xref: /openbmc/linux/drivers/w1/masters/ds2490.c (revision 4dc7ccf7)
1 /*
2  *	dscore.c
3  *
4  * Copyright (c) 2004 Evgeniy Polyakov <johnpol@2ka.mipt.ru>
5  *
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License as published by
9  * the Free Software Foundation; either version 2 of the License, or
10  * (at your option) any later version.
11  *
12  * This program is distributed in the hope that it will be useful,
13  * but WITHOUT ANY WARRANTY; without even the implied warranty of
14  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15  * GNU General Public License for more details.
16  *
17  * You should have received a copy of the GNU General Public License
18  * along with this program; if not, write to the Free Software
19  * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
20  */
21 
22 #include <linux/module.h>
23 #include <linux/kernel.h>
24 #include <linux/mod_devicetable.h>
25 #include <linux/usb.h>
26 #include <linux/slab.h>
27 
28 #include "../w1_int.h"
29 #include "../w1.h"
30 
31 /* COMMAND TYPE CODES */
32 #define CONTROL_CMD			0x00
33 #define COMM_CMD			0x01
34 #define MODE_CMD			0x02
35 
36 /* CONTROL COMMAND CODES */
37 #define CTL_RESET_DEVICE		0x0000
38 #define CTL_START_EXE			0x0001
39 #define CTL_RESUME_EXE			0x0002
40 #define CTL_HALT_EXE_IDLE		0x0003
41 #define CTL_HALT_EXE_DONE		0x0004
42 #define CTL_FLUSH_COMM_CMDS		0x0007
43 #define CTL_FLUSH_RCV_BUFFER		0x0008
44 #define CTL_FLUSH_XMT_BUFFER		0x0009
45 #define CTL_GET_COMM_CMDS		0x000A
46 
47 /* MODE COMMAND CODES */
48 #define MOD_PULSE_EN			0x0000
49 #define MOD_SPEED_CHANGE_EN		0x0001
50 #define MOD_1WIRE_SPEED			0x0002
51 #define MOD_STRONG_PU_DURATION		0x0003
52 #define MOD_PULLDOWN_SLEWRATE		0x0004
53 #define MOD_PROG_PULSE_DURATION		0x0005
54 #define MOD_WRITE1_LOWTIME		0x0006
55 #define MOD_DSOW0_TREC			0x0007
56 
57 /* COMMUNICATION COMMAND CODES */
58 #define COMM_ERROR_ESCAPE		0x0601
59 #define COMM_SET_DURATION		0x0012
60 #define COMM_BIT_IO			0x0020
61 #define COMM_PULSE			0x0030
62 #define COMM_1_WIRE_RESET		0x0042
63 #define COMM_BYTE_IO			0x0052
64 #define COMM_MATCH_ACCESS		0x0064
65 #define COMM_BLOCK_IO			0x0074
66 #define COMM_READ_STRAIGHT		0x0080
67 #define COMM_DO_RELEASE			0x6092
68 #define COMM_SET_PATH			0x00A2
69 #define COMM_WRITE_SRAM_PAGE		0x00B2
70 #define COMM_WRITE_EPROM		0x00C4
71 #define COMM_READ_CRC_PROT_PAGE		0x00D4
72 #define COMM_READ_REDIRECT_PAGE_CRC	0x21E4
73 #define COMM_SEARCH_ACCESS		0x00F4
74 
75 /* Communication command bits */
76 #define COMM_TYPE			0x0008
77 #define COMM_SE				0x0008
78 #define COMM_D				0x0008
79 #define COMM_Z				0x0008
80 #define COMM_CH				0x0008
81 #define COMM_SM				0x0008
82 #define COMM_R				0x0008
83 #define COMM_IM				0x0001
84 
85 #define COMM_PS				0x4000
86 #define COMM_PST			0x4000
87 #define COMM_CIB			0x4000
88 #define COMM_RTS			0x4000
89 #define COMM_DT				0x2000
90 #define COMM_SPU			0x1000
91 #define COMM_F				0x0800
92 #define COMM_NTF			0x0400
93 #define COMM_ICP			0x0200
94 #define COMM_RST			0x0100
95 
96 #define PULSE_PROG			0x01
97 #define PULSE_SPUE			0x02
98 
99 #define BRANCH_MAIN			0xCC
100 #define BRANCH_AUX			0x33
101 
102 /* Status flags */
103 #define ST_SPUA				0x01  /* Strong Pull-up is active */
104 #define ST_PRGA				0x02  /* 12V programming pulse is being generated */
105 #define ST_12VP				0x04  /* external 12V programming voltage is present */
106 #define ST_PMOD				0x08  /* DS2490 powered from USB and external sources */
107 #define ST_HALT				0x10  /* DS2490 is currently halted */
108 #define ST_IDLE				0x20  /* DS2490 is currently idle */
109 #define ST_EPOF				0x80
110 
111 /* Result Register flags */
112 #define RR_DETECT			0xA5 /* New device detected */
113 #define RR_NRS				0x01 /* Reset no presence or ... */
114 #define RR_SH				0x02 /* short on reset or set path */
115 #define RR_APP				0x04 /* alarming presence on reset */
116 #define RR_VPP				0x08 /* 12V expected not seen */
117 #define RR_CMP				0x10 /* compare error */
118 #define RR_CRC				0x20 /* CRC error detected */
119 #define RR_RDP				0x40 /* redirected page */
120 #define RR_EOS				0x80 /* end of search error */
121 
122 #define SPEED_NORMAL			0x00
123 #define SPEED_FLEXIBLE			0x01
124 #define SPEED_OVERDRIVE			0x02
125 
126 #define NUM_EP				4
127 #define EP_CONTROL			0
128 #define EP_STATUS			1
129 #define EP_DATA_OUT			2
130 #define EP_DATA_IN			3
131 
132 struct ds_device
133 {
134 	struct list_head	ds_entry;
135 
136 	struct usb_device	*udev;
137 	struct usb_interface	*intf;
138 
139 	int			ep[NUM_EP];
140 
141 	/* Strong PullUp
142 	 * 0: pullup not active, else duration in milliseconds
143 	 */
144 	int			spu_sleep;
145 	/* spu_bit contains COMM_SPU or 0 depending on if the strong pullup
146 	 * should be active or not for writes.
147 	 */
148 	u16			spu_bit;
149 
150 	struct w1_bus_master	master;
151 };
152 
153 struct ds_status
154 {
155 	u8			enable;
156 	u8			speed;
157 	u8			pullup_dur;
158 	u8			ppuls_dur;
159 	u8			pulldown_slew;
160 	u8			write1_time;
161 	u8			write0_time;
162 	u8			reserved0;
163 	u8			status;
164 	u8			command0;
165 	u8			command1;
166 	u8			command_buffer_status;
167 	u8			data_out_buffer_status;
168 	u8			data_in_buffer_status;
169 	u8			reserved1;
170 	u8			reserved2;
171 
172 };
173 
174 static struct usb_device_id ds_id_table [] = {
175 	{ USB_DEVICE(0x04fa, 0x2490) },
176 	{ },
177 };
178 MODULE_DEVICE_TABLE(usb, ds_id_table);
179 
180 static int ds_probe(struct usb_interface *, const struct usb_device_id *);
181 static void ds_disconnect(struct usb_interface *);
182 
183 static int ds_send_control(struct ds_device *, u16, u16);
184 static int ds_send_control_cmd(struct ds_device *, u16, u16);
185 
186 static LIST_HEAD(ds_devices);
187 static DEFINE_MUTEX(ds_mutex);
188 
189 static struct usb_driver ds_driver = {
190 	.name =		"DS9490R",
191 	.probe =	ds_probe,
192 	.disconnect =	ds_disconnect,
193 	.id_table =	ds_id_table,
194 };
195 
196 static int ds_send_control_cmd(struct ds_device *dev, u16 value, u16 index)
197 {
198 	int err;
199 
200 	err = usb_control_msg(dev->udev, usb_sndctrlpipe(dev->udev, dev->ep[EP_CONTROL]),
201 			CONTROL_CMD, 0x40, value, index, NULL, 0, 1000);
202 	if (err < 0) {
203 		printk(KERN_ERR "Failed to send command control message %x.%x: err=%d.\n",
204 				value, index, err);
205 		return err;
206 	}
207 
208 	return err;
209 }
210 
211 static int ds_send_control_mode(struct ds_device *dev, u16 value, u16 index)
212 {
213 	int err;
214 
215 	err = usb_control_msg(dev->udev, usb_sndctrlpipe(dev->udev, dev->ep[EP_CONTROL]),
216 			MODE_CMD, 0x40, value, index, NULL, 0, 1000);
217 	if (err < 0) {
218 		printk(KERN_ERR "Failed to send mode control message %x.%x: err=%d.\n",
219 				value, index, err);
220 		return err;
221 	}
222 
223 	return err;
224 }
225 
226 static int ds_send_control(struct ds_device *dev, u16 value, u16 index)
227 {
228 	int err;
229 
230 	err = usb_control_msg(dev->udev, usb_sndctrlpipe(dev->udev, dev->ep[EP_CONTROL]),
231 			COMM_CMD, 0x40, value, index, NULL, 0, 1000);
232 	if (err < 0) {
233 		printk(KERN_ERR "Failed to send control message %x.%x: err=%d.\n",
234 				value, index, err);
235 		return err;
236 	}
237 
238 	return err;
239 }
240 
241 static int ds_recv_status_nodump(struct ds_device *dev, struct ds_status *st,
242 				 unsigned char *buf, int size)
243 {
244 	int count, err;
245 
246 	memset(st, 0, sizeof(*st));
247 
248 	count = 0;
249 	err = usb_bulk_msg(dev->udev, usb_rcvbulkpipe(dev->udev, dev->ep[EP_STATUS]), buf, size, &count, 100);
250 	if (err < 0) {
251 		printk(KERN_ERR "Failed to read 1-wire data from 0x%x: err=%d.\n", dev->ep[EP_STATUS], err);
252 		return err;
253 	}
254 
255 	if (count >= sizeof(*st))
256 		memcpy(st, buf, sizeof(*st));
257 
258 	return count;
259 }
260 
261 static inline void ds_print_msg(unsigned char *buf, unsigned char *str, int off)
262 {
263 	printk(KERN_INFO "%45s: %8x\n", str, buf[off]);
264 }
265 
266 static void ds_dump_status(struct ds_device *dev, unsigned char *buf, int count)
267 {
268 	int i;
269 
270 	printk(KERN_INFO "0x%x: count=%d, status: ", dev->ep[EP_STATUS], count);
271 	for (i=0; i<count; ++i)
272 		printk("%02x ", buf[i]);
273 	printk(KERN_INFO "\n");
274 
275 	if (count >= 16) {
276 		ds_print_msg(buf, "enable flag", 0);
277 		ds_print_msg(buf, "1-wire speed", 1);
278 		ds_print_msg(buf, "strong pullup duration", 2);
279 		ds_print_msg(buf, "programming pulse duration", 3);
280 		ds_print_msg(buf, "pulldown slew rate control", 4);
281 		ds_print_msg(buf, "write-1 low time", 5);
282 		ds_print_msg(buf, "data sample offset/write-0 recovery time",
283 			6);
284 		ds_print_msg(buf, "reserved (test register)", 7);
285 		ds_print_msg(buf, "device status flags", 8);
286 		ds_print_msg(buf, "communication command byte 1", 9);
287 		ds_print_msg(buf, "communication command byte 2", 10);
288 		ds_print_msg(buf, "communication command buffer status", 11);
289 		ds_print_msg(buf, "1-wire data output buffer status", 12);
290 		ds_print_msg(buf, "1-wire data input buffer status", 13);
291 		ds_print_msg(buf, "reserved", 14);
292 		ds_print_msg(buf, "reserved", 15);
293 	}
294 	for (i = 16; i < count; ++i) {
295 		if (buf[i] == RR_DETECT) {
296 			ds_print_msg(buf, "new device detect", i);
297 			continue;
298 		}
299 		ds_print_msg(buf, "Result Register Value: ", i);
300 		if (buf[i] & RR_NRS)
301 			printk(KERN_INFO "NRS: Reset no presence or ...\n");
302 		if (buf[i] & RR_SH)
303 			printk(KERN_INFO "SH: short on reset or set path\n");
304 		if (buf[i] & RR_APP)
305 			printk(KERN_INFO "APP: alarming presence on reset\n");
306 		if (buf[i] & RR_VPP)
307 			printk(KERN_INFO "VPP: 12V expected not seen\n");
308 		if (buf[i] & RR_CMP)
309 			printk(KERN_INFO "CMP: compare error\n");
310 		if (buf[i] & RR_CRC)
311 			printk(KERN_INFO "CRC: CRC error detected\n");
312 		if (buf[i] & RR_RDP)
313 			printk(KERN_INFO "RDP: redirected page\n");
314 		if (buf[i] & RR_EOS)
315 			printk(KERN_INFO "EOS: end of search error\n");
316 	}
317 }
318 
319 static void ds_reset_device(struct ds_device *dev)
320 {
321 	ds_send_control_cmd(dev, CTL_RESET_DEVICE, 0);
322 	/* Always allow strong pullup which allow individual writes to use
323 	 * the strong pullup.
324 	 */
325 	if (ds_send_control_mode(dev, MOD_PULSE_EN, PULSE_SPUE))
326 		printk(KERN_ERR "ds_reset_device: "
327 			"Error allowing strong pullup\n");
328 	/* Chip strong pullup time was cleared. */
329 	if (dev->spu_sleep) {
330 		/* lower 4 bits are 0, see ds_set_pullup */
331 		u8 del = dev->spu_sleep>>4;
332 		if (ds_send_control(dev, COMM_SET_DURATION | COMM_IM, del))
333 			printk(KERN_ERR "ds_reset_device: "
334 				"Error setting duration\n");
335 	}
336 }
337 
338 static int ds_recv_data(struct ds_device *dev, unsigned char *buf, int size)
339 {
340 	int count, err;
341 	struct ds_status st;
342 
343 	/* Careful on size.  If size is less than what is available in
344 	 * the input buffer, the device fails the bulk transfer and
345 	 * clears the input buffer.  It could read the maximum size of
346 	 * the data buffer, but then do you return the first, last, or
347 	 * some set of the middle size bytes?  As long as the rest of
348 	 * the code is correct there will be size bytes waiting.  A
349 	 * call to ds_wait_status will wait until the device is idle
350 	 * and any data to be received would have been available.
351 	 */
352 	count = 0;
353 	err = usb_bulk_msg(dev->udev, usb_rcvbulkpipe(dev->udev, dev->ep[EP_DATA_IN]),
354 				buf, size, &count, 1000);
355 	if (err < 0) {
356 		u8 buf[0x20];
357 		int count;
358 
359 		printk(KERN_INFO "Clearing ep0x%x.\n", dev->ep[EP_DATA_IN]);
360 		usb_clear_halt(dev->udev, usb_rcvbulkpipe(dev->udev, dev->ep[EP_DATA_IN]));
361 
362 		count = ds_recv_status_nodump(dev, &st, buf, sizeof(buf));
363 		ds_dump_status(dev, buf, count);
364 		return err;
365 	}
366 
367 #if 0
368 	{
369 		int i;
370 
371 		printk("%s: count=%d: ", __func__, count);
372 		for (i=0; i<count; ++i)
373 			printk("%02x ", buf[i]);
374 		printk("\n");
375 	}
376 #endif
377 	return count;
378 }
379 
380 static int ds_send_data(struct ds_device *dev, unsigned char *buf, int len)
381 {
382 	int count, err;
383 
384 	count = 0;
385 	err = usb_bulk_msg(dev->udev, usb_sndbulkpipe(dev->udev, dev->ep[EP_DATA_OUT]), buf, len, &count, 1000);
386 	if (err < 0) {
387 		printk(KERN_ERR "Failed to write 1-wire data to ep0x%x: "
388 			"err=%d.\n", dev->ep[EP_DATA_OUT], err);
389 		return err;
390 	}
391 
392 	return err;
393 }
394 
395 #if 0
396 
397 int ds_stop_pulse(struct ds_device *dev, int limit)
398 {
399 	struct ds_status st;
400 	int count = 0, err = 0;
401 	u8 buf[0x20];
402 
403 	do {
404 		err = ds_send_control(dev, CTL_HALT_EXE_IDLE, 0);
405 		if (err)
406 			break;
407 		err = ds_send_control(dev, CTL_RESUME_EXE, 0);
408 		if (err)
409 			break;
410 		err = ds_recv_status_nodump(dev, &st, buf, sizeof(buf));
411 		if (err)
412 			break;
413 
414 		if ((st.status & ST_SPUA) == 0) {
415 			err = ds_send_control_mode(dev, MOD_PULSE_EN, 0);
416 			if (err)
417 				break;
418 		}
419 	} while(++count < limit);
420 
421 	return err;
422 }
423 
424 int ds_detect(struct ds_device *dev, struct ds_status *st)
425 {
426 	int err;
427 
428 	err = ds_send_control_cmd(dev, CTL_RESET_DEVICE, 0);
429 	if (err)
430 		return err;
431 
432 	err = ds_send_control(dev, COMM_SET_DURATION | COMM_IM, 0);
433 	if (err)
434 		return err;
435 
436 	err = ds_send_control(dev, COMM_SET_DURATION | COMM_IM | COMM_TYPE, 0x40);
437 	if (err)
438 		return err;
439 
440 	err = ds_send_control_mode(dev, MOD_PULSE_EN, PULSE_PROG);
441 	if (err)
442 		return err;
443 
444 	err = ds_dump_status(dev, st);
445 
446 	return err;
447 }
448 
449 #endif  /*  0  */
450 
451 static int ds_wait_status(struct ds_device *dev, struct ds_status *st)
452 {
453 	u8 buf[0x20];
454 	int err, count = 0;
455 
456 	do {
457 		err = ds_recv_status_nodump(dev, st, buf, sizeof(buf));
458 #if 0
459 		if (err >= 0) {
460 			int i;
461 			printk("0x%x: count=%d, status: ", dev->ep[EP_STATUS], err);
462 			for (i=0; i<err; ++i)
463 				printk("%02x ", buf[i]);
464 			printk("\n");
465 		}
466 #endif
467 	} while (!(buf[0x08] & ST_IDLE) && !(err < 0) && ++count < 100);
468 
469 	if (err >= 16 && st->status & ST_EPOF) {
470 		printk(KERN_INFO "Resetting device after ST_EPOF.\n");
471 		ds_reset_device(dev);
472 		/* Always dump the device status. */
473 		count = 101;
474 	}
475 
476 	/* Dump the status for errors or if there is extended return data.
477 	 * The extended status includes new device detection (maybe someone
478 	 * can do something with it).
479 	 */
480 	if (err > 16 || count >= 100 || err < 0)
481 		ds_dump_status(dev, buf, err);
482 
483 	/* Extended data isn't an error.  Well, a short is, but the dump
484 	 * would have already told the user that and we can't do anything
485 	 * about it in software anyway.
486 	 */
487 	if (count >= 100 || err < 0)
488 		return -1;
489 	else
490 		return 0;
491 }
492 
493 static int ds_reset(struct ds_device *dev)
494 {
495 	int err;
496 
497 	/* Other potentionally interesting flags for reset.
498 	 *
499 	 * COMM_NTF: Return result register feedback.  This could be used to
500 	 * detect some conditions such as short, alarming presence, or
501 	 * detect if a new device was detected.
502 	 *
503 	 * COMM_SE which allows SPEED_NORMAL, SPEED_FLEXIBLE, SPEED_OVERDRIVE:
504 	 * Select the data transfer rate.
505 	 */
506 	err = ds_send_control(dev, COMM_1_WIRE_RESET | COMM_IM, SPEED_NORMAL);
507 	if (err)
508 		return err;
509 
510 	return 0;
511 }
512 
513 #if 0
514 static int ds_set_speed(struct ds_device *dev, int speed)
515 {
516 	int err;
517 
518 	if (speed != SPEED_NORMAL && speed != SPEED_FLEXIBLE && speed != SPEED_OVERDRIVE)
519 		return -EINVAL;
520 
521 	if (speed != SPEED_OVERDRIVE)
522 		speed = SPEED_FLEXIBLE;
523 
524 	speed &= 0xff;
525 
526 	err = ds_send_control_mode(dev, MOD_1WIRE_SPEED, speed);
527 	if (err)
528 		return err;
529 
530 	return err;
531 }
532 #endif  /*  0  */
533 
534 static int ds_set_pullup(struct ds_device *dev, int delay)
535 {
536 	int err = 0;
537 	u8 del = 1 + (u8)(delay >> 4);
538 	/* Just storing delay would not get the trunication and roundup. */
539 	int ms = del<<4;
540 
541 	/* Enable spu_bit if a delay is set. */
542 	dev->spu_bit = delay ? COMM_SPU : 0;
543 	/* If delay is zero, it has already been disabled, if the time is
544 	 * the same as the hardware was last programmed to, there is also
545 	 * nothing more to do.  Compare with the recalculated value ms
546 	 * rather than del or delay which can have a different value.
547 	 */
548 	if (delay == 0 || ms == dev->spu_sleep)
549 		return err;
550 
551 	err = ds_send_control(dev, COMM_SET_DURATION | COMM_IM, del);
552 	if (err)
553 		return err;
554 
555 	dev->spu_sleep = ms;
556 
557 	return err;
558 }
559 
560 static int ds_touch_bit(struct ds_device *dev, u8 bit, u8 *tbit)
561 {
562 	int err;
563 	struct ds_status st;
564 
565 	err = ds_send_control(dev, COMM_BIT_IO | COMM_IM | (bit ? COMM_D : 0),
566 		0);
567 	if (err)
568 		return err;
569 
570 	ds_wait_status(dev, &st);
571 
572 	err = ds_recv_data(dev, tbit, sizeof(*tbit));
573 	if (err < 0)
574 		return err;
575 
576 	return 0;
577 }
578 
579 #if 0
580 static int ds_write_bit(struct ds_device *dev, u8 bit)
581 {
582 	int err;
583 	struct ds_status st;
584 
585 	/* Set COMM_ICP to write without a readback.  Note, this will
586 	 * produce one time slot, a down followed by an up with COMM_D
587 	 * only determing the timing.
588 	 */
589 	err = ds_send_control(dev, COMM_BIT_IO | COMM_IM | COMM_ICP |
590 		(bit ? COMM_D : 0), 0);
591 	if (err)
592 		return err;
593 
594 	ds_wait_status(dev, &st);
595 
596 	return 0;
597 }
598 #endif
599 
600 static int ds_write_byte(struct ds_device *dev, u8 byte)
601 {
602 	int err;
603 	struct ds_status st;
604 	u8 rbyte;
605 
606 	err = ds_send_control(dev, COMM_BYTE_IO | COMM_IM | dev->spu_bit, byte);
607 	if (err)
608 		return err;
609 
610 	if (dev->spu_bit)
611 		msleep(dev->spu_sleep);
612 
613 	err = ds_wait_status(dev, &st);
614 	if (err)
615 		return err;
616 
617 	err = ds_recv_data(dev, &rbyte, sizeof(rbyte));
618 	if (err < 0)
619 		return err;
620 
621 	return !(byte == rbyte);
622 }
623 
624 static int ds_read_byte(struct ds_device *dev, u8 *byte)
625 {
626 	int err;
627 	struct ds_status st;
628 
629 	err = ds_send_control(dev, COMM_BYTE_IO | COMM_IM , 0xff);
630 	if (err)
631 		return err;
632 
633 	ds_wait_status(dev, &st);
634 
635 	err = ds_recv_data(dev, byte, sizeof(*byte));
636 	if (err < 0)
637 		return err;
638 
639 	return 0;
640 }
641 
642 static int ds_read_block(struct ds_device *dev, u8 *buf, int len)
643 {
644 	struct ds_status st;
645 	int err;
646 
647 	if (len > 64*1024)
648 		return -E2BIG;
649 
650 	memset(buf, 0xFF, len);
651 
652 	err = ds_send_data(dev, buf, len);
653 	if (err < 0)
654 		return err;
655 
656 	err = ds_send_control(dev, COMM_BLOCK_IO | COMM_IM, len);
657 	if (err)
658 		return err;
659 
660 	ds_wait_status(dev, &st);
661 
662 	memset(buf, 0x00, len);
663 	err = ds_recv_data(dev, buf, len);
664 
665 	return err;
666 }
667 
668 static int ds_write_block(struct ds_device *dev, u8 *buf, int len)
669 {
670 	int err;
671 	struct ds_status st;
672 
673 	err = ds_send_data(dev, buf, len);
674 	if (err < 0)
675 		return err;
676 
677 	err = ds_send_control(dev, COMM_BLOCK_IO | COMM_IM | dev->spu_bit, len);
678 	if (err)
679 		return err;
680 
681 	if (dev->spu_bit)
682 		msleep(dev->spu_sleep);
683 
684 	ds_wait_status(dev, &st);
685 
686 	err = ds_recv_data(dev, buf, len);
687 	if (err < 0)
688 		return err;
689 
690 	return !(err == len);
691 }
692 
693 #if 0
694 
695 static int ds_search(struct ds_device *dev, u64 init, u64 *buf, u8 id_number, int conditional_search)
696 {
697 	int err;
698 	u16 value, index;
699 	struct ds_status st;
700 
701 	memset(buf, 0, sizeof(buf));
702 
703 	err = ds_send_data(ds_dev, (unsigned char *)&init, 8);
704 	if (err)
705 		return err;
706 
707 	ds_wait_status(ds_dev, &st);
708 
709 	value = COMM_SEARCH_ACCESS | COMM_IM | COMM_SM | COMM_F | COMM_RTS;
710 	index = (conditional_search ? 0xEC : 0xF0) | (id_number << 8);
711 	err = ds_send_control(ds_dev, value, index);
712 	if (err)
713 		return err;
714 
715 	ds_wait_status(ds_dev, &st);
716 
717 	err = ds_recv_data(ds_dev, (unsigned char *)buf, 8*id_number);
718 	if (err < 0)
719 		return err;
720 
721 	return err/8;
722 }
723 
724 static int ds_match_access(struct ds_device *dev, u64 init)
725 {
726 	int err;
727 	struct ds_status st;
728 
729 	err = ds_send_data(dev, (unsigned char *)&init, sizeof(init));
730 	if (err)
731 		return err;
732 
733 	ds_wait_status(dev, &st);
734 
735 	err = ds_send_control(dev, COMM_MATCH_ACCESS | COMM_IM | COMM_RST, 0x0055);
736 	if (err)
737 		return err;
738 
739 	ds_wait_status(dev, &st);
740 
741 	return 0;
742 }
743 
744 static int ds_set_path(struct ds_device *dev, u64 init)
745 {
746 	int err;
747 	struct ds_status st;
748 	u8 buf[9];
749 
750 	memcpy(buf, &init, 8);
751 	buf[8] = BRANCH_MAIN;
752 
753 	err = ds_send_data(dev, buf, sizeof(buf));
754 	if (err)
755 		return err;
756 
757 	ds_wait_status(dev, &st);
758 
759 	err = ds_send_control(dev, COMM_SET_PATH | COMM_IM | COMM_RST, 0);
760 	if (err)
761 		return err;
762 
763 	ds_wait_status(dev, &st);
764 
765 	return 0;
766 }
767 
768 #endif  /*  0  */
769 
770 static u8 ds9490r_touch_bit(void *data, u8 bit)
771 {
772 	u8 ret;
773 	struct ds_device *dev = data;
774 
775 	if (ds_touch_bit(dev, bit, &ret))
776 		return 0;
777 
778 	return ret;
779 }
780 
781 #if 0
782 static void ds9490r_write_bit(void *data, u8 bit)
783 {
784 	struct ds_device *dev = data;
785 
786 	ds_write_bit(dev, bit);
787 }
788 
789 static u8 ds9490r_read_bit(void *data)
790 {
791 	struct ds_device *dev = data;
792 	int err;
793 	u8 bit = 0;
794 
795 	err = ds_touch_bit(dev, 1, &bit);
796 	if (err)
797 		return 0;
798 
799 	return bit & 1;
800 }
801 #endif
802 
803 static void ds9490r_write_byte(void *data, u8 byte)
804 {
805 	struct ds_device *dev = data;
806 
807 	ds_write_byte(dev, byte);
808 }
809 
810 static u8 ds9490r_read_byte(void *data)
811 {
812 	struct ds_device *dev = data;
813 	int err;
814 	u8 byte = 0;
815 
816 	err = ds_read_byte(dev, &byte);
817 	if (err)
818 		return 0;
819 
820 	return byte;
821 }
822 
823 static void ds9490r_write_block(void *data, const u8 *buf, int len)
824 {
825 	struct ds_device *dev = data;
826 
827 	ds_write_block(dev, (u8 *)buf, len);
828 }
829 
830 static u8 ds9490r_read_block(void *data, u8 *buf, int len)
831 {
832 	struct ds_device *dev = data;
833 	int err;
834 
835 	err = ds_read_block(dev, buf, len);
836 	if (err < 0)
837 		return 0;
838 
839 	return len;
840 }
841 
842 static u8 ds9490r_reset(void *data)
843 {
844 	struct ds_device *dev = data;
845 	int err;
846 
847 	err = ds_reset(dev);
848 	if (err)
849 		return 1;
850 
851 	return 0;
852 }
853 
854 static u8 ds9490r_set_pullup(void *data, int delay)
855 {
856 	struct ds_device *dev = data;
857 
858 	if (ds_set_pullup(dev, delay))
859 		return 1;
860 
861 	return 0;
862 }
863 
864 static int ds_w1_init(struct ds_device *dev)
865 {
866 	memset(&dev->master, 0, sizeof(struct w1_bus_master));
867 
868 	/* Reset the device as it can be in a bad state.
869 	 * This is necessary because a block write will wait for data
870 	 * to be placed in the output buffer and block any later
871 	 * commands which will keep accumulating and the device will
872 	 * not be idle.  Another case is removing the ds2490 module
873 	 * while a bus search is in progress, somehow a few commands
874 	 * get through, but the input transfers fail leaving data in
875 	 * the input buffer.  This will cause the next read to fail
876 	 * see the note in ds_recv_data.
877 	 */
878 	ds_reset_device(dev);
879 
880 	dev->master.data	= dev;
881 	dev->master.touch_bit	= &ds9490r_touch_bit;
882 	/* read_bit and write_bit in w1_bus_master are expected to set and
883 	 * sample the line level.  For write_bit that means it is expected to
884 	 * set it to that value and leave it there.  ds2490 only supports an
885 	 * individual time slot at the lowest level.  The requirement from
886 	 * pulling the bus state down to reading the state is 15us, something
887 	 * that isn't realistic on the USB bus anyway.
888 	dev->master.read_bit	= &ds9490r_read_bit;
889 	dev->master.write_bit	= &ds9490r_write_bit;
890 	*/
891 	dev->master.read_byte	= &ds9490r_read_byte;
892 	dev->master.write_byte	= &ds9490r_write_byte;
893 	dev->master.read_block	= &ds9490r_read_block;
894 	dev->master.write_block	= &ds9490r_write_block;
895 	dev->master.reset_bus	= &ds9490r_reset;
896 	dev->master.set_pullup	= &ds9490r_set_pullup;
897 
898 	return w1_add_master_device(&dev->master);
899 }
900 
901 static void ds_w1_fini(struct ds_device *dev)
902 {
903 	w1_remove_master_device(&dev->master);
904 }
905 
906 static int ds_probe(struct usb_interface *intf,
907 		    const struct usb_device_id *udev_id)
908 {
909 	struct usb_device *udev = interface_to_usbdev(intf);
910 	struct usb_endpoint_descriptor *endpoint;
911 	struct usb_host_interface *iface_desc;
912 	struct ds_device *dev;
913 	int i, err;
914 
915 	dev = kmalloc(sizeof(struct ds_device), GFP_KERNEL);
916 	if (!dev) {
917 		printk(KERN_INFO "Failed to allocate new DS9490R structure.\n");
918 		return -ENOMEM;
919 	}
920 	dev->spu_sleep = 0;
921 	dev->spu_bit = 0;
922 	dev->udev = usb_get_dev(udev);
923 	if (!dev->udev) {
924 		err = -ENOMEM;
925 		goto err_out_free;
926 	}
927 	memset(dev->ep, 0, sizeof(dev->ep));
928 
929 	usb_set_intfdata(intf, dev);
930 
931 	err = usb_set_interface(dev->udev, intf->altsetting[0].desc.bInterfaceNumber, 3);
932 	if (err) {
933 		printk(KERN_ERR "Failed to set alternative setting 3 for %d interface: err=%d.\n",
934 				intf->altsetting[0].desc.bInterfaceNumber, err);
935 		goto err_out_clear;
936 	}
937 
938 	err = usb_reset_configuration(dev->udev);
939 	if (err) {
940 		printk(KERN_ERR "Failed to reset configuration: err=%d.\n", err);
941 		goto err_out_clear;
942 	}
943 
944 	iface_desc = &intf->altsetting[0];
945 	if (iface_desc->desc.bNumEndpoints != NUM_EP-1) {
946 		printk(KERN_INFO "Num endpoints=%d. It is not DS9490R.\n", iface_desc->desc.bNumEndpoints);
947 		err = -EINVAL;
948 		goto err_out_clear;
949 	}
950 
951 	/*
952 	 * This loop doesn'd show control 0 endpoint,
953 	 * so we will fill only 1-3 endpoints entry.
954 	 */
955 	for (i = 0; i < iface_desc->desc.bNumEndpoints; ++i) {
956 		endpoint = &iface_desc->endpoint[i].desc;
957 
958 		dev->ep[i+1] = endpoint->bEndpointAddress;
959 #if 0
960 		printk("%d: addr=%x, size=%d, dir=%s, type=%x\n",
961 			i, endpoint->bEndpointAddress, le16_to_cpu(endpoint->wMaxPacketSize),
962 			(endpoint->bEndpointAddress & USB_DIR_IN)?"IN":"OUT",
963 			endpoint->bmAttributes & USB_ENDPOINT_XFERTYPE_MASK);
964 #endif
965 	}
966 
967 	err = ds_w1_init(dev);
968 	if (err)
969 		goto err_out_clear;
970 
971 	mutex_lock(&ds_mutex);
972 	list_add_tail(&dev->ds_entry, &ds_devices);
973 	mutex_unlock(&ds_mutex);
974 
975 	return 0;
976 
977 err_out_clear:
978 	usb_set_intfdata(intf, NULL);
979 	usb_put_dev(dev->udev);
980 err_out_free:
981 	kfree(dev);
982 	return err;
983 }
984 
985 static void ds_disconnect(struct usb_interface *intf)
986 {
987 	struct ds_device *dev;
988 
989 	dev = usb_get_intfdata(intf);
990 	if (!dev)
991 		return;
992 
993 	mutex_lock(&ds_mutex);
994 	list_del(&dev->ds_entry);
995 	mutex_unlock(&ds_mutex);
996 
997 	ds_w1_fini(dev);
998 
999 	usb_set_intfdata(intf, NULL);
1000 
1001 	usb_put_dev(dev->udev);
1002 	kfree(dev);
1003 }
1004 
1005 static int ds_init(void)
1006 {
1007 	int err;
1008 
1009 	err = usb_register(&ds_driver);
1010 	if (err) {
1011 		printk(KERN_INFO "Failed to register DS9490R USB device: err=%d.\n", err);
1012 		return err;
1013 	}
1014 
1015 	return 0;
1016 }
1017 
1018 static void ds_fini(void)
1019 {
1020 	usb_deregister(&ds_driver);
1021 }
1022 
1023 module_init(ds_init);
1024 module_exit(ds_fini);
1025 
1026 MODULE_LICENSE("GPL");
1027 MODULE_AUTHOR("Evgeniy Polyakov <johnpol@2ka.mipt.ru>");
1028 MODULE_DESCRIPTION("DS2490 USB <-> W1 bus master driver (DS9490*)");
1029