1 /* Virtio ring implementation. 2 * 3 * Copyright 2007 Rusty Russell IBM Corporation 4 * 5 * This program is free software; you can redistribute it and/or modify 6 * it under the terms of the GNU General Public License as published by 7 * the Free Software Foundation; either version 2 of the License, or 8 * (at your option) any later version. 9 * 10 * This program is distributed in the hope that it will be useful, 11 * but WITHOUT ANY WARRANTY; without even the implied warranty of 12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 13 * GNU General Public License for more details. 14 * 15 * You should have received a copy of the GNU General Public License 16 * along with this program; if not, write to the Free Software 17 * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA 18 */ 19 #include <linux/virtio.h> 20 #include <linux/virtio_ring.h> 21 #include <linux/virtio_config.h> 22 #include <linux/device.h> 23 #include <linux/slab.h> 24 #include <linux/module.h> 25 #include <linux/hrtimer.h> 26 #include <linux/kmemleak.h> 27 #include <linux/dma-mapping.h> 28 #include <xen/xen.h> 29 30 #ifdef DEBUG 31 /* For development, we want to crash whenever the ring is screwed. */ 32 #define BAD_RING(_vq, fmt, args...) \ 33 do { \ 34 dev_err(&(_vq)->vq.vdev->dev, \ 35 "%s:"fmt, (_vq)->vq.name, ##args); \ 36 BUG(); \ 37 } while (0) 38 /* Caller is supposed to guarantee no reentry. */ 39 #define START_USE(_vq) \ 40 do { \ 41 if ((_vq)->in_use) \ 42 panic("%s:in_use = %i\n", \ 43 (_vq)->vq.name, (_vq)->in_use); \ 44 (_vq)->in_use = __LINE__; \ 45 } while (0) 46 #define END_USE(_vq) \ 47 do { BUG_ON(!(_vq)->in_use); (_vq)->in_use = 0; } while(0) 48 #else 49 #define BAD_RING(_vq, fmt, args...) \ 50 do { \ 51 dev_err(&_vq->vq.vdev->dev, \ 52 "%s:"fmt, (_vq)->vq.name, ##args); \ 53 (_vq)->broken = true; \ 54 } while (0) 55 #define START_USE(vq) 56 #define END_USE(vq) 57 #endif 58 59 struct vring_desc_state { 60 void *data; /* Data for callback. */ 61 struct vring_desc *indir_desc; /* Indirect descriptor, if any. */ 62 }; 63 64 struct vring_virtqueue { 65 struct virtqueue vq; 66 67 /* Actual memory layout for this queue */ 68 struct vring vring; 69 70 /* Can we use weak barriers? */ 71 bool weak_barriers; 72 73 /* Other side has made a mess, don't try any more. */ 74 bool broken; 75 76 /* Host supports indirect buffers */ 77 bool indirect; 78 79 /* Host publishes avail event idx */ 80 bool event; 81 82 /* Head of free buffer list. */ 83 unsigned int free_head; 84 /* Number we've added since last sync. */ 85 unsigned int num_added; 86 87 /* Last used index we've seen. */ 88 u16 last_used_idx; 89 90 /* Last written value to avail->flags */ 91 u16 avail_flags_shadow; 92 93 /* Last written value to avail->idx in guest byte order */ 94 u16 avail_idx_shadow; 95 96 /* How to notify other side. FIXME: commonalize hcalls! */ 97 bool (*notify)(struct virtqueue *vq); 98 99 /* DMA, allocation, and size information */ 100 bool we_own_ring; 101 size_t queue_size_in_bytes; 102 dma_addr_t queue_dma_addr; 103 104 #ifdef DEBUG 105 /* They're supposed to lock for us. */ 106 unsigned int in_use; 107 108 /* Figure out if their kicks are too delayed. */ 109 bool last_add_time_valid; 110 ktime_t last_add_time; 111 #endif 112 113 /* Per-descriptor state. */ 114 struct vring_desc_state desc_state[]; 115 }; 116 117 #define to_vvq(_vq) container_of(_vq, struct vring_virtqueue, vq) 118 119 /* 120 * Modern virtio devices have feature bits to specify whether they need a 121 * quirk and bypass the IOMMU. If not there, just use the DMA API. 122 * 123 * If there, the interaction between virtio and DMA API is messy. 124 * 125 * On most systems with virtio, physical addresses match bus addresses, 126 * and it doesn't particularly matter whether we use the DMA API. 127 * 128 * On some systems, including Xen and any system with a physical device 129 * that speaks virtio behind a physical IOMMU, we must use the DMA API 130 * for virtio DMA to work at all. 131 * 132 * On other systems, including SPARC and PPC64, virtio-pci devices are 133 * enumerated as though they are behind an IOMMU, but the virtio host 134 * ignores the IOMMU, so we must either pretend that the IOMMU isn't 135 * there or somehow map everything as the identity. 136 * 137 * For the time being, we preserve historic behavior and bypass the DMA 138 * API. 139 * 140 * TODO: install a per-device DMA ops structure that does the right thing 141 * taking into account all the above quirks, and use the DMA API 142 * unconditionally on data path. 143 */ 144 145 static bool vring_use_dma_api(struct virtio_device *vdev) 146 { 147 if (!virtio_has_iommu_quirk(vdev)) 148 return true; 149 150 /* Otherwise, we are left to guess. */ 151 /* 152 * In theory, it's possible to have a buggy QEMU-supposed 153 * emulated Q35 IOMMU and Xen enabled at the same time. On 154 * such a configuration, virtio has never worked and will 155 * not work without an even larger kludge. Instead, enable 156 * the DMA API if we're a Xen guest, which at least allows 157 * all of the sensible Xen configurations to work correctly. 158 */ 159 if (xen_domain()) 160 return true; 161 162 return false; 163 } 164 165 /* 166 * The DMA ops on various arches are rather gnarly right now, and 167 * making all of the arch DMA ops work on the vring device itself 168 * is a mess. For now, we use the parent device for DMA ops. 169 */ 170 static inline struct device *vring_dma_dev(const struct vring_virtqueue *vq) 171 { 172 return vq->vq.vdev->dev.parent; 173 } 174 175 /* Map one sg entry. */ 176 static dma_addr_t vring_map_one_sg(const struct vring_virtqueue *vq, 177 struct scatterlist *sg, 178 enum dma_data_direction direction) 179 { 180 if (!vring_use_dma_api(vq->vq.vdev)) 181 return (dma_addr_t)sg_phys(sg); 182 183 /* 184 * We can't use dma_map_sg, because we don't use scatterlists in 185 * the way it expects (we don't guarantee that the scatterlist 186 * will exist for the lifetime of the mapping). 187 */ 188 return dma_map_page(vring_dma_dev(vq), 189 sg_page(sg), sg->offset, sg->length, 190 direction); 191 } 192 193 static dma_addr_t vring_map_single(const struct vring_virtqueue *vq, 194 void *cpu_addr, size_t size, 195 enum dma_data_direction direction) 196 { 197 if (!vring_use_dma_api(vq->vq.vdev)) 198 return (dma_addr_t)virt_to_phys(cpu_addr); 199 200 return dma_map_single(vring_dma_dev(vq), 201 cpu_addr, size, direction); 202 } 203 204 static void vring_unmap_one(const struct vring_virtqueue *vq, 205 struct vring_desc *desc) 206 { 207 u16 flags; 208 209 if (!vring_use_dma_api(vq->vq.vdev)) 210 return; 211 212 flags = virtio16_to_cpu(vq->vq.vdev, desc->flags); 213 214 if (flags & VRING_DESC_F_INDIRECT) { 215 dma_unmap_single(vring_dma_dev(vq), 216 virtio64_to_cpu(vq->vq.vdev, desc->addr), 217 virtio32_to_cpu(vq->vq.vdev, desc->len), 218 (flags & VRING_DESC_F_WRITE) ? 219 DMA_FROM_DEVICE : DMA_TO_DEVICE); 220 } else { 221 dma_unmap_page(vring_dma_dev(vq), 222 virtio64_to_cpu(vq->vq.vdev, desc->addr), 223 virtio32_to_cpu(vq->vq.vdev, desc->len), 224 (flags & VRING_DESC_F_WRITE) ? 225 DMA_FROM_DEVICE : DMA_TO_DEVICE); 226 } 227 } 228 229 static int vring_mapping_error(const struct vring_virtqueue *vq, 230 dma_addr_t addr) 231 { 232 if (!vring_use_dma_api(vq->vq.vdev)) 233 return 0; 234 235 return dma_mapping_error(vring_dma_dev(vq), addr); 236 } 237 238 static struct vring_desc *alloc_indirect(struct virtqueue *_vq, 239 unsigned int total_sg, gfp_t gfp) 240 { 241 struct vring_desc *desc; 242 unsigned int i; 243 244 /* 245 * We require lowmem mappings for the descriptors because 246 * otherwise virt_to_phys will give us bogus addresses in the 247 * virtqueue. 248 */ 249 gfp &= ~__GFP_HIGHMEM; 250 251 desc = kmalloc(total_sg * sizeof(struct vring_desc), gfp); 252 if (!desc) 253 return NULL; 254 255 for (i = 0; i < total_sg; i++) 256 desc[i].next = cpu_to_virtio16(_vq->vdev, i + 1); 257 return desc; 258 } 259 260 static inline int virtqueue_add(struct virtqueue *_vq, 261 struct scatterlist *sgs[], 262 unsigned int total_sg, 263 unsigned int out_sgs, 264 unsigned int in_sgs, 265 void *data, 266 void *ctx, 267 gfp_t gfp) 268 { 269 struct vring_virtqueue *vq = to_vvq(_vq); 270 struct scatterlist *sg; 271 struct vring_desc *desc; 272 unsigned int i, n, avail, descs_used, uninitialized_var(prev), err_idx; 273 int head; 274 bool indirect; 275 276 START_USE(vq); 277 278 BUG_ON(data == NULL); 279 BUG_ON(ctx && vq->indirect); 280 281 if (unlikely(vq->broken)) { 282 END_USE(vq); 283 return -EIO; 284 } 285 286 #ifdef DEBUG 287 { 288 ktime_t now = ktime_get(); 289 290 /* No kick or get, with .1 second between? Warn. */ 291 if (vq->last_add_time_valid) 292 WARN_ON(ktime_to_ms(ktime_sub(now, vq->last_add_time)) 293 > 100); 294 vq->last_add_time = now; 295 vq->last_add_time_valid = true; 296 } 297 #endif 298 299 BUG_ON(total_sg > vq->vring.num); 300 BUG_ON(total_sg == 0); 301 302 head = vq->free_head; 303 304 /* If the host supports indirect descriptor tables, and we have multiple 305 * buffers, then go indirect. FIXME: tune this threshold */ 306 if (vq->indirect && total_sg > 1 && vq->vq.num_free) 307 desc = alloc_indirect(_vq, total_sg, gfp); 308 else 309 desc = NULL; 310 311 if (desc) { 312 /* Use a single buffer which doesn't continue */ 313 indirect = true; 314 /* Set up rest to use this indirect table. */ 315 i = 0; 316 descs_used = 1; 317 } else { 318 indirect = false; 319 desc = vq->vring.desc; 320 i = head; 321 descs_used = total_sg; 322 } 323 324 if (vq->vq.num_free < descs_used) { 325 pr_debug("Can't add buf len %i - avail = %i\n", 326 descs_used, vq->vq.num_free); 327 /* FIXME: for historical reasons, we force a notify here if 328 * there are outgoing parts to the buffer. Presumably the 329 * host should service the ring ASAP. */ 330 if (out_sgs) 331 vq->notify(&vq->vq); 332 if (indirect) 333 kfree(desc); 334 END_USE(vq); 335 return -ENOSPC; 336 } 337 338 for (n = 0; n < out_sgs; n++) { 339 for (sg = sgs[n]; sg; sg = sg_next(sg)) { 340 dma_addr_t addr = vring_map_one_sg(vq, sg, DMA_TO_DEVICE); 341 if (vring_mapping_error(vq, addr)) 342 goto unmap_release; 343 344 desc[i].flags = cpu_to_virtio16(_vq->vdev, VRING_DESC_F_NEXT); 345 desc[i].addr = cpu_to_virtio64(_vq->vdev, addr); 346 desc[i].len = cpu_to_virtio32(_vq->vdev, sg->length); 347 prev = i; 348 i = virtio16_to_cpu(_vq->vdev, desc[i].next); 349 } 350 } 351 for (; n < (out_sgs + in_sgs); n++) { 352 for (sg = sgs[n]; sg; sg = sg_next(sg)) { 353 dma_addr_t addr = vring_map_one_sg(vq, sg, DMA_FROM_DEVICE); 354 if (vring_mapping_error(vq, addr)) 355 goto unmap_release; 356 357 desc[i].flags = cpu_to_virtio16(_vq->vdev, VRING_DESC_F_NEXT | VRING_DESC_F_WRITE); 358 desc[i].addr = cpu_to_virtio64(_vq->vdev, addr); 359 desc[i].len = cpu_to_virtio32(_vq->vdev, sg->length); 360 prev = i; 361 i = virtio16_to_cpu(_vq->vdev, desc[i].next); 362 } 363 } 364 /* Last one doesn't continue. */ 365 desc[prev].flags &= cpu_to_virtio16(_vq->vdev, ~VRING_DESC_F_NEXT); 366 367 if (indirect) { 368 /* Now that the indirect table is filled in, map it. */ 369 dma_addr_t addr = vring_map_single( 370 vq, desc, total_sg * sizeof(struct vring_desc), 371 DMA_TO_DEVICE); 372 if (vring_mapping_error(vq, addr)) 373 goto unmap_release; 374 375 vq->vring.desc[head].flags = cpu_to_virtio16(_vq->vdev, VRING_DESC_F_INDIRECT); 376 vq->vring.desc[head].addr = cpu_to_virtio64(_vq->vdev, addr); 377 378 vq->vring.desc[head].len = cpu_to_virtio32(_vq->vdev, total_sg * sizeof(struct vring_desc)); 379 } 380 381 /* We're using some buffers from the free list. */ 382 vq->vq.num_free -= descs_used; 383 384 /* Update free pointer */ 385 if (indirect) 386 vq->free_head = virtio16_to_cpu(_vq->vdev, vq->vring.desc[head].next); 387 else 388 vq->free_head = i; 389 390 /* Store token and indirect buffer state. */ 391 vq->desc_state[head].data = data; 392 if (indirect) 393 vq->desc_state[head].indir_desc = desc; 394 if (ctx) 395 vq->desc_state[head].indir_desc = ctx; 396 397 /* Put entry in available array (but don't update avail->idx until they 398 * do sync). */ 399 avail = vq->avail_idx_shadow & (vq->vring.num - 1); 400 vq->vring.avail->ring[avail] = cpu_to_virtio16(_vq->vdev, head); 401 402 /* Descriptors and available array need to be set before we expose the 403 * new available array entries. */ 404 virtio_wmb(vq->weak_barriers); 405 vq->avail_idx_shadow++; 406 vq->vring.avail->idx = cpu_to_virtio16(_vq->vdev, vq->avail_idx_shadow); 407 vq->num_added++; 408 409 pr_debug("Added buffer head %i to %p\n", head, vq); 410 END_USE(vq); 411 412 /* This is very unlikely, but theoretically possible. Kick 413 * just in case. */ 414 if (unlikely(vq->num_added == (1 << 16) - 1)) 415 virtqueue_kick(_vq); 416 417 return 0; 418 419 unmap_release: 420 err_idx = i; 421 i = head; 422 423 for (n = 0; n < total_sg; n++) { 424 if (i == err_idx) 425 break; 426 vring_unmap_one(vq, &desc[i]); 427 i = virtio16_to_cpu(_vq->vdev, vq->vring.desc[i].next); 428 } 429 430 vq->vq.num_free += total_sg; 431 432 if (indirect) 433 kfree(desc); 434 435 END_USE(vq); 436 return -EIO; 437 } 438 439 /** 440 * virtqueue_add_sgs - expose buffers to other end 441 * @vq: the struct virtqueue we're talking about. 442 * @sgs: array of terminated scatterlists. 443 * @out_num: the number of scatterlists readable by other side 444 * @in_num: the number of scatterlists which are writable (after readable ones) 445 * @data: the token identifying the buffer. 446 * @gfp: how to do memory allocations (if necessary). 447 * 448 * Caller must ensure we don't call this with other virtqueue operations 449 * at the same time (except where noted). 450 * 451 * Returns zero or a negative error (ie. ENOSPC, ENOMEM, EIO). 452 */ 453 int virtqueue_add_sgs(struct virtqueue *_vq, 454 struct scatterlist *sgs[], 455 unsigned int out_sgs, 456 unsigned int in_sgs, 457 void *data, 458 gfp_t gfp) 459 { 460 unsigned int i, total_sg = 0; 461 462 /* Count them first. */ 463 for (i = 0; i < out_sgs + in_sgs; i++) { 464 struct scatterlist *sg; 465 for (sg = sgs[i]; sg; sg = sg_next(sg)) 466 total_sg++; 467 } 468 return virtqueue_add(_vq, sgs, total_sg, out_sgs, in_sgs, 469 data, NULL, gfp); 470 } 471 EXPORT_SYMBOL_GPL(virtqueue_add_sgs); 472 473 /** 474 * virtqueue_add_outbuf - expose output buffers to other end 475 * @vq: the struct virtqueue we're talking about. 476 * @sg: scatterlist (must be well-formed and terminated!) 477 * @num: the number of entries in @sg readable by other side 478 * @data: the token identifying the buffer. 479 * @gfp: how to do memory allocations (if necessary). 480 * 481 * Caller must ensure we don't call this with other virtqueue operations 482 * at the same time (except where noted). 483 * 484 * Returns zero or a negative error (ie. ENOSPC, ENOMEM, EIO). 485 */ 486 int virtqueue_add_outbuf(struct virtqueue *vq, 487 struct scatterlist *sg, unsigned int num, 488 void *data, 489 gfp_t gfp) 490 { 491 return virtqueue_add(vq, &sg, num, 1, 0, data, NULL, gfp); 492 } 493 EXPORT_SYMBOL_GPL(virtqueue_add_outbuf); 494 495 /** 496 * virtqueue_add_inbuf - expose input buffers to other end 497 * @vq: the struct virtqueue we're talking about. 498 * @sg: scatterlist (must be well-formed and terminated!) 499 * @num: the number of entries in @sg writable by other side 500 * @data: the token identifying the buffer. 501 * @gfp: how to do memory allocations (if necessary). 502 * 503 * Caller must ensure we don't call this with other virtqueue operations 504 * at the same time (except where noted). 505 * 506 * Returns zero or a negative error (ie. ENOSPC, ENOMEM, EIO). 507 */ 508 int virtqueue_add_inbuf(struct virtqueue *vq, 509 struct scatterlist *sg, unsigned int num, 510 void *data, 511 gfp_t gfp) 512 { 513 return virtqueue_add(vq, &sg, num, 0, 1, data, NULL, gfp); 514 } 515 EXPORT_SYMBOL_GPL(virtqueue_add_inbuf); 516 517 /** 518 * virtqueue_add_inbuf_ctx - expose input buffers to other end 519 * @vq: the struct virtqueue we're talking about. 520 * @sg: scatterlist (must be well-formed and terminated!) 521 * @num: the number of entries in @sg writable by other side 522 * @data: the token identifying the buffer. 523 * @ctx: extra context for the token 524 * @gfp: how to do memory allocations (if necessary). 525 * 526 * Caller must ensure we don't call this with other virtqueue operations 527 * at the same time (except where noted). 528 * 529 * Returns zero or a negative error (ie. ENOSPC, ENOMEM, EIO). 530 */ 531 int virtqueue_add_inbuf_ctx(struct virtqueue *vq, 532 struct scatterlist *sg, unsigned int num, 533 void *data, 534 void *ctx, 535 gfp_t gfp) 536 { 537 return virtqueue_add(vq, &sg, num, 0, 1, data, ctx, gfp); 538 } 539 EXPORT_SYMBOL_GPL(virtqueue_add_inbuf_ctx); 540 541 /** 542 * virtqueue_kick_prepare - first half of split virtqueue_kick call. 543 * @vq: the struct virtqueue 544 * 545 * Instead of virtqueue_kick(), you can do: 546 * if (virtqueue_kick_prepare(vq)) 547 * virtqueue_notify(vq); 548 * 549 * This is sometimes useful because the virtqueue_kick_prepare() needs 550 * to be serialized, but the actual virtqueue_notify() call does not. 551 */ 552 bool virtqueue_kick_prepare(struct virtqueue *_vq) 553 { 554 struct vring_virtqueue *vq = to_vvq(_vq); 555 u16 new, old; 556 bool needs_kick; 557 558 START_USE(vq); 559 /* We need to expose available array entries before checking avail 560 * event. */ 561 virtio_mb(vq->weak_barriers); 562 563 old = vq->avail_idx_shadow - vq->num_added; 564 new = vq->avail_idx_shadow; 565 vq->num_added = 0; 566 567 #ifdef DEBUG 568 if (vq->last_add_time_valid) { 569 WARN_ON(ktime_to_ms(ktime_sub(ktime_get(), 570 vq->last_add_time)) > 100); 571 } 572 vq->last_add_time_valid = false; 573 #endif 574 575 if (vq->event) { 576 needs_kick = vring_need_event(virtio16_to_cpu(_vq->vdev, vring_avail_event(&vq->vring)), 577 new, old); 578 } else { 579 needs_kick = !(vq->vring.used->flags & cpu_to_virtio16(_vq->vdev, VRING_USED_F_NO_NOTIFY)); 580 } 581 END_USE(vq); 582 return needs_kick; 583 } 584 EXPORT_SYMBOL_GPL(virtqueue_kick_prepare); 585 586 /** 587 * virtqueue_notify - second half of split virtqueue_kick call. 588 * @vq: the struct virtqueue 589 * 590 * This does not need to be serialized. 591 * 592 * Returns false if host notify failed or queue is broken, otherwise true. 593 */ 594 bool virtqueue_notify(struct virtqueue *_vq) 595 { 596 struct vring_virtqueue *vq = to_vvq(_vq); 597 598 if (unlikely(vq->broken)) 599 return false; 600 601 /* Prod other side to tell it about changes. */ 602 if (!vq->notify(_vq)) { 603 vq->broken = true; 604 return false; 605 } 606 return true; 607 } 608 EXPORT_SYMBOL_GPL(virtqueue_notify); 609 610 /** 611 * virtqueue_kick - update after add_buf 612 * @vq: the struct virtqueue 613 * 614 * After one or more virtqueue_add_* calls, invoke this to kick 615 * the other side. 616 * 617 * Caller must ensure we don't call this with other virtqueue 618 * operations at the same time (except where noted). 619 * 620 * Returns false if kick failed, otherwise true. 621 */ 622 bool virtqueue_kick(struct virtqueue *vq) 623 { 624 if (virtqueue_kick_prepare(vq)) 625 return virtqueue_notify(vq); 626 return true; 627 } 628 EXPORT_SYMBOL_GPL(virtqueue_kick); 629 630 static void detach_buf(struct vring_virtqueue *vq, unsigned int head, 631 void **ctx) 632 { 633 unsigned int i, j; 634 __virtio16 nextflag = cpu_to_virtio16(vq->vq.vdev, VRING_DESC_F_NEXT); 635 636 /* Clear data ptr. */ 637 vq->desc_state[head].data = NULL; 638 639 /* Put back on free list: unmap first-level descriptors and find end */ 640 i = head; 641 642 while (vq->vring.desc[i].flags & nextflag) { 643 vring_unmap_one(vq, &vq->vring.desc[i]); 644 i = virtio16_to_cpu(vq->vq.vdev, vq->vring.desc[i].next); 645 vq->vq.num_free++; 646 } 647 648 vring_unmap_one(vq, &vq->vring.desc[i]); 649 vq->vring.desc[i].next = cpu_to_virtio16(vq->vq.vdev, vq->free_head); 650 vq->free_head = head; 651 652 /* Plus final descriptor */ 653 vq->vq.num_free++; 654 655 if (vq->indirect) { 656 struct vring_desc *indir_desc = vq->desc_state[head].indir_desc; 657 u32 len; 658 659 /* Free the indirect table, if any, now that it's unmapped. */ 660 if (!indir_desc) 661 return; 662 663 len = virtio32_to_cpu(vq->vq.vdev, vq->vring.desc[head].len); 664 665 BUG_ON(!(vq->vring.desc[head].flags & 666 cpu_to_virtio16(vq->vq.vdev, VRING_DESC_F_INDIRECT))); 667 BUG_ON(len == 0 || len % sizeof(struct vring_desc)); 668 669 for (j = 0; j < len / sizeof(struct vring_desc); j++) 670 vring_unmap_one(vq, &indir_desc[j]); 671 672 kfree(indir_desc); 673 vq->desc_state[head].indir_desc = NULL; 674 } else if (ctx) { 675 *ctx = vq->desc_state[head].indir_desc; 676 } 677 } 678 679 static inline bool more_used(const struct vring_virtqueue *vq) 680 { 681 return vq->last_used_idx != virtio16_to_cpu(vq->vq.vdev, vq->vring.used->idx); 682 } 683 684 /** 685 * virtqueue_get_buf - get the next used buffer 686 * @vq: the struct virtqueue we're talking about. 687 * @len: the length written into the buffer 688 * 689 * If the device wrote data into the buffer, @len will be set to the 690 * amount written. This means you don't need to clear the buffer 691 * beforehand to ensure there's no data leakage in the case of short 692 * writes. 693 * 694 * Caller must ensure we don't call this with other virtqueue 695 * operations at the same time (except where noted). 696 * 697 * Returns NULL if there are no used buffers, or the "data" token 698 * handed to virtqueue_add_*(). 699 */ 700 void *virtqueue_get_buf_ctx(struct virtqueue *_vq, unsigned int *len, 701 void **ctx) 702 { 703 struct vring_virtqueue *vq = to_vvq(_vq); 704 void *ret; 705 unsigned int i; 706 u16 last_used; 707 708 START_USE(vq); 709 710 if (unlikely(vq->broken)) { 711 END_USE(vq); 712 return NULL; 713 } 714 715 if (!more_used(vq)) { 716 pr_debug("No more buffers in queue\n"); 717 END_USE(vq); 718 return NULL; 719 } 720 721 /* Only get used array entries after they have been exposed by host. */ 722 virtio_rmb(vq->weak_barriers); 723 724 last_used = (vq->last_used_idx & (vq->vring.num - 1)); 725 i = virtio32_to_cpu(_vq->vdev, vq->vring.used->ring[last_used].id); 726 *len = virtio32_to_cpu(_vq->vdev, vq->vring.used->ring[last_used].len); 727 728 if (unlikely(i >= vq->vring.num)) { 729 BAD_RING(vq, "id %u out of range\n", i); 730 return NULL; 731 } 732 if (unlikely(!vq->desc_state[i].data)) { 733 BAD_RING(vq, "id %u is not a head!\n", i); 734 return NULL; 735 } 736 737 /* detach_buf clears data, so grab it now. */ 738 ret = vq->desc_state[i].data; 739 detach_buf(vq, i, ctx); 740 vq->last_used_idx++; 741 /* If we expect an interrupt for the next entry, tell host 742 * by writing event index and flush out the write before 743 * the read in the next get_buf call. */ 744 if (!(vq->avail_flags_shadow & VRING_AVAIL_F_NO_INTERRUPT)) 745 virtio_store_mb(vq->weak_barriers, 746 &vring_used_event(&vq->vring), 747 cpu_to_virtio16(_vq->vdev, vq->last_used_idx)); 748 749 #ifdef DEBUG 750 vq->last_add_time_valid = false; 751 #endif 752 753 END_USE(vq); 754 return ret; 755 } 756 EXPORT_SYMBOL_GPL(virtqueue_get_buf_ctx); 757 758 void *virtqueue_get_buf(struct virtqueue *_vq, unsigned int *len) 759 { 760 return virtqueue_get_buf_ctx(_vq, len, NULL); 761 } 762 EXPORT_SYMBOL_GPL(virtqueue_get_buf); 763 /** 764 * virtqueue_disable_cb - disable callbacks 765 * @vq: the struct virtqueue we're talking about. 766 * 767 * Note that this is not necessarily synchronous, hence unreliable and only 768 * useful as an optimization. 769 * 770 * Unlike other operations, this need not be serialized. 771 */ 772 void virtqueue_disable_cb(struct virtqueue *_vq) 773 { 774 struct vring_virtqueue *vq = to_vvq(_vq); 775 776 if (!(vq->avail_flags_shadow & VRING_AVAIL_F_NO_INTERRUPT)) { 777 vq->avail_flags_shadow |= VRING_AVAIL_F_NO_INTERRUPT; 778 if (!vq->event) 779 vq->vring.avail->flags = cpu_to_virtio16(_vq->vdev, vq->avail_flags_shadow); 780 } 781 782 } 783 EXPORT_SYMBOL_GPL(virtqueue_disable_cb); 784 785 /** 786 * virtqueue_enable_cb_prepare - restart callbacks after disable_cb 787 * @vq: the struct virtqueue we're talking about. 788 * 789 * This re-enables callbacks; it returns current queue state 790 * in an opaque unsigned value. This value should be later tested by 791 * virtqueue_poll, to detect a possible race between the driver checking for 792 * more work, and enabling callbacks. 793 * 794 * Caller must ensure we don't call this with other virtqueue 795 * operations at the same time (except where noted). 796 */ 797 unsigned virtqueue_enable_cb_prepare(struct virtqueue *_vq) 798 { 799 struct vring_virtqueue *vq = to_vvq(_vq); 800 u16 last_used_idx; 801 802 START_USE(vq); 803 804 /* We optimistically turn back on interrupts, then check if there was 805 * more to do. */ 806 /* Depending on the VIRTIO_RING_F_EVENT_IDX feature, we need to 807 * either clear the flags bit or point the event index at the next 808 * entry. Always do both to keep code simple. */ 809 if (vq->avail_flags_shadow & VRING_AVAIL_F_NO_INTERRUPT) { 810 vq->avail_flags_shadow &= ~VRING_AVAIL_F_NO_INTERRUPT; 811 if (!vq->event) 812 vq->vring.avail->flags = cpu_to_virtio16(_vq->vdev, vq->avail_flags_shadow); 813 } 814 vring_used_event(&vq->vring) = cpu_to_virtio16(_vq->vdev, last_used_idx = vq->last_used_idx); 815 END_USE(vq); 816 return last_used_idx; 817 } 818 EXPORT_SYMBOL_GPL(virtqueue_enable_cb_prepare); 819 820 /** 821 * virtqueue_poll - query pending used buffers 822 * @vq: the struct virtqueue we're talking about. 823 * @last_used_idx: virtqueue state (from call to virtqueue_enable_cb_prepare). 824 * 825 * Returns "true" if there are pending used buffers in the queue. 826 * 827 * This does not need to be serialized. 828 */ 829 bool virtqueue_poll(struct virtqueue *_vq, unsigned last_used_idx) 830 { 831 struct vring_virtqueue *vq = to_vvq(_vq); 832 833 virtio_mb(vq->weak_barriers); 834 return (u16)last_used_idx != virtio16_to_cpu(_vq->vdev, vq->vring.used->idx); 835 } 836 EXPORT_SYMBOL_GPL(virtqueue_poll); 837 838 /** 839 * virtqueue_enable_cb - restart callbacks after disable_cb. 840 * @vq: the struct virtqueue we're talking about. 841 * 842 * This re-enables callbacks; it returns "false" if there are pending 843 * buffers in the queue, to detect a possible race between the driver 844 * checking for more work, and enabling callbacks. 845 * 846 * Caller must ensure we don't call this with other virtqueue 847 * operations at the same time (except where noted). 848 */ 849 bool virtqueue_enable_cb(struct virtqueue *_vq) 850 { 851 unsigned last_used_idx = virtqueue_enable_cb_prepare(_vq); 852 return !virtqueue_poll(_vq, last_used_idx); 853 } 854 EXPORT_SYMBOL_GPL(virtqueue_enable_cb); 855 856 /** 857 * virtqueue_enable_cb_delayed - restart callbacks after disable_cb. 858 * @vq: the struct virtqueue we're talking about. 859 * 860 * This re-enables callbacks but hints to the other side to delay 861 * interrupts until most of the available buffers have been processed; 862 * it returns "false" if there are many pending buffers in the queue, 863 * to detect a possible race between the driver checking for more work, 864 * and enabling callbacks. 865 * 866 * Caller must ensure we don't call this with other virtqueue 867 * operations at the same time (except where noted). 868 */ 869 bool virtqueue_enable_cb_delayed(struct virtqueue *_vq) 870 { 871 struct vring_virtqueue *vq = to_vvq(_vq); 872 u16 bufs; 873 874 START_USE(vq); 875 876 /* We optimistically turn back on interrupts, then check if there was 877 * more to do. */ 878 /* Depending on the VIRTIO_RING_F_USED_EVENT_IDX feature, we need to 879 * either clear the flags bit or point the event index at the next 880 * entry. Always update the event index to keep code simple. */ 881 if (vq->avail_flags_shadow & VRING_AVAIL_F_NO_INTERRUPT) { 882 vq->avail_flags_shadow &= ~VRING_AVAIL_F_NO_INTERRUPT; 883 if (!vq->event) 884 vq->vring.avail->flags = cpu_to_virtio16(_vq->vdev, vq->avail_flags_shadow); 885 } 886 /* TODO: tune this threshold */ 887 bufs = (u16)(vq->avail_idx_shadow - vq->last_used_idx) * 3 / 4; 888 889 virtio_store_mb(vq->weak_barriers, 890 &vring_used_event(&vq->vring), 891 cpu_to_virtio16(_vq->vdev, vq->last_used_idx + bufs)); 892 893 if (unlikely((u16)(virtio16_to_cpu(_vq->vdev, vq->vring.used->idx) - vq->last_used_idx) > bufs)) { 894 END_USE(vq); 895 return false; 896 } 897 898 END_USE(vq); 899 return true; 900 } 901 EXPORT_SYMBOL_GPL(virtqueue_enable_cb_delayed); 902 903 /** 904 * virtqueue_detach_unused_buf - detach first unused buffer 905 * @vq: the struct virtqueue we're talking about. 906 * 907 * Returns NULL or the "data" token handed to virtqueue_add_*(). 908 * This is not valid on an active queue; it is useful only for device 909 * shutdown. 910 */ 911 void *virtqueue_detach_unused_buf(struct virtqueue *_vq) 912 { 913 struct vring_virtqueue *vq = to_vvq(_vq); 914 unsigned int i; 915 void *buf; 916 917 START_USE(vq); 918 919 for (i = 0; i < vq->vring.num; i++) { 920 if (!vq->desc_state[i].data) 921 continue; 922 /* detach_buf clears data, so grab it now. */ 923 buf = vq->desc_state[i].data; 924 detach_buf(vq, i, NULL); 925 vq->avail_idx_shadow--; 926 vq->vring.avail->idx = cpu_to_virtio16(_vq->vdev, vq->avail_idx_shadow); 927 END_USE(vq); 928 return buf; 929 } 930 /* That should have freed everything. */ 931 BUG_ON(vq->vq.num_free != vq->vring.num); 932 933 END_USE(vq); 934 return NULL; 935 } 936 EXPORT_SYMBOL_GPL(virtqueue_detach_unused_buf); 937 938 irqreturn_t vring_interrupt(int irq, void *_vq) 939 { 940 struct vring_virtqueue *vq = to_vvq(_vq); 941 942 if (!more_used(vq)) { 943 pr_debug("virtqueue interrupt with no work for %p\n", vq); 944 return IRQ_NONE; 945 } 946 947 if (unlikely(vq->broken)) 948 return IRQ_HANDLED; 949 950 pr_debug("virtqueue callback for %p (%p)\n", vq, vq->vq.callback); 951 if (vq->vq.callback) 952 vq->vq.callback(&vq->vq); 953 954 return IRQ_HANDLED; 955 } 956 EXPORT_SYMBOL_GPL(vring_interrupt); 957 958 struct virtqueue *__vring_new_virtqueue(unsigned int index, 959 struct vring vring, 960 struct virtio_device *vdev, 961 bool weak_barriers, 962 bool context, 963 bool (*notify)(struct virtqueue *), 964 void (*callback)(struct virtqueue *), 965 const char *name) 966 { 967 unsigned int i; 968 struct vring_virtqueue *vq; 969 970 vq = kmalloc(sizeof(*vq) + vring.num * sizeof(struct vring_desc_state), 971 GFP_KERNEL); 972 if (!vq) 973 return NULL; 974 975 vq->vring = vring; 976 vq->vq.callback = callback; 977 vq->vq.vdev = vdev; 978 vq->vq.name = name; 979 vq->vq.num_free = vring.num; 980 vq->vq.index = index; 981 vq->we_own_ring = false; 982 vq->queue_dma_addr = 0; 983 vq->queue_size_in_bytes = 0; 984 vq->notify = notify; 985 vq->weak_barriers = weak_barriers; 986 vq->broken = false; 987 vq->last_used_idx = 0; 988 vq->avail_flags_shadow = 0; 989 vq->avail_idx_shadow = 0; 990 vq->num_added = 0; 991 list_add_tail(&vq->vq.list, &vdev->vqs); 992 #ifdef DEBUG 993 vq->in_use = false; 994 vq->last_add_time_valid = false; 995 #endif 996 997 vq->indirect = virtio_has_feature(vdev, VIRTIO_RING_F_INDIRECT_DESC) && 998 !context; 999 vq->event = virtio_has_feature(vdev, VIRTIO_RING_F_EVENT_IDX); 1000 1001 /* No callback? Tell other side not to bother us. */ 1002 if (!callback) { 1003 vq->avail_flags_shadow |= VRING_AVAIL_F_NO_INTERRUPT; 1004 if (!vq->event) 1005 vq->vring.avail->flags = cpu_to_virtio16(vdev, vq->avail_flags_shadow); 1006 } 1007 1008 /* Put everything in free lists. */ 1009 vq->free_head = 0; 1010 for (i = 0; i < vring.num-1; i++) 1011 vq->vring.desc[i].next = cpu_to_virtio16(vdev, i + 1); 1012 memset(vq->desc_state, 0, vring.num * sizeof(struct vring_desc_state)); 1013 1014 return &vq->vq; 1015 } 1016 EXPORT_SYMBOL_GPL(__vring_new_virtqueue); 1017 1018 static void *vring_alloc_queue(struct virtio_device *vdev, size_t size, 1019 dma_addr_t *dma_handle, gfp_t flag) 1020 { 1021 if (vring_use_dma_api(vdev)) { 1022 return dma_alloc_coherent(vdev->dev.parent, size, 1023 dma_handle, flag); 1024 } else { 1025 void *queue = alloc_pages_exact(PAGE_ALIGN(size), flag); 1026 if (queue) { 1027 phys_addr_t phys_addr = virt_to_phys(queue); 1028 *dma_handle = (dma_addr_t)phys_addr; 1029 1030 /* 1031 * Sanity check: make sure we dind't truncate 1032 * the address. The only arches I can find that 1033 * have 64-bit phys_addr_t but 32-bit dma_addr_t 1034 * are certain non-highmem MIPS and x86 1035 * configurations, but these configurations 1036 * should never allocate physical pages above 32 1037 * bits, so this is fine. Just in case, throw a 1038 * warning and abort if we end up with an 1039 * unrepresentable address. 1040 */ 1041 if (WARN_ON_ONCE(*dma_handle != phys_addr)) { 1042 free_pages_exact(queue, PAGE_ALIGN(size)); 1043 return NULL; 1044 } 1045 } 1046 return queue; 1047 } 1048 } 1049 1050 static void vring_free_queue(struct virtio_device *vdev, size_t size, 1051 void *queue, dma_addr_t dma_handle) 1052 { 1053 if (vring_use_dma_api(vdev)) { 1054 dma_free_coherent(vdev->dev.parent, size, queue, dma_handle); 1055 } else { 1056 free_pages_exact(queue, PAGE_ALIGN(size)); 1057 } 1058 } 1059 1060 struct virtqueue *vring_create_virtqueue( 1061 unsigned int index, 1062 unsigned int num, 1063 unsigned int vring_align, 1064 struct virtio_device *vdev, 1065 bool weak_barriers, 1066 bool may_reduce_num, 1067 bool context, 1068 bool (*notify)(struct virtqueue *), 1069 void (*callback)(struct virtqueue *), 1070 const char *name) 1071 { 1072 struct virtqueue *vq; 1073 void *queue = NULL; 1074 dma_addr_t dma_addr; 1075 size_t queue_size_in_bytes; 1076 struct vring vring; 1077 1078 /* We assume num is a power of 2. */ 1079 if (num & (num - 1)) { 1080 dev_warn(&vdev->dev, "Bad virtqueue length %u\n", num); 1081 return NULL; 1082 } 1083 1084 /* TODO: allocate each queue chunk individually */ 1085 for (; num && vring_size(num, vring_align) > PAGE_SIZE; num /= 2) { 1086 queue = vring_alloc_queue(vdev, vring_size(num, vring_align), 1087 &dma_addr, 1088 GFP_KERNEL|__GFP_NOWARN|__GFP_ZERO); 1089 if (queue) 1090 break; 1091 } 1092 1093 if (!num) 1094 return NULL; 1095 1096 if (!queue) { 1097 /* Try to get a single page. You are my only hope! */ 1098 queue = vring_alloc_queue(vdev, vring_size(num, vring_align), 1099 &dma_addr, GFP_KERNEL|__GFP_ZERO); 1100 } 1101 if (!queue) 1102 return NULL; 1103 1104 queue_size_in_bytes = vring_size(num, vring_align); 1105 vring_init(&vring, num, queue, vring_align); 1106 1107 vq = __vring_new_virtqueue(index, vring, vdev, weak_barriers, context, 1108 notify, callback, name); 1109 if (!vq) { 1110 vring_free_queue(vdev, queue_size_in_bytes, queue, 1111 dma_addr); 1112 return NULL; 1113 } 1114 1115 to_vvq(vq)->queue_dma_addr = dma_addr; 1116 to_vvq(vq)->queue_size_in_bytes = queue_size_in_bytes; 1117 to_vvq(vq)->we_own_ring = true; 1118 1119 return vq; 1120 } 1121 EXPORT_SYMBOL_GPL(vring_create_virtqueue); 1122 1123 struct virtqueue *vring_new_virtqueue(unsigned int index, 1124 unsigned int num, 1125 unsigned int vring_align, 1126 struct virtio_device *vdev, 1127 bool weak_barriers, 1128 bool context, 1129 void *pages, 1130 bool (*notify)(struct virtqueue *vq), 1131 void (*callback)(struct virtqueue *vq), 1132 const char *name) 1133 { 1134 struct vring vring; 1135 vring_init(&vring, num, pages, vring_align); 1136 return __vring_new_virtqueue(index, vring, vdev, weak_barriers, context, 1137 notify, callback, name); 1138 } 1139 EXPORT_SYMBOL_GPL(vring_new_virtqueue); 1140 1141 void vring_del_virtqueue(struct virtqueue *_vq) 1142 { 1143 struct vring_virtqueue *vq = to_vvq(_vq); 1144 1145 if (vq->we_own_ring) { 1146 vring_free_queue(vq->vq.vdev, vq->queue_size_in_bytes, 1147 vq->vring.desc, vq->queue_dma_addr); 1148 } 1149 list_del(&_vq->list); 1150 kfree(vq); 1151 } 1152 EXPORT_SYMBOL_GPL(vring_del_virtqueue); 1153 1154 /* Manipulates transport-specific feature bits. */ 1155 void vring_transport_features(struct virtio_device *vdev) 1156 { 1157 unsigned int i; 1158 1159 for (i = VIRTIO_TRANSPORT_F_START; i < VIRTIO_TRANSPORT_F_END; i++) { 1160 switch (i) { 1161 case VIRTIO_RING_F_INDIRECT_DESC: 1162 break; 1163 case VIRTIO_RING_F_EVENT_IDX: 1164 break; 1165 case VIRTIO_F_VERSION_1: 1166 break; 1167 case VIRTIO_F_IOMMU_PLATFORM: 1168 break; 1169 default: 1170 /* We don't understand this bit. */ 1171 __virtio_clear_bit(vdev, i); 1172 } 1173 } 1174 } 1175 EXPORT_SYMBOL_GPL(vring_transport_features); 1176 1177 /** 1178 * virtqueue_get_vring_size - return the size of the virtqueue's vring 1179 * @vq: the struct virtqueue containing the vring of interest. 1180 * 1181 * Returns the size of the vring. This is mainly used for boasting to 1182 * userspace. Unlike other operations, this need not be serialized. 1183 */ 1184 unsigned int virtqueue_get_vring_size(struct virtqueue *_vq) 1185 { 1186 1187 struct vring_virtqueue *vq = to_vvq(_vq); 1188 1189 return vq->vring.num; 1190 } 1191 EXPORT_SYMBOL_GPL(virtqueue_get_vring_size); 1192 1193 bool virtqueue_is_broken(struct virtqueue *_vq) 1194 { 1195 struct vring_virtqueue *vq = to_vvq(_vq); 1196 1197 return vq->broken; 1198 } 1199 EXPORT_SYMBOL_GPL(virtqueue_is_broken); 1200 1201 /* 1202 * This should prevent the device from being used, allowing drivers to 1203 * recover. You may need to grab appropriate locks to flush. 1204 */ 1205 void virtio_break_device(struct virtio_device *dev) 1206 { 1207 struct virtqueue *_vq; 1208 1209 list_for_each_entry(_vq, &dev->vqs, list) { 1210 struct vring_virtqueue *vq = to_vvq(_vq); 1211 vq->broken = true; 1212 } 1213 } 1214 EXPORT_SYMBOL_GPL(virtio_break_device); 1215 1216 dma_addr_t virtqueue_get_desc_addr(struct virtqueue *_vq) 1217 { 1218 struct vring_virtqueue *vq = to_vvq(_vq); 1219 1220 BUG_ON(!vq->we_own_ring); 1221 1222 return vq->queue_dma_addr; 1223 } 1224 EXPORT_SYMBOL_GPL(virtqueue_get_desc_addr); 1225 1226 dma_addr_t virtqueue_get_avail_addr(struct virtqueue *_vq) 1227 { 1228 struct vring_virtqueue *vq = to_vvq(_vq); 1229 1230 BUG_ON(!vq->we_own_ring); 1231 1232 return vq->queue_dma_addr + 1233 ((char *)vq->vring.avail - (char *)vq->vring.desc); 1234 } 1235 EXPORT_SYMBOL_GPL(virtqueue_get_avail_addr); 1236 1237 dma_addr_t virtqueue_get_used_addr(struct virtqueue *_vq) 1238 { 1239 struct vring_virtqueue *vq = to_vvq(_vq); 1240 1241 BUG_ON(!vq->we_own_ring); 1242 1243 return vq->queue_dma_addr + 1244 ((char *)vq->vring.used - (char *)vq->vring.desc); 1245 } 1246 EXPORT_SYMBOL_GPL(virtqueue_get_used_addr); 1247 1248 const struct vring *virtqueue_get_vring(struct virtqueue *vq) 1249 { 1250 return &to_vvq(vq)->vring; 1251 } 1252 EXPORT_SYMBOL_GPL(virtqueue_get_vring); 1253 1254 MODULE_LICENSE("GPL"); 1255