xref: /openbmc/linux/drivers/w1/masters/ds2490.c (revision ecba1060)
1 /*
2  *	dscore.c
3  *
4  * Copyright (c) 2004 Evgeniy Polyakov <johnpol@2ka.mipt.ru>
5  *
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License as published by
9  * the Free Software Foundation; either version 2 of the License, or
10  * (at your option) any later version.
11  *
12  * This program is distributed in the hope that it will be useful,
13  * but WITHOUT ANY WARRANTY; without even the implied warranty of
14  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15  * GNU General Public License for more details.
16  *
17  * You should have received a copy of the GNU General Public License
18  * along with this program; if not, write to the Free Software
19  * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
20  */
21 
22 #include <linux/module.h>
23 #include <linux/kernel.h>
24 #include <linux/mod_devicetable.h>
25 #include <linux/usb.h>
26 
27 #include "../w1_int.h"
28 #include "../w1.h"
29 
30 /* COMMAND TYPE CODES */
31 #define CONTROL_CMD			0x00
32 #define COMM_CMD			0x01
33 #define MODE_CMD			0x02
34 
35 /* CONTROL COMMAND CODES */
36 #define CTL_RESET_DEVICE		0x0000
37 #define CTL_START_EXE			0x0001
38 #define CTL_RESUME_EXE			0x0002
39 #define CTL_HALT_EXE_IDLE		0x0003
40 #define CTL_HALT_EXE_DONE		0x0004
41 #define CTL_FLUSH_COMM_CMDS		0x0007
42 #define CTL_FLUSH_RCV_BUFFER		0x0008
43 #define CTL_FLUSH_XMT_BUFFER		0x0009
44 #define CTL_GET_COMM_CMDS		0x000A
45 
46 /* MODE COMMAND CODES */
47 #define MOD_PULSE_EN			0x0000
48 #define MOD_SPEED_CHANGE_EN		0x0001
49 #define MOD_1WIRE_SPEED			0x0002
50 #define MOD_STRONG_PU_DURATION		0x0003
51 #define MOD_PULLDOWN_SLEWRATE		0x0004
52 #define MOD_PROG_PULSE_DURATION		0x0005
53 #define MOD_WRITE1_LOWTIME		0x0006
54 #define MOD_DSOW0_TREC			0x0007
55 
56 /* COMMUNICATION COMMAND CODES */
57 #define COMM_ERROR_ESCAPE		0x0601
58 #define COMM_SET_DURATION		0x0012
59 #define COMM_BIT_IO			0x0020
60 #define COMM_PULSE			0x0030
61 #define COMM_1_WIRE_RESET		0x0042
62 #define COMM_BYTE_IO			0x0052
63 #define COMM_MATCH_ACCESS		0x0064
64 #define COMM_BLOCK_IO			0x0074
65 #define COMM_READ_STRAIGHT		0x0080
66 #define COMM_DO_RELEASE			0x6092
67 #define COMM_SET_PATH			0x00A2
68 #define COMM_WRITE_SRAM_PAGE		0x00B2
69 #define COMM_WRITE_EPROM		0x00C4
70 #define COMM_READ_CRC_PROT_PAGE		0x00D4
71 #define COMM_READ_REDIRECT_PAGE_CRC	0x21E4
72 #define COMM_SEARCH_ACCESS		0x00F4
73 
74 /* Communication command bits */
75 #define COMM_TYPE			0x0008
76 #define COMM_SE				0x0008
77 #define COMM_D				0x0008
78 #define COMM_Z				0x0008
79 #define COMM_CH				0x0008
80 #define COMM_SM				0x0008
81 #define COMM_R				0x0008
82 #define COMM_IM				0x0001
83 
84 #define COMM_PS				0x4000
85 #define COMM_PST			0x4000
86 #define COMM_CIB			0x4000
87 #define COMM_RTS			0x4000
88 #define COMM_DT				0x2000
89 #define COMM_SPU			0x1000
90 #define COMM_F				0x0800
91 #define COMM_NTF			0x0400
92 #define COMM_ICP			0x0200
93 #define COMM_RST			0x0100
94 
95 #define PULSE_PROG			0x01
96 #define PULSE_SPUE			0x02
97 
98 #define BRANCH_MAIN			0xCC
99 #define BRANCH_AUX			0x33
100 
101 /* Status flags */
102 #define ST_SPUA				0x01  /* Strong Pull-up is active */
103 #define ST_PRGA				0x02  /* 12V programming pulse is being generated */
104 #define ST_12VP				0x04  /* external 12V programming voltage is present */
105 #define ST_PMOD				0x08  /* DS2490 powered from USB and external sources */
106 #define ST_HALT				0x10  /* DS2490 is currently halted */
107 #define ST_IDLE				0x20  /* DS2490 is currently idle */
108 #define ST_EPOF				0x80
109 
110 /* Result Register flags */
111 #define RR_DETECT			0xA5 /* New device detected */
112 #define RR_NRS				0x01 /* Reset no presence or ... */
113 #define RR_SH				0x02 /* short on reset or set path */
114 #define RR_APP				0x04 /* alarming presence on reset */
115 #define RR_VPP				0x08 /* 12V expected not seen */
116 #define RR_CMP				0x10 /* compare error */
117 #define RR_CRC				0x20 /* CRC error detected */
118 #define RR_RDP				0x40 /* redirected page */
119 #define RR_EOS				0x80 /* end of search error */
120 
121 #define SPEED_NORMAL			0x00
122 #define SPEED_FLEXIBLE			0x01
123 #define SPEED_OVERDRIVE			0x02
124 
125 #define NUM_EP				4
126 #define EP_CONTROL			0
127 #define EP_STATUS			1
128 #define EP_DATA_OUT			2
129 #define EP_DATA_IN			3
130 
131 struct ds_device
132 {
133 	struct list_head	ds_entry;
134 
135 	struct usb_device	*udev;
136 	struct usb_interface	*intf;
137 
138 	int			ep[NUM_EP];
139 
140 	/* Strong PullUp
141 	 * 0: pullup not active, else duration in milliseconds
142 	 */
143 	int			spu_sleep;
144 	/* spu_bit contains COMM_SPU or 0 depending on if the strong pullup
145 	 * should be active or not for writes.
146 	 */
147 	u16			spu_bit;
148 
149 	struct w1_bus_master	master;
150 };
151 
152 struct ds_status
153 {
154 	u8			enable;
155 	u8			speed;
156 	u8			pullup_dur;
157 	u8			ppuls_dur;
158 	u8			pulldown_slew;
159 	u8			write1_time;
160 	u8			write0_time;
161 	u8			reserved0;
162 	u8			status;
163 	u8			command0;
164 	u8			command1;
165 	u8			command_buffer_status;
166 	u8			data_out_buffer_status;
167 	u8			data_in_buffer_status;
168 	u8			reserved1;
169 	u8			reserved2;
170 
171 };
172 
173 static struct usb_device_id ds_id_table [] = {
174 	{ USB_DEVICE(0x04fa, 0x2490) },
175 	{ },
176 };
177 MODULE_DEVICE_TABLE(usb, ds_id_table);
178 
179 static int ds_probe(struct usb_interface *, const struct usb_device_id *);
180 static void ds_disconnect(struct usb_interface *);
181 
182 static int ds_send_control(struct ds_device *, u16, u16);
183 static int ds_send_control_cmd(struct ds_device *, u16, u16);
184 
185 static LIST_HEAD(ds_devices);
186 static DEFINE_MUTEX(ds_mutex);
187 
188 static struct usb_driver ds_driver = {
189 	.name =		"DS9490R",
190 	.probe =	ds_probe,
191 	.disconnect =	ds_disconnect,
192 	.id_table =	ds_id_table,
193 };
194 
195 static int ds_send_control_cmd(struct ds_device *dev, u16 value, u16 index)
196 {
197 	int err;
198 
199 	err = usb_control_msg(dev->udev, usb_sndctrlpipe(dev->udev, dev->ep[EP_CONTROL]),
200 			CONTROL_CMD, 0x40, value, index, NULL, 0, 1000);
201 	if (err < 0) {
202 		printk(KERN_ERR "Failed to send command control message %x.%x: err=%d.\n",
203 				value, index, err);
204 		return err;
205 	}
206 
207 	return err;
208 }
209 
210 static int ds_send_control_mode(struct ds_device *dev, u16 value, u16 index)
211 {
212 	int err;
213 
214 	err = usb_control_msg(dev->udev, usb_sndctrlpipe(dev->udev, dev->ep[EP_CONTROL]),
215 			MODE_CMD, 0x40, value, index, NULL, 0, 1000);
216 	if (err < 0) {
217 		printk(KERN_ERR "Failed to send mode control message %x.%x: err=%d.\n",
218 				value, index, err);
219 		return err;
220 	}
221 
222 	return err;
223 }
224 
225 static int ds_send_control(struct ds_device *dev, u16 value, u16 index)
226 {
227 	int err;
228 
229 	err = usb_control_msg(dev->udev, usb_sndctrlpipe(dev->udev, dev->ep[EP_CONTROL]),
230 			COMM_CMD, 0x40, value, index, NULL, 0, 1000);
231 	if (err < 0) {
232 		printk(KERN_ERR "Failed to send control message %x.%x: err=%d.\n",
233 				value, index, err);
234 		return err;
235 	}
236 
237 	return err;
238 }
239 
240 static int ds_recv_status_nodump(struct ds_device *dev, struct ds_status *st,
241 				 unsigned char *buf, int size)
242 {
243 	int count, err;
244 
245 	memset(st, 0, sizeof(*st));
246 
247 	count = 0;
248 	err = usb_bulk_msg(dev->udev, usb_rcvbulkpipe(dev->udev, dev->ep[EP_STATUS]), buf, size, &count, 100);
249 	if (err < 0) {
250 		printk(KERN_ERR "Failed to read 1-wire data from 0x%x: err=%d.\n", dev->ep[EP_STATUS], err);
251 		return err;
252 	}
253 
254 	if (count >= sizeof(*st))
255 		memcpy(st, buf, sizeof(*st));
256 
257 	return count;
258 }
259 
260 static inline void ds_print_msg(unsigned char *buf, unsigned char *str, int off)
261 {
262 	printk(KERN_INFO "%45s: %8x\n", str, buf[off]);
263 }
264 
265 static void ds_dump_status(struct ds_device *dev, unsigned char *buf, int count)
266 {
267 	int i;
268 
269 	printk(KERN_INFO "0x%x: count=%d, status: ", dev->ep[EP_STATUS], count);
270 	for (i=0; i<count; ++i)
271 		printk("%02x ", buf[i]);
272 	printk(KERN_INFO "\n");
273 
274 	if (count >= 16) {
275 		ds_print_msg(buf, "enable flag", 0);
276 		ds_print_msg(buf, "1-wire speed", 1);
277 		ds_print_msg(buf, "strong pullup duration", 2);
278 		ds_print_msg(buf, "programming pulse duration", 3);
279 		ds_print_msg(buf, "pulldown slew rate control", 4);
280 		ds_print_msg(buf, "write-1 low time", 5);
281 		ds_print_msg(buf, "data sample offset/write-0 recovery time",
282 			6);
283 		ds_print_msg(buf, "reserved (test register)", 7);
284 		ds_print_msg(buf, "device status flags", 8);
285 		ds_print_msg(buf, "communication command byte 1", 9);
286 		ds_print_msg(buf, "communication command byte 2", 10);
287 		ds_print_msg(buf, "communication command buffer status", 11);
288 		ds_print_msg(buf, "1-wire data output buffer status", 12);
289 		ds_print_msg(buf, "1-wire data input buffer status", 13);
290 		ds_print_msg(buf, "reserved", 14);
291 		ds_print_msg(buf, "reserved", 15);
292 	}
293 	for (i = 16; i < count; ++i) {
294 		if (buf[i] == RR_DETECT) {
295 			ds_print_msg(buf, "new device detect", i);
296 			continue;
297 		}
298 		ds_print_msg(buf, "Result Register Value: ", i);
299 		if (buf[i] & RR_NRS)
300 			printk(KERN_INFO "NRS: Reset no presence or ...\n");
301 		if (buf[i] & RR_SH)
302 			printk(KERN_INFO "SH: short on reset or set path\n");
303 		if (buf[i] & RR_APP)
304 			printk(KERN_INFO "APP: alarming presence on reset\n");
305 		if (buf[i] & RR_VPP)
306 			printk(KERN_INFO "VPP: 12V expected not seen\n");
307 		if (buf[i] & RR_CMP)
308 			printk(KERN_INFO "CMP: compare error\n");
309 		if (buf[i] & RR_CRC)
310 			printk(KERN_INFO "CRC: CRC error detected\n");
311 		if (buf[i] & RR_RDP)
312 			printk(KERN_INFO "RDP: redirected page\n");
313 		if (buf[i] & RR_EOS)
314 			printk(KERN_INFO "EOS: end of search error\n");
315 	}
316 }
317 
318 static void ds_reset_device(struct ds_device *dev)
319 {
320 	ds_send_control_cmd(dev, CTL_RESET_DEVICE, 0);
321 	/* Always allow strong pullup which allow individual writes to use
322 	 * the strong pullup.
323 	 */
324 	if (ds_send_control_mode(dev, MOD_PULSE_EN, PULSE_SPUE))
325 		printk(KERN_ERR "ds_reset_device: "
326 			"Error allowing strong pullup\n");
327 	/* Chip strong pullup time was cleared. */
328 	if (dev->spu_sleep) {
329 		/* lower 4 bits are 0, see ds_set_pullup */
330 		u8 del = dev->spu_sleep>>4;
331 		if (ds_send_control(dev, COMM_SET_DURATION | COMM_IM, del))
332 			printk(KERN_ERR "ds_reset_device: "
333 				"Error setting duration\n");
334 	}
335 }
336 
337 static int ds_recv_data(struct ds_device *dev, unsigned char *buf, int size)
338 {
339 	int count, err;
340 	struct ds_status st;
341 
342 	/* Careful on size.  If size is less than what is available in
343 	 * the input buffer, the device fails the bulk transfer and
344 	 * clears the input buffer.  It could read the maximum size of
345 	 * the data buffer, but then do you return the first, last, or
346 	 * some set of the middle size bytes?  As long as the rest of
347 	 * the code is correct there will be size bytes waiting.  A
348 	 * call to ds_wait_status will wait until the device is idle
349 	 * and any data to be received would have been available.
350 	 */
351 	count = 0;
352 	err = usb_bulk_msg(dev->udev, usb_rcvbulkpipe(dev->udev, dev->ep[EP_DATA_IN]),
353 				buf, size, &count, 1000);
354 	if (err < 0) {
355 		u8 buf[0x20];
356 		int count;
357 
358 		printk(KERN_INFO "Clearing ep0x%x.\n", dev->ep[EP_DATA_IN]);
359 		usb_clear_halt(dev->udev, usb_rcvbulkpipe(dev->udev, dev->ep[EP_DATA_IN]));
360 
361 		count = ds_recv_status_nodump(dev, &st, buf, sizeof(buf));
362 		ds_dump_status(dev, buf, count);
363 		return err;
364 	}
365 
366 #if 0
367 	{
368 		int i;
369 
370 		printk("%s: count=%d: ", __func__, count);
371 		for (i=0; i<count; ++i)
372 			printk("%02x ", buf[i]);
373 		printk("\n");
374 	}
375 #endif
376 	return count;
377 }
378 
379 static int ds_send_data(struct ds_device *dev, unsigned char *buf, int len)
380 {
381 	int count, err;
382 
383 	count = 0;
384 	err = usb_bulk_msg(dev->udev, usb_sndbulkpipe(dev->udev, dev->ep[EP_DATA_OUT]), buf, len, &count, 1000);
385 	if (err < 0) {
386 		printk(KERN_ERR "Failed to write 1-wire data to ep0x%x: "
387 			"err=%d.\n", dev->ep[EP_DATA_OUT], err);
388 		return err;
389 	}
390 
391 	return err;
392 }
393 
394 #if 0
395 
396 int ds_stop_pulse(struct ds_device *dev, int limit)
397 {
398 	struct ds_status st;
399 	int count = 0, err = 0;
400 	u8 buf[0x20];
401 
402 	do {
403 		err = ds_send_control(dev, CTL_HALT_EXE_IDLE, 0);
404 		if (err)
405 			break;
406 		err = ds_send_control(dev, CTL_RESUME_EXE, 0);
407 		if (err)
408 			break;
409 		err = ds_recv_status_nodump(dev, &st, buf, sizeof(buf));
410 		if (err)
411 			break;
412 
413 		if ((st.status & ST_SPUA) == 0) {
414 			err = ds_send_control_mode(dev, MOD_PULSE_EN, 0);
415 			if (err)
416 				break;
417 		}
418 	} while(++count < limit);
419 
420 	return err;
421 }
422 
423 int ds_detect(struct ds_device *dev, struct ds_status *st)
424 {
425 	int err;
426 
427 	err = ds_send_control_cmd(dev, CTL_RESET_DEVICE, 0);
428 	if (err)
429 		return err;
430 
431 	err = ds_send_control(dev, COMM_SET_DURATION | COMM_IM, 0);
432 	if (err)
433 		return err;
434 
435 	err = ds_send_control(dev, COMM_SET_DURATION | COMM_IM | COMM_TYPE, 0x40);
436 	if (err)
437 		return err;
438 
439 	err = ds_send_control_mode(dev, MOD_PULSE_EN, PULSE_PROG);
440 	if (err)
441 		return err;
442 
443 	err = ds_dump_status(dev, st);
444 
445 	return err;
446 }
447 
448 #endif  /*  0  */
449 
450 static int ds_wait_status(struct ds_device *dev, struct ds_status *st)
451 {
452 	u8 buf[0x20];
453 	int err, count = 0;
454 
455 	do {
456 		err = ds_recv_status_nodump(dev, st, buf, sizeof(buf));
457 #if 0
458 		if (err >= 0) {
459 			int i;
460 			printk("0x%x: count=%d, status: ", dev->ep[EP_STATUS], err);
461 			for (i=0; i<err; ++i)
462 				printk("%02x ", buf[i]);
463 			printk("\n");
464 		}
465 #endif
466 	} while (!(buf[0x08] & ST_IDLE) && !(err < 0) && ++count < 100);
467 
468 	if (err >= 16 && st->status & ST_EPOF) {
469 		printk(KERN_INFO "Resetting device after ST_EPOF.\n");
470 		ds_reset_device(dev);
471 		/* Always dump the device status. */
472 		count = 101;
473 	}
474 
475 	/* Dump the status for errors or if there is extended return data.
476 	 * The extended status includes new device detection (maybe someone
477 	 * can do something with it).
478 	 */
479 	if (err > 16 || count >= 100 || err < 0)
480 		ds_dump_status(dev, buf, err);
481 
482 	/* Extended data isn't an error.  Well, a short is, but the dump
483 	 * would have already told the user that and we can't do anything
484 	 * about it in software anyway.
485 	 */
486 	if (count >= 100 || err < 0)
487 		return -1;
488 	else
489 		return 0;
490 }
491 
492 static int ds_reset(struct ds_device *dev)
493 {
494 	int err;
495 
496 	/* Other potentionally interesting flags for reset.
497 	 *
498 	 * COMM_NTF: Return result register feedback.  This could be used to
499 	 * detect some conditions such as short, alarming presence, or
500 	 * detect if a new device was detected.
501 	 *
502 	 * COMM_SE which allows SPEED_NORMAL, SPEED_FLEXIBLE, SPEED_OVERDRIVE:
503 	 * Select the data transfer rate.
504 	 */
505 	err = ds_send_control(dev, COMM_1_WIRE_RESET | COMM_IM, SPEED_NORMAL);
506 	if (err)
507 		return err;
508 
509 	return 0;
510 }
511 
512 #if 0
513 static int ds_set_speed(struct ds_device *dev, int speed)
514 {
515 	int err;
516 
517 	if (speed != SPEED_NORMAL && speed != SPEED_FLEXIBLE && speed != SPEED_OVERDRIVE)
518 		return -EINVAL;
519 
520 	if (speed != SPEED_OVERDRIVE)
521 		speed = SPEED_FLEXIBLE;
522 
523 	speed &= 0xff;
524 
525 	err = ds_send_control_mode(dev, MOD_1WIRE_SPEED, speed);
526 	if (err)
527 		return err;
528 
529 	return err;
530 }
531 #endif  /*  0  */
532 
533 static int ds_set_pullup(struct ds_device *dev, int delay)
534 {
535 	int err = 0;
536 	u8 del = 1 + (u8)(delay >> 4);
537 	/* Just storing delay would not get the trunication and roundup. */
538 	int ms = del<<4;
539 
540 	/* Enable spu_bit if a delay is set. */
541 	dev->spu_bit = delay ? COMM_SPU : 0;
542 	/* If delay is zero, it has already been disabled, if the time is
543 	 * the same as the hardware was last programmed to, there is also
544 	 * nothing more to do.  Compare with the recalculated value ms
545 	 * rather than del or delay which can have a different value.
546 	 */
547 	if (delay == 0 || ms == dev->spu_sleep)
548 		return err;
549 
550 	err = ds_send_control(dev, COMM_SET_DURATION | COMM_IM, del);
551 	if (err)
552 		return err;
553 
554 	dev->spu_sleep = ms;
555 
556 	return err;
557 }
558 
559 static int ds_touch_bit(struct ds_device *dev, u8 bit, u8 *tbit)
560 {
561 	int err;
562 	struct ds_status st;
563 
564 	err = ds_send_control(dev, COMM_BIT_IO | COMM_IM | (bit ? COMM_D : 0),
565 		0);
566 	if (err)
567 		return err;
568 
569 	ds_wait_status(dev, &st);
570 
571 	err = ds_recv_data(dev, tbit, sizeof(*tbit));
572 	if (err < 0)
573 		return err;
574 
575 	return 0;
576 }
577 
578 #if 0
579 static int ds_write_bit(struct ds_device *dev, u8 bit)
580 {
581 	int err;
582 	struct ds_status st;
583 
584 	/* Set COMM_ICP to write without a readback.  Note, this will
585 	 * produce one time slot, a down followed by an up with COMM_D
586 	 * only determing the timing.
587 	 */
588 	err = ds_send_control(dev, COMM_BIT_IO | COMM_IM | COMM_ICP |
589 		(bit ? COMM_D : 0), 0);
590 	if (err)
591 		return err;
592 
593 	ds_wait_status(dev, &st);
594 
595 	return 0;
596 }
597 #endif
598 
599 static int ds_write_byte(struct ds_device *dev, u8 byte)
600 {
601 	int err;
602 	struct ds_status st;
603 	u8 rbyte;
604 
605 	err = ds_send_control(dev, COMM_BYTE_IO | COMM_IM | dev->spu_bit, byte);
606 	if (err)
607 		return err;
608 
609 	if (dev->spu_bit)
610 		msleep(dev->spu_sleep);
611 
612 	err = ds_wait_status(dev, &st);
613 	if (err)
614 		return err;
615 
616 	err = ds_recv_data(dev, &rbyte, sizeof(rbyte));
617 	if (err < 0)
618 		return err;
619 
620 	return !(byte == rbyte);
621 }
622 
623 static int ds_read_byte(struct ds_device *dev, u8 *byte)
624 {
625 	int err;
626 	struct ds_status st;
627 
628 	err = ds_send_control(dev, COMM_BYTE_IO | COMM_IM , 0xff);
629 	if (err)
630 		return err;
631 
632 	ds_wait_status(dev, &st);
633 
634 	err = ds_recv_data(dev, byte, sizeof(*byte));
635 	if (err < 0)
636 		return err;
637 
638 	return 0;
639 }
640 
641 static int ds_read_block(struct ds_device *dev, u8 *buf, int len)
642 {
643 	struct ds_status st;
644 	int err;
645 
646 	if (len > 64*1024)
647 		return -E2BIG;
648 
649 	memset(buf, 0xFF, len);
650 
651 	err = ds_send_data(dev, buf, len);
652 	if (err < 0)
653 		return err;
654 
655 	err = ds_send_control(dev, COMM_BLOCK_IO | COMM_IM, len);
656 	if (err)
657 		return err;
658 
659 	ds_wait_status(dev, &st);
660 
661 	memset(buf, 0x00, len);
662 	err = ds_recv_data(dev, buf, len);
663 
664 	return err;
665 }
666 
667 static int ds_write_block(struct ds_device *dev, u8 *buf, int len)
668 {
669 	int err;
670 	struct ds_status st;
671 
672 	err = ds_send_data(dev, buf, len);
673 	if (err < 0)
674 		return err;
675 
676 	err = ds_send_control(dev, COMM_BLOCK_IO | COMM_IM | dev->spu_bit, len);
677 	if (err)
678 		return err;
679 
680 	if (dev->spu_bit)
681 		msleep(dev->spu_sleep);
682 
683 	ds_wait_status(dev, &st);
684 
685 	err = ds_recv_data(dev, buf, len);
686 	if (err < 0)
687 		return err;
688 
689 	return !(err == len);
690 }
691 
692 #if 0
693 
694 static int ds_search(struct ds_device *dev, u64 init, u64 *buf, u8 id_number, int conditional_search)
695 {
696 	int err;
697 	u16 value, index;
698 	struct ds_status st;
699 
700 	memset(buf, 0, sizeof(buf));
701 
702 	err = ds_send_data(ds_dev, (unsigned char *)&init, 8);
703 	if (err)
704 		return err;
705 
706 	ds_wait_status(ds_dev, &st);
707 
708 	value = COMM_SEARCH_ACCESS | COMM_IM | COMM_SM | COMM_F | COMM_RTS;
709 	index = (conditional_search ? 0xEC : 0xF0) | (id_number << 8);
710 	err = ds_send_control(ds_dev, value, index);
711 	if (err)
712 		return err;
713 
714 	ds_wait_status(ds_dev, &st);
715 
716 	err = ds_recv_data(ds_dev, (unsigned char *)buf, 8*id_number);
717 	if (err < 0)
718 		return err;
719 
720 	return err/8;
721 }
722 
723 static int ds_match_access(struct ds_device *dev, u64 init)
724 {
725 	int err;
726 	struct ds_status st;
727 
728 	err = ds_send_data(dev, (unsigned char *)&init, sizeof(init));
729 	if (err)
730 		return err;
731 
732 	ds_wait_status(dev, &st);
733 
734 	err = ds_send_control(dev, COMM_MATCH_ACCESS | COMM_IM | COMM_RST, 0x0055);
735 	if (err)
736 		return err;
737 
738 	ds_wait_status(dev, &st);
739 
740 	return 0;
741 }
742 
743 static int ds_set_path(struct ds_device *dev, u64 init)
744 {
745 	int err;
746 	struct ds_status st;
747 	u8 buf[9];
748 
749 	memcpy(buf, &init, 8);
750 	buf[8] = BRANCH_MAIN;
751 
752 	err = ds_send_data(dev, buf, sizeof(buf));
753 	if (err)
754 		return err;
755 
756 	ds_wait_status(dev, &st);
757 
758 	err = ds_send_control(dev, COMM_SET_PATH | COMM_IM | COMM_RST, 0);
759 	if (err)
760 		return err;
761 
762 	ds_wait_status(dev, &st);
763 
764 	return 0;
765 }
766 
767 #endif  /*  0  */
768 
769 static u8 ds9490r_touch_bit(void *data, u8 bit)
770 {
771 	u8 ret;
772 	struct ds_device *dev = data;
773 
774 	if (ds_touch_bit(dev, bit, &ret))
775 		return 0;
776 
777 	return ret;
778 }
779 
780 #if 0
781 static void ds9490r_write_bit(void *data, u8 bit)
782 {
783 	struct ds_device *dev = data;
784 
785 	ds_write_bit(dev, bit);
786 }
787 
788 static u8 ds9490r_read_bit(void *data)
789 {
790 	struct ds_device *dev = data;
791 	int err;
792 	u8 bit = 0;
793 
794 	err = ds_touch_bit(dev, 1, &bit);
795 	if (err)
796 		return 0;
797 
798 	return bit & 1;
799 }
800 #endif
801 
802 static void ds9490r_write_byte(void *data, u8 byte)
803 {
804 	struct ds_device *dev = data;
805 
806 	ds_write_byte(dev, byte);
807 }
808 
809 static u8 ds9490r_read_byte(void *data)
810 {
811 	struct ds_device *dev = data;
812 	int err;
813 	u8 byte = 0;
814 
815 	err = ds_read_byte(dev, &byte);
816 	if (err)
817 		return 0;
818 
819 	return byte;
820 }
821 
822 static void ds9490r_write_block(void *data, const u8 *buf, int len)
823 {
824 	struct ds_device *dev = data;
825 
826 	ds_write_block(dev, (u8 *)buf, len);
827 }
828 
829 static u8 ds9490r_read_block(void *data, u8 *buf, int len)
830 {
831 	struct ds_device *dev = data;
832 	int err;
833 
834 	err = ds_read_block(dev, buf, len);
835 	if (err < 0)
836 		return 0;
837 
838 	return len;
839 }
840 
841 static u8 ds9490r_reset(void *data)
842 {
843 	struct ds_device *dev = data;
844 	int err;
845 
846 	err = ds_reset(dev);
847 	if (err)
848 		return 1;
849 
850 	return 0;
851 }
852 
853 static u8 ds9490r_set_pullup(void *data, int delay)
854 {
855 	struct ds_device *dev = data;
856 
857 	if (ds_set_pullup(dev, delay))
858 		return 1;
859 
860 	return 0;
861 }
862 
863 static int ds_w1_init(struct ds_device *dev)
864 {
865 	memset(&dev->master, 0, sizeof(struct w1_bus_master));
866 
867 	/* Reset the device as it can be in a bad state.
868 	 * This is necessary because a block write will wait for data
869 	 * to be placed in the output buffer and block any later
870 	 * commands which will keep accumulating and the device will
871 	 * not be idle.  Another case is removing the ds2490 module
872 	 * while a bus search is in progress, somehow a few commands
873 	 * get through, but the input transfers fail leaving data in
874 	 * the input buffer.  This will cause the next read to fail
875 	 * see the note in ds_recv_data.
876 	 */
877 	ds_reset_device(dev);
878 
879 	dev->master.data	= dev;
880 	dev->master.touch_bit	= &ds9490r_touch_bit;
881 	/* read_bit and write_bit in w1_bus_master are expected to set and
882 	 * sample the line level.  For write_bit that means it is expected to
883 	 * set it to that value and leave it there.  ds2490 only supports an
884 	 * individual time slot at the lowest level.  The requirement from
885 	 * pulling the bus state down to reading the state is 15us, something
886 	 * that isn't realistic on the USB bus anyway.
887 	dev->master.read_bit	= &ds9490r_read_bit;
888 	dev->master.write_bit	= &ds9490r_write_bit;
889 	*/
890 	dev->master.read_byte	= &ds9490r_read_byte;
891 	dev->master.write_byte	= &ds9490r_write_byte;
892 	dev->master.read_block	= &ds9490r_read_block;
893 	dev->master.write_block	= &ds9490r_write_block;
894 	dev->master.reset_bus	= &ds9490r_reset;
895 	dev->master.set_pullup	= &ds9490r_set_pullup;
896 
897 	return w1_add_master_device(&dev->master);
898 }
899 
900 static void ds_w1_fini(struct ds_device *dev)
901 {
902 	w1_remove_master_device(&dev->master);
903 }
904 
905 static int ds_probe(struct usb_interface *intf,
906 		    const struct usb_device_id *udev_id)
907 {
908 	struct usb_device *udev = interface_to_usbdev(intf);
909 	struct usb_endpoint_descriptor *endpoint;
910 	struct usb_host_interface *iface_desc;
911 	struct ds_device *dev;
912 	int i, err;
913 
914 	dev = kmalloc(sizeof(struct ds_device), GFP_KERNEL);
915 	if (!dev) {
916 		printk(KERN_INFO "Failed to allocate new DS9490R structure.\n");
917 		return -ENOMEM;
918 	}
919 	dev->spu_sleep = 0;
920 	dev->spu_bit = 0;
921 	dev->udev = usb_get_dev(udev);
922 	if (!dev->udev) {
923 		err = -ENOMEM;
924 		goto err_out_free;
925 	}
926 	memset(dev->ep, 0, sizeof(dev->ep));
927 
928 	usb_set_intfdata(intf, dev);
929 
930 	err = usb_set_interface(dev->udev, intf->altsetting[0].desc.bInterfaceNumber, 3);
931 	if (err) {
932 		printk(KERN_ERR "Failed to set alternative setting 3 for %d interface: err=%d.\n",
933 				intf->altsetting[0].desc.bInterfaceNumber, err);
934 		goto err_out_clear;
935 	}
936 
937 	err = usb_reset_configuration(dev->udev);
938 	if (err) {
939 		printk(KERN_ERR "Failed to reset configuration: err=%d.\n", err);
940 		goto err_out_clear;
941 	}
942 
943 	iface_desc = &intf->altsetting[0];
944 	if (iface_desc->desc.bNumEndpoints != NUM_EP-1) {
945 		printk(KERN_INFO "Num endpoints=%d. It is not DS9490R.\n", iface_desc->desc.bNumEndpoints);
946 		err = -EINVAL;
947 		goto err_out_clear;
948 	}
949 
950 	/*
951 	 * This loop doesn'd show control 0 endpoint,
952 	 * so we will fill only 1-3 endpoints entry.
953 	 */
954 	for (i = 0; i < iface_desc->desc.bNumEndpoints; ++i) {
955 		endpoint = &iface_desc->endpoint[i].desc;
956 
957 		dev->ep[i+1] = endpoint->bEndpointAddress;
958 #if 0
959 		printk("%d: addr=%x, size=%d, dir=%s, type=%x\n",
960 			i, endpoint->bEndpointAddress, le16_to_cpu(endpoint->wMaxPacketSize),
961 			(endpoint->bEndpointAddress & USB_DIR_IN)?"IN":"OUT",
962 			endpoint->bmAttributes & USB_ENDPOINT_XFERTYPE_MASK);
963 #endif
964 	}
965 
966 	err = ds_w1_init(dev);
967 	if (err)
968 		goto err_out_clear;
969 
970 	mutex_lock(&ds_mutex);
971 	list_add_tail(&dev->ds_entry, &ds_devices);
972 	mutex_unlock(&ds_mutex);
973 
974 	return 0;
975 
976 err_out_clear:
977 	usb_set_intfdata(intf, NULL);
978 	usb_put_dev(dev->udev);
979 err_out_free:
980 	kfree(dev);
981 	return err;
982 }
983 
984 static void ds_disconnect(struct usb_interface *intf)
985 {
986 	struct ds_device *dev;
987 
988 	dev = usb_get_intfdata(intf);
989 	if (!dev)
990 		return;
991 
992 	mutex_lock(&ds_mutex);
993 	list_del(&dev->ds_entry);
994 	mutex_unlock(&ds_mutex);
995 
996 	ds_w1_fini(dev);
997 
998 	usb_set_intfdata(intf, NULL);
999 
1000 	usb_put_dev(dev->udev);
1001 	kfree(dev);
1002 }
1003 
1004 static int ds_init(void)
1005 {
1006 	int err;
1007 
1008 	err = usb_register(&ds_driver);
1009 	if (err) {
1010 		printk(KERN_INFO "Failed to register DS9490R USB device: err=%d.\n", err);
1011 		return err;
1012 	}
1013 
1014 	return 0;
1015 }
1016 
1017 static void ds_fini(void)
1018 {
1019 	usb_deregister(&ds_driver);
1020 }
1021 
1022 module_init(ds_init);
1023 module_exit(ds_fini);
1024 
1025 MODULE_LICENSE("GPL");
1026 MODULE_AUTHOR("Evgeniy Polyakov <johnpol@2ka.mipt.ru>");
1027 MODULE_DESCRIPTION("DS2490 USB <-> W1 bus master driver (DS9490*)");
1028