xref: /openbmc/linux/drivers/virtio/virtio_ring.c (revision a72b9869)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /* Virtio ring implementation.
3  *
4  *  Copyright 2007 Rusty Russell IBM Corporation
5  */
6 #include <linux/virtio.h>
7 #include <linux/virtio_ring.h>
8 #include <linux/virtio_config.h>
9 #include <linux/device.h>
10 #include <linux/slab.h>
11 #include <linux/module.h>
12 #include <linux/hrtimer.h>
13 #include <linux/dma-mapping.h>
14 #include <linux/kmsan.h>
15 #include <linux/spinlock.h>
16 #include <xen/xen.h>
17 
18 #ifdef DEBUG
19 /* For development, we want to crash whenever the ring is screwed. */
20 #define BAD_RING(_vq, fmt, args...)				\
21 	do {							\
22 		dev_err(&(_vq)->vq.vdev->dev,			\
23 			"%s:"fmt, (_vq)->vq.name, ##args);	\
24 		BUG();						\
25 	} while (0)
26 /* Caller is supposed to guarantee no reentry. */
27 #define START_USE(_vq)						\
28 	do {							\
29 		if ((_vq)->in_use)				\
30 			panic("%s:in_use = %i\n",		\
31 			      (_vq)->vq.name, (_vq)->in_use);	\
32 		(_vq)->in_use = __LINE__;			\
33 	} while (0)
34 #define END_USE(_vq) \
35 	do { BUG_ON(!(_vq)->in_use); (_vq)->in_use = 0; } while(0)
36 #define LAST_ADD_TIME_UPDATE(_vq)				\
37 	do {							\
38 		ktime_t now = ktime_get();			\
39 								\
40 		/* No kick or get, with .1 second between?  Warn. */ \
41 		if ((_vq)->last_add_time_valid)			\
42 			WARN_ON(ktime_to_ms(ktime_sub(now,	\
43 				(_vq)->last_add_time)) > 100);	\
44 		(_vq)->last_add_time = now;			\
45 		(_vq)->last_add_time_valid = true;		\
46 	} while (0)
47 #define LAST_ADD_TIME_CHECK(_vq)				\
48 	do {							\
49 		if ((_vq)->last_add_time_valid) {		\
50 			WARN_ON(ktime_to_ms(ktime_sub(ktime_get(), \
51 				      (_vq)->last_add_time)) > 100); \
52 		}						\
53 	} while (0)
54 #define LAST_ADD_TIME_INVALID(_vq)				\
55 	((_vq)->last_add_time_valid = false)
56 #else
57 #define BAD_RING(_vq, fmt, args...)				\
58 	do {							\
59 		dev_err(&_vq->vq.vdev->dev,			\
60 			"%s:"fmt, (_vq)->vq.name, ##args);	\
61 		(_vq)->broken = true;				\
62 	} while (0)
63 #define START_USE(vq)
64 #define END_USE(vq)
65 #define LAST_ADD_TIME_UPDATE(vq)
66 #define LAST_ADD_TIME_CHECK(vq)
67 #define LAST_ADD_TIME_INVALID(vq)
68 #endif
69 
70 struct vring_desc_state_split {
71 	void *data;			/* Data for callback. */
72 	struct vring_desc *indir_desc;	/* Indirect descriptor, if any. */
73 };
74 
75 struct vring_desc_state_packed {
76 	void *data;			/* Data for callback. */
77 	struct vring_packed_desc *indir_desc; /* Indirect descriptor, if any. */
78 	u16 num;			/* Descriptor list length. */
79 	u16 last;			/* The last desc state in a list. */
80 };
81 
82 struct vring_desc_extra {
83 	dma_addr_t addr;		/* Descriptor DMA addr. */
84 	u32 len;			/* Descriptor length. */
85 	u16 flags;			/* Descriptor flags. */
86 	u16 next;			/* The next desc state in a list. */
87 };
88 
89 struct vring_virtqueue_split {
90 	/* Actual memory layout for this queue. */
91 	struct vring vring;
92 
93 	/* Last written value to avail->flags */
94 	u16 avail_flags_shadow;
95 
96 	/*
97 	 * Last written value to avail->idx in
98 	 * guest byte order.
99 	 */
100 	u16 avail_idx_shadow;
101 
102 	/* Per-descriptor state. */
103 	struct vring_desc_state_split *desc_state;
104 	struct vring_desc_extra *desc_extra;
105 
106 	/* DMA address and size information */
107 	dma_addr_t queue_dma_addr;
108 	size_t queue_size_in_bytes;
109 
110 	/*
111 	 * The parameters for creating vrings are reserved for creating new
112 	 * vring.
113 	 */
114 	u32 vring_align;
115 	bool may_reduce_num;
116 };
117 
118 struct vring_virtqueue_packed {
119 	/* Actual memory layout for this queue. */
120 	struct {
121 		unsigned int num;
122 		struct vring_packed_desc *desc;
123 		struct vring_packed_desc_event *driver;
124 		struct vring_packed_desc_event *device;
125 	} vring;
126 
127 	/* Driver ring wrap counter. */
128 	bool avail_wrap_counter;
129 
130 	/* Avail used flags. */
131 	u16 avail_used_flags;
132 
133 	/* Index of the next avail descriptor. */
134 	u16 next_avail_idx;
135 
136 	/*
137 	 * Last written value to driver->flags in
138 	 * guest byte order.
139 	 */
140 	u16 event_flags_shadow;
141 
142 	/* Per-descriptor state. */
143 	struct vring_desc_state_packed *desc_state;
144 	struct vring_desc_extra *desc_extra;
145 
146 	/* DMA address and size information */
147 	dma_addr_t ring_dma_addr;
148 	dma_addr_t driver_event_dma_addr;
149 	dma_addr_t device_event_dma_addr;
150 	size_t ring_size_in_bytes;
151 	size_t event_size_in_bytes;
152 };
153 
154 struct vring_virtqueue {
155 	struct virtqueue vq;
156 
157 	/* Is this a packed ring? */
158 	bool packed_ring;
159 
160 	/* Is DMA API used? */
161 	bool use_dma_api;
162 
163 	/* Can we use weak barriers? */
164 	bool weak_barriers;
165 
166 	/* Other side has made a mess, don't try any more. */
167 	bool broken;
168 
169 	/* Host supports indirect buffers */
170 	bool indirect;
171 
172 	/* Host publishes avail event idx */
173 	bool event;
174 
175 	/* Head of free buffer list. */
176 	unsigned int free_head;
177 	/* Number we've added since last sync. */
178 	unsigned int num_added;
179 
180 	/* Last used index  we've seen.
181 	 * for split ring, it just contains last used index
182 	 * for packed ring:
183 	 * bits up to VRING_PACKED_EVENT_F_WRAP_CTR include the last used index.
184 	 * bits from VRING_PACKED_EVENT_F_WRAP_CTR include the used wrap counter.
185 	 */
186 	u16 last_used_idx;
187 
188 	/* Hint for event idx: already triggered no need to disable. */
189 	bool event_triggered;
190 
191 	union {
192 		/* Available for split ring */
193 		struct vring_virtqueue_split split;
194 
195 		/* Available for packed ring */
196 		struct vring_virtqueue_packed packed;
197 	};
198 
199 	/* How to notify other side. FIXME: commonalize hcalls! */
200 	bool (*notify)(struct virtqueue *vq);
201 
202 	/* DMA, allocation, and size information */
203 	bool we_own_ring;
204 
205 	/* Device used for doing DMA */
206 	struct device *dma_dev;
207 
208 #ifdef DEBUG
209 	/* They're supposed to lock for us. */
210 	unsigned int in_use;
211 
212 	/* Figure out if their kicks are too delayed. */
213 	bool last_add_time_valid;
214 	ktime_t last_add_time;
215 #endif
216 };
217 
218 static struct virtqueue *__vring_new_virtqueue(unsigned int index,
219 					       struct vring_virtqueue_split *vring_split,
220 					       struct virtio_device *vdev,
221 					       bool weak_barriers,
222 					       bool context,
223 					       bool (*notify)(struct virtqueue *),
224 					       void (*callback)(struct virtqueue *),
225 					       const char *name,
226 					       struct device *dma_dev);
227 static struct vring_desc_extra *vring_alloc_desc_extra(unsigned int num);
228 static void vring_free(struct virtqueue *_vq);
229 
230 /*
231  * Helpers.
232  */
233 
234 #define to_vvq(_vq) container_of(_vq, struct vring_virtqueue, vq)
235 
236 static inline bool virtqueue_use_indirect(struct vring_virtqueue *vq,
237 					  unsigned int total_sg)
238 {
239 	/*
240 	 * If the host supports indirect descriptor tables, and we have multiple
241 	 * buffers, then go indirect. FIXME: tune this threshold
242 	 */
243 	return (vq->indirect && total_sg > 1 && vq->vq.num_free);
244 }
245 
246 /*
247  * Modern virtio devices have feature bits to specify whether they need a
248  * quirk and bypass the IOMMU. If not there, just use the DMA API.
249  *
250  * If there, the interaction between virtio and DMA API is messy.
251  *
252  * On most systems with virtio, physical addresses match bus addresses,
253  * and it doesn't particularly matter whether we use the DMA API.
254  *
255  * On some systems, including Xen and any system with a physical device
256  * that speaks virtio behind a physical IOMMU, we must use the DMA API
257  * for virtio DMA to work at all.
258  *
259  * On other systems, including SPARC and PPC64, virtio-pci devices are
260  * enumerated as though they are behind an IOMMU, but the virtio host
261  * ignores the IOMMU, so we must either pretend that the IOMMU isn't
262  * there or somehow map everything as the identity.
263  *
264  * For the time being, we preserve historic behavior and bypass the DMA
265  * API.
266  *
267  * TODO: install a per-device DMA ops structure that does the right thing
268  * taking into account all the above quirks, and use the DMA API
269  * unconditionally on data path.
270  */
271 
272 static bool vring_use_dma_api(struct virtio_device *vdev)
273 {
274 	if (!virtio_has_dma_quirk(vdev))
275 		return true;
276 
277 	/* Otherwise, we are left to guess. */
278 	/*
279 	 * In theory, it's possible to have a buggy QEMU-supposed
280 	 * emulated Q35 IOMMU and Xen enabled at the same time.  On
281 	 * such a configuration, virtio has never worked and will
282 	 * not work without an even larger kludge.  Instead, enable
283 	 * the DMA API if we're a Xen guest, which at least allows
284 	 * all of the sensible Xen configurations to work correctly.
285 	 */
286 	if (xen_domain())
287 		return true;
288 
289 	return false;
290 }
291 
292 size_t virtio_max_dma_size(struct virtio_device *vdev)
293 {
294 	size_t max_segment_size = SIZE_MAX;
295 
296 	if (vring_use_dma_api(vdev))
297 		max_segment_size = dma_max_mapping_size(vdev->dev.parent);
298 
299 	return max_segment_size;
300 }
301 EXPORT_SYMBOL_GPL(virtio_max_dma_size);
302 
303 static void *vring_alloc_queue(struct virtio_device *vdev, size_t size,
304 			       dma_addr_t *dma_handle, gfp_t flag,
305 			       struct device *dma_dev)
306 {
307 	if (vring_use_dma_api(vdev)) {
308 		return dma_alloc_coherent(dma_dev, size,
309 					  dma_handle, flag);
310 	} else {
311 		void *queue = alloc_pages_exact(PAGE_ALIGN(size), flag);
312 
313 		if (queue) {
314 			phys_addr_t phys_addr = virt_to_phys(queue);
315 			*dma_handle = (dma_addr_t)phys_addr;
316 
317 			/*
318 			 * Sanity check: make sure we dind't truncate
319 			 * the address.  The only arches I can find that
320 			 * have 64-bit phys_addr_t but 32-bit dma_addr_t
321 			 * are certain non-highmem MIPS and x86
322 			 * configurations, but these configurations
323 			 * should never allocate physical pages above 32
324 			 * bits, so this is fine.  Just in case, throw a
325 			 * warning and abort if we end up with an
326 			 * unrepresentable address.
327 			 */
328 			if (WARN_ON_ONCE(*dma_handle != phys_addr)) {
329 				free_pages_exact(queue, PAGE_ALIGN(size));
330 				return NULL;
331 			}
332 		}
333 		return queue;
334 	}
335 }
336 
337 static void vring_free_queue(struct virtio_device *vdev, size_t size,
338 			     void *queue, dma_addr_t dma_handle,
339 			     struct device *dma_dev)
340 {
341 	if (vring_use_dma_api(vdev))
342 		dma_free_coherent(dma_dev, size, queue, dma_handle);
343 	else
344 		free_pages_exact(queue, PAGE_ALIGN(size));
345 }
346 
347 /*
348  * The DMA ops on various arches are rather gnarly right now, and
349  * making all of the arch DMA ops work on the vring device itself
350  * is a mess.
351  */
352 static inline struct device *vring_dma_dev(const struct vring_virtqueue *vq)
353 {
354 	return vq->dma_dev;
355 }
356 
357 /* Map one sg entry. */
358 static dma_addr_t vring_map_one_sg(const struct vring_virtqueue *vq,
359 				   struct scatterlist *sg,
360 				   enum dma_data_direction direction)
361 {
362 	if (!vq->use_dma_api) {
363 		/*
364 		 * If DMA is not used, KMSAN doesn't know that the scatterlist
365 		 * is initialized by the hardware. Explicitly check/unpoison it
366 		 * depending on the direction.
367 		 */
368 		kmsan_handle_dma(sg_page(sg), sg->offset, sg->length, direction);
369 		return (dma_addr_t)sg_phys(sg);
370 	}
371 
372 	/*
373 	 * We can't use dma_map_sg, because we don't use scatterlists in
374 	 * the way it expects (we don't guarantee that the scatterlist
375 	 * will exist for the lifetime of the mapping).
376 	 */
377 	return dma_map_page(vring_dma_dev(vq),
378 			    sg_page(sg), sg->offset, sg->length,
379 			    direction);
380 }
381 
382 static dma_addr_t vring_map_single(const struct vring_virtqueue *vq,
383 				   void *cpu_addr, size_t size,
384 				   enum dma_data_direction direction)
385 {
386 	if (!vq->use_dma_api)
387 		return (dma_addr_t)virt_to_phys(cpu_addr);
388 
389 	return dma_map_single(vring_dma_dev(vq),
390 			      cpu_addr, size, direction);
391 }
392 
393 static int vring_mapping_error(const struct vring_virtqueue *vq,
394 			       dma_addr_t addr)
395 {
396 	if (!vq->use_dma_api)
397 		return 0;
398 
399 	return dma_mapping_error(vring_dma_dev(vq), addr);
400 }
401 
402 static void virtqueue_init(struct vring_virtqueue *vq, u32 num)
403 {
404 	vq->vq.num_free = num;
405 
406 	if (vq->packed_ring)
407 		vq->last_used_idx = 0 | (1 << VRING_PACKED_EVENT_F_WRAP_CTR);
408 	else
409 		vq->last_used_idx = 0;
410 
411 	vq->event_triggered = false;
412 	vq->num_added = 0;
413 
414 #ifdef DEBUG
415 	vq->in_use = false;
416 	vq->last_add_time_valid = false;
417 #endif
418 }
419 
420 
421 /*
422  * Split ring specific functions - *_split().
423  */
424 
425 static void vring_unmap_one_split_indirect(const struct vring_virtqueue *vq,
426 					   struct vring_desc *desc)
427 {
428 	u16 flags;
429 
430 	if (!vq->use_dma_api)
431 		return;
432 
433 	flags = virtio16_to_cpu(vq->vq.vdev, desc->flags);
434 
435 	dma_unmap_page(vring_dma_dev(vq),
436 		       virtio64_to_cpu(vq->vq.vdev, desc->addr),
437 		       virtio32_to_cpu(vq->vq.vdev, desc->len),
438 		       (flags & VRING_DESC_F_WRITE) ?
439 		       DMA_FROM_DEVICE : DMA_TO_DEVICE);
440 }
441 
442 static unsigned int vring_unmap_one_split(const struct vring_virtqueue *vq,
443 					  unsigned int i)
444 {
445 	struct vring_desc_extra *extra = vq->split.desc_extra;
446 	u16 flags;
447 
448 	if (!vq->use_dma_api)
449 		goto out;
450 
451 	flags = extra[i].flags;
452 
453 	if (flags & VRING_DESC_F_INDIRECT) {
454 		dma_unmap_single(vring_dma_dev(vq),
455 				 extra[i].addr,
456 				 extra[i].len,
457 				 (flags & VRING_DESC_F_WRITE) ?
458 				 DMA_FROM_DEVICE : DMA_TO_DEVICE);
459 	} else {
460 		dma_unmap_page(vring_dma_dev(vq),
461 			       extra[i].addr,
462 			       extra[i].len,
463 			       (flags & VRING_DESC_F_WRITE) ?
464 			       DMA_FROM_DEVICE : DMA_TO_DEVICE);
465 	}
466 
467 out:
468 	return extra[i].next;
469 }
470 
471 static struct vring_desc *alloc_indirect_split(struct virtqueue *_vq,
472 					       unsigned int total_sg,
473 					       gfp_t gfp)
474 {
475 	struct vring_desc *desc;
476 	unsigned int i;
477 
478 	/*
479 	 * We require lowmem mappings for the descriptors because
480 	 * otherwise virt_to_phys will give us bogus addresses in the
481 	 * virtqueue.
482 	 */
483 	gfp &= ~__GFP_HIGHMEM;
484 
485 	desc = kmalloc_array(total_sg, sizeof(struct vring_desc), gfp);
486 	if (!desc)
487 		return NULL;
488 
489 	for (i = 0; i < total_sg; i++)
490 		desc[i].next = cpu_to_virtio16(_vq->vdev, i + 1);
491 	return desc;
492 }
493 
494 static inline unsigned int virtqueue_add_desc_split(struct virtqueue *vq,
495 						    struct vring_desc *desc,
496 						    unsigned int i,
497 						    dma_addr_t addr,
498 						    unsigned int len,
499 						    u16 flags,
500 						    bool indirect)
501 {
502 	struct vring_virtqueue *vring = to_vvq(vq);
503 	struct vring_desc_extra *extra = vring->split.desc_extra;
504 	u16 next;
505 
506 	desc[i].flags = cpu_to_virtio16(vq->vdev, flags);
507 	desc[i].addr = cpu_to_virtio64(vq->vdev, addr);
508 	desc[i].len = cpu_to_virtio32(vq->vdev, len);
509 
510 	if (!indirect) {
511 		next = extra[i].next;
512 		desc[i].next = cpu_to_virtio16(vq->vdev, next);
513 
514 		extra[i].addr = addr;
515 		extra[i].len = len;
516 		extra[i].flags = flags;
517 	} else
518 		next = virtio16_to_cpu(vq->vdev, desc[i].next);
519 
520 	return next;
521 }
522 
523 static inline int virtqueue_add_split(struct virtqueue *_vq,
524 				      struct scatterlist *sgs[],
525 				      unsigned int total_sg,
526 				      unsigned int out_sgs,
527 				      unsigned int in_sgs,
528 				      void *data,
529 				      void *ctx,
530 				      gfp_t gfp)
531 {
532 	struct vring_virtqueue *vq = to_vvq(_vq);
533 	struct scatterlist *sg;
534 	struct vring_desc *desc;
535 	unsigned int i, n, avail, descs_used, prev, err_idx;
536 	int head;
537 	bool indirect;
538 
539 	START_USE(vq);
540 
541 	BUG_ON(data == NULL);
542 	BUG_ON(ctx && vq->indirect);
543 
544 	if (unlikely(vq->broken)) {
545 		END_USE(vq);
546 		return -EIO;
547 	}
548 
549 	LAST_ADD_TIME_UPDATE(vq);
550 
551 	BUG_ON(total_sg == 0);
552 
553 	head = vq->free_head;
554 
555 	if (virtqueue_use_indirect(vq, total_sg))
556 		desc = alloc_indirect_split(_vq, total_sg, gfp);
557 	else {
558 		desc = NULL;
559 		WARN_ON_ONCE(total_sg > vq->split.vring.num && !vq->indirect);
560 	}
561 
562 	if (desc) {
563 		/* Use a single buffer which doesn't continue */
564 		indirect = true;
565 		/* Set up rest to use this indirect table. */
566 		i = 0;
567 		descs_used = 1;
568 	} else {
569 		indirect = false;
570 		desc = vq->split.vring.desc;
571 		i = head;
572 		descs_used = total_sg;
573 	}
574 
575 	if (unlikely(vq->vq.num_free < descs_used)) {
576 		pr_debug("Can't add buf len %i - avail = %i\n",
577 			 descs_used, vq->vq.num_free);
578 		/* FIXME: for historical reasons, we force a notify here if
579 		 * there are outgoing parts to the buffer.  Presumably the
580 		 * host should service the ring ASAP. */
581 		if (out_sgs)
582 			vq->notify(&vq->vq);
583 		if (indirect)
584 			kfree(desc);
585 		END_USE(vq);
586 		return -ENOSPC;
587 	}
588 
589 	for (n = 0; n < out_sgs; n++) {
590 		for (sg = sgs[n]; sg; sg = sg_next(sg)) {
591 			dma_addr_t addr = vring_map_one_sg(vq, sg, DMA_TO_DEVICE);
592 			if (vring_mapping_error(vq, addr))
593 				goto unmap_release;
594 
595 			prev = i;
596 			/* Note that we trust indirect descriptor
597 			 * table since it use stream DMA mapping.
598 			 */
599 			i = virtqueue_add_desc_split(_vq, desc, i, addr, sg->length,
600 						     VRING_DESC_F_NEXT,
601 						     indirect);
602 		}
603 	}
604 	for (; n < (out_sgs + in_sgs); n++) {
605 		for (sg = sgs[n]; sg; sg = sg_next(sg)) {
606 			dma_addr_t addr = vring_map_one_sg(vq, sg, DMA_FROM_DEVICE);
607 			if (vring_mapping_error(vq, addr))
608 				goto unmap_release;
609 
610 			prev = i;
611 			/* Note that we trust indirect descriptor
612 			 * table since it use stream DMA mapping.
613 			 */
614 			i = virtqueue_add_desc_split(_vq, desc, i, addr,
615 						     sg->length,
616 						     VRING_DESC_F_NEXT |
617 						     VRING_DESC_F_WRITE,
618 						     indirect);
619 		}
620 	}
621 	/* Last one doesn't continue. */
622 	desc[prev].flags &= cpu_to_virtio16(_vq->vdev, ~VRING_DESC_F_NEXT);
623 	if (!indirect && vq->use_dma_api)
624 		vq->split.desc_extra[prev & (vq->split.vring.num - 1)].flags &=
625 			~VRING_DESC_F_NEXT;
626 
627 	if (indirect) {
628 		/* Now that the indirect table is filled in, map it. */
629 		dma_addr_t addr = vring_map_single(
630 			vq, desc, total_sg * sizeof(struct vring_desc),
631 			DMA_TO_DEVICE);
632 		if (vring_mapping_error(vq, addr))
633 			goto unmap_release;
634 
635 		virtqueue_add_desc_split(_vq, vq->split.vring.desc,
636 					 head, addr,
637 					 total_sg * sizeof(struct vring_desc),
638 					 VRING_DESC_F_INDIRECT,
639 					 false);
640 	}
641 
642 	/* We're using some buffers from the free list. */
643 	vq->vq.num_free -= descs_used;
644 
645 	/* Update free pointer */
646 	if (indirect)
647 		vq->free_head = vq->split.desc_extra[head].next;
648 	else
649 		vq->free_head = i;
650 
651 	/* Store token and indirect buffer state. */
652 	vq->split.desc_state[head].data = data;
653 	if (indirect)
654 		vq->split.desc_state[head].indir_desc = desc;
655 	else
656 		vq->split.desc_state[head].indir_desc = ctx;
657 
658 	/* Put entry in available array (but don't update avail->idx until they
659 	 * do sync). */
660 	avail = vq->split.avail_idx_shadow & (vq->split.vring.num - 1);
661 	vq->split.vring.avail->ring[avail] = cpu_to_virtio16(_vq->vdev, head);
662 
663 	/* Descriptors and available array need to be set before we expose the
664 	 * new available array entries. */
665 	virtio_wmb(vq->weak_barriers);
666 	vq->split.avail_idx_shadow++;
667 	vq->split.vring.avail->idx = cpu_to_virtio16(_vq->vdev,
668 						vq->split.avail_idx_shadow);
669 	vq->num_added++;
670 
671 	pr_debug("Added buffer head %i to %p\n", head, vq);
672 	END_USE(vq);
673 
674 	/* This is very unlikely, but theoretically possible.  Kick
675 	 * just in case. */
676 	if (unlikely(vq->num_added == (1 << 16) - 1))
677 		virtqueue_kick(_vq);
678 
679 	return 0;
680 
681 unmap_release:
682 	err_idx = i;
683 
684 	if (indirect)
685 		i = 0;
686 	else
687 		i = head;
688 
689 	for (n = 0; n < total_sg; n++) {
690 		if (i == err_idx)
691 			break;
692 		if (indirect) {
693 			vring_unmap_one_split_indirect(vq, &desc[i]);
694 			i = virtio16_to_cpu(_vq->vdev, desc[i].next);
695 		} else
696 			i = vring_unmap_one_split(vq, i);
697 	}
698 
699 	if (indirect)
700 		kfree(desc);
701 
702 	END_USE(vq);
703 	return -ENOMEM;
704 }
705 
706 static bool virtqueue_kick_prepare_split(struct virtqueue *_vq)
707 {
708 	struct vring_virtqueue *vq = to_vvq(_vq);
709 	u16 new, old;
710 	bool needs_kick;
711 
712 	START_USE(vq);
713 	/* We need to expose available array entries before checking avail
714 	 * event. */
715 	virtio_mb(vq->weak_barriers);
716 
717 	old = vq->split.avail_idx_shadow - vq->num_added;
718 	new = vq->split.avail_idx_shadow;
719 	vq->num_added = 0;
720 
721 	LAST_ADD_TIME_CHECK(vq);
722 	LAST_ADD_TIME_INVALID(vq);
723 
724 	if (vq->event) {
725 		needs_kick = vring_need_event(virtio16_to_cpu(_vq->vdev,
726 					vring_avail_event(&vq->split.vring)),
727 					      new, old);
728 	} else {
729 		needs_kick = !(vq->split.vring.used->flags &
730 					cpu_to_virtio16(_vq->vdev,
731 						VRING_USED_F_NO_NOTIFY));
732 	}
733 	END_USE(vq);
734 	return needs_kick;
735 }
736 
737 static void detach_buf_split(struct vring_virtqueue *vq, unsigned int head,
738 			     void **ctx)
739 {
740 	unsigned int i, j;
741 	__virtio16 nextflag = cpu_to_virtio16(vq->vq.vdev, VRING_DESC_F_NEXT);
742 
743 	/* Clear data ptr. */
744 	vq->split.desc_state[head].data = NULL;
745 
746 	/* Put back on free list: unmap first-level descriptors and find end */
747 	i = head;
748 
749 	while (vq->split.vring.desc[i].flags & nextflag) {
750 		vring_unmap_one_split(vq, i);
751 		i = vq->split.desc_extra[i].next;
752 		vq->vq.num_free++;
753 	}
754 
755 	vring_unmap_one_split(vq, i);
756 	vq->split.desc_extra[i].next = vq->free_head;
757 	vq->free_head = head;
758 
759 	/* Plus final descriptor */
760 	vq->vq.num_free++;
761 
762 	if (vq->indirect) {
763 		struct vring_desc *indir_desc =
764 				vq->split.desc_state[head].indir_desc;
765 		u32 len;
766 
767 		/* Free the indirect table, if any, now that it's unmapped. */
768 		if (!indir_desc)
769 			return;
770 
771 		len = vq->split.desc_extra[head].len;
772 
773 		BUG_ON(!(vq->split.desc_extra[head].flags &
774 				VRING_DESC_F_INDIRECT));
775 		BUG_ON(len == 0 || len % sizeof(struct vring_desc));
776 
777 		for (j = 0; j < len / sizeof(struct vring_desc); j++)
778 			vring_unmap_one_split_indirect(vq, &indir_desc[j]);
779 
780 		kfree(indir_desc);
781 		vq->split.desc_state[head].indir_desc = NULL;
782 	} else if (ctx) {
783 		*ctx = vq->split.desc_state[head].indir_desc;
784 	}
785 }
786 
787 static inline bool more_used_split(const struct vring_virtqueue *vq)
788 {
789 	return vq->last_used_idx != virtio16_to_cpu(vq->vq.vdev,
790 			vq->split.vring.used->idx);
791 }
792 
793 static void *virtqueue_get_buf_ctx_split(struct virtqueue *_vq,
794 					 unsigned int *len,
795 					 void **ctx)
796 {
797 	struct vring_virtqueue *vq = to_vvq(_vq);
798 	void *ret;
799 	unsigned int i;
800 	u16 last_used;
801 
802 	START_USE(vq);
803 
804 	if (unlikely(vq->broken)) {
805 		END_USE(vq);
806 		return NULL;
807 	}
808 
809 	if (!more_used_split(vq)) {
810 		pr_debug("No more buffers in queue\n");
811 		END_USE(vq);
812 		return NULL;
813 	}
814 
815 	/* Only get used array entries after they have been exposed by host. */
816 	virtio_rmb(vq->weak_barriers);
817 
818 	last_used = (vq->last_used_idx & (vq->split.vring.num - 1));
819 	i = virtio32_to_cpu(_vq->vdev,
820 			vq->split.vring.used->ring[last_used].id);
821 	*len = virtio32_to_cpu(_vq->vdev,
822 			vq->split.vring.used->ring[last_used].len);
823 
824 	if (unlikely(i >= vq->split.vring.num)) {
825 		BAD_RING(vq, "id %u out of range\n", i);
826 		return NULL;
827 	}
828 	if (unlikely(!vq->split.desc_state[i].data)) {
829 		BAD_RING(vq, "id %u is not a head!\n", i);
830 		return NULL;
831 	}
832 
833 	/* detach_buf_split clears data, so grab it now. */
834 	ret = vq->split.desc_state[i].data;
835 	detach_buf_split(vq, i, ctx);
836 	vq->last_used_idx++;
837 	/* If we expect an interrupt for the next entry, tell host
838 	 * by writing event index and flush out the write before
839 	 * the read in the next get_buf call. */
840 	if (!(vq->split.avail_flags_shadow & VRING_AVAIL_F_NO_INTERRUPT))
841 		virtio_store_mb(vq->weak_barriers,
842 				&vring_used_event(&vq->split.vring),
843 				cpu_to_virtio16(_vq->vdev, vq->last_used_idx));
844 
845 	LAST_ADD_TIME_INVALID(vq);
846 
847 	END_USE(vq);
848 	return ret;
849 }
850 
851 static void virtqueue_disable_cb_split(struct virtqueue *_vq)
852 {
853 	struct vring_virtqueue *vq = to_vvq(_vq);
854 
855 	if (!(vq->split.avail_flags_shadow & VRING_AVAIL_F_NO_INTERRUPT)) {
856 		vq->split.avail_flags_shadow |= VRING_AVAIL_F_NO_INTERRUPT;
857 		if (vq->event)
858 			/* TODO: this is a hack. Figure out a cleaner value to write. */
859 			vring_used_event(&vq->split.vring) = 0x0;
860 		else
861 			vq->split.vring.avail->flags =
862 				cpu_to_virtio16(_vq->vdev,
863 						vq->split.avail_flags_shadow);
864 	}
865 }
866 
867 static unsigned int virtqueue_enable_cb_prepare_split(struct virtqueue *_vq)
868 {
869 	struct vring_virtqueue *vq = to_vvq(_vq);
870 	u16 last_used_idx;
871 
872 	START_USE(vq);
873 
874 	/* We optimistically turn back on interrupts, then check if there was
875 	 * more to do. */
876 	/* Depending on the VIRTIO_RING_F_EVENT_IDX feature, we need to
877 	 * either clear the flags bit or point the event index at the next
878 	 * entry. Always do both to keep code simple. */
879 	if (vq->split.avail_flags_shadow & VRING_AVAIL_F_NO_INTERRUPT) {
880 		vq->split.avail_flags_shadow &= ~VRING_AVAIL_F_NO_INTERRUPT;
881 		if (!vq->event)
882 			vq->split.vring.avail->flags =
883 				cpu_to_virtio16(_vq->vdev,
884 						vq->split.avail_flags_shadow);
885 	}
886 	vring_used_event(&vq->split.vring) = cpu_to_virtio16(_vq->vdev,
887 			last_used_idx = vq->last_used_idx);
888 	END_USE(vq);
889 	return last_used_idx;
890 }
891 
892 static bool virtqueue_poll_split(struct virtqueue *_vq, unsigned int last_used_idx)
893 {
894 	struct vring_virtqueue *vq = to_vvq(_vq);
895 
896 	return (u16)last_used_idx != virtio16_to_cpu(_vq->vdev,
897 			vq->split.vring.used->idx);
898 }
899 
900 static bool virtqueue_enable_cb_delayed_split(struct virtqueue *_vq)
901 {
902 	struct vring_virtqueue *vq = to_vvq(_vq);
903 	u16 bufs;
904 
905 	START_USE(vq);
906 
907 	/* We optimistically turn back on interrupts, then check if there was
908 	 * more to do. */
909 	/* Depending on the VIRTIO_RING_F_USED_EVENT_IDX feature, we need to
910 	 * either clear the flags bit or point the event index at the next
911 	 * entry. Always update the event index to keep code simple. */
912 	if (vq->split.avail_flags_shadow & VRING_AVAIL_F_NO_INTERRUPT) {
913 		vq->split.avail_flags_shadow &= ~VRING_AVAIL_F_NO_INTERRUPT;
914 		if (!vq->event)
915 			vq->split.vring.avail->flags =
916 				cpu_to_virtio16(_vq->vdev,
917 						vq->split.avail_flags_shadow);
918 	}
919 	/* TODO: tune this threshold */
920 	bufs = (u16)(vq->split.avail_idx_shadow - vq->last_used_idx) * 3 / 4;
921 
922 	virtio_store_mb(vq->weak_barriers,
923 			&vring_used_event(&vq->split.vring),
924 			cpu_to_virtio16(_vq->vdev, vq->last_used_idx + bufs));
925 
926 	if (unlikely((u16)(virtio16_to_cpu(_vq->vdev, vq->split.vring.used->idx)
927 					- vq->last_used_idx) > bufs)) {
928 		END_USE(vq);
929 		return false;
930 	}
931 
932 	END_USE(vq);
933 	return true;
934 }
935 
936 static void *virtqueue_detach_unused_buf_split(struct virtqueue *_vq)
937 {
938 	struct vring_virtqueue *vq = to_vvq(_vq);
939 	unsigned int i;
940 	void *buf;
941 
942 	START_USE(vq);
943 
944 	for (i = 0; i < vq->split.vring.num; i++) {
945 		if (!vq->split.desc_state[i].data)
946 			continue;
947 		/* detach_buf_split clears data, so grab it now. */
948 		buf = vq->split.desc_state[i].data;
949 		detach_buf_split(vq, i, NULL);
950 		vq->split.avail_idx_shadow--;
951 		vq->split.vring.avail->idx = cpu_to_virtio16(_vq->vdev,
952 				vq->split.avail_idx_shadow);
953 		END_USE(vq);
954 		return buf;
955 	}
956 	/* That should have freed everything. */
957 	BUG_ON(vq->vq.num_free != vq->split.vring.num);
958 
959 	END_USE(vq);
960 	return NULL;
961 }
962 
963 static void virtqueue_vring_init_split(struct vring_virtqueue_split *vring_split,
964 				       struct vring_virtqueue *vq)
965 {
966 	struct virtio_device *vdev;
967 
968 	vdev = vq->vq.vdev;
969 
970 	vring_split->avail_flags_shadow = 0;
971 	vring_split->avail_idx_shadow = 0;
972 
973 	/* No callback?  Tell other side not to bother us. */
974 	if (!vq->vq.callback) {
975 		vring_split->avail_flags_shadow |= VRING_AVAIL_F_NO_INTERRUPT;
976 		if (!vq->event)
977 			vring_split->vring.avail->flags = cpu_to_virtio16(vdev,
978 					vring_split->avail_flags_shadow);
979 	}
980 }
981 
982 static void virtqueue_reinit_split(struct vring_virtqueue *vq)
983 {
984 	int num;
985 
986 	num = vq->split.vring.num;
987 
988 	vq->split.vring.avail->flags = 0;
989 	vq->split.vring.avail->idx = 0;
990 
991 	/* reset avail event */
992 	vq->split.vring.avail->ring[num] = 0;
993 
994 	vq->split.vring.used->flags = 0;
995 	vq->split.vring.used->idx = 0;
996 
997 	/* reset used event */
998 	*(__virtio16 *)&(vq->split.vring.used->ring[num]) = 0;
999 
1000 	virtqueue_init(vq, num);
1001 
1002 	virtqueue_vring_init_split(&vq->split, vq);
1003 }
1004 
1005 static void virtqueue_vring_attach_split(struct vring_virtqueue *vq,
1006 					 struct vring_virtqueue_split *vring_split)
1007 {
1008 	vq->split = *vring_split;
1009 
1010 	/* Put everything in free lists. */
1011 	vq->free_head = 0;
1012 }
1013 
1014 static int vring_alloc_state_extra_split(struct vring_virtqueue_split *vring_split)
1015 {
1016 	struct vring_desc_state_split *state;
1017 	struct vring_desc_extra *extra;
1018 	u32 num = vring_split->vring.num;
1019 
1020 	state = kmalloc_array(num, sizeof(struct vring_desc_state_split), GFP_KERNEL);
1021 	if (!state)
1022 		goto err_state;
1023 
1024 	extra = vring_alloc_desc_extra(num);
1025 	if (!extra)
1026 		goto err_extra;
1027 
1028 	memset(state, 0, num * sizeof(struct vring_desc_state_split));
1029 
1030 	vring_split->desc_state = state;
1031 	vring_split->desc_extra = extra;
1032 	return 0;
1033 
1034 err_extra:
1035 	kfree(state);
1036 err_state:
1037 	return -ENOMEM;
1038 }
1039 
1040 static void vring_free_split(struct vring_virtqueue_split *vring_split,
1041 			     struct virtio_device *vdev, struct device *dma_dev)
1042 {
1043 	vring_free_queue(vdev, vring_split->queue_size_in_bytes,
1044 			 vring_split->vring.desc,
1045 			 vring_split->queue_dma_addr,
1046 			 dma_dev);
1047 
1048 	kfree(vring_split->desc_state);
1049 	kfree(vring_split->desc_extra);
1050 }
1051 
1052 static int vring_alloc_queue_split(struct vring_virtqueue_split *vring_split,
1053 				   struct virtio_device *vdev,
1054 				   u32 num,
1055 				   unsigned int vring_align,
1056 				   bool may_reduce_num,
1057 				   struct device *dma_dev)
1058 {
1059 	void *queue = NULL;
1060 	dma_addr_t dma_addr;
1061 
1062 	/* We assume num is a power of 2. */
1063 	if (!is_power_of_2(num)) {
1064 		dev_warn(&vdev->dev, "Bad virtqueue length %u\n", num);
1065 		return -EINVAL;
1066 	}
1067 
1068 	/* TODO: allocate each queue chunk individually */
1069 	for (; num && vring_size(num, vring_align) > PAGE_SIZE; num /= 2) {
1070 		queue = vring_alloc_queue(vdev, vring_size(num, vring_align),
1071 					  &dma_addr,
1072 					  GFP_KERNEL | __GFP_NOWARN | __GFP_ZERO,
1073 					  dma_dev);
1074 		if (queue)
1075 			break;
1076 		if (!may_reduce_num)
1077 			return -ENOMEM;
1078 	}
1079 
1080 	if (!num)
1081 		return -ENOMEM;
1082 
1083 	if (!queue) {
1084 		/* Try to get a single page. You are my only hope! */
1085 		queue = vring_alloc_queue(vdev, vring_size(num, vring_align),
1086 					  &dma_addr, GFP_KERNEL | __GFP_ZERO,
1087 					  dma_dev);
1088 	}
1089 	if (!queue)
1090 		return -ENOMEM;
1091 
1092 	vring_init(&vring_split->vring, num, queue, vring_align);
1093 
1094 	vring_split->queue_dma_addr = dma_addr;
1095 	vring_split->queue_size_in_bytes = vring_size(num, vring_align);
1096 
1097 	vring_split->vring_align = vring_align;
1098 	vring_split->may_reduce_num = may_reduce_num;
1099 
1100 	return 0;
1101 }
1102 
1103 static struct virtqueue *vring_create_virtqueue_split(
1104 	unsigned int index,
1105 	unsigned int num,
1106 	unsigned int vring_align,
1107 	struct virtio_device *vdev,
1108 	bool weak_barriers,
1109 	bool may_reduce_num,
1110 	bool context,
1111 	bool (*notify)(struct virtqueue *),
1112 	void (*callback)(struct virtqueue *),
1113 	const char *name,
1114 	struct device *dma_dev)
1115 {
1116 	struct vring_virtqueue_split vring_split = {};
1117 	struct virtqueue *vq;
1118 	int err;
1119 
1120 	err = vring_alloc_queue_split(&vring_split, vdev, num, vring_align,
1121 				      may_reduce_num, dma_dev);
1122 	if (err)
1123 		return NULL;
1124 
1125 	vq = __vring_new_virtqueue(index, &vring_split, vdev, weak_barriers,
1126 				   context, notify, callback, name, dma_dev);
1127 	if (!vq) {
1128 		vring_free_split(&vring_split, vdev, dma_dev);
1129 		return NULL;
1130 	}
1131 
1132 	to_vvq(vq)->we_own_ring = true;
1133 
1134 	return vq;
1135 }
1136 
1137 static int virtqueue_resize_split(struct virtqueue *_vq, u32 num)
1138 {
1139 	struct vring_virtqueue_split vring_split = {};
1140 	struct vring_virtqueue *vq = to_vvq(_vq);
1141 	struct virtio_device *vdev = _vq->vdev;
1142 	int err;
1143 
1144 	err = vring_alloc_queue_split(&vring_split, vdev, num,
1145 				      vq->split.vring_align,
1146 				      vq->split.may_reduce_num,
1147 				      vring_dma_dev(vq));
1148 	if (err)
1149 		goto err;
1150 
1151 	err = vring_alloc_state_extra_split(&vring_split);
1152 	if (err)
1153 		goto err_state_extra;
1154 
1155 	vring_free(&vq->vq);
1156 
1157 	virtqueue_vring_init_split(&vring_split, vq);
1158 
1159 	virtqueue_init(vq, vring_split.vring.num);
1160 	virtqueue_vring_attach_split(vq, &vring_split);
1161 
1162 	return 0;
1163 
1164 err_state_extra:
1165 	vring_free_split(&vring_split, vdev, vring_dma_dev(vq));
1166 err:
1167 	virtqueue_reinit_split(vq);
1168 	return -ENOMEM;
1169 }
1170 
1171 
1172 /*
1173  * Packed ring specific functions - *_packed().
1174  */
1175 static inline bool packed_used_wrap_counter(u16 last_used_idx)
1176 {
1177 	return !!(last_used_idx & (1 << VRING_PACKED_EVENT_F_WRAP_CTR));
1178 }
1179 
1180 static inline u16 packed_last_used(u16 last_used_idx)
1181 {
1182 	return last_used_idx & ~(-(1 << VRING_PACKED_EVENT_F_WRAP_CTR));
1183 }
1184 
1185 static void vring_unmap_extra_packed(const struct vring_virtqueue *vq,
1186 				     struct vring_desc_extra *extra)
1187 {
1188 	u16 flags;
1189 
1190 	if (!vq->use_dma_api)
1191 		return;
1192 
1193 	flags = extra->flags;
1194 
1195 	if (flags & VRING_DESC_F_INDIRECT) {
1196 		dma_unmap_single(vring_dma_dev(vq),
1197 				 extra->addr, extra->len,
1198 				 (flags & VRING_DESC_F_WRITE) ?
1199 				 DMA_FROM_DEVICE : DMA_TO_DEVICE);
1200 	} else {
1201 		dma_unmap_page(vring_dma_dev(vq),
1202 			       extra->addr, extra->len,
1203 			       (flags & VRING_DESC_F_WRITE) ?
1204 			       DMA_FROM_DEVICE : DMA_TO_DEVICE);
1205 	}
1206 }
1207 
1208 static void vring_unmap_desc_packed(const struct vring_virtqueue *vq,
1209 				   struct vring_packed_desc *desc)
1210 {
1211 	u16 flags;
1212 
1213 	if (!vq->use_dma_api)
1214 		return;
1215 
1216 	flags = le16_to_cpu(desc->flags);
1217 
1218 	dma_unmap_page(vring_dma_dev(vq),
1219 		       le64_to_cpu(desc->addr),
1220 		       le32_to_cpu(desc->len),
1221 		       (flags & VRING_DESC_F_WRITE) ?
1222 		       DMA_FROM_DEVICE : DMA_TO_DEVICE);
1223 }
1224 
1225 static struct vring_packed_desc *alloc_indirect_packed(unsigned int total_sg,
1226 						       gfp_t gfp)
1227 {
1228 	struct vring_packed_desc *desc;
1229 
1230 	/*
1231 	 * We require lowmem mappings for the descriptors because
1232 	 * otherwise virt_to_phys will give us bogus addresses in the
1233 	 * virtqueue.
1234 	 */
1235 	gfp &= ~__GFP_HIGHMEM;
1236 
1237 	desc = kmalloc_array(total_sg, sizeof(struct vring_packed_desc), gfp);
1238 
1239 	return desc;
1240 }
1241 
1242 static int virtqueue_add_indirect_packed(struct vring_virtqueue *vq,
1243 					 struct scatterlist *sgs[],
1244 					 unsigned int total_sg,
1245 					 unsigned int out_sgs,
1246 					 unsigned int in_sgs,
1247 					 void *data,
1248 					 gfp_t gfp)
1249 {
1250 	struct vring_packed_desc *desc;
1251 	struct scatterlist *sg;
1252 	unsigned int i, n, err_idx;
1253 	u16 head, id;
1254 	dma_addr_t addr;
1255 
1256 	head = vq->packed.next_avail_idx;
1257 	desc = alloc_indirect_packed(total_sg, gfp);
1258 	if (!desc)
1259 		return -ENOMEM;
1260 
1261 	if (unlikely(vq->vq.num_free < 1)) {
1262 		pr_debug("Can't add buf len 1 - avail = 0\n");
1263 		kfree(desc);
1264 		END_USE(vq);
1265 		return -ENOSPC;
1266 	}
1267 
1268 	i = 0;
1269 	id = vq->free_head;
1270 	BUG_ON(id == vq->packed.vring.num);
1271 
1272 	for (n = 0; n < out_sgs + in_sgs; n++) {
1273 		for (sg = sgs[n]; sg; sg = sg_next(sg)) {
1274 			addr = vring_map_one_sg(vq, sg, n < out_sgs ?
1275 					DMA_TO_DEVICE : DMA_FROM_DEVICE);
1276 			if (vring_mapping_error(vq, addr))
1277 				goto unmap_release;
1278 
1279 			desc[i].flags = cpu_to_le16(n < out_sgs ?
1280 						0 : VRING_DESC_F_WRITE);
1281 			desc[i].addr = cpu_to_le64(addr);
1282 			desc[i].len = cpu_to_le32(sg->length);
1283 			i++;
1284 		}
1285 	}
1286 
1287 	/* Now that the indirect table is filled in, map it. */
1288 	addr = vring_map_single(vq, desc,
1289 			total_sg * sizeof(struct vring_packed_desc),
1290 			DMA_TO_DEVICE);
1291 	if (vring_mapping_error(vq, addr))
1292 		goto unmap_release;
1293 
1294 	vq->packed.vring.desc[head].addr = cpu_to_le64(addr);
1295 	vq->packed.vring.desc[head].len = cpu_to_le32(total_sg *
1296 				sizeof(struct vring_packed_desc));
1297 	vq->packed.vring.desc[head].id = cpu_to_le16(id);
1298 
1299 	if (vq->use_dma_api) {
1300 		vq->packed.desc_extra[id].addr = addr;
1301 		vq->packed.desc_extra[id].len = total_sg *
1302 				sizeof(struct vring_packed_desc);
1303 		vq->packed.desc_extra[id].flags = VRING_DESC_F_INDIRECT |
1304 						  vq->packed.avail_used_flags;
1305 	}
1306 
1307 	/*
1308 	 * A driver MUST NOT make the first descriptor in the list
1309 	 * available before all subsequent descriptors comprising
1310 	 * the list are made available.
1311 	 */
1312 	virtio_wmb(vq->weak_barriers);
1313 	vq->packed.vring.desc[head].flags = cpu_to_le16(VRING_DESC_F_INDIRECT |
1314 						vq->packed.avail_used_flags);
1315 
1316 	/* We're using some buffers from the free list. */
1317 	vq->vq.num_free -= 1;
1318 
1319 	/* Update free pointer */
1320 	n = head + 1;
1321 	if (n >= vq->packed.vring.num) {
1322 		n = 0;
1323 		vq->packed.avail_wrap_counter ^= 1;
1324 		vq->packed.avail_used_flags ^=
1325 				1 << VRING_PACKED_DESC_F_AVAIL |
1326 				1 << VRING_PACKED_DESC_F_USED;
1327 	}
1328 	vq->packed.next_avail_idx = n;
1329 	vq->free_head = vq->packed.desc_extra[id].next;
1330 
1331 	/* Store token and indirect buffer state. */
1332 	vq->packed.desc_state[id].num = 1;
1333 	vq->packed.desc_state[id].data = data;
1334 	vq->packed.desc_state[id].indir_desc = desc;
1335 	vq->packed.desc_state[id].last = id;
1336 
1337 	vq->num_added += 1;
1338 
1339 	pr_debug("Added buffer head %i to %p\n", head, vq);
1340 	END_USE(vq);
1341 
1342 	return 0;
1343 
1344 unmap_release:
1345 	err_idx = i;
1346 
1347 	for (i = 0; i < err_idx; i++)
1348 		vring_unmap_desc_packed(vq, &desc[i]);
1349 
1350 	kfree(desc);
1351 
1352 	END_USE(vq);
1353 	return -ENOMEM;
1354 }
1355 
1356 static inline int virtqueue_add_packed(struct virtqueue *_vq,
1357 				       struct scatterlist *sgs[],
1358 				       unsigned int total_sg,
1359 				       unsigned int out_sgs,
1360 				       unsigned int in_sgs,
1361 				       void *data,
1362 				       void *ctx,
1363 				       gfp_t gfp)
1364 {
1365 	struct vring_virtqueue *vq = to_vvq(_vq);
1366 	struct vring_packed_desc *desc;
1367 	struct scatterlist *sg;
1368 	unsigned int i, n, c, descs_used, err_idx;
1369 	__le16 head_flags, flags;
1370 	u16 head, id, prev, curr, avail_used_flags;
1371 	int err;
1372 
1373 	START_USE(vq);
1374 
1375 	BUG_ON(data == NULL);
1376 	BUG_ON(ctx && vq->indirect);
1377 
1378 	if (unlikely(vq->broken)) {
1379 		END_USE(vq);
1380 		return -EIO;
1381 	}
1382 
1383 	LAST_ADD_TIME_UPDATE(vq);
1384 
1385 	BUG_ON(total_sg == 0);
1386 
1387 	if (virtqueue_use_indirect(vq, total_sg)) {
1388 		err = virtqueue_add_indirect_packed(vq, sgs, total_sg, out_sgs,
1389 						    in_sgs, data, gfp);
1390 		if (err != -ENOMEM) {
1391 			END_USE(vq);
1392 			return err;
1393 		}
1394 
1395 		/* fall back on direct */
1396 	}
1397 
1398 	head = vq->packed.next_avail_idx;
1399 	avail_used_flags = vq->packed.avail_used_flags;
1400 
1401 	WARN_ON_ONCE(total_sg > vq->packed.vring.num && !vq->indirect);
1402 
1403 	desc = vq->packed.vring.desc;
1404 	i = head;
1405 	descs_used = total_sg;
1406 
1407 	if (unlikely(vq->vq.num_free < descs_used)) {
1408 		pr_debug("Can't add buf len %i - avail = %i\n",
1409 			 descs_used, vq->vq.num_free);
1410 		END_USE(vq);
1411 		return -ENOSPC;
1412 	}
1413 
1414 	id = vq->free_head;
1415 	BUG_ON(id == vq->packed.vring.num);
1416 
1417 	curr = id;
1418 	c = 0;
1419 	for (n = 0; n < out_sgs + in_sgs; n++) {
1420 		for (sg = sgs[n]; sg; sg = sg_next(sg)) {
1421 			dma_addr_t addr = vring_map_one_sg(vq, sg, n < out_sgs ?
1422 					DMA_TO_DEVICE : DMA_FROM_DEVICE);
1423 			if (vring_mapping_error(vq, addr))
1424 				goto unmap_release;
1425 
1426 			flags = cpu_to_le16(vq->packed.avail_used_flags |
1427 				    (++c == total_sg ? 0 : VRING_DESC_F_NEXT) |
1428 				    (n < out_sgs ? 0 : VRING_DESC_F_WRITE));
1429 			if (i == head)
1430 				head_flags = flags;
1431 			else
1432 				desc[i].flags = flags;
1433 
1434 			desc[i].addr = cpu_to_le64(addr);
1435 			desc[i].len = cpu_to_le32(sg->length);
1436 			desc[i].id = cpu_to_le16(id);
1437 
1438 			if (unlikely(vq->use_dma_api)) {
1439 				vq->packed.desc_extra[curr].addr = addr;
1440 				vq->packed.desc_extra[curr].len = sg->length;
1441 				vq->packed.desc_extra[curr].flags =
1442 					le16_to_cpu(flags);
1443 			}
1444 			prev = curr;
1445 			curr = vq->packed.desc_extra[curr].next;
1446 
1447 			if ((unlikely(++i >= vq->packed.vring.num))) {
1448 				i = 0;
1449 				vq->packed.avail_used_flags ^=
1450 					1 << VRING_PACKED_DESC_F_AVAIL |
1451 					1 << VRING_PACKED_DESC_F_USED;
1452 			}
1453 		}
1454 	}
1455 
1456 	if (i < head)
1457 		vq->packed.avail_wrap_counter ^= 1;
1458 
1459 	/* We're using some buffers from the free list. */
1460 	vq->vq.num_free -= descs_used;
1461 
1462 	/* Update free pointer */
1463 	vq->packed.next_avail_idx = i;
1464 	vq->free_head = curr;
1465 
1466 	/* Store token. */
1467 	vq->packed.desc_state[id].num = descs_used;
1468 	vq->packed.desc_state[id].data = data;
1469 	vq->packed.desc_state[id].indir_desc = ctx;
1470 	vq->packed.desc_state[id].last = prev;
1471 
1472 	/*
1473 	 * A driver MUST NOT make the first descriptor in the list
1474 	 * available before all subsequent descriptors comprising
1475 	 * the list are made available.
1476 	 */
1477 	virtio_wmb(vq->weak_barriers);
1478 	vq->packed.vring.desc[head].flags = head_flags;
1479 	vq->num_added += descs_used;
1480 
1481 	pr_debug("Added buffer head %i to %p\n", head, vq);
1482 	END_USE(vq);
1483 
1484 	return 0;
1485 
1486 unmap_release:
1487 	err_idx = i;
1488 	i = head;
1489 	curr = vq->free_head;
1490 
1491 	vq->packed.avail_used_flags = avail_used_flags;
1492 
1493 	for (n = 0; n < total_sg; n++) {
1494 		if (i == err_idx)
1495 			break;
1496 		vring_unmap_extra_packed(vq, &vq->packed.desc_extra[curr]);
1497 		curr = vq->packed.desc_extra[curr].next;
1498 		i++;
1499 		if (i >= vq->packed.vring.num)
1500 			i = 0;
1501 	}
1502 
1503 	END_USE(vq);
1504 	return -EIO;
1505 }
1506 
1507 static bool virtqueue_kick_prepare_packed(struct virtqueue *_vq)
1508 {
1509 	struct vring_virtqueue *vq = to_vvq(_vq);
1510 	u16 new, old, off_wrap, flags, wrap_counter, event_idx;
1511 	bool needs_kick;
1512 	union {
1513 		struct {
1514 			__le16 off_wrap;
1515 			__le16 flags;
1516 		};
1517 		u32 u32;
1518 	} snapshot;
1519 
1520 	START_USE(vq);
1521 
1522 	/*
1523 	 * We need to expose the new flags value before checking notification
1524 	 * suppressions.
1525 	 */
1526 	virtio_mb(vq->weak_barriers);
1527 
1528 	old = vq->packed.next_avail_idx - vq->num_added;
1529 	new = vq->packed.next_avail_idx;
1530 	vq->num_added = 0;
1531 
1532 	snapshot.u32 = *(u32 *)vq->packed.vring.device;
1533 	flags = le16_to_cpu(snapshot.flags);
1534 
1535 	LAST_ADD_TIME_CHECK(vq);
1536 	LAST_ADD_TIME_INVALID(vq);
1537 
1538 	if (flags != VRING_PACKED_EVENT_FLAG_DESC) {
1539 		needs_kick = (flags != VRING_PACKED_EVENT_FLAG_DISABLE);
1540 		goto out;
1541 	}
1542 
1543 	off_wrap = le16_to_cpu(snapshot.off_wrap);
1544 
1545 	wrap_counter = off_wrap >> VRING_PACKED_EVENT_F_WRAP_CTR;
1546 	event_idx = off_wrap & ~(1 << VRING_PACKED_EVENT_F_WRAP_CTR);
1547 	if (wrap_counter != vq->packed.avail_wrap_counter)
1548 		event_idx -= vq->packed.vring.num;
1549 
1550 	needs_kick = vring_need_event(event_idx, new, old);
1551 out:
1552 	END_USE(vq);
1553 	return needs_kick;
1554 }
1555 
1556 static void detach_buf_packed(struct vring_virtqueue *vq,
1557 			      unsigned int id, void **ctx)
1558 {
1559 	struct vring_desc_state_packed *state = NULL;
1560 	struct vring_packed_desc *desc;
1561 	unsigned int i, curr;
1562 
1563 	state = &vq->packed.desc_state[id];
1564 
1565 	/* Clear data ptr. */
1566 	state->data = NULL;
1567 
1568 	vq->packed.desc_extra[state->last].next = vq->free_head;
1569 	vq->free_head = id;
1570 	vq->vq.num_free += state->num;
1571 
1572 	if (unlikely(vq->use_dma_api)) {
1573 		curr = id;
1574 		for (i = 0; i < state->num; i++) {
1575 			vring_unmap_extra_packed(vq,
1576 						 &vq->packed.desc_extra[curr]);
1577 			curr = vq->packed.desc_extra[curr].next;
1578 		}
1579 	}
1580 
1581 	if (vq->indirect) {
1582 		u32 len;
1583 
1584 		/* Free the indirect table, if any, now that it's unmapped. */
1585 		desc = state->indir_desc;
1586 		if (!desc)
1587 			return;
1588 
1589 		if (vq->use_dma_api) {
1590 			len = vq->packed.desc_extra[id].len;
1591 			for (i = 0; i < len / sizeof(struct vring_packed_desc);
1592 					i++)
1593 				vring_unmap_desc_packed(vq, &desc[i]);
1594 		}
1595 		kfree(desc);
1596 		state->indir_desc = NULL;
1597 	} else if (ctx) {
1598 		*ctx = state->indir_desc;
1599 	}
1600 }
1601 
1602 static inline bool is_used_desc_packed(const struct vring_virtqueue *vq,
1603 				       u16 idx, bool used_wrap_counter)
1604 {
1605 	bool avail, used;
1606 	u16 flags;
1607 
1608 	flags = le16_to_cpu(vq->packed.vring.desc[idx].flags);
1609 	avail = !!(flags & (1 << VRING_PACKED_DESC_F_AVAIL));
1610 	used = !!(flags & (1 << VRING_PACKED_DESC_F_USED));
1611 
1612 	return avail == used && used == used_wrap_counter;
1613 }
1614 
1615 static inline bool more_used_packed(const struct vring_virtqueue *vq)
1616 {
1617 	u16 last_used;
1618 	u16 last_used_idx;
1619 	bool used_wrap_counter;
1620 
1621 	last_used_idx = READ_ONCE(vq->last_used_idx);
1622 	last_used = packed_last_used(last_used_idx);
1623 	used_wrap_counter = packed_used_wrap_counter(last_used_idx);
1624 	return is_used_desc_packed(vq, last_used, used_wrap_counter);
1625 }
1626 
1627 static void *virtqueue_get_buf_ctx_packed(struct virtqueue *_vq,
1628 					  unsigned int *len,
1629 					  void **ctx)
1630 {
1631 	struct vring_virtqueue *vq = to_vvq(_vq);
1632 	u16 last_used, id, last_used_idx;
1633 	bool used_wrap_counter;
1634 	void *ret;
1635 
1636 	START_USE(vq);
1637 
1638 	if (unlikely(vq->broken)) {
1639 		END_USE(vq);
1640 		return NULL;
1641 	}
1642 
1643 	if (!more_used_packed(vq)) {
1644 		pr_debug("No more buffers in queue\n");
1645 		END_USE(vq);
1646 		return NULL;
1647 	}
1648 
1649 	/* Only get used elements after they have been exposed by host. */
1650 	virtio_rmb(vq->weak_barriers);
1651 
1652 	last_used_idx = READ_ONCE(vq->last_used_idx);
1653 	used_wrap_counter = packed_used_wrap_counter(last_used_idx);
1654 	last_used = packed_last_used(last_used_idx);
1655 	id = le16_to_cpu(vq->packed.vring.desc[last_used].id);
1656 	*len = le32_to_cpu(vq->packed.vring.desc[last_used].len);
1657 
1658 	if (unlikely(id >= vq->packed.vring.num)) {
1659 		BAD_RING(vq, "id %u out of range\n", id);
1660 		return NULL;
1661 	}
1662 	if (unlikely(!vq->packed.desc_state[id].data)) {
1663 		BAD_RING(vq, "id %u is not a head!\n", id);
1664 		return NULL;
1665 	}
1666 
1667 	/* detach_buf_packed clears data, so grab it now. */
1668 	ret = vq->packed.desc_state[id].data;
1669 	detach_buf_packed(vq, id, ctx);
1670 
1671 	last_used += vq->packed.desc_state[id].num;
1672 	if (unlikely(last_used >= vq->packed.vring.num)) {
1673 		last_used -= vq->packed.vring.num;
1674 		used_wrap_counter ^= 1;
1675 	}
1676 
1677 	last_used = (last_used | (used_wrap_counter << VRING_PACKED_EVENT_F_WRAP_CTR));
1678 	WRITE_ONCE(vq->last_used_idx, last_used);
1679 
1680 	/*
1681 	 * If we expect an interrupt for the next entry, tell host
1682 	 * by writing event index and flush out the write before
1683 	 * the read in the next get_buf call.
1684 	 */
1685 	if (vq->packed.event_flags_shadow == VRING_PACKED_EVENT_FLAG_DESC)
1686 		virtio_store_mb(vq->weak_barriers,
1687 				&vq->packed.vring.driver->off_wrap,
1688 				cpu_to_le16(vq->last_used_idx));
1689 
1690 	LAST_ADD_TIME_INVALID(vq);
1691 
1692 	END_USE(vq);
1693 	return ret;
1694 }
1695 
1696 static void virtqueue_disable_cb_packed(struct virtqueue *_vq)
1697 {
1698 	struct vring_virtqueue *vq = to_vvq(_vq);
1699 
1700 	if (vq->packed.event_flags_shadow != VRING_PACKED_EVENT_FLAG_DISABLE) {
1701 		vq->packed.event_flags_shadow = VRING_PACKED_EVENT_FLAG_DISABLE;
1702 		vq->packed.vring.driver->flags =
1703 			cpu_to_le16(vq->packed.event_flags_shadow);
1704 	}
1705 }
1706 
1707 static unsigned int virtqueue_enable_cb_prepare_packed(struct virtqueue *_vq)
1708 {
1709 	struct vring_virtqueue *vq = to_vvq(_vq);
1710 
1711 	START_USE(vq);
1712 
1713 	/*
1714 	 * We optimistically turn back on interrupts, then check if there was
1715 	 * more to do.
1716 	 */
1717 
1718 	if (vq->event) {
1719 		vq->packed.vring.driver->off_wrap =
1720 			cpu_to_le16(vq->last_used_idx);
1721 		/*
1722 		 * We need to update event offset and event wrap
1723 		 * counter first before updating event flags.
1724 		 */
1725 		virtio_wmb(vq->weak_barriers);
1726 	}
1727 
1728 	if (vq->packed.event_flags_shadow == VRING_PACKED_EVENT_FLAG_DISABLE) {
1729 		vq->packed.event_flags_shadow = vq->event ?
1730 				VRING_PACKED_EVENT_FLAG_DESC :
1731 				VRING_PACKED_EVENT_FLAG_ENABLE;
1732 		vq->packed.vring.driver->flags =
1733 				cpu_to_le16(vq->packed.event_flags_shadow);
1734 	}
1735 
1736 	END_USE(vq);
1737 	return vq->last_used_idx;
1738 }
1739 
1740 static bool virtqueue_poll_packed(struct virtqueue *_vq, u16 off_wrap)
1741 {
1742 	struct vring_virtqueue *vq = to_vvq(_vq);
1743 	bool wrap_counter;
1744 	u16 used_idx;
1745 
1746 	wrap_counter = off_wrap >> VRING_PACKED_EVENT_F_WRAP_CTR;
1747 	used_idx = off_wrap & ~(1 << VRING_PACKED_EVENT_F_WRAP_CTR);
1748 
1749 	return is_used_desc_packed(vq, used_idx, wrap_counter);
1750 }
1751 
1752 static bool virtqueue_enable_cb_delayed_packed(struct virtqueue *_vq)
1753 {
1754 	struct vring_virtqueue *vq = to_vvq(_vq);
1755 	u16 used_idx, wrap_counter, last_used_idx;
1756 	u16 bufs;
1757 
1758 	START_USE(vq);
1759 
1760 	/*
1761 	 * We optimistically turn back on interrupts, then check if there was
1762 	 * more to do.
1763 	 */
1764 
1765 	if (vq->event) {
1766 		/* TODO: tune this threshold */
1767 		bufs = (vq->packed.vring.num - vq->vq.num_free) * 3 / 4;
1768 		last_used_idx = READ_ONCE(vq->last_used_idx);
1769 		wrap_counter = packed_used_wrap_counter(last_used_idx);
1770 
1771 		used_idx = packed_last_used(last_used_idx) + bufs;
1772 		if (used_idx >= vq->packed.vring.num) {
1773 			used_idx -= vq->packed.vring.num;
1774 			wrap_counter ^= 1;
1775 		}
1776 
1777 		vq->packed.vring.driver->off_wrap = cpu_to_le16(used_idx |
1778 			(wrap_counter << VRING_PACKED_EVENT_F_WRAP_CTR));
1779 
1780 		/*
1781 		 * We need to update event offset and event wrap
1782 		 * counter first before updating event flags.
1783 		 */
1784 		virtio_wmb(vq->weak_barriers);
1785 	}
1786 
1787 	if (vq->packed.event_flags_shadow == VRING_PACKED_EVENT_FLAG_DISABLE) {
1788 		vq->packed.event_flags_shadow = vq->event ?
1789 				VRING_PACKED_EVENT_FLAG_DESC :
1790 				VRING_PACKED_EVENT_FLAG_ENABLE;
1791 		vq->packed.vring.driver->flags =
1792 				cpu_to_le16(vq->packed.event_flags_shadow);
1793 	}
1794 
1795 	/*
1796 	 * We need to update event suppression structure first
1797 	 * before re-checking for more used buffers.
1798 	 */
1799 	virtio_mb(vq->weak_barriers);
1800 
1801 	last_used_idx = READ_ONCE(vq->last_used_idx);
1802 	wrap_counter = packed_used_wrap_counter(last_used_idx);
1803 	used_idx = packed_last_used(last_used_idx);
1804 	if (is_used_desc_packed(vq, used_idx, wrap_counter)) {
1805 		END_USE(vq);
1806 		return false;
1807 	}
1808 
1809 	END_USE(vq);
1810 	return true;
1811 }
1812 
1813 static void *virtqueue_detach_unused_buf_packed(struct virtqueue *_vq)
1814 {
1815 	struct vring_virtqueue *vq = to_vvq(_vq);
1816 	unsigned int i;
1817 	void *buf;
1818 
1819 	START_USE(vq);
1820 
1821 	for (i = 0; i < vq->packed.vring.num; i++) {
1822 		if (!vq->packed.desc_state[i].data)
1823 			continue;
1824 		/* detach_buf clears data, so grab it now. */
1825 		buf = vq->packed.desc_state[i].data;
1826 		detach_buf_packed(vq, i, NULL);
1827 		END_USE(vq);
1828 		return buf;
1829 	}
1830 	/* That should have freed everything. */
1831 	BUG_ON(vq->vq.num_free != vq->packed.vring.num);
1832 
1833 	END_USE(vq);
1834 	return NULL;
1835 }
1836 
1837 static struct vring_desc_extra *vring_alloc_desc_extra(unsigned int num)
1838 {
1839 	struct vring_desc_extra *desc_extra;
1840 	unsigned int i;
1841 
1842 	desc_extra = kmalloc_array(num, sizeof(struct vring_desc_extra),
1843 				   GFP_KERNEL);
1844 	if (!desc_extra)
1845 		return NULL;
1846 
1847 	memset(desc_extra, 0, num * sizeof(struct vring_desc_extra));
1848 
1849 	for (i = 0; i < num - 1; i++)
1850 		desc_extra[i].next = i + 1;
1851 
1852 	return desc_extra;
1853 }
1854 
1855 static void vring_free_packed(struct vring_virtqueue_packed *vring_packed,
1856 			      struct virtio_device *vdev,
1857 			      struct device *dma_dev)
1858 {
1859 	if (vring_packed->vring.desc)
1860 		vring_free_queue(vdev, vring_packed->ring_size_in_bytes,
1861 				 vring_packed->vring.desc,
1862 				 vring_packed->ring_dma_addr,
1863 				 dma_dev);
1864 
1865 	if (vring_packed->vring.driver)
1866 		vring_free_queue(vdev, vring_packed->event_size_in_bytes,
1867 				 vring_packed->vring.driver,
1868 				 vring_packed->driver_event_dma_addr,
1869 				 dma_dev);
1870 
1871 	if (vring_packed->vring.device)
1872 		vring_free_queue(vdev, vring_packed->event_size_in_bytes,
1873 				 vring_packed->vring.device,
1874 				 vring_packed->device_event_dma_addr,
1875 				 dma_dev);
1876 
1877 	kfree(vring_packed->desc_state);
1878 	kfree(vring_packed->desc_extra);
1879 }
1880 
1881 static int vring_alloc_queue_packed(struct vring_virtqueue_packed *vring_packed,
1882 				    struct virtio_device *vdev,
1883 				    u32 num, struct device *dma_dev)
1884 {
1885 	struct vring_packed_desc *ring;
1886 	struct vring_packed_desc_event *driver, *device;
1887 	dma_addr_t ring_dma_addr, driver_event_dma_addr, device_event_dma_addr;
1888 	size_t ring_size_in_bytes, event_size_in_bytes;
1889 
1890 	ring_size_in_bytes = num * sizeof(struct vring_packed_desc);
1891 
1892 	ring = vring_alloc_queue(vdev, ring_size_in_bytes,
1893 				 &ring_dma_addr,
1894 				 GFP_KERNEL | __GFP_NOWARN | __GFP_ZERO,
1895 				 dma_dev);
1896 	if (!ring)
1897 		goto err;
1898 
1899 	vring_packed->vring.desc         = ring;
1900 	vring_packed->ring_dma_addr      = ring_dma_addr;
1901 	vring_packed->ring_size_in_bytes = ring_size_in_bytes;
1902 
1903 	event_size_in_bytes = sizeof(struct vring_packed_desc_event);
1904 
1905 	driver = vring_alloc_queue(vdev, event_size_in_bytes,
1906 				   &driver_event_dma_addr,
1907 				   GFP_KERNEL | __GFP_NOWARN | __GFP_ZERO,
1908 				   dma_dev);
1909 	if (!driver)
1910 		goto err;
1911 
1912 	vring_packed->vring.driver          = driver;
1913 	vring_packed->event_size_in_bytes   = event_size_in_bytes;
1914 	vring_packed->driver_event_dma_addr = driver_event_dma_addr;
1915 
1916 	device = vring_alloc_queue(vdev, event_size_in_bytes,
1917 				   &device_event_dma_addr,
1918 				   GFP_KERNEL | __GFP_NOWARN | __GFP_ZERO,
1919 				   dma_dev);
1920 	if (!device)
1921 		goto err;
1922 
1923 	vring_packed->vring.device          = device;
1924 	vring_packed->device_event_dma_addr = device_event_dma_addr;
1925 
1926 	vring_packed->vring.num = num;
1927 
1928 	return 0;
1929 
1930 err:
1931 	vring_free_packed(vring_packed, vdev, dma_dev);
1932 	return -ENOMEM;
1933 }
1934 
1935 static int vring_alloc_state_extra_packed(struct vring_virtqueue_packed *vring_packed)
1936 {
1937 	struct vring_desc_state_packed *state;
1938 	struct vring_desc_extra *extra;
1939 	u32 num = vring_packed->vring.num;
1940 
1941 	state = kmalloc_array(num, sizeof(struct vring_desc_state_packed), GFP_KERNEL);
1942 	if (!state)
1943 		goto err_desc_state;
1944 
1945 	memset(state, 0, num * sizeof(struct vring_desc_state_packed));
1946 
1947 	extra = vring_alloc_desc_extra(num);
1948 	if (!extra)
1949 		goto err_desc_extra;
1950 
1951 	vring_packed->desc_state = state;
1952 	vring_packed->desc_extra = extra;
1953 
1954 	return 0;
1955 
1956 err_desc_extra:
1957 	kfree(state);
1958 err_desc_state:
1959 	return -ENOMEM;
1960 }
1961 
1962 static void virtqueue_vring_init_packed(struct vring_virtqueue_packed *vring_packed,
1963 					bool callback)
1964 {
1965 	vring_packed->next_avail_idx = 0;
1966 	vring_packed->avail_wrap_counter = 1;
1967 	vring_packed->event_flags_shadow = 0;
1968 	vring_packed->avail_used_flags = 1 << VRING_PACKED_DESC_F_AVAIL;
1969 
1970 	/* No callback?  Tell other side not to bother us. */
1971 	if (!callback) {
1972 		vring_packed->event_flags_shadow = VRING_PACKED_EVENT_FLAG_DISABLE;
1973 		vring_packed->vring.driver->flags =
1974 			cpu_to_le16(vring_packed->event_flags_shadow);
1975 	}
1976 }
1977 
1978 static void virtqueue_vring_attach_packed(struct vring_virtqueue *vq,
1979 					  struct vring_virtqueue_packed *vring_packed)
1980 {
1981 	vq->packed = *vring_packed;
1982 
1983 	/* Put everything in free lists. */
1984 	vq->free_head = 0;
1985 }
1986 
1987 static void virtqueue_reinit_packed(struct vring_virtqueue *vq)
1988 {
1989 	memset(vq->packed.vring.device, 0, vq->packed.event_size_in_bytes);
1990 	memset(vq->packed.vring.driver, 0, vq->packed.event_size_in_bytes);
1991 
1992 	/* we need to reset the desc.flags. For more, see is_used_desc_packed() */
1993 	memset(vq->packed.vring.desc, 0, vq->packed.ring_size_in_bytes);
1994 
1995 	virtqueue_init(vq, vq->packed.vring.num);
1996 	virtqueue_vring_init_packed(&vq->packed, !!vq->vq.callback);
1997 }
1998 
1999 static struct virtqueue *vring_create_virtqueue_packed(
2000 	unsigned int index,
2001 	unsigned int num,
2002 	unsigned int vring_align,
2003 	struct virtio_device *vdev,
2004 	bool weak_barriers,
2005 	bool may_reduce_num,
2006 	bool context,
2007 	bool (*notify)(struct virtqueue *),
2008 	void (*callback)(struct virtqueue *),
2009 	const char *name,
2010 	struct device *dma_dev)
2011 {
2012 	struct vring_virtqueue_packed vring_packed = {};
2013 	struct vring_virtqueue *vq;
2014 	int err;
2015 
2016 	if (vring_alloc_queue_packed(&vring_packed, vdev, num, dma_dev))
2017 		goto err_ring;
2018 
2019 	vq = kmalloc(sizeof(*vq), GFP_KERNEL);
2020 	if (!vq)
2021 		goto err_vq;
2022 
2023 	vq->vq.callback = callback;
2024 	vq->vq.vdev = vdev;
2025 	vq->vq.name = name;
2026 	vq->vq.index = index;
2027 	vq->vq.reset = false;
2028 	vq->we_own_ring = true;
2029 	vq->notify = notify;
2030 	vq->weak_barriers = weak_barriers;
2031 #ifdef CONFIG_VIRTIO_HARDEN_NOTIFICATION
2032 	vq->broken = true;
2033 #else
2034 	vq->broken = false;
2035 #endif
2036 	vq->packed_ring = true;
2037 	vq->dma_dev = dma_dev;
2038 	vq->use_dma_api = vring_use_dma_api(vdev);
2039 
2040 	vq->indirect = virtio_has_feature(vdev, VIRTIO_RING_F_INDIRECT_DESC) &&
2041 		!context;
2042 	vq->event = virtio_has_feature(vdev, VIRTIO_RING_F_EVENT_IDX);
2043 
2044 	if (virtio_has_feature(vdev, VIRTIO_F_ORDER_PLATFORM))
2045 		vq->weak_barriers = false;
2046 
2047 	err = vring_alloc_state_extra_packed(&vring_packed);
2048 	if (err)
2049 		goto err_state_extra;
2050 
2051 	virtqueue_vring_init_packed(&vring_packed, !!callback);
2052 
2053 	virtqueue_init(vq, num);
2054 	virtqueue_vring_attach_packed(vq, &vring_packed);
2055 
2056 	spin_lock(&vdev->vqs_list_lock);
2057 	list_add_tail(&vq->vq.list, &vdev->vqs);
2058 	spin_unlock(&vdev->vqs_list_lock);
2059 	return &vq->vq;
2060 
2061 err_state_extra:
2062 	kfree(vq);
2063 err_vq:
2064 	vring_free_packed(&vring_packed, vdev, dma_dev);
2065 err_ring:
2066 	return NULL;
2067 }
2068 
2069 static int virtqueue_resize_packed(struct virtqueue *_vq, u32 num)
2070 {
2071 	struct vring_virtqueue_packed vring_packed = {};
2072 	struct vring_virtqueue *vq = to_vvq(_vq);
2073 	struct virtio_device *vdev = _vq->vdev;
2074 	int err;
2075 
2076 	if (vring_alloc_queue_packed(&vring_packed, vdev, num, vring_dma_dev(vq)))
2077 		goto err_ring;
2078 
2079 	err = vring_alloc_state_extra_packed(&vring_packed);
2080 	if (err)
2081 		goto err_state_extra;
2082 
2083 	vring_free(&vq->vq);
2084 
2085 	virtqueue_vring_init_packed(&vring_packed, !!vq->vq.callback);
2086 
2087 	virtqueue_init(vq, vring_packed.vring.num);
2088 	virtqueue_vring_attach_packed(vq, &vring_packed);
2089 
2090 	return 0;
2091 
2092 err_state_extra:
2093 	vring_free_packed(&vring_packed, vdev, vring_dma_dev(vq));
2094 err_ring:
2095 	virtqueue_reinit_packed(vq);
2096 	return -ENOMEM;
2097 }
2098 
2099 
2100 /*
2101  * Generic functions and exported symbols.
2102  */
2103 
2104 static inline int virtqueue_add(struct virtqueue *_vq,
2105 				struct scatterlist *sgs[],
2106 				unsigned int total_sg,
2107 				unsigned int out_sgs,
2108 				unsigned int in_sgs,
2109 				void *data,
2110 				void *ctx,
2111 				gfp_t gfp)
2112 {
2113 	struct vring_virtqueue *vq = to_vvq(_vq);
2114 
2115 	return vq->packed_ring ? virtqueue_add_packed(_vq, sgs, total_sg,
2116 					out_sgs, in_sgs, data, ctx, gfp) :
2117 				 virtqueue_add_split(_vq, sgs, total_sg,
2118 					out_sgs, in_sgs, data, ctx, gfp);
2119 }
2120 
2121 /**
2122  * virtqueue_add_sgs - expose buffers to other end
2123  * @_vq: the struct virtqueue we're talking about.
2124  * @sgs: array of terminated scatterlists.
2125  * @out_sgs: the number of scatterlists readable by other side
2126  * @in_sgs: the number of scatterlists which are writable (after readable ones)
2127  * @data: the token identifying the buffer.
2128  * @gfp: how to do memory allocations (if necessary).
2129  *
2130  * Caller must ensure we don't call this with other virtqueue operations
2131  * at the same time (except where noted).
2132  *
2133  * Returns zero or a negative error (ie. ENOSPC, ENOMEM, EIO).
2134  */
2135 int virtqueue_add_sgs(struct virtqueue *_vq,
2136 		      struct scatterlist *sgs[],
2137 		      unsigned int out_sgs,
2138 		      unsigned int in_sgs,
2139 		      void *data,
2140 		      gfp_t gfp)
2141 {
2142 	unsigned int i, total_sg = 0;
2143 
2144 	/* Count them first. */
2145 	for (i = 0; i < out_sgs + in_sgs; i++) {
2146 		struct scatterlist *sg;
2147 
2148 		for (sg = sgs[i]; sg; sg = sg_next(sg))
2149 			total_sg++;
2150 	}
2151 	return virtqueue_add(_vq, sgs, total_sg, out_sgs, in_sgs,
2152 			     data, NULL, gfp);
2153 }
2154 EXPORT_SYMBOL_GPL(virtqueue_add_sgs);
2155 
2156 /**
2157  * virtqueue_add_outbuf - expose output buffers to other end
2158  * @vq: the struct virtqueue we're talking about.
2159  * @sg: scatterlist (must be well-formed and terminated!)
2160  * @num: the number of entries in @sg readable by other side
2161  * @data: the token identifying the buffer.
2162  * @gfp: how to do memory allocations (if necessary).
2163  *
2164  * Caller must ensure we don't call this with other virtqueue operations
2165  * at the same time (except where noted).
2166  *
2167  * Returns zero or a negative error (ie. ENOSPC, ENOMEM, EIO).
2168  */
2169 int virtqueue_add_outbuf(struct virtqueue *vq,
2170 			 struct scatterlist *sg, unsigned int num,
2171 			 void *data,
2172 			 gfp_t gfp)
2173 {
2174 	return virtqueue_add(vq, &sg, num, 1, 0, data, NULL, gfp);
2175 }
2176 EXPORT_SYMBOL_GPL(virtqueue_add_outbuf);
2177 
2178 /**
2179  * virtqueue_add_inbuf - expose input buffers to other end
2180  * @vq: the struct virtqueue we're talking about.
2181  * @sg: scatterlist (must be well-formed and terminated!)
2182  * @num: the number of entries in @sg writable by other side
2183  * @data: the token identifying the buffer.
2184  * @gfp: how to do memory allocations (if necessary).
2185  *
2186  * Caller must ensure we don't call this with other virtqueue operations
2187  * at the same time (except where noted).
2188  *
2189  * Returns zero or a negative error (ie. ENOSPC, ENOMEM, EIO).
2190  */
2191 int virtqueue_add_inbuf(struct virtqueue *vq,
2192 			struct scatterlist *sg, unsigned int num,
2193 			void *data,
2194 			gfp_t gfp)
2195 {
2196 	return virtqueue_add(vq, &sg, num, 0, 1, data, NULL, gfp);
2197 }
2198 EXPORT_SYMBOL_GPL(virtqueue_add_inbuf);
2199 
2200 /**
2201  * virtqueue_add_inbuf_ctx - expose input buffers to other end
2202  * @vq: the struct virtqueue we're talking about.
2203  * @sg: scatterlist (must be well-formed and terminated!)
2204  * @num: the number of entries in @sg writable by other side
2205  * @data: the token identifying the buffer.
2206  * @ctx: extra context for the token
2207  * @gfp: how to do memory allocations (if necessary).
2208  *
2209  * Caller must ensure we don't call this with other virtqueue operations
2210  * at the same time (except where noted).
2211  *
2212  * Returns zero or a negative error (ie. ENOSPC, ENOMEM, EIO).
2213  */
2214 int virtqueue_add_inbuf_ctx(struct virtqueue *vq,
2215 			struct scatterlist *sg, unsigned int num,
2216 			void *data,
2217 			void *ctx,
2218 			gfp_t gfp)
2219 {
2220 	return virtqueue_add(vq, &sg, num, 0, 1, data, ctx, gfp);
2221 }
2222 EXPORT_SYMBOL_GPL(virtqueue_add_inbuf_ctx);
2223 
2224 /**
2225  * virtqueue_kick_prepare - first half of split virtqueue_kick call.
2226  * @_vq: the struct virtqueue
2227  *
2228  * Instead of virtqueue_kick(), you can do:
2229  *	if (virtqueue_kick_prepare(vq))
2230  *		virtqueue_notify(vq);
2231  *
2232  * This is sometimes useful because the virtqueue_kick_prepare() needs
2233  * to be serialized, but the actual virtqueue_notify() call does not.
2234  */
2235 bool virtqueue_kick_prepare(struct virtqueue *_vq)
2236 {
2237 	struct vring_virtqueue *vq = to_vvq(_vq);
2238 
2239 	return vq->packed_ring ? virtqueue_kick_prepare_packed(_vq) :
2240 				 virtqueue_kick_prepare_split(_vq);
2241 }
2242 EXPORT_SYMBOL_GPL(virtqueue_kick_prepare);
2243 
2244 /**
2245  * virtqueue_notify - second half of split virtqueue_kick call.
2246  * @_vq: the struct virtqueue
2247  *
2248  * This does not need to be serialized.
2249  *
2250  * Returns false if host notify failed or queue is broken, otherwise true.
2251  */
2252 bool virtqueue_notify(struct virtqueue *_vq)
2253 {
2254 	struct vring_virtqueue *vq = to_vvq(_vq);
2255 
2256 	if (unlikely(vq->broken))
2257 		return false;
2258 
2259 	/* Prod other side to tell it about changes. */
2260 	if (!vq->notify(_vq)) {
2261 		vq->broken = true;
2262 		return false;
2263 	}
2264 	return true;
2265 }
2266 EXPORT_SYMBOL_GPL(virtqueue_notify);
2267 
2268 /**
2269  * virtqueue_kick - update after add_buf
2270  * @vq: the struct virtqueue
2271  *
2272  * After one or more virtqueue_add_* calls, invoke this to kick
2273  * the other side.
2274  *
2275  * Caller must ensure we don't call this with other virtqueue
2276  * operations at the same time (except where noted).
2277  *
2278  * Returns false if kick failed, otherwise true.
2279  */
2280 bool virtqueue_kick(struct virtqueue *vq)
2281 {
2282 	if (virtqueue_kick_prepare(vq))
2283 		return virtqueue_notify(vq);
2284 	return true;
2285 }
2286 EXPORT_SYMBOL_GPL(virtqueue_kick);
2287 
2288 /**
2289  * virtqueue_get_buf_ctx - get the next used buffer
2290  * @_vq: the struct virtqueue we're talking about.
2291  * @len: the length written into the buffer
2292  * @ctx: extra context for the token
2293  *
2294  * If the device wrote data into the buffer, @len will be set to the
2295  * amount written.  This means you don't need to clear the buffer
2296  * beforehand to ensure there's no data leakage in the case of short
2297  * writes.
2298  *
2299  * Caller must ensure we don't call this with other virtqueue
2300  * operations at the same time (except where noted).
2301  *
2302  * Returns NULL if there are no used buffers, or the "data" token
2303  * handed to virtqueue_add_*().
2304  */
2305 void *virtqueue_get_buf_ctx(struct virtqueue *_vq, unsigned int *len,
2306 			    void **ctx)
2307 {
2308 	struct vring_virtqueue *vq = to_vvq(_vq);
2309 
2310 	return vq->packed_ring ? virtqueue_get_buf_ctx_packed(_vq, len, ctx) :
2311 				 virtqueue_get_buf_ctx_split(_vq, len, ctx);
2312 }
2313 EXPORT_SYMBOL_GPL(virtqueue_get_buf_ctx);
2314 
2315 void *virtqueue_get_buf(struct virtqueue *_vq, unsigned int *len)
2316 {
2317 	return virtqueue_get_buf_ctx(_vq, len, NULL);
2318 }
2319 EXPORT_SYMBOL_GPL(virtqueue_get_buf);
2320 /**
2321  * virtqueue_disable_cb - disable callbacks
2322  * @_vq: the struct virtqueue we're talking about.
2323  *
2324  * Note that this is not necessarily synchronous, hence unreliable and only
2325  * useful as an optimization.
2326  *
2327  * Unlike other operations, this need not be serialized.
2328  */
2329 void virtqueue_disable_cb(struct virtqueue *_vq)
2330 {
2331 	struct vring_virtqueue *vq = to_vvq(_vq);
2332 
2333 	/* If device triggered an event already it won't trigger one again:
2334 	 * no need to disable.
2335 	 */
2336 	if (vq->event_triggered)
2337 		return;
2338 
2339 	if (vq->packed_ring)
2340 		virtqueue_disable_cb_packed(_vq);
2341 	else
2342 		virtqueue_disable_cb_split(_vq);
2343 }
2344 EXPORT_SYMBOL_GPL(virtqueue_disable_cb);
2345 
2346 /**
2347  * virtqueue_enable_cb_prepare - restart callbacks after disable_cb
2348  * @_vq: the struct virtqueue we're talking about.
2349  *
2350  * This re-enables callbacks; it returns current queue state
2351  * in an opaque unsigned value. This value should be later tested by
2352  * virtqueue_poll, to detect a possible race between the driver checking for
2353  * more work, and enabling callbacks.
2354  *
2355  * Caller must ensure we don't call this with other virtqueue
2356  * operations at the same time (except where noted).
2357  */
2358 unsigned int virtqueue_enable_cb_prepare(struct virtqueue *_vq)
2359 {
2360 	struct vring_virtqueue *vq = to_vvq(_vq);
2361 
2362 	if (vq->event_triggered)
2363 		vq->event_triggered = false;
2364 
2365 	return vq->packed_ring ? virtqueue_enable_cb_prepare_packed(_vq) :
2366 				 virtqueue_enable_cb_prepare_split(_vq);
2367 }
2368 EXPORT_SYMBOL_GPL(virtqueue_enable_cb_prepare);
2369 
2370 /**
2371  * virtqueue_poll - query pending used buffers
2372  * @_vq: the struct virtqueue we're talking about.
2373  * @last_used_idx: virtqueue state (from call to virtqueue_enable_cb_prepare).
2374  *
2375  * Returns "true" if there are pending used buffers in the queue.
2376  *
2377  * This does not need to be serialized.
2378  */
2379 bool virtqueue_poll(struct virtqueue *_vq, unsigned int last_used_idx)
2380 {
2381 	struct vring_virtqueue *vq = to_vvq(_vq);
2382 
2383 	if (unlikely(vq->broken))
2384 		return false;
2385 
2386 	virtio_mb(vq->weak_barriers);
2387 	return vq->packed_ring ? virtqueue_poll_packed(_vq, last_used_idx) :
2388 				 virtqueue_poll_split(_vq, last_used_idx);
2389 }
2390 EXPORT_SYMBOL_GPL(virtqueue_poll);
2391 
2392 /**
2393  * virtqueue_enable_cb - restart callbacks after disable_cb.
2394  * @_vq: the struct virtqueue we're talking about.
2395  *
2396  * This re-enables callbacks; it returns "false" if there are pending
2397  * buffers in the queue, to detect a possible race between the driver
2398  * checking for more work, and enabling callbacks.
2399  *
2400  * Caller must ensure we don't call this with other virtqueue
2401  * operations at the same time (except where noted).
2402  */
2403 bool virtqueue_enable_cb(struct virtqueue *_vq)
2404 {
2405 	unsigned int last_used_idx = virtqueue_enable_cb_prepare(_vq);
2406 
2407 	return !virtqueue_poll(_vq, last_used_idx);
2408 }
2409 EXPORT_SYMBOL_GPL(virtqueue_enable_cb);
2410 
2411 /**
2412  * virtqueue_enable_cb_delayed - restart callbacks after disable_cb.
2413  * @_vq: the struct virtqueue we're talking about.
2414  *
2415  * This re-enables callbacks but hints to the other side to delay
2416  * interrupts until most of the available buffers have been processed;
2417  * it returns "false" if there are many pending buffers in the queue,
2418  * to detect a possible race between the driver checking for more work,
2419  * and enabling callbacks.
2420  *
2421  * Caller must ensure we don't call this with other virtqueue
2422  * operations at the same time (except where noted).
2423  */
2424 bool virtqueue_enable_cb_delayed(struct virtqueue *_vq)
2425 {
2426 	struct vring_virtqueue *vq = to_vvq(_vq);
2427 
2428 	if (vq->event_triggered)
2429 		vq->event_triggered = false;
2430 
2431 	return vq->packed_ring ? virtqueue_enable_cb_delayed_packed(_vq) :
2432 				 virtqueue_enable_cb_delayed_split(_vq);
2433 }
2434 EXPORT_SYMBOL_GPL(virtqueue_enable_cb_delayed);
2435 
2436 /**
2437  * virtqueue_detach_unused_buf - detach first unused buffer
2438  * @_vq: the struct virtqueue we're talking about.
2439  *
2440  * Returns NULL or the "data" token handed to virtqueue_add_*().
2441  * This is not valid on an active queue; it is useful for device
2442  * shutdown or the reset queue.
2443  */
2444 void *virtqueue_detach_unused_buf(struct virtqueue *_vq)
2445 {
2446 	struct vring_virtqueue *vq = to_vvq(_vq);
2447 
2448 	return vq->packed_ring ? virtqueue_detach_unused_buf_packed(_vq) :
2449 				 virtqueue_detach_unused_buf_split(_vq);
2450 }
2451 EXPORT_SYMBOL_GPL(virtqueue_detach_unused_buf);
2452 
2453 static inline bool more_used(const struct vring_virtqueue *vq)
2454 {
2455 	return vq->packed_ring ? more_used_packed(vq) : more_used_split(vq);
2456 }
2457 
2458 /**
2459  * vring_interrupt - notify a virtqueue on an interrupt
2460  * @irq: the IRQ number (ignored)
2461  * @_vq: the struct virtqueue to notify
2462  *
2463  * Calls the callback function of @_vq to process the virtqueue
2464  * notification.
2465  */
2466 irqreturn_t vring_interrupt(int irq, void *_vq)
2467 {
2468 	struct vring_virtqueue *vq = to_vvq(_vq);
2469 
2470 	if (!more_used(vq)) {
2471 		pr_debug("virtqueue interrupt with no work for %p\n", vq);
2472 		return IRQ_NONE;
2473 	}
2474 
2475 	if (unlikely(vq->broken)) {
2476 #ifdef CONFIG_VIRTIO_HARDEN_NOTIFICATION
2477 		dev_warn_once(&vq->vq.vdev->dev,
2478 			      "virtio vring IRQ raised before DRIVER_OK");
2479 		return IRQ_NONE;
2480 #else
2481 		return IRQ_HANDLED;
2482 #endif
2483 	}
2484 
2485 	/* Just a hint for performance: so it's ok that this can be racy! */
2486 	if (vq->event)
2487 		vq->event_triggered = true;
2488 
2489 	pr_debug("virtqueue callback for %p (%p)\n", vq, vq->vq.callback);
2490 	if (vq->vq.callback)
2491 		vq->vq.callback(&vq->vq);
2492 
2493 	return IRQ_HANDLED;
2494 }
2495 EXPORT_SYMBOL_GPL(vring_interrupt);
2496 
2497 /* Only available for split ring */
2498 static struct virtqueue *__vring_new_virtqueue(unsigned int index,
2499 					       struct vring_virtqueue_split *vring_split,
2500 					       struct virtio_device *vdev,
2501 					       bool weak_barriers,
2502 					       bool context,
2503 					       bool (*notify)(struct virtqueue *),
2504 					       void (*callback)(struct virtqueue *),
2505 					       const char *name,
2506 					       struct device *dma_dev)
2507 {
2508 	struct vring_virtqueue *vq;
2509 	int err;
2510 
2511 	if (virtio_has_feature(vdev, VIRTIO_F_RING_PACKED))
2512 		return NULL;
2513 
2514 	vq = kmalloc(sizeof(*vq), GFP_KERNEL);
2515 	if (!vq)
2516 		return NULL;
2517 
2518 	vq->packed_ring = false;
2519 	vq->vq.callback = callback;
2520 	vq->vq.vdev = vdev;
2521 	vq->vq.name = name;
2522 	vq->vq.index = index;
2523 	vq->vq.reset = false;
2524 	vq->we_own_ring = false;
2525 	vq->notify = notify;
2526 	vq->weak_barriers = weak_barriers;
2527 #ifdef CONFIG_VIRTIO_HARDEN_NOTIFICATION
2528 	vq->broken = true;
2529 #else
2530 	vq->broken = false;
2531 #endif
2532 	vq->dma_dev = dma_dev;
2533 	vq->use_dma_api = vring_use_dma_api(vdev);
2534 
2535 	vq->indirect = virtio_has_feature(vdev, VIRTIO_RING_F_INDIRECT_DESC) &&
2536 		!context;
2537 	vq->event = virtio_has_feature(vdev, VIRTIO_RING_F_EVENT_IDX);
2538 
2539 	if (virtio_has_feature(vdev, VIRTIO_F_ORDER_PLATFORM))
2540 		vq->weak_barriers = false;
2541 
2542 	err = vring_alloc_state_extra_split(vring_split);
2543 	if (err) {
2544 		kfree(vq);
2545 		return NULL;
2546 	}
2547 
2548 	virtqueue_vring_init_split(vring_split, vq);
2549 
2550 	virtqueue_init(vq, vring_split->vring.num);
2551 	virtqueue_vring_attach_split(vq, vring_split);
2552 
2553 	spin_lock(&vdev->vqs_list_lock);
2554 	list_add_tail(&vq->vq.list, &vdev->vqs);
2555 	spin_unlock(&vdev->vqs_list_lock);
2556 	return &vq->vq;
2557 }
2558 
2559 struct virtqueue *vring_create_virtqueue(
2560 	unsigned int index,
2561 	unsigned int num,
2562 	unsigned int vring_align,
2563 	struct virtio_device *vdev,
2564 	bool weak_barriers,
2565 	bool may_reduce_num,
2566 	bool context,
2567 	bool (*notify)(struct virtqueue *),
2568 	void (*callback)(struct virtqueue *),
2569 	const char *name)
2570 {
2571 
2572 	if (virtio_has_feature(vdev, VIRTIO_F_RING_PACKED))
2573 		return vring_create_virtqueue_packed(index, num, vring_align,
2574 				vdev, weak_barriers, may_reduce_num,
2575 				context, notify, callback, name, vdev->dev.parent);
2576 
2577 	return vring_create_virtqueue_split(index, num, vring_align,
2578 			vdev, weak_barriers, may_reduce_num,
2579 			context, notify, callback, name, vdev->dev.parent);
2580 }
2581 EXPORT_SYMBOL_GPL(vring_create_virtqueue);
2582 
2583 struct virtqueue *vring_create_virtqueue_dma(
2584 	unsigned int index,
2585 	unsigned int num,
2586 	unsigned int vring_align,
2587 	struct virtio_device *vdev,
2588 	bool weak_barriers,
2589 	bool may_reduce_num,
2590 	bool context,
2591 	bool (*notify)(struct virtqueue *),
2592 	void (*callback)(struct virtqueue *),
2593 	const char *name,
2594 	struct device *dma_dev)
2595 {
2596 
2597 	if (virtio_has_feature(vdev, VIRTIO_F_RING_PACKED))
2598 		return vring_create_virtqueue_packed(index, num, vring_align,
2599 				vdev, weak_barriers, may_reduce_num,
2600 				context, notify, callback, name, dma_dev);
2601 
2602 	return vring_create_virtqueue_split(index, num, vring_align,
2603 			vdev, weak_barriers, may_reduce_num,
2604 			context, notify, callback, name, dma_dev);
2605 }
2606 EXPORT_SYMBOL_GPL(vring_create_virtqueue_dma);
2607 
2608 /**
2609  * virtqueue_resize - resize the vring of vq
2610  * @_vq: the struct virtqueue we're talking about.
2611  * @num: new ring num
2612  * @recycle: callback for recycle the useless buffer
2613  *
2614  * When it is really necessary to create a new vring, it will set the current vq
2615  * into the reset state. Then call the passed callback to recycle the buffer
2616  * that is no longer used. Only after the new vring is successfully created, the
2617  * old vring will be released.
2618  *
2619  * Caller must ensure we don't call this with other virtqueue operations
2620  * at the same time (except where noted).
2621  *
2622  * Returns zero or a negative error.
2623  * 0: success.
2624  * -ENOMEM: Failed to allocate a new ring, fall back to the original ring size.
2625  *  vq can still work normally
2626  * -EBUSY: Failed to sync with device, vq may not work properly
2627  * -ENOENT: Transport or device not supported
2628  * -E2BIG/-EINVAL: num error
2629  * -EPERM: Operation not permitted
2630  *
2631  */
2632 int virtqueue_resize(struct virtqueue *_vq, u32 num,
2633 		     void (*recycle)(struct virtqueue *vq, void *buf))
2634 {
2635 	struct vring_virtqueue *vq = to_vvq(_vq);
2636 	struct virtio_device *vdev = vq->vq.vdev;
2637 	void *buf;
2638 	int err;
2639 
2640 	if (!vq->we_own_ring)
2641 		return -EPERM;
2642 
2643 	if (num > vq->vq.num_max)
2644 		return -E2BIG;
2645 
2646 	if (!num)
2647 		return -EINVAL;
2648 
2649 	if ((vq->packed_ring ? vq->packed.vring.num : vq->split.vring.num) == num)
2650 		return 0;
2651 
2652 	if (!vdev->config->disable_vq_and_reset)
2653 		return -ENOENT;
2654 
2655 	if (!vdev->config->enable_vq_after_reset)
2656 		return -ENOENT;
2657 
2658 	err = vdev->config->disable_vq_and_reset(_vq);
2659 	if (err)
2660 		return err;
2661 
2662 	while ((buf = virtqueue_detach_unused_buf(_vq)) != NULL)
2663 		recycle(_vq, buf);
2664 
2665 	if (vq->packed_ring)
2666 		err = virtqueue_resize_packed(_vq, num);
2667 	else
2668 		err = virtqueue_resize_split(_vq, num);
2669 
2670 	if (vdev->config->enable_vq_after_reset(_vq))
2671 		return -EBUSY;
2672 
2673 	return err;
2674 }
2675 EXPORT_SYMBOL_GPL(virtqueue_resize);
2676 
2677 /* Only available for split ring */
2678 struct virtqueue *vring_new_virtqueue(unsigned int index,
2679 				      unsigned int num,
2680 				      unsigned int vring_align,
2681 				      struct virtio_device *vdev,
2682 				      bool weak_barriers,
2683 				      bool context,
2684 				      void *pages,
2685 				      bool (*notify)(struct virtqueue *vq),
2686 				      void (*callback)(struct virtqueue *vq),
2687 				      const char *name)
2688 {
2689 	struct vring_virtqueue_split vring_split = {};
2690 
2691 	if (virtio_has_feature(vdev, VIRTIO_F_RING_PACKED))
2692 		return NULL;
2693 
2694 	vring_init(&vring_split.vring, num, pages, vring_align);
2695 	return __vring_new_virtqueue(index, &vring_split, vdev, weak_barriers,
2696 				     context, notify, callback, name,
2697 				     vdev->dev.parent);
2698 }
2699 EXPORT_SYMBOL_GPL(vring_new_virtqueue);
2700 
2701 static void vring_free(struct virtqueue *_vq)
2702 {
2703 	struct vring_virtqueue *vq = to_vvq(_vq);
2704 
2705 	if (vq->we_own_ring) {
2706 		if (vq->packed_ring) {
2707 			vring_free_queue(vq->vq.vdev,
2708 					 vq->packed.ring_size_in_bytes,
2709 					 vq->packed.vring.desc,
2710 					 vq->packed.ring_dma_addr,
2711 					 vring_dma_dev(vq));
2712 
2713 			vring_free_queue(vq->vq.vdev,
2714 					 vq->packed.event_size_in_bytes,
2715 					 vq->packed.vring.driver,
2716 					 vq->packed.driver_event_dma_addr,
2717 					 vring_dma_dev(vq));
2718 
2719 			vring_free_queue(vq->vq.vdev,
2720 					 vq->packed.event_size_in_bytes,
2721 					 vq->packed.vring.device,
2722 					 vq->packed.device_event_dma_addr,
2723 					 vring_dma_dev(vq));
2724 
2725 			kfree(vq->packed.desc_state);
2726 			kfree(vq->packed.desc_extra);
2727 		} else {
2728 			vring_free_queue(vq->vq.vdev,
2729 					 vq->split.queue_size_in_bytes,
2730 					 vq->split.vring.desc,
2731 					 vq->split.queue_dma_addr,
2732 					 vring_dma_dev(vq));
2733 		}
2734 	}
2735 	if (!vq->packed_ring) {
2736 		kfree(vq->split.desc_state);
2737 		kfree(vq->split.desc_extra);
2738 	}
2739 }
2740 
2741 void vring_del_virtqueue(struct virtqueue *_vq)
2742 {
2743 	struct vring_virtqueue *vq = to_vvq(_vq);
2744 
2745 	spin_lock(&vq->vq.vdev->vqs_list_lock);
2746 	list_del(&_vq->list);
2747 	spin_unlock(&vq->vq.vdev->vqs_list_lock);
2748 
2749 	vring_free(_vq);
2750 
2751 	kfree(vq);
2752 }
2753 EXPORT_SYMBOL_GPL(vring_del_virtqueue);
2754 
2755 /* Manipulates transport-specific feature bits. */
2756 void vring_transport_features(struct virtio_device *vdev)
2757 {
2758 	unsigned int i;
2759 
2760 	for (i = VIRTIO_TRANSPORT_F_START; i < VIRTIO_TRANSPORT_F_END; i++) {
2761 		switch (i) {
2762 		case VIRTIO_RING_F_INDIRECT_DESC:
2763 			break;
2764 		case VIRTIO_RING_F_EVENT_IDX:
2765 			break;
2766 		case VIRTIO_F_VERSION_1:
2767 			break;
2768 		case VIRTIO_F_ACCESS_PLATFORM:
2769 			break;
2770 		case VIRTIO_F_RING_PACKED:
2771 			break;
2772 		case VIRTIO_F_ORDER_PLATFORM:
2773 			break;
2774 		default:
2775 			/* We don't understand this bit. */
2776 			__virtio_clear_bit(vdev, i);
2777 		}
2778 	}
2779 }
2780 EXPORT_SYMBOL_GPL(vring_transport_features);
2781 
2782 /**
2783  * virtqueue_get_vring_size - return the size of the virtqueue's vring
2784  * @_vq: the struct virtqueue containing the vring of interest.
2785  *
2786  * Returns the size of the vring.  This is mainly used for boasting to
2787  * userspace.  Unlike other operations, this need not be serialized.
2788  */
2789 unsigned int virtqueue_get_vring_size(struct virtqueue *_vq)
2790 {
2791 
2792 	struct vring_virtqueue *vq = to_vvq(_vq);
2793 
2794 	return vq->packed_ring ? vq->packed.vring.num : vq->split.vring.num;
2795 }
2796 EXPORT_SYMBOL_GPL(virtqueue_get_vring_size);
2797 
2798 /*
2799  * This function should only be called by the core, not directly by the driver.
2800  */
2801 void __virtqueue_break(struct virtqueue *_vq)
2802 {
2803 	struct vring_virtqueue *vq = to_vvq(_vq);
2804 
2805 	/* Pairs with READ_ONCE() in virtqueue_is_broken(). */
2806 	WRITE_ONCE(vq->broken, true);
2807 }
2808 EXPORT_SYMBOL_GPL(__virtqueue_break);
2809 
2810 /*
2811  * This function should only be called by the core, not directly by the driver.
2812  */
2813 void __virtqueue_unbreak(struct virtqueue *_vq)
2814 {
2815 	struct vring_virtqueue *vq = to_vvq(_vq);
2816 
2817 	/* Pairs with READ_ONCE() in virtqueue_is_broken(). */
2818 	WRITE_ONCE(vq->broken, false);
2819 }
2820 EXPORT_SYMBOL_GPL(__virtqueue_unbreak);
2821 
2822 bool virtqueue_is_broken(struct virtqueue *_vq)
2823 {
2824 	struct vring_virtqueue *vq = to_vvq(_vq);
2825 
2826 	return READ_ONCE(vq->broken);
2827 }
2828 EXPORT_SYMBOL_GPL(virtqueue_is_broken);
2829 
2830 /*
2831  * This should prevent the device from being used, allowing drivers to
2832  * recover.  You may need to grab appropriate locks to flush.
2833  */
2834 void virtio_break_device(struct virtio_device *dev)
2835 {
2836 	struct virtqueue *_vq;
2837 
2838 	spin_lock(&dev->vqs_list_lock);
2839 	list_for_each_entry(_vq, &dev->vqs, list) {
2840 		struct vring_virtqueue *vq = to_vvq(_vq);
2841 
2842 		/* Pairs with READ_ONCE() in virtqueue_is_broken(). */
2843 		WRITE_ONCE(vq->broken, true);
2844 	}
2845 	spin_unlock(&dev->vqs_list_lock);
2846 }
2847 EXPORT_SYMBOL_GPL(virtio_break_device);
2848 
2849 /*
2850  * This should allow the device to be used by the driver. You may
2851  * need to grab appropriate locks to flush the write to
2852  * vq->broken. This should only be used in some specific case e.g
2853  * (probing and restoring). This function should only be called by the
2854  * core, not directly by the driver.
2855  */
2856 void __virtio_unbreak_device(struct virtio_device *dev)
2857 {
2858 	struct virtqueue *_vq;
2859 
2860 	spin_lock(&dev->vqs_list_lock);
2861 	list_for_each_entry(_vq, &dev->vqs, list) {
2862 		struct vring_virtqueue *vq = to_vvq(_vq);
2863 
2864 		/* Pairs with READ_ONCE() in virtqueue_is_broken(). */
2865 		WRITE_ONCE(vq->broken, false);
2866 	}
2867 	spin_unlock(&dev->vqs_list_lock);
2868 }
2869 EXPORT_SYMBOL_GPL(__virtio_unbreak_device);
2870 
2871 dma_addr_t virtqueue_get_desc_addr(struct virtqueue *_vq)
2872 {
2873 	struct vring_virtqueue *vq = to_vvq(_vq);
2874 
2875 	BUG_ON(!vq->we_own_ring);
2876 
2877 	if (vq->packed_ring)
2878 		return vq->packed.ring_dma_addr;
2879 
2880 	return vq->split.queue_dma_addr;
2881 }
2882 EXPORT_SYMBOL_GPL(virtqueue_get_desc_addr);
2883 
2884 dma_addr_t virtqueue_get_avail_addr(struct virtqueue *_vq)
2885 {
2886 	struct vring_virtqueue *vq = to_vvq(_vq);
2887 
2888 	BUG_ON(!vq->we_own_ring);
2889 
2890 	if (vq->packed_ring)
2891 		return vq->packed.driver_event_dma_addr;
2892 
2893 	return vq->split.queue_dma_addr +
2894 		((char *)vq->split.vring.avail - (char *)vq->split.vring.desc);
2895 }
2896 EXPORT_SYMBOL_GPL(virtqueue_get_avail_addr);
2897 
2898 dma_addr_t virtqueue_get_used_addr(struct virtqueue *_vq)
2899 {
2900 	struct vring_virtqueue *vq = to_vvq(_vq);
2901 
2902 	BUG_ON(!vq->we_own_ring);
2903 
2904 	if (vq->packed_ring)
2905 		return vq->packed.device_event_dma_addr;
2906 
2907 	return vq->split.queue_dma_addr +
2908 		((char *)vq->split.vring.used - (char *)vq->split.vring.desc);
2909 }
2910 EXPORT_SYMBOL_GPL(virtqueue_get_used_addr);
2911 
2912 /* Only available for split ring */
2913 const struct vring *virtqueue_get_vring(struct virtqueue *vq)
2914 {
2915 	return &to_vvq(vq)->split.vring;
2916 }
2917 EXPORT_SYMBOL_GPL(virtqueue_get_vring);
2918 
2919 MODULE_LICENSE("GPL");
2920