xref: /openbmc/linux/drivers/w1/masters/ds2490.c (revision 2f164822)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  *	ds2490.c  USB to one wire bridge
4  *
5  * Copyright (c) 2004 Evgeniy Polyakov <zbr@ioremap.net>
6  */
7 
8 #include <linux/module.h>
9 #include <linux/kernel.h>
10 #include <linux/mod_devicetable.h>
11 #include <linux/usb.h>
12 #include <linux/slab.h>
13 
14 #include <linux/w1.h>
15 
16 /* USB Standard */
17 /* USB Control request vendor type */
18 #define VENDOR				0x40
19 
20 /* COMMAND TYPE CODES */
21 #define CONTROL_CMD			0x00
22 #define COMM_CMD			0x01
23 #define MODE_CMD			0x02
24 
25 /* CONTROL COMMAND CODES */
26 #define CTL_RESET_DEVICE		0x0000
27 #define CTL_START_EXE			0x0001
28 #define CTL_RESUME_EXE			0x0002
29 #define CTL_HALT_EXE_IDLE		0x0003
30 #define CTL_HALT_EXE_DONE		0x0004
31 #define CTL_FLUSH_COMM_CMDS		0x0007
32 #define CTL_FLUSH_RCV_BUFFER		0x0008
33 #define CTL_FLUSH_XMT_BUFFER		0x0009
34 #define CTL_GET_COMM_CMDS		0x000A
35 
36 /* MODE COMMAND CODES */
37 #define MOD_PULSE_EN			0x0000
38 #define MOD_SPEED_CHANGE_EN		0x0001
39 #define MOD_1WIRE_SPEED			0x0002
40 #define MOD_STRONG_PU_DURATION		0x0003
41 #define MOD_PULLDOWN_SLEWRATE		0x0004
42 #define MOD_PROG_PULSE_DURATION		0x0005
43 #define MOD_WRITE1_LOWTIME		0x0006
44 #define MOD_DSOW0_TREC			0x0007
45 
46 /* COMMUNICATION COMMAND CODES */
47 #define COMM_ERROR_ESCAPE		0x0601
48 #define COMM_SET_DURATION		0x0012
49 #define COMM_BIT_IO			0x0020
50 #define COMM_PULSE			0x0030
51 #define COMM_1_WIRE_RESET		0x0042
52 #define COMM_BYTE_IO			0x0052
53 #define COMM_MATCH_ACCESS		0x0064
54 #define COMM_BLOCK_IO			0x0074
55 #define COMM_READ_STRAIGHT		0x0080
56 #define COMM_DO_RELEASE			0x6092
57 #define COMM_SET_PATH			0x00A2
58 #define COMM_WRITE_SRAM_PAGE		0x00B2
59 #define COMM_WRITE_EPROM		0x00C4
60 #define COMM_READ_CRC_PROT_PAGE		0x00D4
61 #define COMM_READ_REDIRECT_PAGE_CRC	0x21E4
62 #define COMM_SEARCH_ACCESS		0x00F4
63 
64 /* Communication command bits */
65 #define COMM_TYPE			0x0008
66 #define COMM_SE				0x0008
67 #define COMM_D				0x0008
68 #define COMM_Z				0x0008
69 #define COMM_CH				0x0008
70 #define COMM_SM				0x0008
71 #define COMM_R				0x0008
72 #define COMM_IM				0x0001
73 
74 #define COMM_PS				0x4000
75 #define COMM_PST			0x4000
76 #define COMM_CIB			0x4000
77 #define COMM_RTS			0x4000
78 #define COMM_DT				0x2000
79 #define COMM_SPU			0x1000
80 #define COMM_F				0x0800
81 #define COMM_NTF			0x0400
82 #define COMM_ICP			0x0200
83 #define COMM_RST			0x0100
84 
85 #define PULSE_PROG			0x01
86 #define PULSE_SPUE			0x02
87 
88 #define BRANCH_MAIN			0xCC
89 #define BRANCH_AUX			0x33
90 
91 /* Status flags */
92 #define ST_SPUA				0x01  /* Strong Pull-up is active */
93 #define ST_PRGA				0x02  /* 12V programming pulse is being generated */
94 #define ST_12VP				0x04  /* external 12V programming voltage is present */
95 #define ST_PMOD				0x08  /* DS2490 powered from USB and external sources */
96 #define ST_HALT				0x10  /* DS2490 is currently halted */
97 #define ST_IDLE				0x20  /* DS2490 is currently idle */
98 #define ST_EPOF				0x80
99 /* Status transfer size, 16 bytes status, 16 byte result flags */
100 #define ST_SIZE				0x20
101 
102 /* Result Register flags */
103 #define RR_DETECT			0xA5 /* New device detected */
104 #define RR_NRS				0x01 /* Reset no presence or ... */
105 #define RR_SH				0x02 /* short on reset or set path */
106 #define RR_APP				0x04 /* alarming presence on reset */
107 #define RR_VPP				0x08 /* 12V expected not seen */
108 #define RR_CMP				0x10 /* compare error */
109 #define RR_CRC				0x20 /* CRC error detected */
110 #define RR_RDP				0x40 /* redirected page */
111 #define RR_EOS				0x80 /* end of search error */
112 
113 #define SPEED_NORMAL			0x00
114 #define SPEED_FLEXIBLE			0x01
115 #define SPEED_OVERDRIVE			0x02
116 
117 #define NUM_EP				4
118 #define EP_CONTROL			0
119 #define EP_STATUS			1
120 #define EP_DATA_OUT			2
121 #define EP_DATA_IN			3
122 
123 struct ds_device {
124 	struct list_head	ds_entry;
125 
126 	struct usb_device	*udev;
127 	struct usb_interface	*intf;
128 
129 	int			ep[NUM_EP];
130 
131 	/* Strong PullUp
132 	 * 0: pullup not active, else duration in milliseconds
133 	 */
134 	int			spu_sleep;
135 	/* spu_bit contains COMM_SPU or 0 depending on if the strong pullup
136 	 * should be active or not for writes.
137 	 */
138 	u16			spu_bit;
139 
140 	u8			st_buf[ST_SIZE];
141 	u8			byte_buf;
142 
143 	struct w1_bus_master	master;
144 };
145 
146 struct ds_status {
147 	u8			enable;
148 	u8			speed;
149 	u8			pullup_dur;
150 	u8			ppuls_dur;
151 	u8			pulldown_slew;
152 	u8			write1_time;
153 	u8			write0_time;
154 	u8			reserved0;
155 	u8			status;
156 	u8			command0;
157 	u8			command1;
158 	u8			command_buffer_status;
159 	u8			data_out_buffer_status;
160 	u8			data_in_buffer_status;
161 	u8			reserved1;
162 	u8			reserved2;
163 };
164 
165 static LIST_HEAD(ds_devices);
166 static DEFINE_MUTEX(ds_mutex);
167 
168 static int ds_send_control_cmd(struct ds_device *dev, u16 value, u16 index)
169 {
170 	int err;
171 
172 	err = usb_control_msg(dev->udev, usb_sndctrlpipe(dev->udev, dev->ep[EP_CONTROL]),
173 			CONTROL_CMD, VENDOR, value, index, NULL, 0, 1000);
174 	if (err < 0) {
175 		dev_err(&dev->udev->dev,
176 			"Failed to send command control message %x.%x: err=%d.\n",
177 			value, index, err);
178 		return err;
179 	}
180 
181 	return err;
182 }
183 
184 static int ds_send_control_mode(struct ds_device *dev, u16 value, u16 index)
185 {
186 	int err;
187 
188 	err = usb_control_msg(dev->udev, usb_sndctrlpipe(dev->udev, dev->ep[EP_CONTROL]),
189 			MODE_CMD, VENDOR, value, index, NULL, 0, 1000);
190 	if (err < 0) {
191 		dev_err(&dev->udev->dev,
192 			"Failed to send mode control message %x.%x: err=%d.\n",
193 			value, index, err);
194 		return err;
195 	}
196 
197 	return err;
198 }
199 
200 static int ds_send_control(struct ds_device *dev, u16 value, u16 index)
201 {
202 	int err;
203 
204 	err = usb_control_msg(dev->udev, usb_sndctrlpipe(dev->udev, dev->ep[EP_CONTROL]),
205 			COMM_CMD, VENDOR, value, index, NULL, 0, 1000);
206 	if (err < 0) {
207 		dev_err(&dev->udev->dev,
208 			"Failed to send control message %x.%x: err=%d.\n",
209 			value, index, err);
210 		return err;
211 	}
212 
213 	return err;
214 }
215 
216 static void ds_dump_status(struct ds_device *ds_dev, unsigned char *buf, int count)
217 {
218 	struct device *dev = &ds_dev->udev->dev;
219 	int i;
220 
221 	dev_info(dev, "ep_status=0x%x, count=%d, status=%*phC",
222 		ds_dev->ep[EP_STATUS], count, count, buf);
223 
224 	if (count >= 16) {
225 		dev_dbg(dev, "enable flag: 0x%02x", buf[0]);
226 		dev_dbg(dev, "1-wire speed: 0x%02x", buf[1]);
227 		dev_dbg(dev, "strong pullup duration: 0x%02x", buf[2]);
228 		dev_dbg(dev, "programming pulse duration: 0x%02x", buf[3]);
229 		dev_dbg(dev, "pulldown slew rate control: 0x%02x", buf[4]);
230 		dev_dbg(dev, "write-1 low time: 0x%02x", buf[5]);
231 		dev_dbg(dev, "data sample offset/write-0 recovery time: 0x%02x", buf[6]);
232 		dev_dbg(dev, "reserved (test register): 0x%02x", buf[7]);
233 		dev_dbg(dev, "device status flags: 0x%02x", buf[8]);
234 		dev_dbg(dev, "communication command byte 1: 0x%02x", buf[9]);
235 		dev_dbg(dev, "communication command byte 2: 0x%02x", buf[10]);
236 		dev_dbg(dev, "communication command buffer status: 0x%02x", buf[11]);
237 		dev_dbg(dev, "1-wire data output buffer status: 0x%02x", buf[12]);
238 		dev_dbg(dev, "1-wire data input buffer status: 0x%02x", buf[13]);
239 		dev_dbg(dev, "reserved: 0x%02x", buf[14]);
240 		dev_dbg(dev, "reserved: 0x%02x", buf[15]);
241 	}
242 
243 	for (i = 16; i < count; ++i) {
244 		if (buf[i] == RR_DETECT) {
245 			dev_dbg(dev, "New device detect.\n");
246 			continue;
247 		}
248 		dev_dbg(dev, "Result Register Value: 0x%02x", buf[i]);
249 		if (buf[i] & RR_NRS)
250 			dev_dbg(dev, "NRS: Reset no presence or ...\n");
251 		if (buf[i] & RR_SH)
252 			dev_dbg(dev, "SH: short on reset or set path\n");
253 		if (buf[i] & RR_APP)
254 			dev_dbg(dev, "APP: alarming presence on reset\n");
255 		if (buf[i] & RR_VPP)
256 			dev_dbg(dev, "VPP: 12V expected not seen\n");
257 		if (buf[i] & RR_CMP)
258 			dev_dbg(dev, "CMP: compare error\n");
259 		if (buf[i] & RR_CRC)
260 			dev_dbg(dev, "CRC: CRC error detected\n");
261 		if (buf[i] & RR_RDP)
262 			dev_dbg(dev, "RDP: redirected page\n");
263 		if (buf[i] & RR_EOS)
264 			dev_dbg(dev, "EOS: end of search error\n");
265 	}
266 }
267 
268 static int ds_recv_status(struct ds_device *dev, struct ds_status *st)
269 {
270 	int count, err;
271 
272 	if (st)
273 		memset(st, 0, sizeof(*st));
274 
275 	count = 0;
276 	err = usb_interrupt_msg(dev->udev,
277 				usb_rcvintpipe(dev->udev,
278 					       dev->ep[EP_STATUS]),
279 				dev->st_buf, sizeof(dev->st_buf),
280 				&count, 1000);
281 	if (err < 0) {
282 		dev_err(&dev->udev->dev,
283 			"Failed to read 1-wire data from 0x%x: err=%d.\n",
284 			dev->ep[EP_STATUS], err);
285 		return err;
286 	}
287 
288 	if (st && count >= sizeof(*st))
289 		memcpy(st, dev->st_buf, sizeof(*st));
290 
291 	return count;
292 }
293 
294 static void ds_reset_device(struct ds_device *dev)
295 {
296 	ds_send_control_cmd(dev, CTL_RESET_DEVICE, 0);
297 	/* Always allow strong pullup which allow individual writes to use
298 	 * the strong pullup.
299 	 */
300 	if (ds_send_control_mode(dev, MOD_PULSE_EN, PULSE_SPUE))
301 		dev_err(&dev->udev->dev,
302 			"%s: Error allowing strong pullup\n", __func__);
303 	/* Chip strong pullup time was cleared. */
304 	if (dev->spu_sleep) {
305 		/* lower 4 bits are 0, see ds_set_pullup */
306 		u8 del = dev->spu_sleep>>4;
307 		if (ds_send_control(dev, COMM_SET_DURATION | COMM_IM, del))
308 			dev_err(&dev->udev->dev,
309 				"%s: Error setting duration\n", __func__);
310 	}
311 }
312 
313 static int ds_recv_data(struct ds_device *dev, unsigned char *buf, int size)
314 {
315 	int count, err;
316 
317 	/* Careful on size.  If size is less than what is available in
318 	 * the input buffer, the device fails the bulk transfer and
319 	 * clears the input buffer.  It could read the maximum size of
320 	 * the data buffer, but then do you return the first, last, or
321 	 * some set of the middle size bytes?  As long as the rest of
322 	 * the code is correct there will be size bytes waiting.  A
323 	 * call to ds_wait_status will wait until the device is idle
324 	 * and any data to be received would have been available.
325 	 */
326 	count = 0;
327 	err = usb_bulk_msg(dev->udev, usb_rcvbulkpipe(dev->udev, dev->ep[EP_DATA_IN]),
328 				buf, size, &count, 1000);
329 	if (err < 0) {
330 		int recv_len;
331 
332 		dev_info(&dev->udev->dev, "Clearing ep0x%x.\n", dev->ep[EP_DATA_IN]);
333 		usb_clear_halt(dev->udev, usb_rcvbulkpipe(dev->udev, dev->ep[EP_DATA_IN]));
334 
335 		/* status might tell us why endpoint is stuck? */
336 		recv_len = ds_recv_status(dev, NULL);
337 		if (recv_len >= 0)
338 			ds_dump_status(dev, dev->st_buf, recv_len);
339 
340 		return err;
341 	}
342 
343 #if 0
344 	{
345 		int i;
346 
347 		printk("%s: count=%d: ", __func__, count);
348 		for (i = 0; i < count; ++i)
349 			printk("%02x ", buf[i]);
350 		printk("\n");
351 	}
352 #endif
353 	return count;
354 }
355 
356 static int ds_send_data(struct ds_device *dev, unsigned char *buf, int len)
357 {
358 	int count, err;
359 
360 	count = 0;
361 	err = usb_bulk_msg(dev->udev, usb_sndbulkpipe(dev->udev, dev->ep[EP_DATA_OUT]), buf, len, &count, 1000);
362 	if (err < 0) {
363 		dev_err(&dev->udev->dev, "Failed to write 1-wire data to ep0x%x: "
364 			"err=%d.\n", dev->ep[EP_DATA_OUT], err);
365 		return err;
366 	}
367 
368 	return err;
369 }
370 
371 #if 0
372 
373 int ds_stop_pulse(struct ds_device *dev, int limit)
374 {
375 	struct ds_status st;
376 	int count = 0, err = 0;
377 
378 	do {
379 		err = ds_send_control(dev, CTL_HALT_EXE_IDLE, 0);
380 		if (err)
381 			break;
382 		err = ds_send_control(dev, CTL_RESUME_EXE, 0);
383 		if (err)
384 			break;
385 		err = ds_recv_status(dev, &st);
386 		if (err)
387 			break;
388 
389 		if ((st.status & ST_SPUA) == 0) {
390 			err = ds_send_control_mode(dev, MOD_PULSE_EN, 0);
391 			if (err)
392 				break;
393 		}
394 	} while (++count < limit);
395 
396 	return err;
397 }
398 
399 int ds_detect(struct ds_device *dev, struct ds_status *st)
400 {
401 	int err;
402 
403 	err = ds_send_control_cmd(dev, CTL_RESET_DEVICE, 0);
404 	if (err)
405 		return err;
406 
407 	err = ds_send_control(dev, COMM_SET_DURATION | COMM_IM, 0);
408 	if (err)
409 		return err;
410 
411 	err = ds_send_control(dev, COMM_SET_DURATION | COMM_IM | COMM_TYPE, 0x40);
412 	if (err)
413 		return err;
414 
415 	err = ds_send_control_mode(dev, MOD_PULSE_EN, PULSE_PROG);
416 	if (err)
417 		return err;
418 
419 	err = ds_dump_status(dev, st);
420 
421 	return err;
422 }
423 
424 #endif  /*  0  */
425 
426 static int ds_wait_status(struct ds_device *dev, struct ds_status *st)
427 {
428 	int err, count = 0;
429 
430 	do {
431 		st->status = 0;
432 		err = ds_recv_status(dev, st);
433 #if 0
434 		if (err >= 0) {
435 			int i;
436 			printk("0x%x: count=%d, status: ", dev->ep[EP_STATUS], err);
437 			for (i = 0; i < err; ++i)
438 				printk("%02x ", dev->st_buf[i]);
439 			printk("\n");
440 		}
441 #endif
442 	} while (!(st->status & ST_IDLE) && !(err < 0) && ++count < 100);
443 
444 	if (err >= 16 && st->status & ST_EPOF) {
445 		dev_info(&dev->udev->dev, "Resetting device after ST_EPOF.\n");
446 		ds_reset_device(dev);
447 		/* Always dump the device status. */
448 		count = 101;
449 	}
450 
451 	/* Dump the status for errors or if there is extended return data.
452 	 * The extended status includes new device detection (maybe someone
453 	 * can do something with it).
454 	 */
455 	if (err > 16 || count >= 100 || err < 0)
456 		ds_dump_status(dev, dev->st_buf, err);
457 
458 	/* Extended data isn't an error.  Well, a short is, but the dump
459 	 * would have already told the user that and we can't do anything
460 	 * about it in software anyway.
461 	 */
462 	if (count >= 100 || err < 0)
463 		return -1;
464 	else
465 		return 0;
466 }
467 
468 static int ds_reset(struct ds_device *dev)
469 {
470 	int err;
471 
472 	/* Other potentionally interesting flags for reset.
473 	 *
474 	 * COMM_NTF: Return result register feedback.  This could be used to
475 	 * detect some conditions such as short, alarming presence, or
476 	 * detect if a new device was detected.
477 	 *
478 	 * COMM_SE which allows SPEED_NORMAL, SPEED_FLEXIBLE, SPEED_OVERDRIVE:
479 	 * Select the data transfer rate.
480 	 */
481 	err = ds_send_control(dev, COMM_1_WIRE_RESET | COMM_IM, SPEED_NORMAL);
482 	if (err)
483 		return err;
484 
485 	return 0;
486 }
487 
488 #if 0
489 static int ds_set_speed(struct ds_device *dev, int speed)
490 {
491 	int err;
492 
493 	if (speed != SPEED_NORMAL && speed != SPEED_FLEXIBLE && speed != SPEED_OVERDRIVE)
494 		return -EINVAL;
495 
496 	if (speed != SPEED_OVERDRIVE)
497 		speed = SPEED_FLEXIBLE;
498 
499 	speed &= 0xff;
500 
501 	err = ds_send_control_mode(dev, MOD_1WIRE_SPEED, speed);
502 	if (err)
503 		return err;
504 
505 	return err;
506 }
507 #endif  /*  0  */
508 
509 static int ds_set_pullup(struct ds_device *dev, int delay)
510 {
511 	int err = 0;
512 	u8 del = 1 + (u8)(delay >> 4);
513 	/* Just storing delay would not get the trunication and roundup. */
514 	int ms = del<<4;
515 
516 	/* Enable spu_bit if a delay is set. */
517 	dev->spu_bit = delay ? COMM_SPU : 0;
518 	/* If delay is zero, it has already been disabled, if the time is
519 	 * the same as the hardware was last programmed to, there is also
520 	 * nothing more to do.  Compare with the recalculated value ms
521 	 * rather than del or delay which can have a different value.
522 	 */
523 	if (delay == 0 || ms == dev->spu_sleep)
524 		return err;
525 
526 	err = ds_send_control(dev, COMM_SET_DURATION | COMM_IM, del);
527 	if (err)
528 		return err;
529 
530 	dev->spu_sleep = ms;
531 
532 	return err;
533 }
534 
535 static int ds_touch_bit(struct ds_device *dev, u8 bit, u8 *tbit)
536 {
537 	int err;
538 	struct ds_status st;
539 
540 	err = ds_send_control(dev, COMM_BIT_IO | COMM_IM | (bit ? COMM_D : 0),
541 		0);
542 	if (err)
543 		return err;
544 
545 	ds_wait_status(dev, &st);
546 
547 	err = ds_recv_data(dev, tbit, sizeof(*tbit));
548 	if (err < 0)
549 		return err;
550 
551 	return 0;
552 }
553 
554 #if 0
555 static int ds_write_bit(struct ds_device *dev, u8 bit)
556 {
557 	int err;
558 	struct ds_status st;
559 
560 	/* Set COMM_ICP to write without a readback.  Note, this will
561 	 * produce one time slot, a down followed by an up with COMM_D
562 	 * only determing the timing.
563 	 */
564 	err = ds_send_control(dev, COMM_BIT_IO | COMM_IM | COMM_ICP |
565 		(bit ? COMM_D : 0), 0);
566 	if (err)
567 		return err;
568 
569 	ds_wait_status(dev, &st);
570 
571 	return 0;
572 }
573 #endif
574 
575 static int ds_write_byte(struct ds_device *dev, u8 byte)
576 {
577 	int err;
578 	struct ds_status st;
579 
580 	err = ds_send_control(dev, COMM_BYTE_IO | COMM_IM | dev->spu_bit, byte);
581 	if (err)
582 		return err;
583 
584 	if (dev->spu_bit)
585 		msleep(dev->spu_sleep);
586 
587 	err = ds_wait_status(dev, &st);
588 	if (err)
589 		return err;
590 
591 	err = ds_recv_data(dev, &dev->byte_buf, 1);
592 	if (err < 0)
593 		return err;
594 
595 	return !(byte == dev->byte_buf);
596 }
597 
598 static int ds_read_byte(struct ds_device *dev, u8 *byte)
599 {
600 	int err;
601 	struct ds_status st;
602 
603 	err = ds_send_control(dev, COMM_BYTE_IO | COMM_IM, 0xff);
604 	if (err)
605 		return err;
606 
607 	ds_wait_status(dev, &st);
608 
609 	err = ds_recv_data(dev, byte, sizeof(*byte));
610 	if (err < 0)
611 		return err;
612 
613 	return 0;
614 }
615 
616 static int ds_read_block(struct ds_device *dev, u8 *buf, int len)
617 {
618 	struct ds_status st;
619 	int err;
620 
621 	if (len > 64*1024)
622 		return -E2BIG;
623 
624 	memset(buf, 0xFF, len);
625 
626 	err = ds_send_data(dev, buf, len);
627 	if (err < 0)
628 		return err;
629 
630 	err = ds_send_control(dev, COMM_BLOCK_IO | COMM_IM, len);
631 	if (err)
632 		return err;
633 
634 	ds_wait_status(dev, &st);
635 
636 	memset(buf, 0x00, len);
637 	err = ds_recv_data(dev, buf, len);
638 
639 	return err;
640 }
641 
642 static int ds_write_block(struct ds_device *dev, u8 *buf, int len)
643 {
644 	int err;
645 	struct ds_status st;
646 
647 	err = ds_send_data(dev, buf, len);
648 	if (err < 0)
649 		return err;
650 
651 	err = ds_send_control(dev, COMM_BLOCK_IO | COMM_IM | dev->spu_bit, len);
652 	if (err)
653 		return err;
654 
655 	if (dev->spu_bit)
656 		msleep(dev->spu_sleep);
657 
658 	ds_wait_status(dev, &st);
659 
660 	err = ds_recv_data(dev, buf, len);
661 	if (err < 0)
662 		return err;
663 
664 	return !(err == len);
665 }
666 
667 static void ds9490r_search(void *data, struct w1_master *master,
668 	u8 search_type, w1_slave_found_callback callback)
669 {
670 	/* When starting with an existing id, the first id returned will
671 	 * be that device (if it is still on the bus most likely).
672 	 *
673 	 * If the number of devices found is less than or equal to the
674 	 * search_limit, that number of IDs will be returned.  If there are
675 	 * more, search_limit IDs will be returned followed by a non-zero
676 	 * discrepency value.
677 	 */
678 	struct ds_device *dev = data;
679 	int err;
680 	u16 value, index;
681 	struct ds_status st;
682 	int search_limit;
683 	int found = 0;
684 	int i;
685 
686 	/* DS18b20 spec, 13.16 ms per device, 75 per second, sleep for
687 	 * discovering 8 devices (1 bulk transfer and 1/2 FIFO size) at a time.
688 	 */
689 	const unsigned long jtime = msecs_to_jiffies(1000*8/75);
690 	/* FIFO 128 bytes, bulk packet size 64, read a multiple of the
691 	 * packet size.
692 	 */
693 	const size_t bufsize = 2 * 64;
694 	u64 *buf, *found_ids;
695 
696 	buf = kmalloc(bufsize, GFP_KERNEL);
697 	if (!buf)
698 		return;
699 
700 	/*
701 	 * We are holding the bus mutex during the scan, but adding devices via the
702 	 * callback needs the bus to be unlocked. So we queue up found ids here.
703 	 */
704 	found_ids = kmalloc_array(master->max_slave_count, sizeof(u64), GFP_KERNEL);
705 	if (!found_ids) {
706 		kfree(buf);
707 		return;
708 	}
709 
710 	mutex_lock(&master->bus_mutex);
711 
712 	/* address to start searching at */
713 	if (ds_send_data(dev, (u8 *)&master->search_id, 8) < 0)
714 		goto search_out;
715 	master->search_id = 0;
716 
717 	value = COMM_SEARCH_ACCESS | COMM_IM | COMM_RST | COMM_SM | COMM_F |
718 		COMM_RTS;
719 	search_limit = master->max_slave_count;
720 	if (search_limit > 255)
721 		search_limit = 0;
722 	index = search_type | (search_limit << 8);
723 	if (ds_send_control(dev, value, index) < 0)
724 		goto search_out;
725 
726 	do {
727 		schedule_timeout(jtime);
728 
729 		err = ds_recv_status(dev, &st);
730 		if (err < 0 || err < sizeof(st))
731 			break;
732 
733 		if (st.data_in_buffer_status) {
734 			/* Bulk in can receive partial ids, but when it does
735 			 * they fail crc and will be discarded anyway.
736 			 * That has only been seen when status in buffer
737 			 * is 0 and bulk is read anyway, so don't read
738 			 * bulk without first checking if status says there
739 			 * is data to read.
740 			 */
741 			err = ds_recv_data(dev, (u8 *)buf, bufsize);
742 			if (err < 0)
743 				break;
744 			for (i = 0; i < err/8; ++i) {
745 				found_ids[found++] = buf[i];
746 				/* can't know if there will be a discrepancy
747 				 * value after until the next id */
748 				if (found == search_limit) {
749 					master->search_id = buf[i];
750 					break;
751 				}
752 			}
753 		}
754 
755 		if (test_bit(W1_ABORT_SEARCH, &master->flags))
756 			break;
757 	} while (!(st.status & (ST_IDLE | ST_HALT)));
758 
759 	/* only continue the search if some weren't found */
760 	if (found <= search_limit) {
761 		master->search_id = 0;
762 	} else if (!test_bit(W1_WARN_MAX_COUNT, &master->flags)) {
763 		/* Only max_slave_count will be scanned in a search,
764 		 * but it will start where it left off next search
765 		 * until all ids are identified and then it will start
766 		 * over.  A continued search will report the previous
767 		 * last id as the first id (provided it is still on the
768 		 * bus).
769 		 */
770 		dev_info(&dev->udev->dev, "%s: max_slave_count %d reached, "
771 			"will continue next search.\n", __func__,
772 			master->max_slave_count);
773 		set_bit(W1_WARN_MAX_COUNT, &master->flags);
774 	}
775 
776 search_out:
777 	mutex_unlock(&master->bus_mutex);
778 	kfree(buf);
779 
780 	for (i = 0; i < found; i++) /* run callback for all queued up IDs */
781 		callback(master, found_ids[i]);
782 	kfree(found_ids);
783 }
784 
785 #if 0
786 /*
787  * FIXME: if this disabled code is ever used in the future all ds_send_data()
788  * calls must be changed to use a DMAable buffer.
789  */
790 static int ds_match_access(struct ds_device *dev, u64 init)
791 {
792 	int err;
793 	struct ds_status st;
794 
795 	err = ds_send_data(dev, (unsigned char *)&init, sizeof(init));
796 	if (err)
797 		return err;
798 
799 	ds_wait_status(dev, &st);
800 
801 	err = ds_send_control(dev, COMM_MATCH_ACCESS | COMM_IM | COMM_RST, 0x0055);
802 	if (err)
803 		return err;
804 
805 	ds_wait_status(dev, &st);
806 
807 	return 0;
808 }
809 
810 static int ds_set_path(struct ds_device *dev, u64 init)
811 {
812 	int err;
813 	struct ds_status st;
814 	u8 buf[9];
815 
816 	memcpy(buf, &init, 8);
817 	buf[8] = BRANCH_MAIN;
818 
819 	err = ds_send_data(dev, buf, sizeof(buf));
820 	if (err)
821 		return err;
822 
823 	ds_wait_status(dev, &st);
824 
825 	err = ds_send_control(dev, COMM_SET_PATH | COMM_IM | COMM_RST, 0);
826 	if (err)
827 		return err;
828 
829 	ds_wait_status(dev, &st);
830 
831 	return 0;
832 }
833 
834 #endif  /*  0  */
835 
836 static u8 ds9490r_touch_bit(void *data, u8 bit)
837 {
838 	struct ds_device *dev = data;
839 
840 	if (ds_touch_bit(dev, bit, &dev->byte_buf))
841 		return 0;
842 
843 	return dev->byte_buf;
844 }
845 
846 #if 0
847 static void ds9490r_write_bit(void *data, u8 bit)
848 {
849 	struct ds_device *dev = data;
850 
851 	ds_write_bit(dev, bit);
852 }
853 
854 static u8 ds9490r_read_bit(void *data)
855 {
856 	struct ds_device *dev = data;
857 	int err;
858 
859 	err = ds_touch_bit(dev, 1, &dev->byte_buf);
860 	if (err)
861 		return 0;
862 
863 	return dev->byte_buf & 1;
864 }
865 #endif
866 
867 static void ds9490r_write_byte(void *data, u8 byte)
868 {
869 	struct ds_device *dev = data;
870 
871 	ds_write_byte(dev, byte);
872 }
873 
874 static u8 ds9490r_read_byte(void *data)
875 {
876 	struct ds_device *dev = data;
877 	int err;
878 
879 	err = ds_read_byte(dev, &dev->byte_buf);
880 	if (err)
881 		return 0;
882 
883 	return dev->byte_buf;
884 }
885 
886 static void ds9490r_write_block(void *data, const u8 *buf, int len)
887 {
888 	struct ds_device *dev = data;
889 	u8 *tbuf;
890 
891 	if (len <= 0)
892 		return;
893 
894 	tbuf = kmemdup(buf, len, GFP_KERNEL);
895 	if (!tbuf)
896 		return;
897 
898 	ds_write_block(dev, tbuf, len);
899 
900 	kfree(tbuf);
901 }
902 
903 static u8 ds9490r_read_block(void *data, u8 *buf, int len)
904 {
905 	struct ds_device *dev = data;
906 	int err;
907 	u8 *tbuf;
908 
909 	if (len <= 0)
910 		return 0;
911 
912 	tbuf = kmalloc(len, GFP_KERNEL);
913 	if (!tbuf)
914 		return 0;
915 
916 	err = ds_read_block(dev, tbuf, len);
917 	if (err >= 0)
918 		memcpy(buf, tbuf, len);
919 
920 	kfree(tbuf);
921 
922 	return err >= 0 ? len : 0;
923 }
924 
925 static u8 ds9490r_reset(void *data)
926 {
927 	struct ds_device *dev = data;
928 	int err;
929 
930 	err = ds_reset(dev);
931 	if (err)
932 		return 1;
933 
934 	return 0;
935 }
936 
937 static u8 ds9490r_set_pullup(void *data, int delay)
938 {
939 	struct ds_device *dev = data;
940 
941 	if (ds_set_pullup(dev, delay))
942 		return 1;
943 
944 	return 0;
945 }
946 
947 static int ds_w1_init(struct ds_device *dev)
948 {
949 	memset(&dev->master, 0, sizeof(struct w1_bus_master));
950 
951 	/* Reset the device as it can be in a bad state.
952 	 * This is necessary because a block write will wait for data
953 	 * to be placed in the output buffer and block any later
954 	 * commands which will keep accumulating and the device will
955 	 * not be idle.  Another case is removing the ds2490 module
956 	 * while a bus search is in progress, somehow a few commands
957 	 * get through, but the input transfers fail leaving data in
958 	 * the input buffer.  This will cause the next read to fail
959 	 * see the note in ds_recv_data.
960 	 */
961 	ds_reset_device(dev);
962 
963 	dev->master.data	= dev;
964 	dev->master.touch_bit	= &ds9490r_touch_bit;
965 	/* read_bit and write_bit in w1_bus_master are expected to set and
966 	 * sample the line level.  For write_bit that means it is expected to
967 	 * set it to that value and leave it there.  ds2490 only supports an
968 	 * individual time slot at the lowest level.  The requirement from
969 	 * pulling the bus state down to reading the state is 15us, something
970 	 * that isn't realistic on the USB bus anyway.
971 	dev->master.read_bit	= &ds9490r_read_bit;
972 	dev->master.write_bit	= &ds9490r_write_bit;
973 	*/
974 	dev->master.read_byte	= &ds9490r_read_byte;
975 	dev->master.write_byte	= &ds9490r_write_byte;
976 	dev->master.read_block	= &ds9490r_read_block;
977 	dev->master.write_block	= &ds9490r_write_block;
978 	dev->master.reset_bus	= &ds9490r_reset;
979 	dev->master.set_pullup	= &ds9490r_set_pullup;
980 	dev->master.search	= &ds9490r_search;
981 
982 	return w1_add_master_device(&dev->master);
983 }
984 
985 static void ds_w1_fini(struct ds_device *dev)
986 {
987 	w1_remove_master_device(&dev->master);
988 }
989 
990 static int ds_probe(struct usb_interface *intf,
991 		    const struct usb_device_id *udev_id)
992 {
993 	struct usb_device *udev = interface_to_usbdev(intf);
994 	struct usb_endpoint_descriptor *endpoint;
995 	struct usb_host_interface *iface_desc;
996 	struct ds_device *dev;
997 	int i, err, alt;
998 
999 	dev = kzalloc(sizeof(struct ds_device), GFP_KERNEL);
1000 	if (!dev)
1001 		return -ENOMEM;
1002 
1003 	dev->udev = usb_get_dev(udev);
1004 	if (!dev->udev) {
1005 		err = -ENOMEM;
1006 		goto err_out_free;
1007 	}
1008 	memset(dev->ep, 0, sizeof(dev->ep));
1009 
1010 	usb_set_intfdata(intf, dev);
1011 
1012 	err = usb_reset_configuration(dev->udev);
1013 	if (err) {
1014 		dev_err(&dev->udev->dev,
1015 			"Failed to reset configuration: err=%d.\n", err);
1016 		goto err_out_clear;
1017 	}
1018 
1019 	/* alternative 3, 1ms interrupt (greatly speeds search), 64 byte bulk */
1020 	alt = 3;
1021 	err = usb_set_interface(dev->udev,
1022 		intf->cur_altsetting->desc.bInterfaceNumber, alt);
1023 	if (err) {
1024 		dev_err(&dev->udev->dev, "Failed to set alternative setting %d "
1025 			"for %d interface: err=%d.\n", alt,
1026 			intf->cur_altsetting->desc.bInterfaceNumber, err);
1027 		goto err_out_clear;
1028 	}
1029 
1030 	iface_desc = intf->cur_altsetting;
1031 	if (iface_desc->desc.bNumEndpoints != NUM_EP-1) {
1032 		dev_err(&dev->udev->dev, "Num endpoints=%d. It is not DS9490R.\n",
1033 			iface_desc->desc.bNumEndpoints);
1034 		err = -EINVAL;
1035 		goto err_out_clear;
1036 	}
1037 
1038 	/*
1039 	 * This loop doesn'd show control 0 endpoint,
1040 	 * so we will fill only 1-3 endpoints entry.
1041 	 */
1042 	for (i = 0; i < iface_desc->desc.bNumEndpoints; ++i) {
1043 		endpoint = &iface_desc->endpoint[i].desc;
1044 
1045 		dev->ep[i+1] = endpoint->bEndpointAddress;
1046 #if 0
1047 		printk("%d: addr=%x, size=%d, dir=%s, type=%x\n",
1048 			i, endpoint->bEndpointAddress, le16_to_cpu(endpoint->wMaxPacketSize),
1049 			(endpoint->bEndpointAddress & USB_DIR_IN)?"IN":"OUT",
1050 			endpoint->bmAttributes & USB_ENDPOINT_XFERTYPE_MASK);
1051 #endif
1052 	}
1053 
1054 	err = ds_w1_init(dev);
1055 	if (err)
1056 		goto err_out_clear;
1057 
1058 	mutex_lock(&ds_mutex);
1059 	list_add_tail(&dev->ds_entry, &ds_devices);
1060 	mutex_unlock(&ds_mutex);
1061 
1062 	return 0;
1063 
1064 err_out_clear:
1065 	usb_set_intfdata(intf, NULL);
1066 	usb_put_dev(dev->udev);
1067 err_out_free:
1068 	kfree(dev);
1069 	return err;
1070 }
1071 
1072 static void ds_disconnect(struct usb_interface *intf)
1073 {
1074 	struct ds_device *dev;
1075 
1076 	dev = usb_get_intfdata(intf);
1077 	if (!dev)
1078 		return;
1079 
1080 	mutex_lock(&ds_mutex);
1081 	list_del(&dev->ds_entry);
1082 	mutex_unlock(&ds_mutex);
1083 
1084 	ds_w1_fini(dev);
1085 
1086 	usb_set_intfdata(intf, NULL);
1087 
1088 	usb_put_dev(dev->udev);
1089 	kfree(dev);
1090 }
1091 
1092 static const struct usb_device_id ds_id_table[] = {
1093 	{ USB_DEVICE(0x04fa, 0x2490) },
1094 	{ },
1095 };
1096 MODULE_DEVICE_TABLE(usb, ds_id_table);
1097 
1098 static struct usb_driver ds_driver = {
1099 	.name =		"DS9490R",
1100 	.probe =	ds_probe,
1101 	.disconnect =	ds_disconnect,
1102 	.id_table =	ds_id_table,
1103 };
1104 module_usb_driver(ds_driver);
1105 
1106 MODULE_AUTHOR("Evgeniy Polyakov <zbr@ioremap.net>");
1107 MODULE_DESCRIPTION("DS2490 USB <-> W1 bus master driver (DS9490*)");
1108 MODULE_LICENSE("GPL");
1109