xref: /openbmc/linux/drivers/w1/masters/ds2490.c (revision 2425c81f)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  *	ds2490.c  USB to one wire bridge
4  *
5  * Copyright (c) 2004 Evgeniy Polyakov <zbr@ioremap.net>
6  */
7 
8 #include <linux/module.h>
9 #include <linux/kernel.h>
10 #include <linux/mod_devicetable.h>
11 #include <linux/usb.h>
12 #include <linux/slab.h>
13 
14 #include <linux/w1.h>
15 
16 /* USB Standard */
17 /* USB Control request vendor type */
18 #define VENDOR				0x40
19 
20 /* COMMAND TYPE CODES */
21 #define CONTROL_CMD			0x00
22 #define COMM_CMD			0x01
23 #define MODE_CMD			0x02
24 
25 /* CONTROL COMMAND CODES */
26 #define CTL_RESET_DEVICE		0x0000
27 #define CTL_START_EXE			0x0001
28 #define CTL_RESUME_EXE			0x0002
29 #define CTL_HALT_EXE_IDLE		0x0003
30 #define CTL_HALT_EXE_DONE		0x0004
31 #define CTL_FLUSH_COMM_CMDS		0x0007
32 #define CTL_FLUSH_RCV_BUFFER		0x0008
33 #define CTL_FLUSH_XMT_BUFFER		0x0009
34 #define CTL_GET_COMM_CMDS		0x000A
35 
36 /* MODE COMMAND CODES */
37 #define MOD_PULSE_EN			0x0000
38 #define MOD_SPEED_CHANGE_EN		0x0001
39 #define MOD_1WIRE_SPEED			0x0002
40 #define MOD_STRONG_PU_DURATION		0x0003
41 #define MOD_PULLDOWN_SLEWRATE		0x0004
42 #define MOD_PROG_PULSE_DURATION		0x0005
43 #define MOD_WRITE1_LOWTIME		0x0006
44 #define MOD_DSOW0_TREC			0x0007
45 
46 /* COMMUNICATION COMMAND CODES */
47 #define COMM_ERROR_ESCAPE		0x0601
48 #define COMM_SET_DURATION		0x0012
49 #define COMM_BIT_IO			0x0020
50 #define COMM_PULSE			0x0030
51 #define COMM_1_WIRE_RESET		0x0042
52 #define COMM_BYTE_IO			0x0052
53 #define COMM_MATCH_ACCESS		0x0064
54 #define COMM_BLOCK_IO			0x0074
55 #define COMM_READ_STRAIGHT		0x0080
56 #define COMM_DO_RELEASE			0x6092
57 #define COMM_SET_PATH			0x00A2
58 #define COMM_WRITE_SRAM_PAGE		0x00B2
59 #define COMM_WRITE_EPROM		0x00C4
60 #define COMM_READ_CRC_PROT_PAGE		0x00D4
61 #define COMM_READ_REDIRECT_PAGE_CRC	0x21E4
62 #define COMM_SEARCH_ACCESS		0x00F4
63 
64 /* Communication command bits */
65 #define COMM_TYPE			0x0008
66 #define COMM_SE				0x0008
67 #define COMM_D				0x0008
68 #define COMM_Z				0x0008
69 #define COMM_CH				0x0008
70 #define COMM_SM				0x0008
71 #define COMM_R				0x0008
72 #define COMM_IM				0x0001
73 
74 #define COMM_PS				0x4000
75 #define COMM_PST			0x4000
76 #define COMM_CIB			0x4000
77 #define COMM_RTS			0x4000
78 #define COMM_DT				0x2000
79 #define COMM_SPU			0x1000
80 #define COMM_F				0x0800
81 #define COMM_NTF			0x0400
82 #define COMM_ICP			0x0200
83 #define COMM_RST			0x0100
84 
85 #define PULSE_PROG			0x01
86 #define PULSE_SPUE			0x02
87 
88 #define BRANCH_MAIN			0xCC
89 #define BRANCH_AUX			0x33
90 
91 /* Status flags */
92 #define ST_SPUA				0x01  /* Strong Pull-up is active */
93 #define ST_PRGA				0x02  /* 12V programming pulse is being generated */
94 #define ST_12VP				0x04  /* external 12V programming voltage is present */
95 #define ST_PMOD				0x08  /* DS2490 powered from USB and external sources */
96 #define ST_HALT				0x10  /* DS2490 is currently halted */
97 #define ST_IDLE				0x20  /* DS2490 is currently idle */
98 #define ST_EPOF				0x80
99 /* Status transfer size, 16 bytes status, 16 byte result flags */
100 #define ST_SIZE				0x20
101 
102 /* Result Register flags */
103 #define RR_DETECT			0xA5 /* New device detected */
104 #define RR_NRS				0x01 /* Reset no presence or ... */
105 #define RR_SH				0x02 /* short on reset or set path */
106 #define RR_APP				0x04 /* alarming presence on reset */
107 #define RR_VPP				0x08 /* 12V expected not seen */
108 #define RR_CMP				0x10 /* compare error */
109 #define RR_CRC				0x20 /* CRC error detected */
110 #define RR_RDP				0x40 /* redirected page */
111 #define RR_EOS				0x80 /* end of search error */
112 
113 #define SPEED_NORMAL			0x00
114 #define SPEED_FLEXIBLE			0x01
115 #define SPEED_OVERDRIVE			0x02
116 
117 #define NUM_EP				4
118 #define EP_CONTROL			0
119 #define EP_STATUS			1
120 #define EP_DATA_OUT			2
121 #define EP_DATA_IN			3
122 
123 struct ds_device {
124 	struct list_head	ds_entry;
125 
126 	struct usb_device	*udev;
127 	struct usb_interface	*intf;
128 
129 	int			ep[NUM_EP];
130 
131 	/* Strong PullUp
132 	 * 0: pullup not active, else duration in milliseconds
133 	 */
134 	int			spu_sleep;
135 	/* spu_bit contains COMM_SPU or 0 depending on if the strong pullup
136 	 * should be active or not for writes.
137 	 */
138 	u16			spu_bit;
139 
140 	u8			st_buf[ST_SIZE];
141 	u8			byte_buf;
142 
143 	struct w1_bus_master	master;
144 };
145 
146 struct ds_status {
147 	u8			enable;
148 	u8			speed;
149 	u8			pullup_dur;
150 	u8			ppuls_dur;
151 	u8			pulldown_slew;
152 	u8			write1_time;
153 	u8			write0_time;
154 	u8			reserved0;
155 	u8			status;
156 	u8			command0;
157 	u8			command1;
158 	u8			command_buffer_status;
159 	u8			data_out_buffer_status;
160 	u8			data_in_buffer_status;
161 	u8			reserved1;
162 	u8			reserved2;
163 };
164 
165 static LIST_HEAD(ds_devices);
166 static DEFINE_MUTEX(ds_mutex);
167 
168 static int ds_send_control_cmd(struct ds_device *dev, u16 value, u16 index)
169 {
170 	int err;
171 
172 	err = usb_control_msg(dev->udev, usb_sndctrlpipe(dev->udev, dev->ep[EP_CONTROL]),
173 			CONTROL_CMD, VENDOR, value, index, NULL, 0, 1000);
174 	if (err < 0) {
175 		pr_err("Failed to send command control message %x.%x: err=%d.\n",
176 				value, index, err);
177 		return err;
178 	}
179 
180 	return err;
181 }
182 
183 static int ds_send_control_mode(struct ds_device *dev, u16 value, u16 index)
184 {
185 	int err;
186 
187 	err = usb_control_msg(dev->udev, usb_sndctrlpipe(dev->udev, dev->ep[EP_CONTROL]),
188 			MODE_CMD, VENDOR, value, index, NULL, 0, 1000);
189 	if (err < 0) {
190 		pr_err("Failed to send mode control message %x.%x: err=%d.\n",
191 				value, index, err);
192 		return err;
193 	}
194 
195 	return err;
196 }
197 
198 static int ds_send_control(struct ds_device *dev, u16 value, u16 index)
199 {
200 	int err;
201 
202 	err = usb_control_msg(dev->udev, usb_sndctrlpipe(dev->udev, dev->ep[EP_CONTROL]),
203 			COMM_CMD, VENDOR, value, index, NULL, 0, 1000);
204 	if (err < 0) {
205 		pr_err("Failed to send control message %x.%x: err=%d.\n",
206 				value, index, err);
207 		return err;
208 	}
209 
210 	return err;
211 }
212 
213 static inline void ds_print_msg(unsigned char *buf, unsigned char *str, int off)
214 {
215 	pr_info("%45s: %8x\n", str, buf[off]);
216 }
217 
218 static void ds_dump_status(struct ds_device *dev, unsigned char *buf, int count)
219 {
220 	int i;
221 
222 	dev_info(&dev->udev->dev, "ep_status=0x%x, count=%d, status=%*phC",
223 		dev->ep[EP_STATUS], count, count, buf);
224 
225 	if (count >= 16) {
226 		ds_print_msg(buf, "enable flag", 0);
227 		ds_print_msg(buf, "1-wire speed", 1);
228 		ds_print_msg(buf, "strong pullup duration", 2);
229 		ds_print_msg(buf, "programming pulse duration", 3);
230 		ds_print_msg(buf, "pulldown slew rate control", 4);
231 		ds_print_msg(buf, "write-1 low time", 5);
232 		ds_print_msg(buf, "data sample offset/write-0 recovery time",
233 			6);
234 		ds_print_msg(buf, "reserved (test register)", 7);
235 		ds_print_msg(buf, "device status flags", 8);
236 		ds_print_msg(buf, "communication command byte 1", 9);
237 		ds_print_msg(buf, "communication command byte 2", 10);
238 		ds_print_msg(buf, "communication command buffer status", 11);
239 		ds_print_msg(buf, "1-wire data output buffer status", 12);
240 		ds_print_msg(buf, "1-wire data input buffer status", 13);
241 		ds_print_msg(buf, "reserved", 14);
242 		ds_print_msg(buf, "reserved", 15);
243 	}
244 	for (i = 16; i < count; ++i) {
245 		if (buf[i] == RR_DETECT) {
246 			ds_print_msg(buf, "new device detect", i);
247 			continue;
248 		}
249 		ds_print_msg(buf, "Result Register Value: ", i);
250 		if (buf[i] & RR_NRS)
251 			pr_info("NRS: Reset no presence or ...\n");
252 		if (buf[i] & RR_SH)
253 			pr_info("SH: short on reset or set path\n");
254 		if (buf[i] & RR_APP)
255 			pr_info("APP: alarming presence on reset\n");
256 		if (buf[i] & RR_VPP)
257 			pr_info("VPP: 12V expected not seen\n");
258 		if (buf[i] & RR_CMP)
259 			pr_info("CMP: compare error\n");
260 		if (buf[i] & RR_CRC)
261 			pr_info("CRC: CRC error detected\n");
262 		if (buf[i] & RR_RDP)
263 			pr_info("RDP: redirected page\n");
264 		if (buf[i] & RR_EOS)
265 			pr_info("EOS: end of search error\n");
266 	}
267 }
268 
269 static int ds_recv_status(struct ds_device *dev, struct ds_status *st,
270 			  bool dump)
271 {
272 	int count, err;
273 
274 	if (st)
275 		memset(st, 0, sizeof(*st));
276 
277 	count = 0;
278 	err = usb_interrupt_msg(dev->udev,
279 				usb_rcvintpipe(dev->udev,
280 					       dev->ep[EP_STATUS]),
281 				dev->st_buf, sizeof(dev->st_buf),
282 				&count, 1000);
283 	if (err < 0) {
284 		pr_err("Failed to read 1-wire data from 0x%x: err=%d.\n",
285 		       dev->ep[EP_STATUS], err);
286 		return err;
287 	}
288 
289 	if (dump)
290 		ds_dump_status(dev, dev->st_buf, count);
291 
292 	if (st && count >= sizeof(*st))
293 		memcpy(st, dev->st_buf, sizeof(*st));
294 
295 	return count;
296 }
297 
298 static void ds_reset_device(struct ds_device *dev)
299 {
300 	ds_send_control_cmd(dev, CTL_RESET_DEVICE, 0);
301 	/* Always allow strong pullup which allow individual writes to use
302 	 * the strong pullup.
303 	 */
304 	if (ds_send_control_mode(dev, MOD_PULSE_EN, PULSE_SPUE))
305 		pr_err("ds_reset_device: Error allowing strong pullup\n");
306 	/* Chip strong pullup time was cleared. */
307 	if (dev->spu_sleep) {
308 		/* lower 4 bits are 0, see ds_set_pullup */
309 		u8 del = dev->spu_sleep>>4;
310 		if (ds_send_control(dev, COMM_SET_DURATION | COMM_IM, del))
311 			pr_err("ds_reset_device: Error setting duration\n");
312 	}
313 }
314 
315 static int ds_recv_data(struct ds_device *dev, unsigned char *buf, int size)
316 {
317 	int count, err;
318 
319 	/* Careful on size.  If size is less than what is available in
320 	 * the input buffer, the device fails the bulk transfer and
321 	 * clears the input buffer.  It could read the maximum size of
322 	 * the data buffer, but then do you return the first, last, or
323 	 * some set of the middle size bytes?  As long as the rest of
324 	 * the code is correct there will be size bytes waiting.  A
325 	 * call to ds_wait_status will wait until the device is idle
326 	 * and any data to be received would have been available.
327 	 */
328 	count = 0;
329 	err = usb_bulk_msg(dev->udev, usb_rcvbulkpipe(dev->udev, dev->ep[EP_DATA_IN]),
330 				buf, size, &count, 1000);
331 	if (err < 0) {
332 		dev_info(&dev->udev->dev, "Clearing ep0x%x.\n", dev->ep[EP_DATA_IN]);
333 		usb_clear_halt(dev->udev, usb_rcvbulkpipe(dev->udev, dev->ep[EP_DATA_IN]));
334 		ds_recv_status(dev, NULL, true);
335 		return err;
336 	}
337 
338 #if 0
339 	{
340 		int i;
341 
342 		printk("%s: count=%d: ", __func__, count);
343 		for (i = 0; i < count; ++i)
344 			printk("%02x ", buf[i]);
345 		printk("\n");
346 	}
347 #endif
348 	return count;
349 }
350 
351 static int ds_send_data(struct ds_device *dev, unsigned char *buf, int len)
352 {
353 	int count, err;
354 
355 	count = 0;
356 	err = usb_bulk_msg(dev->udev, usb_sndbulkpipe(dev->udev, dev->ep[EP_DATA_OUT]), buf, len, &count, 1000);
357 	if (err < 0) {
358 		pr_err("Failed to write 1-wire data to ep0x%x: "
359 			"err=%d.\n", dev->ep[EP_DATA_OUT], err);
360 		return err;
361 	}
362 
363 	return err;
364 }
365 
366 #if 0
367 
368 int ds_stop_pulse(struct ds_device *dev, int limit)
369 {
370 	struct ds_status st;
371 	int count = 0, err = 0;
372 
373 	do {
374 		err = ds_send_control(dev, CTL_HALT_EXE_IDLE, 0);
375 		if (err)
376 			break;
377 		err = ds_send_control(dev, CTL_RESUME_EXE, 0);
378 		if (err)
379 			break;
380 		err = ds_recv_status(dev, &st, false);
381 		if (err)
382 			break;
383 
384 		if ((st.status & ST_SPUA) == 0) {
385 			err = ds_send_control_mode(dev, MOD_PULSE_EN, 0);
386 			if (err)
387 				break;
388 		}
389 	} while (++count < limit);
390 
391 	return err;
392 }
393 
394 int ds_detect(struct ds_device *dev, struct ds_status *st)
395 {
396 	int err;
397 
398 	err = ds_send_control_cmd(dev, CTL_RESET_DEVICE, 0);
399 	if (err)
400 		return err;
401 
402 	err = ds_send_control(dev, COMM_SET_DURATION | COMM_IM, 0);
403 	if (err)
404 		return err;
405 
406 	err = ds_send_control(dev, COMM_SET_DURATION | COMM_IM | COMM_TYPE, 0x40);
407 	if (err)
408 		return err;
409 
410 	err = ds_send_control_mode(dev, MOD_PULSE_EN, PULSE_PROG);
411 	if (err)
412 		return err;
413 
414 	err = ds_dump_status(dev, st);
415 
416 	return err;
417 }
418 
419 #endif  /*  0  */
420 
421 static int ds_wait_status(struct ds_device *dev, struct ds_status *st)
422 {
423 	int err, count = 0;
424 
425 	do {
426 		st->status = 0;
427 		err = ds_recv_status(dev, st, false);
428 #if 0
429 		if (err >= 0) {
430 			int i;
431 			printk("0x%x: count=%d, status: ", dev->ep[EP_STATUS], err);
432 			for (i = 0; i < err; ++i)
433 				printk("%02x ", dev->st_buf[i]);
434 			printk("\n");
435 		}
436 #endif
437 	} while (!(st->status & ST_IDLE) && !(err < 0) && ++count < 100);
438 
439 	if (err >= 16 && st->status & ST_EPOF) {
440 		pr_info("Resetting device after ST_EPOF.\n");
441 		ds_reset_device(dev);
442 		/* Always dump the device status. */
443 		count = 101;
444 	}
445 
446 	/* Dump the status for errors or if there is extended return data.
447 	 * The extended status includes new device detection (maybe someone
448 	 * can do something with it).
449 	 */
450 	if (err > 16 || count >= 100 || err < 0)
451 		ds_dump_status(dev, dev->st_buf, err);
452 
453 	/* Extended data isn't an error.  Well, a short is, but the dump
454 	 * would have already told the user that and we can't do anything
455 	 * about it in software anyway.
456 	 */
457 	if (count >= 100 || err < 0)
458 		return -1;
459 	else
460 		return 0;
461 }
462 
463 static int ds_reset(struct ds_device *dev)
464 {
465 	int err;
466 
467 	/* Other potentionally interesting flags for reset.
468 	 *
469 	 * COMM_NTF: Return result register feedback.  This could be used to
470 	 * detect some conditions such as short, alarming presence, or
471 	 * detect if a new device was detected.
472 	 *
473 	 * COMM_SE which allows SPEED_NORMAL, SPEED_FLEXIBLE, SPEED_OVERDRIVE:
474 	 * Select the data transfer rate.
475 	 */
476 	err = ds_send_control(dev, COMM_1_WIRE_RESET | COMM_IM, SPEED_NORMAL);
477 	if (err)
478 		return err;
479 
480 	return 0;
481 }
482 
483 #if 0
484 static int ds_set_speed(struct ds_device *dev, int speed)
485 {
486 	int err;
487 
488 	if (speed != SPEED_NORMAL && speed != SPEED_FLEXIBLE && speed != SPEED_OVERDRIVE)
489 		return -EINVAL;
490 
491 	if (speed != SPEED_OVERDRIVE)
492 		speed = SPEED_FLEXIBLE;
493 
494 	speed &= 0xff;
495 
496 	err = ds_send_control_mode(dev, MOD_1WIRE_SPEED, speed);
497 	if (err)
498 		return err;
499 
500 	return err;
501 }
502 #endif  /*  0  */
503 
504 static int ds_set_pullup(struct ds_device *dev, int delay)
505 {
506 	int err = 0;
507 	u8 del = 1 + (u8)(delay >> 4);
508 	/* Just storing delay would not get the trunication and roundup. */
509 	int ms = del<<4;
510 
511 	/* Enable spu_bit if a delay is set. */
512 	dev->spu_bit = delay ? COMM_SPU : 0;
513 	/* If delay is zero, it has already been disabled, if the time is
514 	 * the same as the hardware was last programmed to, there is also
515 	 * nothing more to do.  Compare with the recalculated value ms
516 	 * rather than del or delay which can have a different value.
517 	 */
518 	if (delay == 0 || ms == dev->spu_sleep)
519 		return err;
520 
521 	err = ds_send_control(dev, COMM_SET_DURATION | COMM_IM, del);
522 	if (err)
523 		return err;
524 
525 	dev->spu_sleep = ms;
526 
527 	return err;
528 }
529 
530 static int ds_touch_bit(struct ds_device *dev, u8 bit, u8 *tbit)
531 {
532 	int err;
533 	struct ds_status st;
534 
535 	err = ds_send_control(dev, COMM_BIT_IO | COMM_IM | (bit ? COMM_D : 0),
536 		0);
537 	if (err)
538 		return err;
539 
540 	ds_wait_status(dev, &st);
541 
542 	err = ds_recv_data(dev, tbit, sizeof(*tbit));
543 	if (err < 0)
544 		return err;
545 
546 	return 0;
547 }
548 
549 #if 0
550 static int ds_write_bit(struct ds_device *dev, u8 bit)
551 {
552 	int err;
553 	struct ds_status st;
554 
555 	/* Set COMM_ICP to write without a readback.  Note, this will
556 	 * produce one time slot, a down followed by an up with COMM_D
557 	 * only determing the timing.
558 	 */
559 	err = ds_send_control(dev, COMM_BIT_IO | COMM_IM | COMM_ICP |
560 		(bit ? COMM_D : 0), 0);
561 	if (err)
562 		return err;
563 
564 	ds_wait_status(dev, &st);
565 
566 	return 0;
567 }
568 #endif
569 
570 static int ds_write_byte(struct ds_device *dev, u8 byte)
571 {
572 	int err;
573 	struct ds_status st;
574 
575 	err = ds_send_control(dev, COMM_BYTE_IO | COMM_IM | dev->spu_bit, byte);
576 	if (err)
577 		return err;
578 
579 	if (dev->spu_bit)
580 		msleep(dev->spu_sleep);
581 
582 	err = ds_wait_status(dev, &st);
583 	if (err)
584 		return err;
585 
586 	err = ds_recv_data(dev, &dev->byte_buf, 1);
587 	if (err < 0)
588 		return err;
589 
590 	return !(byte == dev->byte_buf);
591 }
592 
593 static int ds_read_byte(struct ds_device *dev, u8 *byte)
594 {
595 	int err;
596 	struct ds_status st;
597 
598 	err = ds_send_control(dev, COMM_BYTE_IO | COMM_IM, 0xff);
599 	if (err)
600 		return err;
601 
602 	ds_wait_status(dev, &st);
603 
604 	err = ds_recv_data(dev, byte, sizeof(*byte));
605 	if (err < 0)
606 		return err;
607 
608 	return 0;
609 }
610 
611 static int ds_read_block(struct ds_device *dev, u8 *buf, int len)
612 {
613 	struct ds_status st;
614 	int err;
615 
616 	if (len > 64*1024)
617 		return -E2BIG;
618 
619 	memset(buf, 0xFF, len);
620 
621 	err = ds_send_data(dev, buf, len);
622 	if (err < 0)
623 		return err;
624 
625 	err = ds_send_control(dev, COMM_BLOCK_IO | COMM_IM, len);
626 	if (err)
627 		return err;
628 
629 	ds_wait_status(dev, &st);
630 
631 	memset(buf, 0x00, len);
632 	err = ds_recv_data(dev, buf, len);
633 
634 	return err;
635 }
636 
637 static int ds_write_block(struct ds_device *dev, u8 *buf, int len)
638 {
639 	int err;
640 	struct ds_status st;
641 
642 	err = ds_send_data(dev, buf, len);
643 	if (err < 0)
644 		return err;
645 
646 	err = ds_send_control(dev, COMM_BLOCK_IO | COMM_IM | dev->spu_bit, len);
647 	if (err)
648 		return err;
649 
650 	if (dev->spu_bit)
651 		msleep(dev->spu_sleep);
652 
653 	ds_wait_status(dev, &st);
654 
655 	err = ds_recv_data(dev, buf, len);
656 	if (err < 0)
657 		return err;
658 
659 	return !(err == len);
660 }
661 
662 static void ds9490r_search(void *data, struct w1_master *master,
663 	u8 search_type, w1_slave_found_callback callback)
664 {
665 	/* When starting with an existing id, the first id returned will
666 	 * be that device (if it is still on the bus most likely).
667 	 *
668 	 * If the number of devices found is less than or equal to the
669 	 * search_limit, that number of IDs will be returned.  If there are
670 	 * more, search_limit IDs will be returned followed by a non-zero
671 	 * discrepency value.
672 	 */
673 	struct ds_device *dev = data;
674 	int err;
675 	u16 value, index;
676 	struct ds_status st;
677 	int search_limit;
678 	int found = 0;
679 	int i;
680 
681 	/* DS18b20 spec, 13.16 ms per device, 75 per second, sleep for
682 	 * discovering 8 devices (1 bulk transfer and 1/2 FIFO size) at a time.
683 	 */
684 	const unsigned long jtime = msecs_to_jiffies(1000*8/75);
685 	/* FIFO 128 bytes, bulk packet size 64, read a multiple of the
686 	 * packet size.
687 	 */
688 	const size_t bufsize = 2 * 64;
689 	u64 *buf, *found_ids;
690 
691 	buf = kmalloc(bufsize, GFP_KERNEL);
692 	if (!buf)
693 		return;
694 
695 	/*
696 	 * We are holding the bus mutex during the scan, but adding devices via the
697 	 * callback needs the bus to be unlocked. So we queue up found ids here.
698 	 */
699 	found_ids = kmalloc_array(master->max_slave_count, sizeof(u64), GFP_KERNEL);
700 	if (!found_ids) {
701 		kfree(buf);
702 		return;
703 	}
704 
705 	mutex_lock(&master->bus_mutex);
706 
707 	/* address to start searching at */
708 	if (ds_send_data(dev, (u8 *)&master->search_id, 8) < 0)
709 		goto search_out;
710 	master->search_id = 0;
711 
712 	value = COMM_SEARCH_ACCESS | COMM_IM | COMM_RST | COMM_SM | COMM_F |
713 		COMM_RTS;
714 	search_limit = master->max_slave_count;
715 	if (search_limit > 255)
716 		search_limit = 0;
717 	index = search_type | (search_limit << 8);
718 	if (ds_send_control(dev, value, index) < 0)
719 		goto search_out;
720 
721 	do {
722 		schedule_timeout(jtime);
723 
724 		err = ds_recv_status(dev, &st, false);
725 		if (err < 0 || err < sizeof(st))
726 			break;
727 
728 		if (st.data_in_buffer_status) {
729 			/* Bulk in can receive partial ids, but when it does
730 			 * they fail crc and will be discarded anyway.
731 			 * That has only been seen when status in buffer
732 			 * is 0 and bulk is read anyway, so don't read
733 			 * bulk without first checking if status says there
734 			 * is data to read.
735 			 */
736 			err = ds_recv_data(dev, (u8 *)buf, bufsize);
737 			if (err < 0)
738 				break;
739 			for (i = 0; i < err/8; ++i) {
740 				found_ids[found++] = buf[i];
741 				/* can't know if there will be a discrepancy
742 				 * value after until the next id */
743 				if (found == search_limit) {
744 					master->search_id = buf[i];
745 					break;
746 				}
747 			}
748 		}
749 
750 		if (test_bit(W1_ABORT_SEARCH, &master->flags))
751 			break;
752 	} while (!(st.status & (ST_IDLE | ST_HALT)));
753 
754 	/* only continue the search if some weren't found */
755 	if (found <= search_limit) {
756 		master->search_id = 0;
757 	} else if (!test_bit(W1_WARN_MAX_COUNT, &master->flags)) {
758 		/* Only max_slave_count will be scanned in a search,
759 		 * but it will start where it left off next search
760 		 * until all ids are identified and then it will start
761 		 * over.  A continued search will report the previous
762 		 * last id as the first id (provided it is still on the
763 		 * bus).
764 		 */
765 		dev_info(&dev->udev->dev, "%s: max_slave_count %d reached, "
766 			"will continue next search.\n", __func__,
767 			master->max_slave_count);
768 		set_bit(W1_WARN_MAX_COUNT, &master->flags);
769 	}
770 
771 search_out:
772 	mutex_unlock(&master->bus_mutex);
773 	kfree(buf);
774 
775 	for (i = 0; i < found; i++) /* run callback for all queued up IDs */
776 		callback(master, found_ids[i]);
777 	kfree(found_ids);
778 }
779 
780 #if 0
781 /*
782  * FIXME: if this disabled code is ever used in the future all ds_send_data()
783  * calls must be changed to use a DMAable buffer.
784  */
785 static int ds_match_access(struct ds_device *dev, u64 init)
786 {
787 	int err;
788 	struct ds_status st;
789 
790 	err = ds_send_data(dev, (unsigned char *)&init, sizeof(init));
791 	if (err)
792 		return err;
793 
794 	ds_wait_status(dev, &st);
795 
796 	err = ds_send_control(dev, COMM_MATCH_ACCESS | COMM_IM | COMM_RST, 0x0055);
797 	if (err)
798 		return err;
799 
800 	ds_wait_status(dev, &st);
801 
802 	return 0;
803 }
804 
805 static int ds_set_path(struct ds_device *dev, u64 init)
806 {
807 	int err;
808 	struct ds_status st;
809 	u8 buf[9];
810 
811 	memcpy(buf, &init, 8);
812 	buf[8] = BRANCH_MAIN;
813 
814 	err = ds_send_data(dev, buf, sizeof(buf));
815 	if (err)
816 		return err;
817 
818 	ds_wait_status(dev, &st);
819 
820 	err = ds_send_control(dev, COMM_SET_PATH | COMM_IM | COMM_RST, 0);
821 	if (err)
822 		return err;
823 
824 	ds_wait_status(dev, &st);
825 
826 	return 0;
827 }
828 
829 #endif  /*  0  */
830 
831 static u8 ds9490r_touch_bit(void *data, u8 bit)
832 {
833 	struct ds_device *dev = data;
834 
835 	if (ds_touch_bit(dev, bit, &dev->byte_buf))
836 		return 0;
837 
838 	return dev->byte_buf;
839 }
840 
841 #if 0
842 static void ds9490r_write_bit(void *data, u8 bit)
843 {
844 	struct ds_device *dev = data;
845 
846 	ds_write_bit(dev, bit);
847 }
848 
849 static u8 ds9490r_read_bit(void *data)
850 {
851 	struct ds_device *dev = data;
852 	int err;
853 
854 	err = ds_touch_bit(dev, 1, &dev->byte_buf);
855 	if (err)
856 		return 0;
857 
858 	return dev->byte_buf & 1;
859 }
860 #endif
861 
862 static void ds9490r_write_byte(void *data, u8 byte)
863 {
864 	struct ds_device *dev = data;
865 
866 	ds_write_byte(dev, byte);
867 }
868 
869 static u8 ds9490r_read_byte(void *data)
870 {
871 	struct ds_device *dev = data;
872 	int err;
873 
874 	err = ds_read_byte(dev, &dev->byte_buf);
875 	if (err)
876 		return 0;
877 
878 	return dev->byte_buf;
879 }
880 
881 static void ds9490r_write_block(void *data, const u8 *buf, int len)
882 {
883 	struct ds_device *dev = data;
884 	u8 *tbuf;
885 
886 	if (len <= 0)
887 		return;
888 
889 	tbuf = kmemdup(buf, len, GFP_KERNEL);
890 	if (!tbuf)
891 		return;
892 
893 	ds_write_block(dev, tbuf, len);
894 
895 	kfree(tbuf);
896 }
897 
898 static u8 ds9490r_read_block(void *data, u8 *buf, int len)
899 {
900 	struct ds_device *dev = data;
901 	int err;
902 	u8 *tbuf;
903 
904 	if (len <= 0)
905 		return 0;
906 
907 	tbuf = kmalloc(len, GFP_KERNEL);
908 	if (!tbuf)
909 		return 0;
910 
911 	err = ds_read_block(dev, tbuf, len);
912 	if (err >= 0)
913 		memcpy(buf, tbuf, len);
914 
915 	kfree(tbuf);
916 
917 	return err >= 0 ? len : 0;
918 }
919 
920 static u8 ds9490r_reset(void *data)
921 {
922 	struct ds_device *dev = data;
923 	int err;
924 
925 	err = ds_reset(dev);
926 	if (err)
927 		return 1;
928 
929 	return 0;
930 }
931 
932 static u8 ds9490r_set_pullup(void *data, int delay)
933 {
934 	struct ds_device *dev = data;
935 
936 	if (ds_set_pullup(dev, delay))
937 		return 1;
938 
939 	return 0;
940 }
941 
942 static int ds_w1_init(struct ds_device *dev)
943 {
944 	memset(&dev->master, 0, sizeof(struct w1_bus_master));
945 
946 	/* Reset the device as it can be in a bad state.
947 	 * This is necessary because a block write will wait for data
948 	 * to be placed in the output buffer and block any later
949 	 * commands which will keep accumulating and the device will
950 	 * not be idle.  Another case is removing the ds2490 module
951 	 * while a bus search is in progress, somehow a few commands
952 	 * get through, but the input transfers fail leaving data in
953 	 * the input buffer.  This will cause the next read to fail
954 	 * see the note in ds_recv_data.
955 	 */
956 	ds_reset_device(dev);
957 
958 	dev->master.data	= dev;
959 	dev->master.touch_bit	= &ds9490r_touch_bit;
960 	/* read_bit and write_bit in w1_bus_master are expected to set and
961 	 * sample the line level.  For write_bit that means it is expected to
962 	 * set it to that value and leave it there.  ds2490 only supports an
963 	 * individual time slot at the lowest level.  The requirement from
964 	 * pulling the bus state down to reading the state is 15us, something
965 	 * that isn't realistic on the USB bus anyway.
966 	dev->master.read_bit	= &ds9490r_read_bit;
967 	dev->master.write_bit	= &ds9490r_write_bit;
968 	*/
969 	dev->master.read_byte	= &ds9490r_read_byte;
970 	dev->master.write_byte	= &ds9490r_write_byte;
971 	dev->master.read_block	= &ds9490r_read_block;
972 	dev->master.write_block	= &ds9490r_write_block;
973 	dev->master.reset_bus	= &ds9490r_reset;
974 	dev->master.set_pullup	= &ds9490r_set_pullup;
975 	dev->master.search	= &ds9490r_search;
976 
977 	return w1_add_master_device(&dev->master);
978 }
979 
980 static void ds_w1_fini(struct ds_device *dev)
981 {
982 	w1_remove_master_device(&dev->master);
983 }
984 
985 static int ds_probe(struct usb_interface *intf,
986 		    const struct usb_device_id *udev_id)
987 {
988 	struct usb_device *udev = interface_to_usbdev(intf);
989 	struct usb_endpoint_descriptor *endpoint;
990 	struct usb_host_interface *iface_desc;
991 	struct ds_device *dev;
992 	int i, err, alt;
993 
994 	dev = kzalloc(sizeof(struct ds_device), GFP_KERNEL);
995 	if (!dev) {
996 		pr_info("Failed to allocate new DS9490R structure.\n");
997 		return -ENOMEM;
998 	}
999 	dev->udev = usb_get_dev(udev);
1000 	if (!dev->udev) {
1001 		err = -ENOMEM;
1002 		goto err_out_free;
1003 	}
1004 	memset(dev->ep, 0, sizeof(dev->ep));
1005 
1006 	usb_set_intfdata(intf, dev);
1007 
1008 	err = usb_reset_configuration(dev->udev);
1009 	if (err) {
1010 		dev_err(&dev->udev->dev,
1011 			"Failed to reset configuration: err=%d.\n", err);
1012 		goto err_out_clear;
1013 	}
1014 
1015 	/* alternative 3, 1ms interrupt (greatly speeds search), 64 byte bulk */
1016 	alt = 3;
1017 	err = usb_set_interface(dev->udev,
1018 		intf->cur_altsetting->desc.bInterfaceNumber, alt);
1019 	if (err) {
1020 		dev_err(&dev->udev->dev, "Failed to set alternative setting %d "
1021 			"for %d interface: err=%d.\n", alt,
1022 			intf->cur_altsetting->desc.bInterfaceNumber, err);
1023 		goto err_out_clear;
1024 	}
1025 
1026 	iface_desc = intf->cur_altsetting;
1027 	if (iface_desc->desc.bNumEndpoints != NUM_EP-1) {
1028 		pr_info("Num endpoints=%d. It is not DS9490R.\n",
1029 			iface_desc->desc.bNumEndpoints);
1030 		err = -EINVAL;
1031 		goto err_out_clear;
1032 	}
1033 
1034 	/*
1035 	 * This loop doesn'd show control 0 endpoint,
1036 	 * so we will fill only 1-3 endpoints entry.
1037 	 */
1038 	for (i = 0; i < iface_desc->desc.bNumEndpoints; ++i) {
1039 		endpoint = &iface_desc->endpoint[i].desc;
1040 
1041 		dev->ep[i+1] = endpoint->bEndpointAddress;
1042 #if 0
1043 		printk("%d: addr=%x, size=%d, dir=%s, type=%x\n",
1044 			i, endpoint->bEndpointAddress, le16_to_cpu(endpoint->wMaxPacketSize),
1045 			(endpoint->bEndpointAddress & USB_DIR_IN)?"IN":"OUT",
1046 			endpoint->bmAttributes & USB_ENDPOINT_XFERTYPE_MASK);
1047 #endif
1048 	}
1049 
1050 	err = ds_w1_init(dev);
1051 	if (err)
1052 		goto err_out_clear;
1053 
1054 	mutex_lock(&ds_mutex);
1055 	list_add_tail(&dev->ds_entry, &ds_devices);
1056 	mutex_unlock(&ds_mutex);
1057 
1058 	return 0;
1059 
1060 err_out_clear:
1061 	usb_set_intfdata(intf, NULL);
1062 	usb_put_dev(dev->udev);
1063 err_out_free:
1064 	kfree(dev);
1065 	return err;
1066 }
1067 
1068 static void ds_disconnect(struct usb_interface *intf)
1069 {
1070 	struct ds_device *dev;
1071 
1072 	dev = usb_get_intfdata(intf);
1073 	if (!dev)
1074 		return;
1075 
1076 	mutex_lock(&ds_mutex);
1077 	list_del(&dev->ds_entry);
1078 	mutex_unlock(&ds_mutex);
1079 
1080 	ds_w1_fini(dev);
1081 
1082 	usb_set_intfdata(intf, NULL);
1083 
1084 	usb_put_dev(dev->udev);
1085 	kfree(dev);
1086 }
1087 
1088 static const struct usb_device_id ds_id_table[] = {
1089 	{ USB_DEVICE(0x04fa, 0x2490) },
1090 	{ },
1091 };
1092 MODULE_DEVICE_TABLE(usb, ds_id_table);
1093 
1094 static struct usb_driver ds_driver = {
1095 	.name =		"DS9490R",
1096 	.probe =	ds_probe,
1097 	.disconnect =	ds_disconnect,
1098 	.id_table =	ds_id_table,
1099 };
1100 module_usb_driver(ds_driver);
1101 
1102 MODULE_AUTHOR("Evgeniy Polyakov <zbr@ioremap.net>");
1103 MODULE_DESCRIPTION("DS2490 USB <-> W1 bus master driver (DS9490*)");
1104 MODULE_LICENSE("GPL");
1105