1 /* Virtio ring implementation. 2 * 3 * Copyright 2007 Rusty Russell IBM Corporation 4 * 5 * This program is free software; you can redistribute it and/or modify 6 * it under the terms of the GNU General Public License as published by 7 * the Free Software Foundation; either version 2 of the License, or 8 * (at your option) any later version. 9 * 10 * This program is distributed in the hope that it will be useful, 11 * but WITHOUT ANY WARRANTY; without even the implied warranty of 12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 13 * GNU General Public License for more details. 14 * 15 * You should have received a copy of the GNU General Public License 16 * along with this program; if not, write to the Free Software 17 * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA 18 */ 19 #include <linux/virtio.h> 20 #include <linux/virtio_ring.h> 21 #include <linux/virtio_config.h> 22 #include <linux/device.h> 23 #include <linux/slab.h> 24 #include <linux/module.h> 25 #include <linux/hrtimer.h> 26 #include <linux/kmemleak.h> 27 #include <linux/dma-mapping.h> 28 #include <xen/xen.h> 29 30 #ifdef DEBUG 31 /* For development, we want to crash whenever the ring is screwed. */ 32 #define BAD_RING(_vq, fmt, args...) \ 33 do { \ 34 dev_err(&(_vq)->vq.vdev->dev, \ 35 "%s:"fmt, (_vq)->vq.name, ##args); \ 36 BUG(); \ 37 } while (0) 38 /* Caller is supposed to guarantee no reentry. */ 39 #define START_USE(_vq) \ 40 do { \ 41 if ((_vq)->in_use) \ 42 panic("%s:in_use = %i\n", \ 43 (_vq)->vq.name, (_vq)->in_use); \ 44 (_vq)->in_use = __LINE__; \ 45 } while (0) 46 #define END_USE(_vq) \ 47 do { BUG_ON(!(_vq)->in_use); (_vq)->in_use = 0; } while(0) 48 #else 49 #define BAD_RING(_vq, fmt, args...) \ 50 do { \ 51 dev_err(&_vq->vq.vdev->dev, \ 52 "%s:"fmt, (_vq)->vq.name, ##args); \ 53 (_vq)->broken = true; \ 54 } while (0) 55 #define START_USE(vq) 56 #define END_USE(vq) 57 #endif 58 59 struct vring_desc_state { 60 void *data; /* Data for callback. */ 61 struct vring_desc *indir_desc; /* Indirect descriptor, if any. */ 62 }; 63 64 struct vring_virtqueue { 65 struct virtqueue vq; 66 67 /* Actual memory layout for this queue */ 68 struct vring vring; 69 70 /* Can we use weak barriers? */ 71 bool weak_barriers; 72 73 /* Other side has made a mess, don't try any more. */ 74 bool broken; 75 76 /* Host supports indirect buffers */ 77 bool indirect; 78 79 /* Host publishes avail event idx */ 80 bool event; 81 82 /* Head of free buffer list. */ 83 unsigned int free_head; 84 /* Number we've added since last sync. */ 85 unsigned int num_added; 86 87 /* Last used index we've seen. */ 88 u16 last_used_idx; 89 90 /* Last written value to avail->flags */ 91 u16 avail_flags_shadow; 92 93 /* Last written value to avail->idx in guest byte order */ 94 u16 avail_idx_shadow; 95 96 /* How to notify other side. FIXME: commonalize hcalls! */ 97 bool (*notify)(struct virtqueue *vq); 98 99 /* DMA, allocation, and size information */ 100 bool we_own_ring; 101 size_t queue_size_in_bytes; 102 dma_addr_t queue_dma_addr; 103 104 #ifdef DEBUG 105 /* They're supposed to lock for us. */ 106 unsigned int in_use; 107 108 /* Figure out if their kicks are too delayed. */ 109 bool last_add_time_valid; 110 ktime_t last_add_time; 111 #endif 112 113 /* Per-descriptor state. */ 114 struct vring_desc_state desc_state[]; 115 }; 116 117 #define to_vvq(_vq) container_of(_vq, struct vring_virtqueue, vq) 118 119 /* 120 * Modern virtio devices have feature bits to specify whether they need a 121 * quirk and bypass the IOMMU. If not there, just use the DMA API. 122 * 123 * If there, the interaction between virtio and DMA API is messy. 124 * 125 * On most systems with virtio, physical addresses match bus addresses, 126 * and it doesn't particularly matter whether we use the DMA API. 127 * 128 * On some systems, including Xen and any system with a physical device 129 * that speaks virtio behind a physical IOMMU, we must use the DMA API 130 * for virtio DMA to work at all. 131 * 132 * On other systems, including SPARC and PPC64, virtio-pci devices are 133 * enumerated as though they are behind an IOMMU, but the virtio host 134 * ignores the IOMMU, so we must either pretend that the IOMMU isn't 135 * there or somehow map everything as the identity. 136 * 137 * For the time being, we preserve historic behavior and bypass the DMA 138 * API. 139 * 140 * TODO: install a per-device DMA ops structure that does the right thing 141 * taking into account all the above quirks, and use the DMA API 142 * unconditionally on data path. 143 */ 144 145 static bool vring_use_dma_api(struct virtio_device *vdev) 146 { 147 if (!virtio_has_iommu_quirk(vdev)) 148 return true; 149 150 /* Otherwise, we are left to guess. */ 151 /* 152 * In theory, it's possible to have a buggy QEMU-supposed 153 * emulated Q35 IOMMU and Xen enabled at the same time. On 154 * such a configuration, virtio has never worked and will 155 * not work without an even larger kludge. Instead, enable 156 * the DMA API if we're a Xen guest, which at least allows 157 * all of the sensible Xen configurations to work correctly. 158 */ 159 if (xen_domain()) 160 return true; 161 162 return false; 163 } 164 165 /* 166 * The DMA ops on various arches are rather gnarly right now, and 167 * making all of the arch DMA ops work on the vring device itself 168 * is a mess. For now, we use the parent device for DMA ops. 169 */ 170 static inline struct device *vring_dma_dev(const struct vring_virtqueue *vq) 171 { 172 return vq->vq.vdev->dev.parent; 173 } 174 175 /* Map one sg entry. */ 176 static dma_addr_t vring_map_one_sg(const struct vring_virtqueue *vq, 177 struct scatterlist *sg, 178 enum dma_data_direction direction) 179 { 180 if (!vring_use_dma_api(vq->vq.vdev)) 181 return (dma_addr_t)sg_phys(sg); 182 183 /* 184 * We can't use dma_map_sg, because we don't use scatterlists in 185 * the way it expects (we don't guarantee that the scatterlist 186 * will exist for the lifetime of the mapping). 187 */ 188 return dma_map_page(vring_dma_dev(vq), 189 sg_page(sg), sg->offset, sg->length, 190 direction); 191 } 192 193 static dma_addr_t vring_map_single(const struct vring_virtqueue *vq, 194 void *cpu_addr, size_t size, 195 enum dma_data_direction direction) 196 { 197 if (!vring_use_dma_api(vq->vq.vdev)) 198 return (dma_addr_t)virt_to_phys(cpu_addr); 199 200 return dma_map_single(vring_dma_dev(vq), 201 cpu_addr, size, direction); 202 } 203 204 static void vring_unmap_one(const struct vring_virtqueue *vq, 205 struct vring_desc *desc) 206 { 207 u16 flags; 208 209 if (!vring_use_dma_api(vq->vq.vdev)) 210 return; 211 212 flags = virtio16_to_cpu(vq->vq.vdev, desc->flags); 213 214 if (flags & VRING_DESC_F_INDIRECT) { 215 dma_unmap_single(vring_dma_dev(vq), 216 virtio64_to_cpu(vq->vq.vdev, desc->addr), 217 virtio32_to_cpu(vq->vq.vdev, desc->len), 218 (flags & VRING_DESC_F_WRITE) ? 219 DMA_FROM_DEVICE : DMA_TO_DEVICE); 220 } else { 221 dma_unmap_page(vring_dma_dev(vq), 222 virtio64_to_cpu(vq->vq.vdev, desc->addr), 223 virtio32_to_cpu(vq->vq.vdev, desc->len), 224 (flags & VRING_DESC_F_WRITE) ? 225 DMA_FROM_DEVICE : DMA_TO_DEVICE); 226 } 227 } 228 229 static int vring_mapping_error(const struct vring_virtqueue *vq, 230 dma_addr_t addr) 231 { 232 if (!vring_use_dma_api(vq->vq.vdev)) 233 return 0; 234 235 return dma_mapping_error(vring_dma_dev(vq), addr); 236 } 237 238 static struct vring_desc *alloc_indirect(struct virtqueue *_vq, 239 unsigned int total_sg, gfp_t gfp) 240 { 241 struct vring_desc *desc; 242 unsigned int i; 243 244 /* 245 * We require lowmem mappings for the descriptors because 246 * otherwise virt_to_phys will give us bogus addresses in the 247 * virtqueue. 248 */ 249 gfp &= ~__GFP_HIGHMEM; 250 251 desc = kmalloc(total_sg * sizeof(struct vring_desc), gfp); 252 if (!desc) 253 return NULL; 254 255 for (i = 0; i < total_sg; i++) 256 desc[i].next = cpu_to_virtio16(_vq->vdev, i + 1); 257 return desc; 258 } 259 260 static inline int virtqueue_add(struct virtqueue *_vq, 261 struct scatterlist *sgs[], 262 unsigned int total_sg, 263 unsigned int out_sgs, 264 unsigned int in_sgs, 265 void *data, 266 void *ctx, 267 gfp_t gfp) 268 { 269 struct vring_virtqueue *vq = to_vvq(_vq); 270 struct scatterlist *sg; 271 struct vring_desc *desc; 272 unsigned int i, n, avail, descs_used, uninitialized_var(prev), err_idx; 273 int head; 274 bool indirect; 275 276 START_USE(vq); 277 278 BUG_ON(data == NULL); 279 BUG_ON(ctx && vq->indirect); 280 281 if (unlikely(vq->broken)) { 282 END_USE(vq); 283 return -EIO; 284 } 285 286 #ifdef DEBUG 287 { 288 ktime_t now = ktime_get(); 289 290 /* No kick or get, with .1 second between? Warn. */ 291 if (vq->last_add_time_valid) 292 WARN_ON(ktime_to_ms(ktime_sub(now, vq->last_add_time)) 293 > 100); 294 vq->last_add_time = now; 295 vq->last_add_time_valid = true; 296 } 297 #endif 298 299 BUG_ON(total_sg == 0); 300 301 head = vq->free_head; 302 303 /* If the host supports indirect descriptor tables, and we have multiple 304 * buffers, then go indirect. FIXME: tune this threshold */ 305 if (vq->indirect && total_sg > 1 && vq->vq.num_free) 306 desc = alloc_indirect(_vq, total_sg, gfp); 307 else { 308 desc = NULL; 309 WARN_ON_ONCE(total_sg > vq->vring.num && !vq->indirect); 310 } 311 312 if (desc) { 313 /* Use a single buffer which doesn't continue */ 314 indirect = true; 315 /* Set up rest to use this indirect table. */ 316 i = 0; 317 descs_used = 1; 318 } else { 319 indirect = false; 320 desc = vq->vring.desc; 321 i = head; 322 descs_used = total_sg; 323 } 324 325 if (vq->vq.num_free < descs_used) { 326 pr_debug("Can't add buf len %i - avail = %i\n", 327 descs_used, vq->vq.num_free); 328 /* FIXME: for historical reasons, we force a notify here if 329 * there are outgoing parts to the buffer. Presumably the 330 * host should service the ring ASAP. */ 331 if (out_sgs) 332 vq->notify(&vq->vq); 333 if (indirect) 334 kfree(desc); 335 END_USE(vq); 336 return -ENOSPC; 337 } 338 339 for (n = 0; n < out_sgs; n++) { 340 for (sg = sgs[n]; sg; sg = sg_next(sg)) { 341 dma_addr_t addr = vring_map_one_sg(vq, sg, DMA_TO_DEVICE); 342 if (vring_mapping_error(vq, addr)) 343 goto unmap_release; 344 345 desc[i].flags = cpu_to_virtio16(_vq->vdev, VRING_DESC_F_NEXT); 346 desc[i].addr = cpu_to_virtio64(_vq->vdev, addr); 347 desc[i].len = cpu_to_virtio32(_vq->vdev, sg->length); 348 prev = i; 349 i = virtio16_to_cpu(_vq->vdev, desc[i].next); 350 } 351 } 352 for (; n < (out_sgs + in_sgs); n++) { 353 for (sg = sgs[n]; sg; sg = sg_next(sg)) { 354 dma_addr_t addr = vring_map_one_sg(vq, sg, DMA_FROM_DEVICE); 355 if (vring_mapping_error(vq, addr)) 356 goto unmap_release; 357 358 desc[i].flags = cpu_to_virtio16(_vq->vdev, VRING_DESC_F_NEXT | VRING_DESC_F_WRITE); 359 desc[i].addr = cpu_to_virtio64(_vq->vdev, addr); 360 desc[i].len = cpu_to_virtio32(_vq->vdev, sg->length); 361 prev = i; 362 i = virtio16_to_cpu(_vq->vdev, desc[i].next); 363 } 364 } 365 /* Last one doesn't continue. */ 366 desc[prev].flags &= cpu_to_virtio16(_vq->vdev, ~VRING_DESC_F_NEXT); 367 368 if (indirect) { 369 /* Now that the indirect table is filled in, map it. */ 370 dma_addr_t addr = vring_map_single( 371 vq, desc, total_sg * sizeof(struct vring_desc), 372 DMA_TO_DEVICE); 373 if (vring_mapping_error(vq, addr)) 374 goto unmap_release; 375 376 vq->vring.desc[head].flags = cpu_to_virtio16(_vq->vdev, VRING_DESC_F_INDIRECT); 377 vq->vring.desc[head].addr = cpu_to_virtio64(_vq->vdev, addr); 378 379 vq->vring.desc[head].len = cpu_to_virtio32(_vq->vdev, total_sg * sizeof(struct vring_desc)); 380 } 381 382 /* We're using some buffers from the free list. */ 383 vq->vq.num_free -= descs_used; 384 385 /* Update free pointer */ 386 if (indirect) 387 vq->free_head = virtio16_to_cpu(_vq->vdev, vq->vring.desc[head].next); 388 else 389 vq->free_head = i; 390 391 /* Store token and indirect buffer state. */ 392 vq->desc_state[head].data = data; 393 if (indirect) 394 vq->desc_state[head].indir_desc = desc; 395 else 396 vq->desc_state[head].indir_desc = ctx; 397 398 /* Put entry in available array (but don't update avail->idx until they 399 * do sync). */ 400 avail = vq->avail_idx_shadow & (vq->vring.num - 1); 401 vq->vring.avail->ring[avail] = cpu_to_virtio16(_vq->vdev, head); 402 403 /* Descriptors and available array need to be set before we expose the 404 * new available array entries. */ 405 virtio_wmb(vq->weak_barriers); 406 vq->avail_idx_shadow++; 407 vq->vring.avail->idx = cpu_to_virtio16(_vq->vdev, vq->avail_idx_shadow); 408 vq->num_added++; 409 410 pr_debug("Added buffer head %i to %p\n", head, vq); 411 END_USE(vq); 412 413 /* This is very unlikely, but theoretically possible. Kick 414 * just in case. */ 415 if (unlikely(vq->num_added == (1 << 16) - 1)) 416 virtqueue_kick(_vq); 417 418 return 0; 419 420 unmap_release: 421 err_idx = i; 422 i = head; 423 424 for (n = 0; n < total_sg; n++) { 425 if (i == err_idx) 426 break; 427 vring_unmap_one(vq, &desc[i]); 428 i = virtio16_to_cpu(_vq->vdev, vq->vring.desc[i].next); 429 } 430 431 if (indirect) 432 kfree(desc); 433 434 END_USE(vq); 435 return -EIO; 436 } 437 438 /** 439 * virtqueue_add_sgs - expose buffers to other end 440 * @vq: the struct virtqueue we're talking about. 441 * @sgs: array of terminated scatterlists. 442 * @out_num: the number of scatterlists readable by other side 443 * @in_num: the number of scatterlists which are writable (after readable ones) 444 * @data: the token identifying the buffer. 445 * @gfp: how to do memory allocations (if necessary). 446 * 447 * Caller must ensure we don't call this with other virtqueue operations 448 * at the same time (except where noted). 449 * 450 * Returns zero or a negative error (ie. ENOSPC, ENOMEM, EIO). 451 */ 452 int virtqueue_add_sgs(struct virtqueue *_vq, 453 struct scatterlist *sgs[], 454 unsigned int out_sgs, 455 unsigned int in_sgs, 456 void *data, 457 gfp_t gfp) 458 { 459 unsigned int i, total_sg = 0; 460 461 /* Count them first. */ 462 for (i = 0; i < out_sgs + in_sgs; i++) { 463 struct scatterlist *sg; 464 for (sg = sgs[i]; sg; sg = sg_next(sg)) 465 total_sg++; 466 } 467 return virtqueue_add(_vq, sgs, total_sg, out_sgs, in_sgs, 468 data, NULL, gfp); 469 } 470 EXPORT_SYMBOL_GPL(virtqueue_add_sgs); 471 472 /** 473 * virtqueue_add_outbuf - expose output buffers to other end 474 * @vq: the struct virtqueue we're talking about. 475 * @sg: scatterlist (must be well-formed and terminated!) 476 * @num: the number of entries in @sg readable by other side 477 * @data: the token identifying the buffer. 478 * @gfp: how to do memory allocations (if necessary). 479 * 480 * Caller must ensure we don't call this with other virtqueue operations 481 * at the same time (except where noted). 482 * 483 * Returns zero or a negative error (ie. ENOSPC, ENOMEM, EIO). 484 */ 485 int virtqueue_add_outbuf(struct virtqueue *vq, 486 struct scatterlist *sg, unsigned int num, 487 void *data, 488 gfp_t gfp) 489 { 490 return virtqueue_add(vq, &sg, num, 1, 0, data, NULL, gfp); 491 } 492 EXPORT_SYMBOL_GPL(virtqueue_add_outbuf); 493 494 /** 495 * virtqueue_add_inbuf - expose input buffers to other end 496 * @vq: the struct virtqueue we're talking about. 497 * @sg: scatterlist (must be well-formed and terminated!) 498 * @num: the number of entries in @sg writable by other side 499 * @data: the token identifying the buffer. 500 * @gfp: how to do memory allocations (if necessary). 501 * 502 * Caller must ensure we don't call this with other virtqueue operations 503 * at the same time (except where noted). 504 * 505 * Returns zero or a negative error (ie. ENOSPC, ENOMEM, EIO). 506 */ 507 int virtqueue_add_inbuf(struct virtqueue *vq, 508 struct scatterlist *sg, unsigned int num, 509 void *data, 510 gfp_t gfp) 511 { 512 return virtqueue_add(vq, &sg, num, 0, 1, data, NULL, gfp); 513 } 514 EXPORT_SYMBOL_GPL(virtqueue_add_inbuf); 515 516 /** 517 * virtqueue_add_inbuf_ctx - expose input buffers to other end 518 * @vq: the struct virtqueue we're talking about. 519 * @sg: scatterlist (must be well-formed and terminated!) 520 * @num: the number of entries in @sg writable by other side 521 * @data: the token identifying the buffer. 522 * @ctx: extra context for the token 523 * @gfp: how to do memory allocations (if necessary). 524 * 525 * Caller must ensure we don't call this with other virtqueue operations 526 * at the same time (except where noted). 527 * 528 * Returns zero or a negative error (ie. ENOSPC, ENOMEM, EIO). 529 */ 530 int virtqueue_add_inbuf_ctx(struct virtqueue *vq, 531 struct scatterlist *sg, unsigned int num, 532 void *data, 533 void *ctx, 534 gfp_t gfp) 535 { 536 return virtqueue_add(vq, &sg, num, 0, 1, data, ctx, gfp); 537 } 538 EXPORT_SYMBOL_GPL(virtqueue_add_inbuf_ctx); 539 540 /** 541 * virtqueue_kick_prepare - first half of split virtqueue_kick call. 542 * @vq: the struct virtqueue 543 * 544 * Instead of virtqueue_kick(), you can do: 545 * if (virtqueue_kick_prepare(vq)) 546 * virtqueue_notify(vq); 547 * 548 * This is sometimes useful because the virtqueue_kick_prepare() needs 549 * to be serialized, but the actual virtqueue_notify() call does not. 550 */ 551 bool virtqueue_kick_prepare(struct virtqueue *_vq) 552 { 553 struct vring_virtqueue *vq = to_vvq(_vq); 554 u16 new, old; 555 bool needs_kick; 556 557 START_USE(vq); 558 /* We need to expose available array entries before checking avail 559 * event. */ 560 virtio_mb(vq->weak_barriers); 561 562 old = vq->avail_idx_shadow - vq->num_added; 563 new = vq->avail_idx_shadow; 564 vq->num_added = 0; 565 566 #ifdef DEBUG 567 if (vq->last_add_time_valid) { 568 WARN_ON(ktime_to_ms(ktime_sub(ktime_get(), 569 vq->last_add_time)) > 100); 570 } 571 vq->last_add_time_valid = false; 572 #endif 573 574 if (vq->event) { 575 needs_kick = vring_need_event(virtio16_to_cpu(_vq->vdev, vring_avail_event(&vq->vring)), 576 new, old); 577 } else { 578 needs_kick = !(vq->vring.used->flags & cpu_to_virtio16(_vq->vdev, VRING_USED_F_NO_NOTIFY)); 579 } 580 END_USE(vq); 581 return needs_kick; 582 } 583 EXPORT_SYMBOL_GPL(virtqueue_kick_prepare); 584 585 /** 586 * virtqueue_notify - second half of split virtqueue_kick call. 587 * @vq: the struct virtqueue 588 * 589 * This does not need to be serialized. 590 * 591 * Returns false if host notify failed or queue is broken, otherwise true. 592 */ 593 bool virtqueue_notify(struct virtqueue *_vq) 594 { 595 struct vring_virtqueue *vq = to_vvq(_vq); 596 597 if (unlikely(vq->broken)) 598 return false; 599 600 /* Prod other side to tell it about changes. */ 601 if (!vq->notify(_vq)) { 602 vq->broken = true; 603 return false; 604 } 605 return true; 606 } 607 EXPORT_SYMBOL_GPL(virtqueue_notify); 608 609 /** 610 * virtqueue_kick - update after add_buf 611 * @vq: the struct virtqueue 612 * 613 * After one or more virtqueue_add_* calls, invoke this to kick 614 * the other side. 615 * 616 * Caller must ensure we don't call this with other virtqueue 617 * operations at the same time (except where noted). 618 * 619 * Returns false if kick failed, otherwise true. 620 */ 621 bool virtqueue_kick(struct virtqueue *vq) 622 { 623 if (virtqueue_kick_prepare(vq)) 624 return virtqueue_notify(vq); 625 return true; 626 } 627 EXPORT_SYMBOL_GPL(virtqueue_kick); 628 629 static void detach_buf(struct vring_virtqueue *vq, unsigned int head, 630 void **ctx) 631 { 632 unsigned int i, j; 633 __virtio16 nextflag = cpu_to_virtio16(vq->vq.vdev, VRING_DESC_F_NEXT); 634 635 /* Clear data ptr. */ 636 vq->desc_state[head].data = NULL; 637 638 /* Put back on free list: unmap first-level descriptors and find end */ 639 i = head; 640 641 while (vq->vring.desc[i].flags & nextflag) { 642 vring_unmap_one(vq, &vq->vring.desc[i]); 643 i = virtio16_to_cpu(vq->vq.vdev, vq->vring.desc[i].next); 644 vq->vq.num_free++; 645 } 646 647 vring_unmap_one(vq, &vq->vring.desc[i]); 648 vq->vring.desc[i].next = cpu_to_virtio16(vq->vq.vdev, vq->free_head); 649 vq->free_head = head; 650 651 /* Plus final descriptor */ 652 vq->vq.num_free++; 653 654 if (vq->indirect) { 655 struct vring_desc *indir_desc = vq->desc_state[head].indir_desc; 656 u32 len; 657 658 /* Free the indirect table, if any, now that it's unmapped. */ 659 if (!indir_desc) 660 return; 661 662 len = virtio32_to_cpu(vq->vq.vdev, vq->vring.desc[head].len); 663 664 BUG_ON(!(vq->vring.desc[head].flags & 665 cpu_to_virtio16(vq->vq.vdev, VRING_DESC_F_INDIRECT))); 666 BUG_ON(len == 0 || len % sizeof(struct vring_desc)); 667 668 for (j = 0; j < len / sizeof(struct vring_desc); j++) 669 vring_unmap_one(vq, &indir_desc[j]); 670 671 kfree(indir_desc); 672 vq->desc_state[head].indir_desc = NULL; 673 } else if (ctx) { 674 *ctx = vq->desc_state[head].indir_desc; 675 } 676 } 677 678 static inline bool more_used(const struct vring_virtqueue *vq) 679 { 680 return vq->last_used_idx != virtio16_to_cpu(vq->vq.vdev, vq->vring.used->idx); 681 } 682 683 /** 684 * virtqueue_get_buf - get the next used buffer 685 * @vq: the struct virtqueue we're talking about. 686 * @len: the length written into the buffer 687 * 688 * If the device wrote data into the buffer, @len will be set to the 689 * amount written. This means you don't need to clear the buffer 690 * beforehand to ensure there's no data leakage in the case of short 691 * writes. 692 * 693 * Caller must ensure we don't call this with other virtqueue 694 * operations at the same time (except where noted). 695 * 696 * Returns NULL if there are no used buffers, or the "data" token 697 * handed to virtqueue_add_*(). 698 */ 699 void *virtqueue_get_buf_ctx(struct virtqueue *_vq, unsigned int *len, 700 void **ctx) 701 { 702 struct vring_virtqueue *vq = to_vvq(_vq); 703 void *ret; 704 unsigned int i; 705 u16 last_used; 706 707 START_USE(vq); 708 709 if (unlikely(vq->broken)) { 710 END_USE(vq); 711 return NULL; 712 } 713 714 if (!more_used(vq)) { 715 pr_debug("No more buffers in queue\n"); 716 END_USE(vq); 717 return NULL; 718 } 719 720 /* Only get used array entries after they have been exposed by host. */ 721 virtio_rmb(vq->weak_barriers); 722 723 last_used = (vq->last_used_idx & (vq->vring.num - 1)); 724 i = virtio32_to_cpu(_vq->vdev, vq->vring.used->ring[last_used].id); 725 *len = virtio32_to_cpu(_vq->vdev, vq->vring.used->ring[last_used].len); 726 727 if (unlikely(i >= vq->vring.num)) { 728 BAD_RING(vq, "id %u out of range\n", i); 729 return NULL; 730 } 731 if (unlikely(!vq->desc_state[i].data)) { 732 BAD_RING(vq, "id %u is not a head!\n", i); 733 return NULL; 734 } 735 736 /* detach_buf clears data, so grab it now. */ 737 ret = vq->desc_state[i].data; 738 detach_buf(vq, i, ctx); 739 vq->last_used_idx++; 740 /* If we expect an interrupt for the next entry, tell host 741 * by writing event index and flush out the write before 742 * the read in the next get_buf call. */ 743 if (!(vq->avail_flags_shadow & VRING_AVAIL_F_NO_INTERRUPT)) 744 virtio_store_mb(vq->weak_barriers, 745 &vring_used_event(&vq->vring), 746 cpu_to_virtio16(_vq->vdev, vq->last_used_idx)); 747 748 #ifdef DEBUG 749 vq->last_add_time_valid = false; 750 #endif 751 752 END_USE(vq); 753 return ret; 754 } 755 EXPORT_SYMBOL_GPL(virtqueue_get_buf_ctx); 756 757 void *virtqueue_get_buf(struct virtqueue *_vq, unsigned int *len) 758 { 759 return virtqueue_get_buf_ctx(_vq, len, NULL); 760 } 761 EXPORT_SYMBOL_GPL(virtqueue_get_buf); 762 /** 763 * virtqueue_disable_cb - disable callbacks 764 * @vq: the struct virtqueue we're talking about. 765 * 766 * Note that this is not necessarily synchronous, hence unreliable and only 767 * useful as an optimization. 768 * 769 * Unlike other operations, this need not be serialized. 770 */ 771 void virtqueue_disable_cb(struct virtqueue *_vq) 772 { 773 struct vring_virtqueue *vq = to_vvq(_vq); 774 775 if (!(vq->avail_flags_shadow & VRING_AVAIL_F_NO_INTERRUPT)) { 776 vq->avail_flags_shadow |= VRING_AVAIL_F_NO_INTERRUPT; 777 if (!vq->event) 778 vq->vring.avail->flags = cpu_to_virtio16(_vq->vdev, vq->avail_flags_shadow); 779 } 780 781 } 782 EXPORT_SYMBOL_GPL(virtqueue_disable_cb); 783 784 /** 785 * virtqueue_enable_cb_prepare - restart callbacks after disable_cb 786 * @vq: the struct virtqueue we're talking about. 787 * 788 * This re-enables callbacks; it returns current queue state 789 * in an opaque unsigned value. This value should be later tested by 790 * virtqueue_poll, to detect a possible race between the driver checking for 791 * more work, and enabling callbacks. 792 * 793 * Caller must ensure we don't call this with other virtqueue 794 * operations at the same time (except where noted). 795 */ 796 unsigned virtqueue_enable_cb_prepare(struct virtqueue *_vq) 797 { 798 struct vring_virtqueue *vq = to_vvq(_vq); 799 u16 last_used_idx; 800 801 START_USE(vq); 802 803 /* We optimistically turn back on interrupts, then check if there was 804 * more to do. */ 805 /* Depending on the VIRTIO_RING_F_EVENT_IDX feature, we need to 806 * either clear the flags bit or point the event index at the next 807 * entry. Always do both to keep code simple. */ 808 if (vq->avail_flags_shadow & VRING_AVAIL_F_NO_INTERRUPT) { 809 vq->avail_flags_shadow &= ~VRING_AVAIL_F_NO_INTERRUPT; 810 if (!vq->event) 811 vq->vring.avail->flags = cpu_to_virtio16(_vq->vdev, vq->avail_flags_shadow); 812 } 813 vring_used_event(&vq->vring) = cpu_to_virtio16(_vq->vdev, last_used_idx = vq->last_used_idx); 814 END_USE(vq); 815 return last_used_idx; 816 } 817 EXPORT_SYMBOL_GPL(virtqueue_enable_cb_prepare); 818 819 /** 820 * virtqueue_poll - query pending used buffers 821 * @vq: the struct virtqueue we're talking about. 822 * @last_used_idx: virtqueue state (from call to virtqueue_enable_cb_prepare). 823 * 824 * Returns "true" if there are pending used buffers in the queue. 825 * 826 * This does not need to be serialized. 827 */ 828 bool virtqueue_poll(struct virtqueue *_vq, unsigned last_used_idx) 829 { 830 struct vring_virtqueue *vq = to_vvq(_vq); 831 832 virtio_mb(vq->weak_barriers); 833 return (u16)last_used_idx != virtio16_to_cpu(_vq->vdev, vq->vring.used->idx); 834 } 835 EXPORT_SYMBOL_GPL(virtqueue_poll); 836 837 /** 838 * virtqueue_enable_cb - restart callbacks after disable_cb. 839 * @vq: the struct virtqueue we're talking about. 840 * 841 * This re-enables callbacks; it returns "false" if there are pending 842 * buffers in the queue, to detect a possible race between the driver 843 * checking for more work, and enabling callbacks. 844 * 845 * Caller must ensure we don't call this with other virtqueue 846 * operations at the same time (except where noted). 847 */ 848 bool virtqueue_enable_cb(struct virtqueue *_vq) 849 { 850 unsigned last_used_idx = virtqueue_enable_cb_prepare(_vq); 851 return !virtqueue_poll(_vq, last_used_idx); 852 } 853 EXPORT_SYMBOL_GPL(virtqueue_enable_cb); 854 855 /** 856 * virtqueue_enable_cb_delayed - restart callbacks after disable_cb. 857 * @vq: the struct virtqueue we're talking about. 858 * 859 * This re-enables callbacks but hints to the other side to delay 860 * interrupts until most of the available buffers have been processed; 861 * it returns "false" if there are many pending buffers in the queue, 862 * to detect a possible race between the driver checking for more work, 863 * and enabling callbacks. 864 * 865 * Caller must ensure we don't call this with other virtqueue 866 * operations at the same time (except where noted). 867 */ 868 bool virtqueue_enable_cb_delayed(struct virtqueue *_vq) 869 { 870 struct vring_virtqueue *vq = to_vvq(_vq); 871 u16 bufs; 872 873 START_USE(vq); 874 875 /* We optimistically turn back on interrupts, then check if there was 876 * more to do. */ 877 /* Depending on the VIRTIO_RING_F_USED_EVENT_IDX feature, we need to 878 * either clear the flags bit or point the event index at the next 879 * entry. Always update the event index to keep code simple. */ 880 if (vq->avail_flags_shadow & VRING_AVAIL_F_NO_INTERRUPT) { 881 vq->avail_flags_shadow &= ~VRING_AVAIL_F_NO_INTERRUPT; 882 if (!vq->event) 883 vq->vring.avail->flags = cpu_to_virtio16(_vq->vdev, vq->avail_flags_shadow); 884 } 885 /* TODO: tune this threshold */ 886 bufs = (u16)(vq->avail_idx_shadow - vq->last_used_idx) * 3 / 4; 887 888 virtio_store_mb(vq->weak_barriers, 889 &vring_used_event(&vq->vring), 890 cpu_to_virtio16(_vq->vdev, vq->last_used_idx + bufs)); 891 892 if (unlikely((u16)(virtio16_to_cpu(_vq->vdev, vq->vring.used->idx) - vq->last_used_idx) > bufs)) { 893 END_USE(vq); 894 return false; 895 } 896 897 END_USE(vq); 898 return true; 899 } 900 EXPORT_SYMBOL_GPL(virtqueue_enable_cb_delayed); 901 902 /** 903 * virtqueue_detach_unused_buf - detach first unused buffer 904 * @vq: the struct virtqueue we're talking about. 905 * 906 * Returns NULL or the "data" token handed to virtqueue_add_*(). 907 * This is not valid on an active queue; it is useful only for device 908 * shutdown. 909 */ 910 void *virtqueue_detach_unused_buf(struct virtqueue *_vq) 911 { 912 struct vring_virtqueue *vq = to_vvq(_vq); 913 unsigned int i; 914 void *buf; 915 916 START_USE(vq); 917 918 for (i = 0; i < vq->vring.num; i++) { 919 if (!vq->desc_state[i].data) 920 continue; 921 /* detach_buf clears data, so grab it now. */ 922 buf = vq->desc_state[i].data; 923 detach_buf(vq, i, NULL); 924 vq->avail_idx_shadow--; 925 vq->vring.avail->idx = cpu_to_virtio16(_vq->vdev, vq->avail_idx_shadow); 926 END_USE(vq); 927 return buf; 928 } 929 /* That should have freed everything. */ 930 BUG_ON(vq->vq.num_free != vq->vring.num); 931 932 END_USE(vq); 933 return NULL; 934 } 935 EXPORT_SYMBOL_GPL(virtqueue_detach_unused_buf); 936 937 irqreturn_t vring_interrupt(int irq, void *_vq) 938 { 939 struct vring_virtqueue *vq = to_vvq(_vq); 940 941 if (!more_used(vq)) { 942 pr_debug("virtqueue interrupt with no work for %p\n", vq); 943 return IRQ_NONE; 944 } 945 946 if (unlikely(vq->broken)) 947 return IRQ_HANDLED; 948 949 pr_debug("virtqueue callback for %p (%p)\n", vq, vq->vq.callback); 950 if (vq->vq.callback) 951 vq->vq.callback(&vq->vq); 952 953 return IRQ_HANDLED; 954 } 955 EXPORT_SYMBOL_GPL(vring_interrupt); 956 957 struct virtqueue *__vring_new_virtqueue(unsigned int index, 958 struct vring vring, 959 struct virtio_device *vdev, 960 bool weak_barriers, 961 bool context, 962 bool (*notify)(struct virtqueue *), 963 void (*callback)(struct virtqueue *), 964 const char *name) 965 { 966 unsigned int i; 967 struct vring_virtqueue *vq; 968 969 vq = kmalloc(sizeof(*vq) + vring.num * sizeof(struct vring_desc_state), 970 GFP_KERNEL); 971 if (!vq) 972 return NULL; 973 974 vq->vring = vring; 975 vq->vq.callback = callback; 976 vq->vq.vdev = vdev; 977 vq->vq.name = name; 978 vq->vq.num_free = vring.num; 979 vq->vq.index = index; 980 vq->we_own_ring = false; 981 vq->queue_dma_addr = 0; 982 vq->queue_size_in_bytes = 0; 983 vq->notify = notify; 984 vq->weak_barriers = weak_barriers; 985 vq->broken = false; 986 vq->last_used_idx = 0; 987 vq->avail_flags_shadow = 0; 988 vq->avail_idx_shadow = 0; 989 vq->num_added = 0; 990 list_add_tail(&vq->vq.list, &vdev->vqs); 991 #ifdef DEBUG 992 vq->in_use = false; 993 vq->last_add_time_valid = false; 994 #endif 995 996 vq->indirect = virtio_has_feature(vdev, VIRTIO_RING_F_INDIRECT_DESC) && 997 !context; 998 vq->event = virtio_has_feature(vdev, VIRTIO_RING_F_EVENT_IDX); 999 1000 /* No callback? Tell other side not to bother us. */ 1001 if (!callback) { 1002 vq->avail_flags_shadow |= VRING_AVAIL_F_NO_INTERRUPT; 1003 if (!vq->event) 1004 vq->vring.avail->flags = cpu_to_virtio16(vdev, vq->avail_flags_shadow); 1005 } 1006 1007 /* Put everything in free lists. */ 1008 vq->free_head = 0; 1009 for (i = 0; i < vring.num-1; i++) 1010 vq->vring.desc[i].next = cpu_to_virtio16(vdev, i + 1); 1011 memset(vq->desc_state, 0, vring.num * sizeof(struct vring_desc_state)); 1012 1013 return &vq->vq; 1014 } 1015 EXPORT_SYMBOL_GPL(__vring_new_virtqueue); 1016 1017 static void *vring_alloc_queue(struct virtio_device *vdev, size_t size, 1018 dma_addr_t *dma_handle, gfp_t flag) 1019 { 1020 if (vring_use_dma_api(vdev)) { 1021 return dma_alloc_coherent(vdev->dev.parent, size, 1022 dma_handle, flag); 1023 } else { 1024 void *queue = alloc_pages_exact(PAGE_ALIGN(size), flag); 1025 if (queue) { 1026 phys_addr_t phys_addr = virt_to_phys(queue); 1027 *dma_handle = (dma_addr_t)phys_addr; 1028 1029 /* 1030 * Sanity check: make sure we dind't truncate 1031 * the address. The only arches I can find that 1032 * have 64-bit phys_addr_t but 32-bit dma_addr_t 1033 * are certain non-highmem MIPS and x86 1034 * configurations, but these configurations 1035 * should never allocate physical pages above 32 1036 * bits, so this is fine. Just in case, throw a 1037 * warning and abort if we end up with an 1038 * unrepresentable address. 1039 */ 1040 if (WARN_ON_ONCE(*dma_handle != phys_addr)) { 1041 free_pages_exact(queue, PAGE_ALIGN(size)); 1042 return NULL; 1043 } 1044 } 1045 return queue; 1046 } 1047 } 1048 1049 static void vring_free_queue(struct virtio_device *vdev, size_t size, 1050 void *queue, dma_addr_t dma_handle) 1051 { 1052 if (vring_use_dma_api(vdev)) { 1053 dma_free_coherent(vdev->dev.parent, size, queue, dma_handle); 1054 } else { 1055 free_pages_exact(queue, PAGE_ALIGN(size)); 1056 } 1057 } 1058 1059 struct virtqueue *vring_create_virtqueue( 1060 unsigned int index, 1061 unsigned int num, 1062 unsigned int vring_align, 1063 struct virtio_device *vdev, 1064 bool weak_barriers, 1065 bool may_reduce_num, 1066 bool context, 1067 bool (*notify)(struct virtqueue *), 1068 void (*callback)(struct virtqueue *), 1069 const char *name) 1070 { 1071 struct virtqueue *vq; 1072 void *queue = NULL; 1073 dma_addr_t dma_addr; 1074 size_t queue_size_in_bytes; 1075 struct vring vring; 1076 1077 /* We assume num is a power of 2. */ 1078 if (num & (num - 1)) { 1079 dev_warn(&vdev->dev, "Bad virtqueue length %u\n", num); 1080 return NULL; 1081 } 1082 1083 /* TODO: allocate each queue chunk individually */ 1084 for (; num && vring_size(num, vring_align) > PAGE_SIZE; num /= 2) { 1085 queue = vring_alloc_queue(vdev, vring_size(num, vring_align), 1086 &dma_addr, 1087 GFP_KERNEL|__GFP_NOWARN|__GFP_ZERO); 1088 if (queue) 1089 break; 1090 } 1091 1092 if (!num) 1093 return NULL; 1094 1095 if (!queue) { 1096 /* Try to get a single page. You are my only hope! */ 1097 queue = vring_alloc_queue(vdev, vring_size(num, vring_align), 1098 &dma_addr, GFP_KERNEL|__GFP_ZERO); 1099 } 1100 if (!queue) 1101 return NULL; 1102 1103 queue_size_in_bytes = vring_size(num, vring_align); 1104 vring_init(&vring, num, queue, vring_align); 1105 1106 vq = __vring_new_virtqueue(index, vring, vdev, weak_barriers, context, 1107 notify, callback, name); 1108 if (!vq) { 1109 vring_free_queue(vdev, queue_size_in_bytes, queue, 1110 dma_addr); 1111 return NULL; 1112 } 1113 1114 to_vvq(vq)->queue_dma_addr = dma_addr; 1115 to_vvq(vq)->queue_size_in_bytes = queue_size_in_bytes; 1116 to_vvq(vq)->we_own_ring = true; 1117 1118 return vq; 1119 } 1120 EXPORT_SYMBOL_GPL(vring_create_virtqueue); 1121 1122 struct virtqueue *vring_new_virtqueue(unsigned int index, 1123 unsigned int num, 1124 unsigned int vring_align, 1125 struct virtio_device *vdev, 1126 bool weak_barriers, 1127 bool context, 1128 void *pages, 1129 bool (*notify)(struct virtqueue *vq), 1130 void (*callback)(struct virtqueue *vq), 1131 const char *name) 1132 { 1133 struct vring vring; 1134 vring_init(&vring, num, pages, vring_align); 1135 return __vring_new_virtqueue(index, vring, vdev, weak_barriers, context, 1136 notify, callback, name); 1137 } 1138 EXPORT_SYMBOL_GPL(vring_new_virtqueue); 1139 1140 void vring_del_virtqueue(struct virtqueue *_vq) 1141 { 1142 struct vring_virtqueue *vq = to_vvq(_vq); 1143 1144 if (vq->we_own_ring) { 1145 vring_free_queue(vq->vq.vdev, vq->queue_size_in_bytes, 1146 vq->vring.desc, vq->queue_dma_addr); 1147 } 1148 list_del(&_vq->list); 1149 kfree(vq); 1150 } 1151 EXPORT_SYMBOL_GPL(vring_del_virtqueue); 1152 1153 /* Manipulates transport-specific feature bits. */ 1154 void vring_transport_features(struct virtio_device *vdev) 1155 { 1156 unsigned int i; 1157 1158 for (i = VIRTIO_TRANSPORT_F_START; i < VIRTIO_TRANSPORT_F_END; i++) { 1159 switch (i) { 1160 case VIRTIO_RING_F_INDIRECT_DESC: 1161 break; 1162 case VIRTIO_RING_F_EVENT_IDX: 1163 break; 1164 case VIRTIO_F_VERSION_1: 1165 break; 1166 case VIRTIO_F_IOMMU_PLATFORM: 1167 break; 1168 default: 1169 /* We don't understand this bit. */ 1170 __virtio_clear_bit(vdev, i); 1171 } 1172 } 1173 } 1174 EXPORT_SYMBOL_GPL(vring_transport_features); 1175 1176 /** 1177 * virtqueue_get_vring_size - return the size of the virtqueue's vring 1178 * @vq: the struct virtqueue containing the vring of interest. 1179 * 1180 * Returns the size of the vring. This is mainly used for boasting to 1181 * userspace. Unlike other operations, this need not be serialized. 1182 */ 1183 unsigned int virtqueue_get_vring_size(struct virtqueue *_vq) 1184 { 1185 1186 struct vring_virtqueue *vq = to_vvq(_vq); 1187 1188 return vq->vring.num; 1189 } 1190 EXPORT_SYMBOL_GPL(virtqueue_get_vring_size); 1191 1192 bool virtqueue_is_broken(struct virtqueue *_vq) 1193 { 1194 struct vring_virtqueue *vq = to_vvq(_vq); 1195 1196 return vq->broken; 1197 } 1198 EXPORT_SYMBOL_GPL(virtqueue_is_broken); 1199 1200 /* 1201 * This should prevent the device from being used, allowing drivers to 1202 * recover. You may need to grab appropriate locks to flush. 1203 */ 1204 void virtio_break_device(struct virtio_device *dev) 1205 { 1206 struct virtqueue *_vq; 1207 1208 list_for_each_entry(_vq, &dev->vqs, list) { 1209 struct vring_virtqueue *vq = to_vvq(_vq); 1210 vq->broken = true; 1211 } 1212 } 1213 EXPORT_SYMBOL_GPL(virtio_break_device); 1214 1215 dma_addr_t virtqueue_get_desc_addr(struct virtqueue *_vq) 1216 { 1217 struct vring_virtqueue *vq = to_vvq(_vq); 1218 1219 BUG_ON(!vq->we_own_ring); 1220 1221 return vq->queue_dma_addr; 1222 } 1223 EXPORT_SYMBOL_GPL(virtqueue_get_desc_addr); 1224 1225 dma_addr_t virtqueue_get_avail_addr(struct virtqueue *_vq) 1226 { 1227 struct vring_virtqueue *vq = to_vvq(_vq); 1228 1229 BUG_ON(!vq->we_own_ring); 1230 1231 return vq->queue_dma_addr + 1232 ((char *)vq->vring.avail - (char *)vq->vring.desc); 1233 } 1234 EXPORT_SYMBOL_GPL(virtqueue_get_avail_addr); 1235 1236 dma_addr_t virtqueue_get_used_addr(struct virtqueue *_vq) 1237 { 1238 struct vring_virtqueue *vq = to_vvq(_vq); 1239 1240 BUG_ON(!vq->we_own_ring); 1241 1242 return vq->queue_dma_addr + 1243 ((char *)vq->vring.used - (char *)vq->vring.desc); 1244 } 1245 EXPORT_SYMBOL_GPL(virtqueue_get_used_addr); 1246 1247 const struct vring *virtqueue_get_vring(struct virtqueue *vq) 1248 { 1249 return &to_vvq(vq)->vring; 1250 } 1251 EXPORT_SYMBOL_GPL(virtqueue_get_vring); 1252 1253 MODULE_LICENSE("GPL"); 1254