_F1C_READ_SCRATCH	0xAA
46 #define W1_F1C_COPY_SCRATCH	0x55
47 #define W1_F1C_ACCESS_WRITE	0x5A
48 
49 #define W1_1C_REG_LOGIC_STATE	0x220
50 
51 struct w1_f1C_data {
52 	u8	memory[W1_EEPROM_SIZE];
53 	u32	validcrc;
54 };
55 
56 /**
57  * Check the file size bounds and adjusts count as needed.
58  * This would not be needed if the file size didn't reset to 0 after a write.
59  */
60 static inline size_t w1_f1C_fix_count(loff_t off, size_t count, size_t size)
61 {
62 	if (off > size)
63 		return 0;
64 
65 	if ((off + count) > size)
66 		return size - off;
67 
68 	return count;
69 }
70 
71 static int w1_f1C_refresh_block(struct w1_slave *sl, struct w1_f1C_data *data,
72 				int block)
73 {
74 	u8	wrbuf[3];
75 	int	off = block * W1_PAGE_SIZE;
76 
77 	if (data->validcrc & (1 << block))
78 		return 0;
79 
80 	if (w1_reset_select_slave(sl)) {
81 		data->validcrc = 0;
82 		return -EIO;
83 	}
84 
85 	wrbuf[0] = W1_F1C_READ_EEPROM;
86 	wrbuf[1] = off & 0xff;
87 	wrbuf[2] = off >> 8;
88 	w1_write_block(sl->master, wrbuf, 3);
89 	w1_read_block(sl->master, &data->memory[off], W1_PAGE_SIZE);
90 
91 	/* cache the block if the CRC is valid */
92 	if (crc16(CRC16_INIT, &data->memory[off], W1_PAGE_SIZE) == CRC16_VALID)
93 		data->validcrc |= (1 << block);
94 
95 	return 0;
96 }
97 
98 static int w1_f1C_read(struct w1_slave *sl, int addr, int len, char *data)
99 {
100 	u8 wrbuf[3];
101 
102 	/* read directly from the EEPROM */
103 	if (w1_reset_select_slave(sl))
104 		return -EIO;
105 
106 	wrbuf[0] = W1_F1C_READ_EEPROM;
107 	wrbuf[1] = addr & 0xff;
108 	wrbuf[2] = addr >> 8;
109 
110 	w1_write_block(sl->master, wrbuf, sizeof(wrbuf));
111 	return w1_read_block(sl->master, data, len);
112 }
113 
114 static ssize_t eeprom_read(struct file *filp, struct kobject *kobj,
115 			   struct bin_attribute *bin_attr, char *buf,
116 			   loff_t off, size_t count)
117 {
118 	struct w1_slave *sl = kobj_to_w1_slave(kobj);
119 	struct w1_f1C_data *data = sl->family_data;
120 	int i, min_page, max_page;
121 
122 	count = w1_f1C_fix_count(off, count, W1_EEPROM_SIZE);
123 	if (count == 0)
124 		return 0;
125 
126 	mutex_lock(&sl->master->mutex);
127 
128 	if (w1_enable_crccheck) {
129 		min_page = (off >> W1_PAGE_BITS);
130 		max_page = (off + count - 1) >> W1_PAGE_BITS;
131 		for (i = min_page; i <= max_page; i++) {
132 			if (w1_f1C_refresh_block(sl, data, i)) {
133 				count = -EIO;
134 				goto out_up;
135 			}
136 		}
137 		memcpy(buf, &data->memory[off], count);
138 	} else {
139 		count = w1_f1C_read(sl, off, count, buf);
140 	}
141 
142 out_up:
143 	mutex_unlock(&sl->master->mutex);
144 
145 	return count;
146 }
147 
148 /**
149  * Writes to the scratchpad and reads it back for verification.
150  * Then copies the scratchpad to EEPROM.
151  * The data must be on one page.
152  * The master must be locked.
153  *
154  * @param sl	The slave structure
155  * @param addr	Address for the write
156  * @param len   length must be <= (W1_PAGE_SIZE - (addr & W1_PAGE_MASK))
157  * @param data	The data to write
158  * @return	0=Success -1=failure
159  */
160 static int w1_f1C_write(struct w1_slave *sl, int addr, int len, const u8 *data)
161 {
162 	u8 wrbuf[4];
163 	u8 rdbuf[W1_PAGE_SIZE + 3];
164 	u8 es = (addr + len - 1) & 0x1f;
165 	unsigned int tm = 10;
166 	int i;
167 	struct w1_f1C_data *f1C = sl->family_data;
168 
169 	/* Write the data to the scratchpad */
170 	if (w1_reset_select_slave(sl))
171 		return -1;
172 
173 	wrbuf[0] = W1_F1C_WRITE_SCRATCH;
174 	wrbuf[1] = addr & 0xff;
175 	wrbuf[2] = addr >> 8;
176 
177 	w1_write_block(sl->master, wrbuf, 3);
178 	w1_write_block(sl->master, data, len);
179 
180 	/* Read the scratchpad and verify */
181 	if (w1_reset_select_slave(sl))
182 		return -1;
183 
184 	w1_write_8(sl->master, W1_F1C_READ_SCRATCH);
185 	w1_read_block(sl->master, rdbuf, len + 3);
186 
187 	/* Compare what was read against the data written */
188 	if ((rdbuf[0] != wrbuf[1]) || (rdbuf[1] != wrbuf[2]) ||
189 	    (rdbuf[2] != es) || (memcmp(data, &rdbuf[3], len) != 0))
190 		return -1;
191 
192 	/* Copy the scratchpad to EEPROM */
193 	if (w1_reset_select_slave(sl))
194 		return -1;
195 
196 	wrbuf[0] = W1_F1C_COPY_SCRATCH;
197 	wrbuf[3] = es;
198 
199 	for (i = 0; i < sizeof(wrbuf); ++i) {
200 		/* issue 10ms strong pullup (or delay) on the last byte
201 		   for writing the data from the scratchpad to EEPROM */
202 		if (w1_strong_pullup && i == sizeof(wrbuf)-1)
203 			w1_next_pullup(sl->master, tm);
204 
205 		w1_write_8(sl->master, wrbuf[i]);
206 	}
207 
208 	if (!w1_strong_pullup)
209 		msleep(tm);
210 
211 	if (w1_enable_crccheck) {
212 		/* invalidate cached data */
213 		f1C->validcrc &= ~(1 << (addr >> W1_PAGE_BITS));
214 	}
215 
216 	/* Reset the bus to wake up the EEPROM (this may not be needed) */
217 	w1_reset_bus(sl->master);
218 
219 	return 0;
220 }
221 
222 static ssize_t eeprom_write(struct file *filp, struct kobject *kobj,
223 			    struct bin_attribute *bin_attr, char *buf,
224 			    loff_t off, size_t count)
225 
226 {
227 	struct w1_slave *sl = kobj_to_w1_slave(kobj);
228 	int addr, len, idx;
229 
230 	count = w1_f1C_fix_count(off, count, W1_EEPROM_SIZE);
231 	if (count == 0)
232 		return 0;
233 
234 	if (w1_enable_crccheck) {
235 		/* can only write full blocks in cached mode */
236 		if ((off & W1_PAGE_MASK) || (count & W1_PAGE_MASK)) {
237 			dev_err(&sl->dev, "invalid offset/count off=%d cnt=%zd\n",
238 				(int)off, count);
239 			return -EINVAL;
240 		}
241 
242 		/* make sure the block CRCs are valid */
243 		for (idx = 0; idx < count; idx += W1_PAGE_SIZE) {
244 			if (crc16(CRC16_INIT, &buf[idx], W1_PAGE_SIZE)
245 				!= CRC16_VALID) {
246 				dev_err(&sl->dev, "bad CRC at offset %d\n",
247 					(int)off);
248 				return -EINVAL;
249 			}
250 		}
251 	}
252 
253 	mutex_lock(&sl->master->mutex);
254 
255 	/* Can only write data to one page at a time */
256 	idx = 0;
257 	while (idx < count) {
258 		addr = off + idx;
259 		len = W1_PAGE_SIZE - (addr & W1_PAGE_MASK);
260 		if (len > (count - idx))
261 			len = count - idx;
262 
263 		if (w1_f1C_write(sl, addr, len, &buf[idx]) < 0) {
264 			count = -EIO;
265 			goto out_up;
266 		}
267 		idx += len;
268 	}
269 
270 out_up:
271 	mutex_unlock(&sl->master->mutex);
272 
273 	return count;
274 }
275 
276 static BIN_ATTR_RW(eeprom, W1_EEPROM_SIZE);
277 
278 static ssize_t pio_read(struct file *filp, struct kobject *kobj,
279 			struct bin_attribute *bin_attr, char *buf, loff_t off,
280 			size_t count)
281 
282 {
283 	struct w1_slave *sl = kobj_to_w1_slave(kobj);
284 	int ret;
285 
286 	/* check arguments */
287 	if (off != 0 || count != 1 || buf == NULL)
288 		return -EINVAL;
289 
290 	mutex_lock(&sl->master->mutex);
291 	ret = w1_f1C_read(sl, W1_1C_REG_LOGIC_STATE, count, buf);
292 	mutex_unlock(&sl->master->mutex);
293 
294 	return ret;
295 }
296 
297 static ssize_t pio_write(struct file *filp, struct kobject *kobj,
298 			 struct bin_attribute *bin_attr, char *buf, loff_t off,
299 			 size_t count)
300 
301 {
302 	struct w1_slave *sl = kobj_to_w1_slave(kobj);
303 	u8 wrbuf[3];
304 	u8 ack;
305 
306 	/* check arguments */
307 	if (off != 0 || count != 1 || buf == NULL)
308 		return -EINVAL;
309 
310 	mutex_lock(&sl->master->mutex);
311 
312 	/* Write the PIO data */
313 	if (w1_reset_select_slave(sl)) {
314 		mutex_unlock(&sl->master->mutex);
315 		return -1;
316 	}
317 
318 	/* set bit 7..2 to value '1' */
319 	*buf = *buf | 0xFC;
320 
321 	wrbuf[0] = W1_F1C_ACCESS_WRITE;
322 	wrbuf[1] = *buf;
323 	wrbuf[2] = ~(*buf);
324 	w1_write_block(sl->master, wrbuf, 3);
325 
326 	w1_read_block(sl->master, &ack, sizeof(ack));
327 
328 	mutex_unlock(&sl->master->mutex);
329 
330 	/* check for acknowledgement */
331 	if (ack != 0xAA)
332 		return -EIO;
333 
334 	return count;
335 }
336 
337 static BIN_ATTR_RW(pio, 1);
338 
339 static ssize_t crccheck_show(struct device *dev, struct device_attribute *attr,
340 			     char *buf)
341 {
342 	return sysfs_emit(buf, "%d\n", w1_enable_crccheck);
343 }
344 
345 static ssize_t crccheck_store(struct device *dev, struct device_attribute *attr,
346 			      const char *buf, size_t count)
347 {
348 	int err = kstrtobool(buf, &w1_enable_crccheck);
349 
350 	if (err)
351 		return err;
352 
353 	return count;
354 }
355 
356 static DEVICE_ATTR_RW(crccheck);
357 
358 static struct attribute *w1_f1C_attrs[] = {
359 	&dev_attr_crccheck.attr,
360 	NULL,
361 };
362 
363 static struct bin_attribute *w1_f1C_bin_attrs[] = {
364 	&bin_attr_eeprom,
365 	&bin_attr_pio,
366 	NULL,
367 };
368 
369 static const struct attribute_group w1_f1C_group = {
370 	.attrs		= w1_f1C_attrs,
371 	.bin_attrs	= w1_f1C_bin_attrs,
372 };
373 
374 static const struct attribute_group *w1_f1C_groups[] = {
375 	&w1_f1C_group,
376 	NULL,
377 };
378 
379 static int w1_f1C_add_slave(struct w1_slave *sl)
380 {
381 	struct w1_f1C_data *data = NULL;
382 
383 	if (w1_enable_crccheck) {
384 		data = kzalloc(sizeof(struct w1_f1C_data), GFP_KERNEL);
385 		if (!data)
386 			return -ENOMEM;
387 		sl->family_data = data;
388 	}
389 
390 	return 0;
391 }
392 
393 static void w1_f1C_remove_slave(struct w1_slave *sl)
394 {
395 	kfree(sl->family_data);
396 	sl->family_data = NULL;
397 }
398 
399 static const struct w1_family_ops w1_f1C_fops = {
400 	.add_slave      = w1_f1C_add_slave,
401 	.remove_slave   = w1_f1C_remove_slave,
402 	.groups		= w1_f1C_groups,
403 };
404 
405 static struct w1_family w1_family_1C = {
406 	.fid = W1_FAMILY_DS28E04,
407 	.fops = &w1_f1C_fops,
408 };
409 module_w1_family(w1_family_1C);
410 
411 MODULE_AUTHOR("Markus Franke <franke.m@sebakmt.com>, <franm@hrz.tu-chemnitz.de>");
412 MODULE_DESCRIPTION("w1 family 1C driver for DS28E04, 4kb EEPROM and PIO");
413 MODULE_LICENSE("GPL");
414 MODULE_ALIAS("w1-family-" __stringify(W1_FAMILY_DS28E04));
415