xref: /openbmc/linux/drivers/virtio/virtio_ring.c (revision c4a11bf4)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /* Virtio ring implementation.
3  *
4  *  Copyright 2007 Rusty Russell IBM Corporation
5  */
6 #include <linux/virtio.h>
7 #include <linux/virtio_ring.h>
8 #include <linux/virtio_config.h>
9 #include <linux/device.h>
10 #include <linux/slab.h>
11 #include <linux/module.h>
12 #include <linux/hrtimer.h>
13 #include <linux/dma-mapping.h>
14 #include <linux/spinlock.h>
15 #include <xen/xen.h>
16 
17 static bool force_used_validation = false;
18 module_param(force_used_validation, bool, 0444);
19 
20 #ifdef DEBUG
21 /* For development, we want to crash whenever the ring is screwed. */
22 #define BAD_RING(_vq, fmt, args...)				\
23 	do {							\
24 		dev_err(&(_vq)->vq.vdev->dev,			\
25 			"%s:"fmt, (_vq)->vq.name, ##args);	\
26 		BUG();						\
27 	} while (0)
28 /* Caller is supposed to guarantee no reentry. */
29 #define START_USE(_vq)						\
30 	do {							\
31 		if ((_vq)->in_use)				\
32 			panic("%s:in_use = %i\n",		\
33 			      (_vq)->vq.name, (_vq)->in_use);	\
34 		(_vq)->in_use = __LINE__;			\
35 	} while (0)
36 #define END_USE(_vq) \
37 	do { BUG_ON(!(_vq)->in_use); (_vq)->in_use = 0; } while(0)
38 #define LAST_ADD_TIME_UPDATE(_vq)				\
39 	do {							\
40 		ktime_t now = ktime_get();			\
41 								\
42 		/* No kick or get, with .1 second between?  Warn. */ \
43 		if ((_vq)->last_add_time_valid)			\
44 			WARN_ON(ktime_to_ms(ktime_sub(now,	\
45 				(_vq)->last_add_time)) > 100);	\
46 		(_vq)->last_add_time = now;			\
47 		(_vq)->last_add_time_valid = true;		\
48 	} while (0)
49 #define LAST_ADD_TIME_CHECK(_vq)				\
50 	do {							\
51 		if ((_vq)->last_add_time_valid) {		\
52 			WARN_ON(ktime_to_ms(ktime_sub(ktime_get(), \
53 				      (_vq)->last_add_time)) > 100); \
54 		}						\
55 	} while (0)
56 #define LAST_ADD_TIME_INVALID(_vq)				\
57 	((_vq)->last_add_time_valid = false)
58 #else
59 #define BAD_RING(_vq, fmt, args...)				\
60 	do {							\
61 		dev_err(&_vq->vq.vdev->dev,			\
62 			"%s:"fmt, (_vq)->vq.name, ##args);	\
63 		(_vq)->broken = true;				\
64 	} while (0)
65 #define START_USE(vq)
66 #define END_USE(vq)
67 #define LAST_ADD_TIME_UPDATE(vq)
68 #define LAST_ADD_TIME_CHECK(vq)
69 #define LAST_ADD_TIME_INVALID(vq)
70 #endif
71 
72 struct vring_desc_state_split {
73 	void *data;			/* Data for callback. */
74 	struct vring_desc *indir_desc;	/* Indirect descriptor, if any. */
75 };
76 
77 struct vring_desc_state_packed {
78 	void *data;			/* Data for callback. */
79 	struct vring_packed_desc *indir_desc; /* Indirect descriptor, if any. */
80 	u16 num;			/* Descriptor list length. */
81 	u16 last;			/* The last desc state in a list. */
82 };
83 
84 struct vring_desc_extra {
85 	dma_addr_t addr;		/* Descriptor DMA addr. */
86 	u32 len;			/* Descriptor length. */
87 	u16 flags;			/* Descriptor flags. */
88 	u16 next;			/* The next desc state in a list. */
89 };
90 
91 struct vring_virtqueue {
92 	struct virtqueue vq;
93 
94 	/* Is this a packed ring? */
95 	bool packed_ring;
96 
97 	/* Is DMA API used? */
98 	bool use_dma_api;
99 
100 	/* Can we use weak barriers? */
101 	bool weak_barriers;
102 
103 	/* Other side has made a mess, don't try any more. */
104 	bool broken;
105 
106 	/* Host supports indirect buffers */
107 	bool indirect;
108 
109 	/* Host publishes avail event idx */
110 	bool event;
111 
112 	/* Head of free buffer list. */
113 	unsigned int free_head;
114 	/* Number we've added since last sync. */
115 	unsigned int num_added;
116 
117 	/* Last used index we've seen. */
118 	u16 last_used_idx;
119 
120 	/* Hint for event idx: already triggered no need to disable. */
121 	bool event_triggered;
122 
123 	union {
124 		/* Available for split ring */
125 		struct {
126 			/* Actual memory layout for this queue. */
127 			struct vring vring;
128 
129 			/* Last written value to avail->flags */
130 			u16 avail_flags_shadow;
131 
132 			/*
133 			 * Last written value to avail->idx in
134 			 * guest byte order.
135 			 */
136 			u16 avail_idx_shadow;
137 
138 			/* Per-descriptor state. */
139 			struct vring_desc_state_split *desc_state;
140 			struct vring_desc_extra *desc_extra;
141 
142 			/* DMA address and size information */
143 			dma_addr_t queue_dma_addr;
144 			size_t queue_size_in_bytes;
145 		} split;
146 
147 		/* Available for packed ring */
148 		struct {
149 			/* Actual memory layout for this queue. */
150 			struct {
151 				unsigned int num;
152 				struct vring_packed_desc *desc;
153 				struct vring_packed_desc_event *driver;
154 				struct vring_packed_desc_event *device;
155 			} vring;
156 
157 			/* Driver ring wrap counter. */
158 			bool avail_wrap_counter;
159 
160 			/* Device ring wrap counter. */
161 			bool used_wrap_counter;
162 
163 			/* Avail used flags. */
164 			u16 avail_used_flags;
165 
166 			/* Index of the next avail descriptor. */
167 			u16 next_avail_idx;
168 
169 			/*
170 			 * Last written value to driver->flags in
171 			 * guest byte order.
172 			 */
173 			u16 event_flags_shadow;
174 
175 			/* Per-descriptor state. */
176 			struct vring_desc_state_packed *desc_state;
177 			struct vring_desc_extra *desc_extra;
178 
179 			/* DMA address and size information */
180 			dma_addr_t ring_dma_addr;
181 			dma_addr_t driver_event_dma_addr;
182 			dma_addr_t device_event_dma_addr;
183 			size_t ring_size_in_bytes;
184 			size_t event_size_in_bytes;
185 		} packed;
186 	};
187 
188 	/* Per-descriptor in buffer length */
189 	u32 *buflen;
190 
191 	/* How to notify other side. FIXME: commonalize hcalls! */
192 	bool (*notify)(struct virtqueue *vq);
193 
194 	/* DMA, allocation, and size information */
195 	bool we_own_ring;
196 
197 #ifdef DEBUG
198 	/* They're supposed to lock for us. */
199 	unsigned int in_use;
200 
201 	/* Figure out if their kicks are too delayed. */
202 	bool last_add_time_valid;
203 	ktime_t last_add_time;
204 #endif
205 };
206 
207 
208 /*
209  * Helpers.
210  */
211 
212 #define to_vvq(_vq) container_of(_vq, struct vring_virtqueue, vq)
213 
214 static inline bool virtqueue_use_indirect(struct virtqueue *_vq,
215 					  unsigned int total_sg)
216 {
217 	struct vring_virtqueue *vq = to_vvq(_vq);
218 
219 	/*
220 	 * If the host supports indirect descriptor tables, and we have multiple
221 	 * buffers, then go indirect. FIXME: tune this threshold
222 	 */
223 	return (vq->indirect && total_sg > 1 && vq->vq.num_free);
224 }
225 
226 /*
227  * Modern virtio devices have feature bits to specify whether they need a
228  * quirk and bypass the IOMMU. If not there, just use the DMA API.
229  *
230  * If there, the interaction between virtio and DMA API is messy.
231  *
232  * On most systems with virtio, physical addresses match bus addresses,
233  * and it doesn't particularly matter whether we use the DMA API.
234  *
235  * On some systems, including Xen and any system with a physical device
236  * that speaks virtio behind a physical IOMMU, we must use the DMA API
237  * for virtio DMA to work at all.
238  *
239  * On other systems, including SPARC and PPC64, virtio-pci devices are
240  * enumerated as though they are behind an IOMMU, but the virtio host
241  * ignores the IOMMU, so we must either pretend that the IOMMU isn't
242  * there or somehow map everything as the identity.
243  *
244  * For the time being, we preserve historic behavior and bypass the DMA
245  * API.
246  *
247  * TODO: install a per-device DMA ops structure that does the right thing
248  * taking into account all the above quirks, and use the DMA API
249  * unconditionally on data path.
250  */
251 
252 static bool vring_use_dma_api(struct virtio_device *vdev)
253 {
254 	if (!virtio_has_dma_quirk(vdev))
255 		return true;
256 
257 	/* Otherwise, we are left to guess. */
258 	/*
259 	 * In theory, it's possible to have a buggy QEMU-supposed
260 	 * emulated Q35 IOMMU and Xen enabled at the same time.  On
261 	 * such a configuration, virtio has never worked and will
262 	 * not work without an even larger kludge.  Instead, enable
263 	 * the DMA API if we're a Xen guest, which at least allows
264 	 * all of the sensible Xen configurations to work correctly.
265 	 */
266 	if (xen_domain())
267 		return true;
268 
269 	return false;
270 }
271 
272 size_t virtio_max_dma_size(struct virtio_device *vdev)
273 {
274 	size_t max_segment_size = SIZE_MAX;
275 
276 	if (vring_use_dma_api(vdev))
277 		max_segment_size = dma_max_mapping_size(&vdev->dev);
278 
279 	return max_segment_size;
280 }
281 EXPORT_SYMBOL_GPL(virtio_max_dma_size);
282 
283 static void *vring_alloc_queue(struct virtio_device *vdev, size_t size,
284 			      dma_addr_t *dma_handle, gfp_t flag)
285 {
286 	if (vring_use_dma_api(vdev)) {
287 		return dma_alloc_coherent(vdev->dev.parent, size,
288 					  dma_handle, flag);
289 	} else {
290 		void *queue = alloc_pages_exact(PAGE_ALIGN(size), flag);
291 
292 		if (queue) {
293 			phys_addr_t phys_addr = virt_to_phys(queue);
294 			*dma_handle = (dma_addr_t)phys_addr;
295 
296 			/*
297 			 * Sanity check: make sure we dind't truncate
298 			 * the address.  The only arches I can find that
299 			 * have 64-bit phys_addr_t but 32-bit dma_addr_t
300 			 * are certain non-highmem MIPS and x86
301 			 * configurations, but these configurations
302 			 * should never allocate physical pages above 32
303 			 * bits, so this is fine.  Just in case, throw a
304 			 * warning and abort if we end up with an
305 			 * unrepresentable address.
306 			 */
307 			if (WARN_ON_ONCE(*dma_handle != phys_addr)) {
308 				free_pages_exact(queue, PAGE_ALIGN(size));
309 				return NULL;
310 			}
311 		}
312 		return queue;
313 	}
314 }
315 
316 static void vring_free_queue(struct virtio_device *vdev, size_t size,
317 			     void *queue, dma_addr_t dma_handle)
318 {
319 	if (vring_use_dma_api(vdev))
320 		dma_free_coherent(vdev->dev.parent, size, queue, dma_handle);
321 	else
322 		free_pages_exact(queue, PAGE_ALIGN(size));
323 }
324 
325 /*
326  * The DMA ops on various arches are rather gnarly right now, and
327  * making all of the arch DMA ops work on the vring device itself
328  * is a mess.  For now, we use the parent device for DMA ops.
329  */
330 static inline struct device *vring_dma_dev(const struct vring_virtqueue *vq)
331 {
332 	return vq->vq.vdev->dev.parent;
333 }
334 
335 /* Map one sg entry. */
336 static dma_addr_t vring_map_one_sg(const struct vring_virtqueue *vq,
337 				   struct scatterlist *sg,
338 				   enum dma_data_direction direction)
339 {
340 	if (!vq->use_dma_api)
341 		return (dma_addr_t)sg_phys(sg);
342 
343 	/*
344 	 * We can't use dma_map_sg, because we don't use scatterlists in
345 	 * the way it expects (we don't guarantee that the scatterlist
346 	 * will exist for the lifetime of the mapping).
347 	 */
348 	return dma_map_page(vring_dma_dev(vq),
349 			    sg_page(sg), sg->offset, sg->length,
350 			    direction);
351 }
352 
353 static dma_addr_t vring_map_single(const struct vring_virtqueue *vq,
354 				   void *cpu_addr, size_t size,
355 				   enum dma_data_direction direction)
356 {
357 	if (!vq->use_dma_api)
358 		return (dma_addr_t)virt_to_phys(cpu_addr);
359 
360 	return dma_map_single(vring_dma_dev(vq),
361 			      cpu_addr, size, direction);
362 }
363 
364 static int vring_mapping_error(const struct vring_virtqueue *vq,
365 			       dma_addr_t addr)
366 {
367 	if (!vq->use_dma_api)
368 		return 0;
369 
370 	return dma_mapping_error(vring_dma_dev(vq), addr);
371 }
372 
373 
374 /*
375  * Split ring specific functions - *_split().
376  */
377 
378 static void vring_unmap_one_split_indirect(const struct vring_virtqueue *vq,
379 					   struct vring_desc *desc)
380 {
381 	u16 flags;
382 
383 	if (!vq->use_dma_api)
384 		return;
385 
386 	flags = virtio16_to_cpu(vq->vq.vdev, desc->flags);
387 
388 	if (flags & VRING_DESC_F_INDIRECT) {
389 		dma_unmap_single(vring_dma_dev(vq),
390 				 virtio64_to_cpu(vq->vq.vdev, desc->addr),
391 				 virtio32_to_cpu(vq->vq.vdev, desc->len),
392 				 (flags & VRING_DESC_F_WRITE) ?
393 				 DMA_FROM_DEVICE : DMA_TO_DEVICE);
394 	} else {
395 		dma_unmap_page(vring_dma_dev(vq),
396 			       virtio64_to_cpu(vq->vq.vdev, desc->addr),
397 			       virtio32_to_cpu(vq->vq.vdev, desc->len),
398 			       (flags & VRING_DESC_F_WRITE) ?
399 			       DMA_FROM_DEVICE : DMA_TO_DEVICE);
400 	}
401 }
402 
403 static unsigned int vring_unmap_one_split(const struct vring_virtqueue *vq,
404 					  unsigned int i)
405 {
406 	struct vring_desc_extra *extra = vq->split.desc_extra;
407 	u16 flags;
408 
409 	if (!vq->use_dma_api)
410 		goto out;
411 
412 	flags = extra[i].flags;
413 
414 	if (flags & VRING_DESC_F_INDIRECT) {
415 		dma_unmap_single(vring_dma_dev(vq),
416 				 extra[i].addr,
417 				 extra[i].len,
418 				 (flags & VRING_DESC_F_WRITE) ?
419 				 DMA_FROM_DEVICE : DMA_TO_DEVICE);
420 	} else {
421 		dma_unmap_page(vring_dma_dev(vq),
422 			       extra[i].addr,
423 			       extra[i].len,
424 			       (flags & VRING_DESC_F_WRITE) ?
425 			       DMA_FROM_DEVICE : DMA_TO_DEVICE);
426 	}
427 
428 out:
429 	return extra[i].next;
430 }
431 
432 static struct vring_desc *alloc_indirect_split(struct virtqueue *_vq,
433 					       unsigned int total_sg,
434 					       gfp_t gfp)
435 {
436 	struct vring_desc *desc;
437 	unsigned int i;
438 
439 	/*
440 	 * We require lowmem mappings for the descriptors because
441 	 * otherwise virt_to_phys will give us bogus addresses in the
442 	 * virtqueue.
443 	 */
444 	gfp &= ~__GFP_HIGHMEM;
445 
446 	desc = kmalloc_array(total_sg, sizeof(struct vring_desc), gfp);
447 	if (!desc)
448 		return NULL;
449 
450 	for (i = 0; i < total_sg; i++)
451 		desc[i].next = cpu_to_virtio16(_vq->vdev, i + 1);
452 	return desc;
453 }
454 
455 static inline unsigned int virtqueue_add_desc_split(struct virtqueue *vq,
456 						    struct vring_desc *desc,
457 						    unsigned int i,
458 						    dma_addr_t addr,
459 						    unsigned int len,
460 						    u16 flags,
461 						    bool indirect)
462 {
463 	struct vring_virtqueue *vring = to_vvq(vq);
464 	struct vring_desc_extra *extra = vring->split.desc_extra;
465 	u16 next;
466 
467 	desc[i].flags = cpu_to_virtio16(vq->vdev, flags);
468 	desc[i].addr = cpu_to_virtio64(vq->vdev, addr);
469 	desc[i].len = cpu_to_virtio32(vq->vdev, len);
470 
471 	if (!indirect) {
472 		next = extra[i].next;
473 		desc[i].next = cpu_to_virtio16(vq->vdev, next);
474 
475 		extra[i].addr = addr;
476 		extra[i].len = len;
477 		extra[i].flags = flags;
478 	} else
479 		next = virtio16_to_cpu(vq->vdev, desc[i].next);
480 
481 	return next;
482 }
483 
484 static inline int virtqueue_add_split(struct virtqueue *_vq,
485 				      struct scatterlist *sgs[],
486 				      unsigned int total_sg,
487 				      unsigned int out_sgs,
488 				      unsigned int in_sgs,
489 				      void *data,
490 				      void *ctx,
491 				      gfp_t gfp)
492 {
493 	struct vring_virtqueue *vq = to_vvq(_vq);
494 	struct scatterlist *sg;
495 	struct vring_desc *desc;
496 	unsigned int i, n, avail, descs_used, prev, err_idx;
497 	int head;
498 	bool indirect;
499 	u32 buflen = 0;
500 
501 	START_USE(vq);
502 
503 	BUG_ON(data == NULL);
504 	BUG_ON(ctx && vq->indirect);
505 
506 	if (unlikely(vq->broken)) {
507 		END_USE(vq);
508 		return -EIO;
509 	}
510 
511 	LAST_ADD_TIME_UPDATE(vq);
512 
513 	BUG_ON(total_sg == 0);
514 
515 	head = vq->free_head;
516 
517 	if (virtqueue_use_indirect(_vq, total_sg))
518 		desc = alloc_indirect_split(_vq, total_sg, gfp);
519 	else {
520 		desc = NULL;
521 		WARN_ON_ONCE(total_sg > vq->split.vring.num && !vq->indirect);
522 	}
523 
524 	if (desc) {
525 		/* Use a single buffer which doesn't continue */
526 		indirect = true;
527 		/* Set up rest to use this indirect table. */
528 		i = 0;
529 		descs_used = 1;
530 	} else {
531 		indirect = false;
532 		desc = vq->split.vring.desc;
533 		i = head;
534 		descs_used = total_sg;
535 	}
536 
537 	if (vq->vq.num_free < descs_used) {
538 		pr_debug("Can't add buf len %i - avail = %i\n",
539 			 descs_used, vq->vq.num_free);
540 		/* FIXME: for historical reasons, we force a notify here if
541 		 * there are outgoing parts to the buffer.  Presumably the
542 		 * host should service the ring ASAP. */
543 		if (out_sgs)
544 			vq->notify(&vq->vq);
545 		if (indirect)
546 			kfree(desc);
547 		END_USE(vq);
548 		return -ENOSPC;
549 	}
550 
551 	for (n = 0; n < out_sgs; n++) {
552 		for (sg = sgs[n]; sg; sg = sg_next(sg)) {
553 			dma_addr_t addr = vring_map_one_sg(vq, sg, DMA_TO_DEVICE);
554 			if (vring_mapping_error(vq, addr))
555 				goto unmap_release;
556 
557 			prev = i;
558 			/* Note that we trust indirect descriptor
559 			 * table since it use stream DMA mapping.
560 			 */
561 			i = virtqueue_add_desc_split(_vq, desc, i, addr, sg->length,
562 						     VRING_DESC_F_NEXT,
563 						     indirect);
564 		}
565 	}
566 	for (; n < (out_sgs + in_sgs); n++) {
567 		for (sg = sgs[n]; sg; sg = sg_next(sg)) {
568 			dma_addr_t addr = vring_map_one_sg(vq, sg, DMA_FROM_DEVICE);
569 			if (vring_mapping_error(vq, addr))
570 				goto unmap_release;
571 
572 			prev = i;
573 			/* Note that we trust indirect descriptor
574 			 * table since it use stream DMA mapping.
575 			 */
576 			i = virtqueue_add_desc_split(_vq, desc, i, addr,
577 						     sg->length,
578 						     VRING_DESC_F_NEXT |
579 						     VRING_DESC_F_WRITE,
580 						     indirect);
581 			buflen += sg->length;
582 		}
583 	}
584 	/* Last one doesn't continue. */
585 	desc[prev].flags &= cpu_to_virtio16(_vq->vdev, ~VRING_DESC_F_NEXT);
586 	if (!indirect && vq->use_dma_api)
587 		vq->split.desc_extra[prev & (vq->split.vring.num - 1)].flags &=
588 			~VRING_DESC_F_NEXT;
589 
590 	if (indirect) {
591 		/* Now that the indirect table is filled in, map it. */
592 		dma_addr_t addr = vring_map_single(
593 			vq, desc, total_sg * sizeof(struct vring_desc),
594 			DMA_TO_DEVICE);
595 		if (vring_mapping_error(vq, addr))
596 			goto unmap_release;
597 
598 		virtqueue_add_desc_split(_vq, vq->split.vring.desc,
599 					 head, addr,
600 					 total_sg * sizeof(struct vring_desc),
601 					 VRING_DESC_F_INDIRECT,
602 					 false);
603 	}
604 
605 	/* We're using some buffers from the free list. */
606 	vq->vq.num_free -= descs_used;
607 
608 	/* Update free pointer */
609 	if (indirect)
610 		vq->free_head = vq->split.desc_extra[head].next;
611 	else
612 		vq->free_head = i;
613 
614 	/* Store token and indirect buffer state. */
615 	vq->split.desc_state[head].data = data;
616 	if (indirect)
617 		vq->split.desc_state[head].indir_desc = desc;
618 	else
619 		vq->split.desc_state[head].indir_desc = ctx;
620 
621 	/* Store in buffer length if necessary */
622 	if (vq->buflen)
623 		vq->buflen[head] = buflen;
624 
625 	/* Put entry in available array (but don't update avail->idx until they
626 	 * do sync). */
627 	avail = vq->split.avail_idx_shadow & (vq->split.vring.num - 1);
628 	vq->split.vring.avail->ring[avail] = cpu_to_virtio16(_vq->vdev, head);
629 
630 	/* Descriptors and available array need to be set before we expose the
631 	 * new available array entries. */
632 	virtio_wmb(vq->weak_barriers);
633 	vq->split.avail_idx_shadow++;
634 	vq->split.vring.avail->idx = cpu_to_virtio16(_vq->vdev,
635 						vq->split.avail_idx_shadow);
636 	vq->num_added++;
637 
638 	pr_debug("Added buffer head %i to %p\n", head, vq);
639 	END_USE(vq);
640 
641 	/* This is very unlikely, but theoretically possible.  Kick
642 	 * just in case. */
643 	if (unlikely(vq->num_added == (1 << 16) - 1))
644 		virtqueue_kick(_vq);
645 
646 	return 0;
647 
648 unmap_release:
649 	err_idx = i;
650 
651 	if (indirect)
652 		i = 0;
653 	else
654 		i = head;
655 
656 	for (n = 0; n < total_sg; n++) {
657 		if (i == err_idx)
658 			break;
659 		if (indirect) {
660 			vring_unmap_one_split_indirect(vq, &desc[i]);
661 			i = virtio16_to_cpu(_vq->vdev, desc[i].next);
662 		} else
663 			i = vring_unmap_one_split(vq, i);
664 	}
665 
666 	if (indirect)
667 		kfree(desc);
668 
669 	END_USE(vq);
670 	return -ENOMEM;
671 }
672 
673 static bool virtqueue_kick_prepare_split(struct virtqueue *_vq)
674 {
675 	struct vring_virtqueue *vq = to_vvq(_vq);
676 	u16 new, old;
677 	bool needs_kick;
678 
679 	START_USE(vq);
680 	/* We need to expose available array entries before checking avail
681 	 * event. */
682 	virtio_mb(vq->weak_barriers);
683 
684 	old = vq->split.avail_idx_shadow - vq->num_added;
685 	new = vq->split.avail_idx_shadow;
686 	vq->num_added = 0;
687 
688 	LAST_ADD_TIME_CHECK(vq);
689 	LAST_ADD_TIME_INVALID(vq);
690 
691 	if (vq->event) {
692 		needs_kick = vring_need_event(virtio16_to_cpu(_vq->vdev,
693 					vring_avail_event(&vq->split.vring)),
694 					      new, old);
695 	} else {
696 		needs_kick = !(vq->split.vring.used->flags &
697 					cpu_to_virtio16(_vq->vdev,
698 						VRING_USED_F_NO_NOTIFY));
699 	}
700 	END_USE(vq);
701 	return needs_kick;
702 }
703 
704 static void detach_buf_split(struct vring_virtqueue *vq, unsigned int head,
705 			     void **ctx)
706 {
707 	unsigned int i, j;
708 	__virtio16 nextflag = cpu_to_virtio16(vq->vq.vdev, VRING_DESC_F_NEXT);
709 
710 	/* Clear data ptr. */
711 	vq->split.desc_state[head].data = NULL;
712 
713 	/* Put back on free list: unmap first-level descriptors and find end */
714 	i = head;
715 
716 	while (vq->split.vring.desc[i].flags & nextflag) {
717 		vring_unmap_one_split(vq, i);
718 		i = vq->split.desc_extra[i].next;
719 		vq->vq.num_free++;
720 	}
721 
722 	vring_unmap_one_split(vq, i);
723 	vq->split.desc_extra[i].next = vq->free_head;
724 	vq->free_head = head;
725 
726 	/* Plus final descriptor */
727 	vq->vq.num_free++;
728 
729 	if (vq->indirect) {
730 		struct vring_desc *indir_desc =
731 				vq->split.desc_state[head].indir_desc;
732 		u32 len;
733 
734 		/* Free the indirect table, if any, now that it's unmapped. */
735 		if (!indir_desc)
736 			return;
737 
738 		len = vq->split.desc_extra[head].len;
739 
740 		BUG_ON(!(vq->split.desc_extra[head].flags &
741 				VRING_DESC_F_INDIRECT));
742 		BUG_ON(len == 0 || len % sizeof(struct vring_desc));
743 
744 		for (j = 0; j < len / sizeof(struct vring_desc); j++)
745 			vring_unmap_one_split_indirect(vq, &indir_desc[j]);
746 
747 		kfree(indir_desc);
748 		vq->split.desc_state[head].indir_desc = NULL;
749 	} else if (ctx) {
750 		*ctx = vq->split.desc_state[head].indir_desc;
751 	}
752 }
753 
754 static inline bool more_used_split(const struct vring_virtqueue *vq)
755 {
756 	return vq->last_used_idx != virtio16_to_cpu(vq->vq.vdev,
757 			vq->split.vring.used->idx);
758 }
759 
760 static void *virtqueue_get_buf_ctx_split(struct virtqueue *_vq,
761 					 unsigned int *len,
762 					 void **ctx)
763 {
764 	struct vring_virtqueue *vq = to_vvq(_vq);
765 	void *ret;
766 	unsigned int i;
767 	u16 last_used;
768 
769 	START_USE(vq);
770 
771 	if (unlikely(vq->broken)) {
772 		END_USE(vq);
773 		return NULL;
774 	}
775 
776 	if (!more_used_split(vq)) {
777 		pr_debug("No more buffers in queue\n");
778 		END_USE(vq);
779 		return NULL;
780 	}
781 
782 	/* Only get used array entries after they have been exposed by host. */
783 	virtio_rmb(vq->weak_barriers);
784 
785 	last_used = (vq->last_used_idx & (vq->split.vring.num - 1));
786 	i = virtio32_to_cpu(_vq->vdev,
787 			vq->split.vring.used->ring[last_used].id);
788 	*len = virtio32_to_cpu(_vq->vdev,
789 			vq->split.vring.used->ring[last_used].len);
790 
791 	if (unlikely(i >= vq->split.vring.num)) {
792 		BAD_RING(vq, "id %u out of range\n", i);
793 		return NULL;
794 	}
795 	if (unlikely(!vq->split.desc_state[i].data)) {
796 		BAD_RING(vq, "id %u is not a head!\n", i);
797 		return NULL;
798 	}
799 	if (vq->buflen && unlikely(*len > vq->buflen[i])) {
800 		BAD_RING(vq, "used len %d is larger than in buflen %u\n",
801 			*len, vq->buflen[i]);
802 		return NULL;
803 	}
804 
805 	/* detach_buf_split clears data, so grab it now. */
806 	ret = vq->split.desc_state[i].data;
807 	detach_buf_split(vq, i, ctx);
808 	vq->last_used_idx++;
809 	/* If we expect an interrupt for the next entry, tell host
810 	 * by writing event index and flush out the write before
811 	 * the read in the next get_buf call. */
812 	if (!(vq->split.avail_flags_shadow & VRING_AVAIL_F_NO_INTERRUPT))
813 		virtio_store_mb(vq->weak_barriers,
814 				&vring_used_event(&vq->split.vring),
815 				cpu_to_virtio16(_vq->vdev, vq->last_used_idx));
816 
817 	LAST_ADD_TIME_INVALID(vq);
818 
819 	END_USE(vq);
820 	return ret;
821 }
822 
823 static void virtqueue_disable_cb_split(struct virtqueue *_vq)
824 {
825 	struct vring_virtqueue *vq = to_vvq(_vq);
826 
827 	if (!(vq->split.avail_flags_shadow & VRING_AVAIL_F_NO_INTERRUPT)) {
828 		vq->split.avail_flags_shadow |= VRING_AVAIL_F_NO_INTERRUPT;
829 		if (vq->event)
830 			/* TODO: this is a hack. Figure out a cleaner value to write. */
831 			vring_used_event(&vq->split.vring) = 0x0;
832 		else
833 			vq->split.vring.avail->flags =
834 				cpu_to_virtio16(_vq->vdev,
835 						vq->split.avail_flags_shadow);
836 	}
837 }
838 
839 static unsigned virtqueue_enable_cb_prepare_split(struct virtqueue *_vq)
840 {
841 	struct vring_virtqueue *vq = to_vvq(_vq);
842 	u16 last_used_idx;
843 
844 	START_USE(vq);
845 
846 	/* We optimistically turn back on interrupts, then check if there was
847 	 * more to do. */
848 	/* Depending on the VIRTIO_RING_F_EVENT_IDX feature, we need to
849 	 * either clear the flags bit or point the event index at the next
850 	 * entry. Always do both to keep code simple. */
851 	if (vq->split.avail_flags_shadow & VRING_AVAIL_F_NO_INTERRUPT) {
852 		vq->split.avail_flags_shadow &= ~VRING_AVAIL_F_NO_INTERRUPT;
853 		if (!vq->event)
854 			vq->split.vring.avail->flags =
855 				cpu_to_virtio16(_vq->vdev,
856 						vq->split.avail_flags_shadow);
857 	}
858 	vring_used_event(&vq->split.vring) = cpu_to_virtio16(_vq->vdev,
859 			last_used_idx = vq->last_used_idx);
860 	END_USE(vq);
861 	return last_used_idx;
862 }
863 
864 static bool virtqueue_poll_split(struct virtqueue *_vq, unsigned last_used_idx)
865 {
866 	struct vring_virtqueue *vq = to_vvq(_vq);
867 
868 	return (u16)last_used_idx != virtio16_to_cpu(_vq->vdev,
869 			vq->split.vring.used->idx);
870 }
871 
872 static bool virtqueue_enable_cb_delayed_split(struct virtqueue *_vq)
873 {
874 	struct vring_virtqueue *vq = to_vvq(_vq);
875 	u16 bufs;
876 
877 	START_USE(vq);
878 
879 	/* We optimistically turn back on interrupts, then check if there was
880 	 * more to do. */
881 	/* Depending on the VIRTIO_RING_F_USED_EVENT_IDX feature, we need to
882 	 * either clear the flags bit or point the event index at the next
883 	 * entry. Always update the event index to keep code simple. */
884 	if (vq->split.avail_flags_shadow & VRING_AVAIL_F_NO_INTERRUPT) {
885 		vq->split.avail_flags_shadow &= ~VRING_AVAIL_F_NO_INTERRUPT;
886 		if (!vq->event)
887 			vq->split.vring.avail->flags =
888 				cpu_to_virtio16(_vq->vdev,
889 						vq->split.avail_flags_shadow);
890 	}
891 	/* TODO: tune this threshold */
892 	bufs = (u16)(vq->split.avail_idx_shadow - vq->last_used_idx) * 3 / 4;
893 
894 	virtio_store_mb(vq->weak_barriers,
895 			&vring_used_event(&vq->split.vring),
896 			cpu_to_virtio16(_vq->vdev, vq->last_used_idx + bufs));
897 
898 	if (unlikely((u16)(virtio16_to_cpu(_vq->vdev, vq->split.vring.used->idx)
899 					- vq->last_used_idx) > bufs)) {
900 		END_USE(vq);
901 		return false;
902 	}
903 
904 	END_USE(vq);
905 	return true;
906 }
907 
908 static void *virtqueue_detach_unused_buf_split(struct virtqueue *_vq)
909 {
910 	struct vring_virtqueue *vq = to_vvq(_vq);
911 	unsigned int i;
912 	void *buf;
913 
914 	START_USE(vq);
915 
916 	for (i = 0; i < vq->split.vring.num; i++) {
917 		if (!vq->split.desc_state[i].data)
918 			continue;
919 		/* detach_buf_split clears data, so grab it now. */
920 		buf = vq->split.desc_state[i].data;
921 		detach_buf_split(vq, i, NULL);
922 		vq->split.avail_idx_shadow--;
923 		vq->split.vring.avail->idx = cpu_to_virtio16(_vq->vdev,
924 				vq->split.avail_idx_shadow);
925 		END_USE(vq);
926 		return buf;
927 	}
928 	/* That should have freed everything. */
929 	BUG_ON(vq->vq.num_free != vq->split.vring.num);
930 
931 	END_USE(vq);
932 	return NULL;
933 }
934 
935 static struct virtqueue *vring_create_virtqueue_split(
936 	unsigned int index,
937 	unsigned int num,
938 	unsigned int vring_align,
939 	struct virtio_device *vdev,
940 	bool weak_barriers,
941 	bool may_reduce_num,
942 	bool context,
943 	bool (*notify)(struct virtqueue *),
944 	void (*callback)(struct virtqueue *),
945 	const char *name)
946 {
947 	struct virtqueue *vq;
948 	void *queue = NULL;
949 	dma_addr_t dma_addr;
950 	size_t queue_size_in_bytes;
951 	struct vring vring;
952 
953 	/* We assume num is a power of 2. */
954 	if (num & (num - 1)) {
955 		dev_warn(&vdev->dev, "Bad virtqueue length %u\n", num);
956 		return NULL;
957 	}
958 
959 	/* TODO: allocate each queue chunk individually */
960 	for (; num && vring_size(num, vring_align) > PAGE_SIZE; num /= 2) {
961 		queue = vring_alloc_queue(vdev, vring_size(num, vring_align),
962 					  &dma_addr,
963 					  GFP_KERNEL|__GFP_NOWARN|__GFP_ZERO);
964 		if (queue)
965 			break;
966 		if (!may_reduce_num)
967 			return NULL;
968 	}
969 
970 	if (!num)
971 		return NULL;
972 
973 	if (!queue) {
974 		/* Try to get a single page. You are my only hope! */
975 		queue = vring_alloc_queue(vdev, vring_size(num, vring_align),
976 					  &dma_addr, GFP_KERNEL|__GFP_ZERO);
977 	}
978 	if (!queue)
979 		return NULL;
980 
981 	queue_size_in_bytes = vring_size(num, vring_align);
982 	vring_init(&vring, num, queue, vring_align);
983 
984 	vq = __vring_new_virtqueue(index, vring, vdev, weak_barriers, context,
985 				   notify, callback, name);
986 	if (!vq) {
987 		vring_free_queue(vdev, queue_size_in_bytes, queue,
988 				 dma_addr);
989 		return NULL;
990 	}
991 
992 	to_vvq(vq)->split.queue_dma_addr = dma_addr;
993 	to_vvq(vq)->split.queue_size_in_bytes = queue_size_in_bytes;
994 	to_vvq(vq)->we_own_ring = true;
995 
996 	return vq;
997 }
998 
999 
1000 /*
1001  * Packed ring specific functions - *_packed().
1002  */
1003 
1004 static void vring_unmap_state_packed(const struct vring_virtqueue *vq,
1005 				     struct vring_desc_extra *state)
1006 {
1007 	u16 flags;
1008 
1009 	if (!vq->use_dma_api)
1010 		return;
1011 
1012 	flags = state->flags;
1013 
1014 	if (flags & VRING_DESC_F_INDIRECT) {
1015 		dma_unmap_single(vring_dma_dev(vq),
1016 				 state->addr, state->len,
1017 				 (flags & VRING_DESC_F_WRITE) ?
1018 				 DMA_FROM_DEVICE : DMA_TO_DEVICE);
1019 	} else {
1020 		dma_unmap_page(vring_dma_dev(vq),
1021 			       state->addr, state->len,
1022 			       (flags & VRING_DESC_F_WRITE) ?
1023 			       DMA_FROM_DEVICE : DMA_TO_DEVICE);
1024 	}
1025 }
1026 
1027 static void vring_unmap_desc_packed(const struct vring_virtqueue *vq,
1028 				   struct vring_packed_desc *desc)
1029 {
1030 	u16 flags;
1031 
1032 	if (!vq->use_dma_api)
1033 		return;
1034 
1035 	flags = le16_to_cpu(desc->flags);
1036 
1037 	if (flags & VRING_DESC_F_INDIRECT) {
1038 		dma_unmap_single(vring_dma_dev(vq),
1039 				 le64_to_cpu(desc->addr),
1040 				 le32_to_cpu(desc->len),
1041 				 (flags & VRING_DESC_F_WRITE) ?
1042 				 DMA_FROM_DEVICE : DMA_TO_DEVICE);
1043 	} else {
1044 		dma_unmap_page(vring_dma_dev(vq),
1045 			       le64_to_cpu(desc->addr),
1046 			       le32_to_cpu(desc->len),
1047 			       (flags & VRING_DESC_F_WRITE) ?
1048 			       DMA_FROM_DEVICE : DMA_TO_DEVICE);
1049 	}
1050 }
1051 
1052 static struct vring_packed_desc *alloc_indirect_packed(unsigned int total_sg,
1053 						       gfp_t gfp)
1054 {
1055 	struct vring_packed_desc *desc;
1056 
1057 	/*
1058 	 * We require lowmem mappings for the descriptors because
1059 	 * otherwise virt_to_phys will give us bogus addresses in the
1060 	 * virtqueue.
1061 	 */
1062 	gfp &= ~__GFP_HIGHMEM;
1063 
1064 	desc = kmalloc_array(total_sg, sizeof(struct vring_packed_desc), gfp);
1065 
1066 	return desc;
1067 }
1068 
1069 static int virtqueue_add_indirect_packed(struct vring_virtqueue *vq,
1070 					 struct scatterlist *sgs[],
1071 					 unsigned int total_sg,
1072 					 unsigned int out_sgs,
1073 					 unsigned int in_sgs,
1074 					 void *data,
1075 					 gfp_t gfp)
1076 {
1077 	struct vring_packed_desc *desc;
1078 	struct scatterlist *sg;
1079 	unsigned int i, n, err_idx;
1080 	u16 head, id;
1081 	dma_addr_t addr;
1082 	u32 buflen = 0;
1083 
1084 	head = vq->packed.next_avail_idx;
1085 	desc = alloc_indirect_packed(total_sg, gfp);
1086 	if (!desc)
1087 		return -ENOMEM;
1088 
1089 	if (unlikely(vq->vq.num_free < 1)) {
1090 		pr_debug("Can't add buf len 1 - avail = 0\n");
1091 		kfree(desc);
1092 		END_USE(vq);
1093 		return -ENOSPC;
1094 	}
1095 
1096 	i = 0;
1097 	id = vq->free_head;
1098 	BUG_ON(id == vq->packed.vring.num);
1099 
1100 	for (n = 0; n < out_sgs + in_sgs; n++) {
1101 		for (sg = sgs[n]; sg; sg = sg_next(sg)) {
1102 			addr = vring_map_one_sg(vq, sg, n < out_sgs ?
1103 					DMA_TO_DEVICE : DMA_FROM_DEVICE);
1104 			if (vring_mapping_error(vq, addr))
1105 				goto unmap_release;
1106 
1107 			desc[i].flags = cpu_to_le16(n < out_sgs ?
1108 						0 : VRING_DESC_F_WRITE);
1109 			desc[i].addr = cpu_to_le64(addr);
1110 			desc[i].len = cpu_to_le32(sg->length);
1111 			i++;
1112 			if (n >= out_sgs)
1113 				buflen += sg->length;
1114 		}
1115 	}
1116 
1117 	/* Now that the indirect table is filled in, map it. */
1118 	addr = vring_map_single(vq, desc,
1119 			total_sg * sizeof(struct vring_packed_desc),
1120 			DMA_TO_DEVICE);
1121 	if (vring_mapping_error(vq, addr))
1122 		goto unmap_release;
1123 
1124 	vq->packed.vring.desc[head].addr = cpu_to_le64(addr);
1125 	vq->packed.vring.desc[head].len = cpu_to_le32(total_sg *
1126 				sizeof(struct vring_packed_desc));
1127 	vq->packed.vring.desc[head].id = cpu_to_le16(id);
1128 
1129 	if (vq->use_dma_api) {
1130 		vq->packed.desc_extra[id].addr = addr;
1131 		vq->packed.desc_extra[id].len = total_sg *
1132 				sizeof(struct vring_packed_desc);
1133 		vq->packed.desc_extra[id].flags = VRING_DESC_F_INDIRECT |
1134 						  vq->packed.avail_used_flags;
1135 	}
1136 
1137 	/*
1138 	 * A driver MUST NOT make the first descriptor in the list
1139 	 * available before all subsequent descriptors comprising
1140 	 * the list are made available.
1141 	 */
1142 	virtio_wmb(vq->weak_barriers);
1143 	vq->packed.vring.desc[head].flags = cpu_to_le16(VRING_DESC_F_INDIRECT |
1144 						vq->packed.avail_used_flags);
1145 
1146 	/* We're using some buffers from the free list. */
1147 	vq->vq.num_free -= 1;
1148 
1149 	/* Update free pointer */
1150 	n = head + 1;
1151 	if (n >= vq->packed.vring.num) {
1152 		n = 0;
1153 		vq->packed.avail_wrap_counter ^= 1;
1154 		vq->packed.avail_used_flags ^=
1155 				1 << VRING_PACKED_DESC_F_AVAIL |
1156 				1 << VRING_PACKED_DESC_F_USED;
1157 	}
1158 	vq->packed.next_avail_idx = n;
1159 	vq->free_head = vq->packed.desc_extra[id].next;
1160 
1161 	/* Store token and indirect buffer state. */
1162 	vq->packed.desc_state[id].num = 1;
1163 	vq->packed.desc_state[id].data = data;
1164 	vq->packed.desc_state[id].indir_desc = desc;
1165 	vq->packed.desc_state[id].last = id;
1166 
1167 	/* Store in buffer length if necessary */
1168 	if (vq->buflen)
1169 		vq->buflen[id] = buflen;
1170 
1171 	vq->num_added += 1;
1172 
1173 	pr_debug("Added buffer head %i to %p\n", head, vq);
1174 	END_USE(vq);
1175 
1176 	return 0;
1177 
1178 unmap_release:
1179 	err_idx = i;
1180 
1181 	for (i = 0; i < err_idx; i++)
1182 		vring_unmap_desc_packed(vq, &desc[i]);
1183 
1184 	kfree(desc);
1185 
1186 	END_USE(vq);
1187 	return -ENOMEM;
1188 }
1189 
1190 static inline int virtqueue_add_packed(struct virtqueue *_vq,
1191 				       struct scatterlist *sgs[],
1192 				       unsigned int total_sg,
1193 				       unsigned int out_sgs,
1194 				       unsigned int in_sgs,
1195 				       void *data,
1196 				       void *ctx,
1197 				       gfp_t gfp)
1198 {
1199 	struct vring_virtqueue *vq = to_vvq(_vq);
1200 	struct vring_packed_desc *desc;
1201 	struct scatterlist *sg;
1202 	unsigned int i, n, c, descs_used, err_idx;
1203 	__le16 head_flags, flags;
1204 	u16 head, id, prev, curr, avail_used_flags;
1205 	int err;
1206 	u32 buflen = 0;
1207 
1208 	START_USE(vq);
1209 
1210 	BUG_ON(data == NULL);
1211 	BUG_ON(ctx && vq->indirect);
1212 
1213 	if (unlikely(vq->broken)) {
1214 		END_USE(vq);
1215 		return -EIO;
1216 	}
1217 
1218 	LAST_ADD_TIME_UPDATE(vq);
1219 
1220 	BUG_ON(total_sg == 0);
1221 
1222 	if (virtqueue_use_indirect(_vq, total_sg)) {
1223 		err = virtqueue_add_indirect_packed(vq, sgs, total_sg, out_sgs,
1224 						    in_sgs, data, gfp);
1225 		if (err != -ENOMEM)
1226 			return err;
1227 
1228 		/* fall back on direct */
1229 	}
1230 
1231 	head = vq->packed.next_avail_idx;
1232 	avail_used_flags = vq->packed.avail_used_flags;
1233 
1234 	WARN_ON_ONCE(total_sg > vq->packed.vring.num && !vq->indirect);
1235 
1236 	desc = vq->packed.vring.desc;
1237 	i = head;
1238 	descs_used = total_sg;
1239 
1240 	if (unlikely(vq->vq.num_free < descs_used)) {
1241 		pr_debug("Can't add buf len %i - avail = %i\n",
1242 			 descs_used, vq->vq.num_free);
1243 		END_USE(vq);
1244 		return -ENOSPC;
1245 	}
1246 
1247 	id = vq->free_head;
1248 	BUG_ON(id == vq->packed.vring.num);
1249 
1250 	curr = id;
1251 	c = 0;
1252 	for (n = 0; n < out_sgs + in_sgs; n++) {
1253 		for (sg = sgs[n]; sg; sg = sg_next(sg)) {
1254 			dma_addr_t addr = vring_map_one_sg(vq, sg, n < out_sgs ?
1255 					DMA_TO_DEVICE : DMA_FROM_DEVICE);
1256 			if (vring_mapping_error(vq, addr))
1257 				goto unmap_release;
1258 
1259 			flags = cpu_to_le16(vq->packed.avail_used_flags |
1260 				    (++c == total_sg ? 0 : VRING_DESC_F_NEXT) |
1261 				    (n < out_sgs ? 0 : VRING_DESC_F_WRITE));
1262 			if (i == head)
1263 				head_flags = flags;
1264 			else
1265 				desc[i].flags = flags;
1266 
1267 			desc[i].addr = cpu_to_le64(addr);
1268 			desc[i].len = cpu_to_le32(sg->length);
1269 			desc[i].id = cpu_to_le16(id);
1270 
1271 			if (unlikely(vq->use_dma_api)) {
1272 				vq->packed.desc_extra[curr].addr = addr;
1273 				vq->packed.desc_extra[curr].len = sg->length;
1274 				vq->packed.desc_extra[curr].flags =
1275 					le16_to_cpu(flags);
1276 			}
1277 			prev = curr;
1278 			curr = vq->packed.desc_extra[curr].next;
1279 
1280 			if ((unlikely(++i >= vq->packed.vring.num))) {
1281 				i = 0;
1282 				vq->packed.avail_used_flags ^=
1283 					1 << VRING_PACKED_DESC_F_AVAIL |
1284 					1 << VRING_PACKED_DESC_F_USED;
1285 			}
1286 			if (n >= out_sgs)
1287 				buflen += sg->length;
1288 		}
1289 	}
1290 
1291 	if (i < head)
1292 		vq->packed.avail_wrap_counter ^= 1;
1293 
1294 	/* We're using some buffers from the free list. */
1295 	vq->vq.num_free -= descs_used;
1296 
1297 	/* Update free pointer */
1298 	vq->packed.next_avail_idx = i;
1299 	vq->free_head = curr;
1300 
1301 	/* Store token. */
1302 	vq->packed.desc_state[id].num = descs_used;
1303 	vq->packed.desc_state[id].data = data;
1304 	vq->packed.desc_state[id].indir_desc = ctx;
1305 	vq->packed.desc_state[id].last = prev;
1306 
1307 	/* Store in buffer length if necessary */
1308 	if (vq->buflen)
1309 		vq->buflen[id] = buflen;
1310 
1311 	/*
1312 	 * A driver MUST NOT make the first descriptor in the list
1313 	 * available before all subsequent descriptors comprising
1314 	 * the list are made available.
1315 	 */
1316 	virtio_wmb(vq->weak_barriers);
1317 	vq->packed.vring.desc[head].flags = head_flags;
1318 	vq->num_added += descs_used;
1319 
1320 	pr_debug("Added buffer head %i to %p\n", head, vq);
1321 	END_USE(vq);
1322 
1323 	return 0;
1324 
1325 unmap_release:
1326 	err_idx = i;
1327 	i = head;
1328 	curr = vq->free_head;
1329 
1330 	vq->packed.avail_used_flags = avail_used_flags;
1331 
1332 	for (n = 0; n < total_sg; n++) {
1333 		if (i == err_idx)
1334 			break;
1335 		vring_unmap_state_packed(vq,
1336 					 &vq->packed.desc_extra[curr]);
1337 		curr = vq->packed.desc_extra[curr].next;
1338 		i++;
1339 		if (i >= vq->packed.vring.num)
1340 			i = 0;
1341 	}
1342 
1343 	END_USE(vq);
1344 	return -EIO;
1345 }
1346 
1347 static bool virtqueue_kick_prepare_packed(struct virtqueue *_vq)
1348 {
1349 	struct vring_virtqueue *vq = to_vvq(_vq);
1350 	u16 new, old, off_wrap, flags, wrap_counter, event_idx;
1351 	bool needs_kick;
1352 	union {
1353 		struct {
1354 			__le16 off_wrap;
1355 			__le16 flags;
1356 		};
1357 		u32 u32;
1358 	} snapshot;
1359 
1360 	START_USE(vq);
1361 
1362 	/*
1363 	 * We need to expose the new flags value before checking notification
1364 	 * suppressions.
1365 	 */
1366 	virtio_mb(vq->weak_barriers);
1367 
1368 	old = vq->packed.next_avail_idx - vq->num_added;
1369 	new = vq->packed.next_avail_idx;
1370 	vq->num_added = 0;
1371 
1372 	snapshot.u32 = *(u32 *)vq->packed.vring.device;
1373 	flags = le16_to_cpu(snapshot.flags);
1374 
1375 	LAST_ADD_TIME_CHECK(vq);
1376 	LAST_ADD_TIME_INVALID(vq);
1377 
1378 	if (flags != VRING_PACKED_EVENT_FLAG_DESC) {
1379 		needs_kick = (flags != VRING_PACKED_EVENT_FLAG_DISABLE);
1380 		goto out;
1381 	}
1382 
1383 	off_wrap = le16_to_cpu(snapshot.off_wrap);
1384 
1385 	wrap_counter = off_wrap >> VRING_PACKED_EVENT_F_WRAP_CTR;
1386 	event_idx = off_wrap & ~(1 << VRING_PACKED_EVENT_F_WRAP_CTR);
1387 	if (wrap_counter != vq->packed.avail_wrap_counter)
1388 		event_idx -= vq->packed.vring.num;
1389 
1390 	needs_kick = vring_need_event(event_idx, new, old);
1391 out:
1392 	END_USE(vq);
1393 	return needs_kick;
1394 }
1395 
1396 static void detach_buf_packed(struct vring_virtqueue *vq,
1397 			      unsigned int id, void **ctx)
1398 {
1399 	struct vring_desc_state_packed *state = NULL;
1400 	struct vring_packed_desc *desc;
1401 	unsigned int i, curr;
1402 
1403 	state = &vq->packed.desc_state[id];
1404 
1405 	/* Clear data ptr. */
1406 	state->data = NULL;
1407 
1408 	vq->packed.desc_extra[state->last].next = vq->free_head;
1409 	vq->free_head = id;
1410 	vq->vq.num_free += state->num;
1411 
1412 	if (unlikely(vq->use_dma_api)) {
1413 		curr = id;
1414 		for (i = 0; i < state->num; i++) {
1415 			vring_unmap_state_packed(vq,
1416 				&vq->packed.desc_extra[curr]);
1417 			curr = vq->packed.desc_extra[curr].next;
1418 		}
1419 	}
1420 
1421 	if (vq->indirect) {
1422 		u32 len;
1423 
1424 		/* Free the indirect table, if any, now that it's unmapped. */
1425 		desc = state->indir_desc;
1426 		if (!desc)
1427 			return;
1428 
1429 		if (vq->use_dma_api) {
1430 			len = vq->packed.desc_extra[id].len;
1431 			for (i = 0; i < len / sizeof(struct vring_packed_desc);
1432 					i++)
1433 				vring_unmap_desc_packed(vq, &desc[i]);
1434 		}
1435 		kfree(desc);
1436 		state->indir_desc = NULL;
1437 	} else if (ctx) {
1438 		*ctx = state->indir_desc;
1439 	}
1440 }
1441 
1442 static inline bool is_used_desc_packed(const struct vring_virtqueue *vq,
1443 				       u16 idx, bool used_wrap_counter)
1444 {
1445 	bool avail, used;
1446 	u16 flags;
1447 
1448 	flags = le16_to_cpu(vq->packed.vring.desc[idx].flags);
1449 	avail = !!(flags & (1 << VRING_PACKED_DESC_F_AVAIL));
1450 	used = !!(flags & (1 << VRING_PACKED_DESC_F_USED));
1451 
1452 	return avail == used && used == used_wrap_counter;
1453 }
1454 
1455 static inline bool more_used_packed(const struct vring_virtqueue *vq)
1456 {
1457 	return is_used_desc_packed(vq, vq->last_used_idx,
1458 			vq->packed.used_wrap_counter);
1459 }
1460 
1461 static void *virtqueue_get_buf_ctx_packed(struct virtqueue *_vq,
1462 					  unsigned int *len,
1463 					  void **ctx)
1464 {
1465 	struct vring_virtqueue *vq = to_vvq(_vq);
1466 	u16 last_used, id;
1467 	void *ret;
1468 
1469 	START_USE(vq);
1470 
1471 	if (unlikely(vq->broken)) {
1472 		END_USE(vq);
1473 		return NULL;
1474 	}
1475 
1476 	if (!more_used_packed(vq)) {
1477 		pr_debug("No more buffers in queue\n");
1478 		END_USE(vq);
1479 		return NULL;
1480 	}
1481 
1482 	/* Only get used elements after they have been exposed by host. */
1483 	virtio_rmb(vq->weak_barriers);
1484 
1485 	last_used = vq->last_used_idx;
1486 	id = le16_to_cpu(vq->packed.vring.desc[last_used].id);
1487 	*len = le32_to_cpu(vq->packed.vring.desc[last_used].len);
1488 
1489 	if (unlikely(id >= vq->packed.vring.num)) {
1490 		BAD_RING(vq, "id %u out of range\n", id);
1491 		return NULL;
1492 	}
1493 	if (unlikely(!vq->packed.desc_state[id].data)) {
1494 		BAD_RING(vq, "id %u is not a head!\n", id);
1495 		return NULL;
1496 	}
1497 	if (vq->buflen && unlikely(*len > vq->buflen[id])) {
1498 		BAD_RING(vq, "used len %d is larger than in buflen %u\n",
1499 			*len, vq->buflen[id]);
1500 		return NULL;
1501 	}
1502 
1503 	/* detach_buf_packed clears data, so grab it now. */
1504 	ret = vq->packed.desc_state[id].data;
1505 	detach_buf_packed(vq, id, ctx);
1506 
1507 	vq->last_used_idx += vq->packed.desc_state[id].num;
1508 	if (unlikely(vq->last_used_idx >= vq->packed.vring.num)) {
1509 		vq->last_used_idx -= vq->packed.vring.num;
1510 		vq->packed.used_wrap_counter ^= 1;
1511 	}
1512 
1513 	/*
1514 	 * If we expect an interrupt for the next entry, tell host
1515 	 * by writing event index and flush out the write before
1516 	 * the read in the next get_buf call.
1517 	 */
1518 	if (vq->packed.event_flags_shadow == VRING_PACKED_EVENT_FLAG_DESC)
1519 		virtio_store_mb(vq->weak_barriers,
1520 				&vq->packed.vring.driver->off_wrap,
1521 				cpu_to_le16(vq->last_used_idx |
1522 					(vq->packed.used_wrap_counter <<
1523 					 VRING_PACKED_EVENT_F_WRAP_CTR)));
1524 
1525 	LAST_ADD_TIME_INVALID(vq);
1526 
1527 	END_USE(vq);
1528 	return ret;
1529 }
1530 
1531 static void virtqueue_disable_cb_packed(struct virtqueue *_vq)
1532 {
1533 	struct vring_virtqueue *vq = to_vvq(_vq);
1534 
1535 	if (vq->packed.event_flags_shadow != VRING_PACKED_EVENT_FLAG_DISABLE) {
1536 		vq->packed.event_flags_shadow = VRING_PACKED_EVENT_FLAG_DISABLE;
1537 		vq->packed.vring.driver->flags =
1538 			cpu_to_le16(vq->packed.event_flags_shadow);
1539 	}
1540 }
1541 
1542 static unsigned virtqueue_enable_cb_prepare_packed(struct virtqueue *_vq)
1543 {
1544 	struct vring_virtqueue *vq = to_vvq(_vq);
1545 
1546 	START_USE(vq);
1547 
1548 	/*
1549 	 * We optimistically turn back on interrupts, then check if there was
1550 	 * more to do.
1551 	 */
1552 
1553 	if (vq->event) {
1554 		vq->packed.vring.driver->off_wrap =
1555 			cpu_to_le16(vq->last_used_idx |
1556 				(vq->packed.used_wrap_counter <<
1557 				 VRING_PACKED_EVENT_F_WRAP_CTR));
1558 		/*
1559 		 * We need to update event offset and event wrap
1560 		 * counter first before updating event flags.
1561 		 */
1562 		virtio_wmb(vq->weak_barriers);
1563 	}
1564 
1565 	if (vq->packed.event_flags_shadow == VRING_PACKED_EVENT_FLAG_DISABLE) {
1566 		vq->packed.event_flags_shadow = vq->event ?
1567 				VRING_PACKED_EVENT_FLAG_DESC :
1568 				VRING_PACKED_EVENT_FLAG_ENABLE;
1569 		vq->packed.vring.driver->flags =
1570 				cpu_to_le16(vq->packed.event_flags_shadow);
1571 	}
1572 
1573 	END_USE(vq);
1574 	return vq->last_used_idx | ((u16)vq->packed.used_wrap_counter <<
1575 			VRING_PACKED_EVENT_F_WRAP_CTR);
1576 }
1577 
1578 static bool virtqueue_poll_packed(struct virtqueue *_vq, u16 off_wrap)
1579 {
1580 	struct vring_virtqueue *vq = to_vvq(_vq);
1581 	bool wrap_counter;
1582 	u16 used_idx;
1583 
1584 	wrap_counter = off_wrap >> VRING_PACKED_EVENT_F_WRAP_CTR;
1585 	used_idx = off_wrap & ~(1 << VRING_PACKED_EVENT_F_WRAP_CTR);
1586 
1587 	return is_used_desc_packed(vq, used_idx, wrap_counter);
1588 }
1589 
1590 static bool virtqueue_enable_cb_delayed_packed(struct virtqueue *_vq)
1591 {
1592 	struct vring_virtqueue *vq = to_vvq(_vq);
1593 	u16 used_idx, wrap_counter;
1594 	u16 bufs;
1595 
1596 	START_USE(vq);
1597 
1598 	/*
1599 	 * We optimistically turn back on interrupts, then check if there was
1600 	 * more to do.
1601 	 */
1602 
1603 	if (vq->event) {
1604 		/* TODO: tune this threshold */
1605 		bufs = (vq->packed.vring.num - vq->vq.num_free) * 3 / 4;
1606 		wrap_counter = vq->packed.used_wrap_counter;
1607 
1608 		used_idx = vq->last_used_idx + bufs;
1609 		if (used_idx >= vq->packed.vring.num) {
1610 			used_idx -= vq->packed.vring.num;
1611 			wrap_counter ^= 1;
1612 		}
1613 
1614 		vq->packed.vring.driver->off_wrap = cpu_to_le16(used_idx |
1615 			(wrap_counter << VRING_PACKED_EVENT_F_WRAP_CTR));
1616 
1617 		/*
1618 		 * We need to update event offset and event wrap
1619 		 * counter first before updating event flags.
1620 		 */
1621 		virtio_wmb(vq->weak_barriers);
1622 	}
1623 
1624 	if (vq->packed.event_flags_shadow == VRING_PACKED_EVENT_FLAG_DISABLE) {
1625 		vq->packed.event_flags_shadow = vq->event ?
1626 				VRING_PACKED_EVENT_FLAG_DESC :
1627 				VRING_PACKED_EVENT_FLAG_ENABLE;
1628 		vq->packed.vring.driver->flags =
1629 				cpu_to_le16(vq->packed.event_flags_shadow);
1630 	}
1631 
1632 	/*
1633 	 * We need to update event suppression structure first
1634 	 * before re-checking for more used buffers.
1635 	 */
1636 	virtio_mb(vq->weak_barriers);
1637 
1638 	if (is_used_desc_packed(vq,
1639 				vq->last_used_idx,
1640 				vq->packed.used_wrap_counter)) {
1641 		END_USE(vq);
1642 		return false;
1643 	}
1644 
1645 	END_USE(vq);
1646 	return true;
1647 }
1648 
1649 static void *virtqueue_detach_unused_buf_packed(struct virtqueue *_vq)
1650 {
1651 	struct vring_virtqueue *vq = to_vvq(_vq);
1652 	unsigned int i;
1653 	void *buf;
1654 
1655 	START_USE(vq);
1656 
1657 	for (i = 0; i < vq->packed.vring.num; i++) {
1658 		if (!vq->packed.desc_state[i].data)
1659 			continue;
1660 		/* detach_buf clears data, so grab it now. */
1661 		buf = vq->packed.desc_state[i].data;
1662 		detach_buf_packed(vq, i, NULL);
1663 		END_USE(vq);
1664 		return buf;
1665 	}
1666 	/* That should have freed everything. */
1667 	BUG_ON(vq->vq.num_free != vq->packed.vring.num);
1668 
1669 	END_USE(vq);
1670 	return NULL;
1671 }
1672 
1673 static struct vring_desc_extra *vring_alloc_desc_extra(struct vring_virtqueue *vq,
1674 						       unsigned int num)
1675 {
1676 	struct vring_desc_extra *desc_extra;
1677 	unsigned int i;
1678 
1679 	desc_extra = kmalloc_array(num, sizeof(struct vring_desc_extra),
1680 				   GFP_KERNEL);
1681 	if (!desc_extra)
1682 		return NULL;
1683 
1684 	memset(desc_extra, 0, num * sizeof(struct vring_desc_extra));
1685 
1686 	for (i = 0; i < num - 1; i++)
1687 		desc_extra[i].next = i + 1;
1688 
1689 	return desc_extra;
1690 }
1691 
1692 static struct virtqueue *vring_create_virtqueue_packed(
1693 	unsigned int index,
1694 	unsigned int num,
1695 	unsigned int vring_align,
1696 	struct virtio_device *vdev,
1697 	bool weak_barriers,
1698 	bool may_reduce_num,
1699 	bool context,
1700 	bool (*notify)(struct virtqueue *),
1701 	void (*callback)(struct virtqueue *),
1702 	const char *name)
1703 {
1704 	struct vring_virtqueue *vq;
1705 	struct vring_packed_desc *ring;
1706 	struct vring_packed_desc_event *driver, *device;
1707 	struct virtio_driver *drv = drv_to_virtio(vdev->dev.driver);
1708 	dma_addr_t ring_dma_addr, driver_event_dma_addr, device_event_dma_addr;
1709 	size_t ring_size_in_bytes, event_size_in_bytes;
1710 
1711 	ring_size_in_bytes = num * sizeof(struct vring_packed_desc);
1712 
1713 	ring = vring_alloc_queue(vdev, ring_size_in_bytes,
1714 				 &ring_dma_addr,
1715 				 GFP_KERNEL|__GFP_NOWARN|__GFP_ZERO);
1716 	if (!ring)
1717 		goto err_ring;
1718 
1719 	event_size_in_bytes = sizeof(struct vring_packed_desc_event);
1720 
1721 	driver = vring_alloc_queue(vdev, event_size_in_bytes,
1722 				   &driver_event_dma_addr,
1723 				   GFP_KERNEL|__GFP_NOWARN|__GFP_ZERO);
1724 	if (!driver)
1725 		goto err_driver;
1726 
1727 	device = vring_alloc_queue(vdev, event_size_in_bytes,
1728 				   &device_event_dma_addr,
1729 				   GFP_KERNEL|__GFP_NOWARN|__GFP_ZERO);
1730 	if (!device)
1731 		goto err_device;
1732 
1733 	vq = kmalloc(sizeof(*vq), GFP_KERNEL);
1734 	if (!vq)
1735 		goto err_vq;
1736 
1737 	vq->vq.callback = callback;
1738 	vq->vq.vdev = vdev;
1739 	vq->vq.name = name;
1740 	vq->vq.num_free = num;
1741 	vq->vq.index = index;
1742 	vq->we_own_ring = true;
1743 	vq->notify = notify;
1744 	vq->weak_barriers = weak_barriers;
1745 	vq->broken = false;
1746 	vq->last_used_idx = 0;
1747 	vq->event_triggered = false;
1748 	vq->num_added = 0;
1749 	vq->packed_ring = true;
1750 	vq->use_dma_api = vring_use_dma_api(vdev);
1751 #ifdef DEBUG
1752 	vq->in_use = false;
1753 	vq->last_add_time_valid = false;
1754 #endif
1755 
1756 	vq->indirect = virtio_has_feature(vdev, VIRTIO_RING_F_INDIRECT_DESC) &&
1757 		!context;
1758 	vq->event = virtio_has_feature(vdev, VIRTIO_RING_F_EVENT_IDX);
1759 
1760 	if (virtio_has_feature(vdev, VIRTIO_F_ORDER_PLATFORM))
1761 		vq->weak_barriers = false;
1762 
1763 	vq->packed.ring_dma_addr = ring_dma_addr;
1764 	vq->packed.driver_event_dma_addr = driver_event_dma_addr;
1765 	vq->packed.device_event_dma_addr = device_event_dma_addr;
1766 
1767 	vq->packed.ring_size_in_bytes = ring_size_in_bytes;
1768 	vq->packed.event_size_in_bytes = event_size_in_bytes;
1769 
1770 	vq->packed.vring.num = num;
1771 	vq->packed.vring.desc = ring;
1772 	vq->packed.vring.driver = driver;
1773 	vq->packed.vring.device = device;
1774 
1775 	vq->packed.next_avail_idx = 0;
1776 	vq->packed.avail_wrap_counter = 1;
1777 	vq->packed.used_wrap_counter = 1;
1778 	vq->packed.event_flags_shadow = 0;
1779 	vq->packed.avail_used_flags = 1 << VRING_PACKED_DESC_F_AVAIL;
1780 
1781 	vq->packed.desc_state = kmalloc_array(num,
1782 			sizeof(struct vring_desc_state_packed),
1783 			GFP_KERNEL);
1784 	if (!vq->packed.desc_state)
1785 		goto err_desc_state;
1786 
1787 	memset(vq->packed.desc_state, 0,
1788 		num * sizeof(struct vring_desc_state_packed));
1789 
1790 	/* Put everything in free lists. */
1791 	vq->free_head = 0;
1792 
1793 	vq->packed.desc_extra = vring_alloc_desc_extra(vq, num);
1794 	if (!vq->packed.desc_extra)
1795 		goto err_desc_extra;
1796 
1797 	if (!drv->suppress_used_validation || force_used_validation) {
1798 		vq->buflen = kmalloc_array(num, sizeof(*vq->buflen),
1799 					   GFP_KERNEL);
1800 		if (!vq->buflen)
1801 			goto err_buflen;
1802 	} else {
1803 		vq->buflen = NULL;
1804 	}
1805 
1806 	/* No callback?  Tell other side not to bother us. */
1807 	if (!callback) {
1808 		vq->packed.event_flags_shadow = VRING_PACKED_EVENT_FLAG_DISABLE;
1809 		vq->packed.vring.driver->flags =
1810 			cpu_to_le16(vq->packed.event_flags_shadow);
1811 	}
1812 
1813 	spin_lock(&vdev->vqs_list_lock);
1814 	list_add_tail(&vq->vq.list, &vdev->vqs);
1815 	spin_unlock(&vdev->vqs_list_lock);
1816 	return &vq->vq;
1817 
1818 err_buflen:
1819 	kfree(vq->packed.desc_extra);
1820 err_desc_extra:
1821 	kfree(vq->packed.desc_state);
1822 err_desc_state:
1823 	kfree(vq);
1824 err_vq:
1825 	vring_free_queue(vdev, event_size_in_bytes, device, device_event_dma_addr);
1826 err_device:
1827 	vring_free_queue(vdev, event_size_in_bytes, driver, driver_event_dma_addr);
1828 err_driver:
1829 	vring_free_queue(vdev, ring_size_in_bytes, ring, ring_dma_addr);
1830 err_ring:
1831 	return NULL;
1832 }
1833 
1834 
1835 /*
1836  * Generic functions and exported symbols.
1837  */
1838 
1839 static inline int virtqueue_add(struct virtqueue *_vq,
1840 				struct scatterlist *sgs[],
1841 				unsigned int total_sg,
1842 				unsigned int out_sgs,
1843 				unsigned int in_sgs,
1844 				void *data,
1845 				void *ctx,
1846 				gfp_t gfp)
1847 {
1848 	struct vring_virtqueue *vq = to_vvq(_vq);
1849 
1850 	return vq->packed_ring ? virtqueue_add_packed(_vq, sgs, total_sg,
1851 					out_sgs, in_sgs, data, ctx, gfp) :
1852 				 virtqueue_add_split(_vq, sgs, total_sg,
1853 					out_sgs, in_sgs, data, ctx, gfp);
1854 }
1855 
1856 /**
1857  * virtqueue_add_sgs - expose buffers to other end
1858  * @_vq: the struct virtqueue we're talking about.
1859  * @sgs: array of terminated scatterlists.
1860  * @out_sgs: the number of scatterlists readable by other side
1861  * @in_sgs: the number of scatterlists which are writable (after readable ones)
1862  * @data: the token identifying the buffer.
1863  * @gfp: how to do memory allocations (if necessary).
1864  *
1865  * Caller must ensure we don't call this with other virtqueue operations
1866  * at the same time (except where noted).
1867  *
1868  * Returns zero or a negative error (ie. ENOSPC, ENOMEM, EIO).
1869  */
1870 int virtqueue_add_sgs(struct virtqueue *_vq,
1871 		      struct scatterlist *sgs[],
1872 		      unsigned int out_sgs,
1873 		      unsigned int in_sgs,
1874 		      void *data,
1875 		      gfp_t gfp)
1876 {
1877 	unsigned int i, total_sg = 0;
1878 
1879 	/* Count them first. */
1880 	for (i = 0; i < out_sgs + in_sgs; i++) {
1881 		struct scatterlist *sg;
1882 
1883 		for (sg = sgs[i]; sg; sg = sg_next(sg))
1884 			total_sg++;
1885 	}
1886 	return virtqueue_add(_vq, sgs, total_sg, out_sgs, in_sgs,
1887 			     data, NULL, gfp);
1888 }
1889 EXPORT_SYMBOL_GPL(virtqueue_add_sgs);
1890 
1891 /**
1892  * virtqueue_add_outbuf - expose output buffers to other end
1893  * @vq: the struct virtqueue we're talking about.
1894  * @sg: scatterlist (must be well-formed and terminated!)
1895  * @num: the number of entries in @sg readable by other side
1896  * @data: the token identifying the buffer.
1897  * @gfp: how to do memory allocations (if necessary).
1898  *
1899  * Caller must ensure we don't call this with other virtqueue operations
1900  * at the same time (except where noted).
1901  *
1902  * Returns zero or a negative error (ie. ENOSPC, ENOMEM, EIO).
1903  */
1904 int virtqueue_add_outbuf(struct virtqueue *vq,
1905 			 struct scatterlist *sg, unsigned int num,
1906 			 void *data,
1907 			 gfp_t gfp)
1908 {
1909 	return virtqueue_add(vq, &sg, num, 1, 0, data, NULL, gfp);
1910 }
1911 EXPORT_SYMBOL_GPL(virtqueue_add_outbuf);
1912 
1913 /**
1914  * virtqueue_add_inbuf - expose input buffers to other end
1915  * @vq: the struct virtqueue we're talking about.
1916  * @sg: scatterlist (must be well-formed and terminated!)
1917  * @num: the number of entries in @sg writable by other side
1918  * @data: the token identifying the buffer.
1919  * @gfp: how to do memory allocations (if necessary).
1920  *
1921  * Caller must ensure we don't call this with other virtqueue operations
1922  * at the same time (except where noted).
1923  *
1924  * Returns zero or a negative error (ie. ENOSPC, ENOMEM, EIO).
1925  */
1926 int virtqueue_add_inbuf(struct virtqueue *vq,
1927 			struct scatterlist *sg, unsigned int num,
1928 			void *data,
1929 			gfp_t gfp)
1930 {
1931 	return virtqueue_add(vq, &sg, num, 0, 1, data, NULL, gfp);
1932 }
1933 EXPORT_SYMBOL_GPL(virtqueue_add_inbuf);
1934 
1935 /**
1936  * virtqueue_add_inbuf_ctx - expose input buffers to other end
1937  * @vq: the struct virtqueue we're talking about.
1938  * @sg: scatterlist (must be well-formed and terminated!)
1939  * @num: the number of entries in @sg writable by other side
1940  * @data: the token identifying the buffer.
1941  * @ctx: extra context for the token
1942  * @gfp: how to do memory allocations (if necessary).
1943  *
1944  * Caller must ensure we don't call this with other virtqueue operations
1945  * at the same time (except where noted).
1946  *
1947  * Returns zero or a negative error (ie. ENOSPC, ENOMEM, EIO).
1948  */
1949 int virtqueue_add_inbuf_ctx(struct virtqueue *vq,
1950 			struct scatterlist *sg, unsigned int num,
1951 			void *data,
1952 			void *ctx,
1953 			gfp_t gfp)
1954 {
1955 	return virtqueue_add(vq, &sg, num, 0, 1, data, ctx, gfp);
1956 }
1957 EXPORT_SYMBOL_GPL(virtqueue_add_inbuf_ctx);
1958 
1959 /**
1960  * virtqueue_kick_prepare - first half of split virtqueue_kick call.
1961  * @_vq: the struct virtqueue
1962  *
1963  * Instead of virtqueue_kick(), you can do:
1964  *	if (virtqueue_kick_prepare(vq))
1965  *		virtqueue_notify(vq);
1966  *
1967  * This is sometimes useful because the virtqueue_kick_prepare() needs
1968  * to be serialized, but the actual virtqueue_notify() call does not.
1969  */
1970 bool virtqueue_kick_prepare(struct virtqueue *_vq)
1971 {
1972 	struct vring_virtqueue *vq = to_vvq(_vq);
1973 
1974 	return vq->packed_ring ? virtqueue_kick_prepare_packed(_vq) :
1975 				 virtqueue_kick_prepare_split(_vq);
1976 }
1977 EXPORT_SYMBOL_GPL(virtqueue_kick_prepare);
1978 
1979 /**
1980  * virtqueue_notify - second half of split virtqueue_kick call.
1981  * @_vq: the struct virtqueue
1982  *
1983  * This does not need to be serialized.
1984  *
1985  * Returns false if host notify failed or queue is broken, otherwise true.
1986  */
1987 bool virtqueue_notify(struct virtqueue *_vq)
1988 {
1989 	struct vring_virtqueue *vq = to_vvq(_vq);
1990 
1991 	if (unlikely(vq->broken))
1992 		return false;
1993 
1994 	/* Prod other side to tell it about changes. */
1995 	if (!vq->notify(_vq)) {
1996 		vq->broken = true;
1997 		return false;
1998 	}
1999 	return true;
2000 }
2001 EXPORT_SYMBOL_GPL(virtqueue_notify);
2002 
2003 /**
2004  * virtqueue_kick - update after add_buf
2005  * @vq: the struct virtqueue
2006  *
2007  * After one or more virtqueue_add_* calls, invoke this to kick
2008  * the other side.
2009  *
2010  * Caller must ensure we don't call this with other virtqueue
2011  * operations at the same time (except where noted).
2012  *
2013  * Returns false if kick failed, otherwise true.
2014  */
2015 bool virtqueue_kick(struct virtqueue *vq)
2016 {
2017 	if (virtqueue_kick_prepare(vq))
2018 		return virtqueue_notify(vq);
2019 	return true;
2020 }
2021 EXPORT_SYMBOL_GPL(virtqueue_kick);
2022 
2023 /**
2024  * virtqueue_get_buf_ctx - get the next used buffer
2025  * @_vq: the struct virtqueue we're talking about.
2026  * @len: the length written into the buffer
2027  * @ctx: extra context for the token
2028  *
2029  * If the device wrote data into the buffer, @len will be set to the
2030  * amount written.  This means you don't need to clear the buffer
2031  * beforehand to ensure there's no data leakage in the case of short
2032  * writes.
2033  *
2034  * Caller must ensure we don't call this with other virtqueue
2035  * operations at the same time (except where noted).
2036  *
2037  * Returns NULL if there are no used buffers, or the "data" token
2038  * handed to virtqueue_add_*().
2039  */
2040 void *virtqueue_get_buf_ctx(struct virtqueue *_vq, unsigned int *len,
2041 			    void **ctx)
2042 {
2043 	struct vring_virtqueue *vq = to_vvq(_vq);
2044 
2045 	return vq->packed_ring ? virtqueue_get_buf_ctx_packed(_vq, len, ctx) :
2046 				 virtqueue_get_buf_ctx_split(_vq, len, ctx);
2047 }
2048 EXPORT_SYMBOL_GPL(virtqueue_get_buf_ctx);
2049 
2050 void *virtqueue_get_buf(struct virtqueue *_vq, unsigned int *len)
2051 {
2052 	return virtqueue_get_buf_ctx(_vq, len, NULL);
2053 }
2054 EXPORT_SYMBOL_GPL(virtqueue_get_buf);
2055 /**
2056  * virtqueue_disable_cb - disable callbacks
2057  * @_vq: the struct virtqueue we're talking about.
2058  *
2059  * Note that this is not necessarily synchronous, hence unreliable and only
2060  * useful as an optimization.
2061  *
2062  * Unlike other operations, this need not be serialized.
2063  */
2064 void virtqueue_disable_cb(struct virtqueue *_vq)
2065 {
2066 	struct vring_virtqueue *vq = to_vvq(_vq);
2067 
2068 	/* If device triggered an event already it won't trigger one again:
2069 	 * no need to disable.
2070 	 */
2071 	if (vq->event_triggered)
2072 		return;
2073 
2074 	if (vq->packed_ring)
2075 		virtqueue_disable_cb_packed(_vq);
2076 	else
2077 		virtqueue_disable_cb_split(_vq);
2078 }
2079 EXPORT_SYMBOL_GPL(virtqueue_disable_cb);
2080 
2081 /**
2082  * virtqueue_enable_cb_prepare - restart callbacks after disable_cb
2083  * @_vq: the struct virtqueue we're talking about.
2084  *
2085  * This re-enables callbacks; it returns current queue state
2086  * in an opaque unsigned value. This value should be later tested by
2087  * virtqueue_poll, to detect a possible race between the driver checking for
2088  * more work, and enabling callbacks.
2089  *
2090  * Caller must ensure we don't call this with other virtqueue
2091  * operations at the same time (except where noted).
2092  */
2093 unsigned virtqueue_enable_cb_prepare(struct virtqueue *_vq)
2094 {
2095 	struct vring_virtqueue *vq = to_vvq(_vq);
2096 
2097 	if (vq->event_triggered)
2098 		vq->event_triggered = false;
2099 
2100 	return vq->packed_ring ? virtqueue_enable_cb_prepare_packed(_vq) :
2101 				 virtqueue_enable_cb_prepare_split(_vq);
2102 }
2103 EXPORT_SYMBOL_GPL(virtqueue_enable_cb_prepare);
2104 
2105 /**
2106  * virtqueue_poll - query pending used buffers
2107  * @_vq: the struct virtqueue we're talking about.
2108  * @last_used_idx: virtqueue state (from call to virtqueue_enable_cb_prepare).
2109  *
2110  * Returns "true" if there are pending used buffers in the queue.
2111  *
2112  * This does not need to be serialized.
2113  */
2114 bool virtqueue_poll(struct virtqueue *_vq, unsigned last_used_idx)
2115 {
2116 	struct vring_virtqueue *vq = to_vvq(_vq);
2117 
2118 	if (unlikely(vq->broken))
2119 		return false;
2120 
2121 	virtio_mb(vq->weak_barriers);
2122 	return vq->packed_ring ? virtqueue_poll_packed(_vq, last_used_idx) :
2123 				 virtqueue_poll_split(_vq, last_used_idx);
2124 }
2125 EXPORT_SYMBOL_GPL(virtqueue_poll);
2126 
2127 /**
2128  * virtqueue_enable_cb - restart callbacks after disable_cb.
2129  * @_vq: the struct virtqueue we're talking about.
2130  *
2131  * This re-enables callbacks; it returns "false" if there are pending
2132  * buffers in the queue, to detect a possible race between the driver
2133  * checking for more work, and enabling callbacks.
2134  *
2135  * Caller must ensure we don't call this with other virtqueue
2136  * operations at the same time (except where noted).
2137  */
2138 bool virtqueue_enable_cb(struct virtqueue *_vq)
2139 {
2140 	unsigned last_used_idx = virtqueue_enable_cb_prepare(_vq);
2141 
2142 	return !virtqueue_poll(_vq, last_used_idx);
2143 }
2144 EXPORT_SYMBOL_GPL(virtqueue_enable_cb);
2145 
2146 /**
2147  * virtqueue_enable_cb_delayed - restart callbacks after disable_cb.
2148  * @_vq: the struct virtqueue we're talking about.
2149  *
2150  * This re-enables callbacks but hints to the other side to delay
2151  * interrupts until most of the available buffers have been processed;
2152  * it returns "false" if there are many pending buffers in the queue,
2153  * to detect a possible race between the driver checking for more work,
2154  * and enabling callbacks.
2155  *
2156  * Caller must ensure we don't call this with other virtqueue
2157  * operations at the same time (except where noted).
2158  */
2159 bool virtqueue_enable_cb_delayed(struct virtqueue *_vq)
2160 {
2161 	struct vring_virtqueue *vq = to_vvq(_vq);
2162 
2163 	if (vq->event_triggered)
2164 		vq->event_triggered = false;
2165 
2166 	return vq->packed_ring ? virtqueue_enable_cb_delayed_packed(_vq) :
2167 				 virtqueue_enable_cb_delayed_split(_vq);
2168 }
2169 EXPORT_SYMBOL_GPL(virtqueue_enable_cb_delayed);
2170 
2171 /**
2172  * virtqueue_detach_unused_buf - detach first unused buffer
2173  * @_vq: the struct virtqueue we're talking about.
2174  *
2175  * Returns NULL or the "data" token handed to virtqueue_add_*().
2176  * This is not valid on an active queue; it is useful only for device
2177  * shutdown.
2178  */
2179 void *virtqueue_detach_unused_buf(struct virtqueue *_vq)
2180 {
2181 	struct vring_virtqueue *vq = to_vvq(_vq);
2182 
2183 	return vq->packed_ring ? virtqueue_detach_unused_buf_packed(_vq) :
2184 				 virtqueue_detach_unused_buf_split(_vq);
2185 }
2186 EXPORT_SYMBOL_GPL(virtqueue_detach_unused_buf);
2187 
2188 static inline bool more_used(const struct vring_virtqueue *vq)
2189 {
2190 	return vq->packed_ring ? more_used_packed(vq) : more_used_split(vq);
2191 }
2192 
2193 irqreturn_t vring_interrupt(int irq, void *_vq)
2194 {
2195 	struct vring_virtqueue *vq = to_vvq(_vq);
2196 
2197 	if (!more_used(vq)) {
2198 		pr_debug("virtqueue interrupt with no work for %p\n", vq);
2199 		return IRQ_NONE;
2200 	}
2201 
2202 	if (unlikely(vq->broken))
2203 		return IRQ_HANDLED;
2204 
2205 	/* Just a hint for performance: so it's ok that this can be racy! */
2206 	if (vq->event)
2207 		vq->event_triggered = true;
2208 
2209 	pr_debug("virtqueue callback for %p (%p)\n", vq, vq->vq.callback);
2210 	if (vq->vq.callback)
2211 		vq->vq.callback(&vq->vq);
2212 
2213 	return IRQ_HANDLED;
2214 }
2215 EXPORT_SYMBOL_GPL(vring_interrupt);
2216 
2217 /* Only available for split ring */
2218 struct virtqueue *__vring_new_virtqueue(unsigned int index,
2219 					struct vring vring,
2220 					struct virtio_device *vdev,
2221 					bool weak_barriers,
2222 					bool context,
2223 					bool (*notify)(struct virtqueue *),
2224 					void (*callback)(struct virtqueue *),
2225 					const char *name)
2226 {
2227 	struct virtio_driver *drv = drv_to_virtio(vdev->dev.driver);
2228 	struct vring_virtqueue *vq;
2229 
2230 	if (virtio_has_feature(vdev, VIRTIO_F_RING_PACKED))
2231 		return NULL;
2232 
2233 	vq = kmalloc(sizeof(*vq), GFP_KERNEL);
2234 	if (!vq)
2235 		return NULL;
2236 
2237 	vq->packed_ring = false;
2238 	vq->vq.callback = callback;
2239 	vq->vq.vdev = vdev;
2240 	vq->vq.name = name;
2241 	vq->vq.num_free = vring.num;
2242 	vq->vq.index = index;
2243 	vq->we_own_ring = false;
2244 	vq->notify = notify;
2245 	vq->weak_barriers = weak_barriers;
2246 	vq->broken = false;
2247 	vq->last_used_idx = 0;
2248 	vq->event_triggered = false;
2249 	vq->num_added = 0;
2250 	vq->use_dma_api = vring_use_dma_api(vdev);
2251 #ifdef DEBUG
2252 	vq->in_use = false;
2253 	vq->last_add_time_valid = false;
2254 #endif
2255 
2256 	vq->indirect = virtio_has_feature(vdev, VIRTIO_RING_F_INDIRECT_DESC) &&
2257 		!context;
2258 	vq->event = virtio_has_feature(vdev, VIRTIO_RING_F_EVENT_IDX);
2259 
2260 	if (virtio_has_feature(vdev, VIRTIO_F_ORDER_PLATFORM))
2261 		vq->weak_barriers = false;
2262 
2263 	vq->split.queue_dma_addr = 0;
2264 	vq->split.queue_size_in_bytes = 0;
2265 
2266 	vq->split.vring = vring;
2267 	vq->split.avail_flags_shadow = 0;
2268 	vq->split.avail_idx_shadow = 0;
2269 
2270 	/* No callback?  Tell other side not to bother us. */
2271 	if (!callback) {
2272 		vq->split.avail_flags_shadow |= VRING_AVAIL_F_NO_INTERRUPT;
2273 		if (!vq->event)
2274 			vq->split.vring.avail->flags = cpu_to_virtio16(vdev,
2275 					vq->split.avail_flags_shadow);
2276 	}
2277 
2278 	vq->split.desc_state = kmalloc_array(vring.num,
2279 			sizeof(struct vring_desc_state_split), GFP_KERNEL);
2280 	if (!vq->split.desc_state)
2281 		goto err_state;
2282 
2283 	vq->split.desc_extra = vring_alloc_desc_extra(vq, vring.num);
2284 	if (!vq->split.desc_extra)
2285 		goto err_extra;
2286 
2287 	if (!drv->suppress_used_validation || force_used_validation) {
2288 		vq->buflen = kmalloc_array(vring.num, sizeof(*vq->buflen),
2289 					   GFP_KERNEL);
2290 		if (!vq->buflen)
2291 			goto err_buflen;
2292 	} else {
2293 		vq->buflen = NULL;
2294 	}
2295 
2296 	/* Put everything in free lists. */
2297 	vq->free_head = 0;
2298 	memset(vq->split.desc_state, 0, vring.num *
2299 			sizeof(struct vring_desc_state_split));
2300 
2301 	spin_lock(&vdev->vqs_list_lock);
2302 	list_add_tail(&vq->vq.list, &vdev->vqs);
2303 	spin_unlock(&vdev->vqs_list_lock);
2304 	return &vq->vq;
2305 
2306 err_buflen:
2307 	kfree(vq->split.desc_extra);
2308 err_extra:
2309 	kfree(vq->split.desc_state);
2310 err_state:
2311 	kfree(vq);
2312 	return NULL;
2313 }
2314 EXPORT_SYMBOL_GPL(__vring_new_virtqueue);
2315 
2316 struct virtqueue *vring_create_virtqueue(
2317 	unsigned int index,
2318 	unsigned int num,
2319 	unsigned int vring_align,
2320 	struct virtio_device *vdev,
2321 	bool weak_barriers,
2322 	bool may_reduce_num,
2323 	bool context,
2324 	bool (*notify)(struct virtqueue *),
2325 	void (*callback)(struct virtqueue *),
2326 	const char *name)
2327 {
2328 
2329 	if (virtio_has_feature(vdev, VIRTIO_F_RING_PACKED))
2330 		return vring_create_virtqueue_packed(index, num, vring_align,
2331 				vdev, weak_barriers, may_reduce_num,
2332 				context, notify, callback, name);
2333 
2334 	return vring_create_virtqueue_split(index, num, vring_align,
2335 			vdev, weak_barriers, may_reduce_num,
2336 			context, notify, callback, name);
2337 }
2338 EXPORT_SYMBOL_GPL(vring_create_virtqueue);
2339 
2340 /* Only available for split ring */
2341 struct virtqueue *vring_new_virtqueue(unsigned int index,
2342 				      unsigned int num,
2343 				      unsigned int vring_align,
2344 				      struct virtio_device *vdev,
2345 				      bool weak_barriers,
2346 				      bool context,
2347 				      void *pages,
2348 				      bool (*notify)(struct virtqueue *vq),
2349 				      void (*callback)(struct virtqueue *vq),
2350 				      const char *name)
2351 {
2352 	struct vring vring;
2353 
2354 	if (virtio_has_feature(vdev, VIRTIO_F_RING_PACKED))
2355 		return NULL;
2356 
2357 	vring_init(&vring, num, pages, vring_align);
2358 	return __vring_new_virtqueue(index, vring, vdev, weak_barriers, context,
2359 				     notify, callback, name);
2360 }
2361 EXPORT_SYMBOL_GPL(vring_new_virtqueue);
2362 
2363 void vring_del_virtqueue(struct virtqueue *_vq)
2364 {
2365 	struct vring_virtqueue *vq = to_vvq(_vq);
2366 
2367 	spin_lock(&vq->vq.vdev->vqs_list_lock);
2368 	list_del(&_vq->list);
2369 	spin_unlock(&vq->vq.vdev->vqs_list_lock);
2370 
2371 	if (vq->we_own_ring) {
2372 		if (vq->packed_ring) {
2373 			vring_free_queue(vq->vq.vdev,
2374 					 vq->packed.ring_size_in_bytes,
2375 					 vq->packed.vring.desc,
2376 					 vq->packed.ring_dma_addr);
2377 
2378 			vring_free_queue(vq->vq.vdev,
2379 					 vq->packed.event_size_in_bytes,
2380 					 vq->packed.vring.driver,
2381 					 vq->packed.driver_event_dma_addr);
2382 
2383 			vring_free_queue(vq->vq.vdev,
2384 					 vq->packed.event_size_in_bytes,
2385 					 vq->packed.vring.device,
2386 					 vq->packed.device_event_dma_addr);
2387 
2388 			kfree(vq->packed.desc_state);
2389 			kfree(vq->packed.desc_extra);
2390 		} else {
2391 			vring_free_queue(vq->vq.vdev,
2392 					 vq->split.queue_size_in_bytes,
2393 					 vq->split.vring.desc,
2394 					 vq->split.queue_dma_addr);
2395 		}
2396 	}
2397 	if (!vq->packed_ring) {
2398 		kfree(vq->split.desc_state);
2399 		kfree(vq->split.desc_extra);
2400 	}
2401 	kfree(vq);
2402 }
2403 EXPORT_SYMBOL_GPL(vring_del_virtqueue);
2404 
2405 /* Manipulates transport-specific feature bits. */
2406 void vring_transport_features(struct virtio_device *vdev)
2407 {
2408 	unsigned int i;
2409 
2410 	for (i = VIRTIO_TRANSPORT_F_START; i < VIRTIO_TRANSPORT_F_END; i++) {
2411 		switch (i) {
2412 		case VIRTIO_RING_F_INDIRECT_DESC:
2413 			break;
2414 		case VIRTIO_RING_F_EVENT_IDX:
2415 			break;
2416 		case VIRTIO_F_VERSION_1:
2417 			break;
2418 		case VIRTIO_F_ACCESS_PLATFORM:
2419 			break;
2420 		case VIRTIO_F_RING_PACKED:
2421 			break;
2422 		case VIRTIO_F_ORDER_PLATFORM:
2423 			break;
2424 		default:
2425 			/* We don't understand this bit. */
2426 			__virtio_clear_bit(vdev, i);
2427 		}
2428 	}
2429 }
2430 EXPORT_SYMBOL_GPL(vring_transport_features);
2431 
2432 /**
2433  * virtqueue_get_vring_size - return the size of the virtqueue's vring
2434  * @_vq: the struct virtqueue containing the vring of interest.
2435  *
2436  * Returns the size of the vring.  This is mainly used for boasting to
2437  * userspace.  Unlike other operations, this need not be serialized.
2438  */
2439 unsigned int virtqueue_get_vring_size(struct virtqueue *_vq)
2440 {
2441 
2442 	struct vring_virtqueue *vq = to_vvq(_vq);
2443 
2444 	return vq->packed_ring ? vq->packed.vring.num : vq->split.vring.num;
2445 }
2446 EXPORT_SYMBOL_GPL(virtqueue_get_vring_size);
2447 
2448 bool virtqueue_is_broken(struct virtqueue *_vq)
2449 {
2450 	struct vring_virtqueue *vq = to_vvq(_vq);
2451 
2452 	return READ_ONCE(vq->broken);
2453 }
2454 EXPORT_SYMBOL_GPL(virtqueue_is_broken);
2455 
2456 /*
2457  * This should prevent the device from being used, allowing drivers to
2458  * recover.  You may need to grab appropriate locks to flush.
2459  */
2460 void virtio_break_device(struct virtio_device *dev)
2461 {
2462 	struct virtqueue *_vq;
2463 
2464 	spin_lock(&dev->vqs_list_lock);
2465 	list_for_each_entry(_vq, &dev->vqs, list) {
2466 		struct vring_virtqueue *vq = to_vvq(_vq);
2467 
2468 		/* Pairs with READ_ONCE() in virtqueue_is_broken(). */
2469 		WRITE_ONCE(vq->broken, true);
2470 	}
2471 	spin_unlock(&dev->vqs_list_lock);
2472 }
2473 EXPORT_SYMBOL_GPL(virtio_break_device);
2474 
2475 dma_addr_t virtqueue_get_desc_addr(struct virtqueue *_vq)
2476 {
2477 	struct vring_virtqueue *vq = to_vvq(_vq);
2478 
2479 	BUG_ON(!vq->we_own_ring);
2480 
2481 	if (vq->packed_ring)
2482 		return vq->packed.ring_dma_addr;
2483 
2484 	return vq->split.queue_dma_addr;
2485 }
2486 EXPORT_SYMBOL_GPL(virtqueue_get_desc_addr);
2487 
2488 dma_addr_t virtqueue_get_avail_addr(struct virtqueue *_vq)
2489 {
2490 	struct vring_virtqueue *vq = to_vvq(_vq);
2491 
2492 	BUG_ON(!vq->we_own_ring);
2493 
2494 	if (vq->packed_ring)
2495 		return vq->packed.driver_event_dma_addr;
2496 
2497 	return vq->split.queue_dma_addr +
2498 		((char *)vq->split.vring.avail - (char *)vq->split.vring.desc);
2499 }
2500 EXPORT_SYMBOL_GPL(virtqueue_get_avail_addr);
2501 
2502 dma_addr_t virtqueue_get_used_addr(struct virtqueue *_vq)
2503 {
2504 	struct vring_virtqueue *vq = to_vvq(_vq);
2505 
2506 	BUG_ON(!vq->we_own_ring);
2507 
2508 	if (vq->packed_ring)
2509 		return vq->packed.device_event_dma_addr;
2510 
2511 	return vq->split.queue_dma_addr +
2512 		((char *)vq->split.vring.used - (char *)vq->split.vring.desc);
2513 }
2514 EXPORT_SYMBOL_GPL(virtqueue_get_used_addr);
2515 
2516 /* Only available for split ring */
2517 const struct vring *virtqueue_get_vring(struct virtqueue *vq)
2518 {
2519 	return &to_vvq(vq)->split.vring;
2520 }
2521 EXPORT_SYMBOL_GPL(virtqueue_get_vring);
2522 
2523 MODULE_LICENSE("GPL");
2524