xref: /openbmc/linux/drivers/virtio/virtio_ring.c (revision 901bdf5ea1a836400ee69aa32b04e9c209271ec7)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /* Virtio ring implementation.
3  *
4  *  Copyright 2007 Rusty Russell IBM Corporation
5  */
6 #include <linux/virtio.h>
7 #include <linux/virtio_ring.h>
8 #include <linux/virtio_config.h>
9 #include <linux/device.h>
10 #include <linux/slab.h>
11 #include <linux/module.h>
12 #include <linux/hrtimer.h>
13 #include <linux/dma-mapping.h>
14 #include <linux/kmsan.h>
15 #include <linux/spinlock.h>
16 #include <xen/xen.h>
17 
18 #ifdef DEBUG
19 /* For development, we want to crash whenever the ring is screwed. */
20 #define BAD_RING(_vq, fmt, args...)				\
21 	do {							\
22 		dev_err(&(_vq)->vq.vdev->dev,			\
23 			"%s:"fmt, (_vq)->vq.name, ##args);	\
24 		BUG();						\
25 	} while (0)
26 /* Caller is supposed to guarantee no reentry. */
27 #define START_USE(_vq)						\
28 	do {							\
29 		if ((_vq)->in_use)				\
30 			panic("%s:in_use = %i\n",		\
31 			      (_vq)->vq.name, (_vq)->in_use);	\
32 		(_vq)->in_use = __LINE__;			\
33 	} while (0)
34 #define END_USE(_vq) \
35 	do { BUG_ON(!(_vq)->in_use); (_vq)->in_use = 0; } while(0)
36 #define LAST_ADD_TIME_UPDATE(_vq)				\
37 	do {							\
38 		ktime_t now = ktime_get();			\
39 								\
40 		/* No kick or get, with .1 second between?  Warn. */ \
41 		if ((_vq)->last_add_time_valid)			\
42 			WARN_ON(ktime_to_ms(ktime_sub(now,	\
43 				(_vq)->last_add_time)) > 100);	\
44 		(_vq)->last_add_time = now;			\
45 		(_vq)->last_add_time_valid = true;		\
46 	} while (0)
47 #define LAST_ADD_TIME_CHECK(_vq)				\
48 	do {							\
49 		if ((_vq)->last_add_time_valid) {		\
50 			WARN_ON(ktime_to_ms(ktime_sub(ktime_get(), \
51 				      (_vq)->last_add_time)) > 100); \
52 		}						\
53 	} while (0)
54 #define LAST_ADD_TIME_INVALID(_vq)				\
55 	((_vq)->last_add_time_valid = false)
56 #else
57 #define BAD_RING(_vq, fmt, args...)				\
58 	do {							\
59 		dev_err(&_vq->vq.vdev->dev,			\
60 			"%s:"fmt, (_vq)->vq.name, ##args);	\
61 		(_vq)->broken = true;				\
62 	} while (0)
63 #define START_USE(vq)
64 #define END_USE(vq)
65 #define LAST_ADD_TIME_UPDATE(vq)
66 #define LAST_ADD_TIME_CHECK(vq)
67 #define LAST_ADD_TIME_INVALID(vq)
68 #endif
69 
70 struct vring_desc_state_split {
71 	void *data;			/* Data for callback. */
72 	struct vring_desc *indir_desc;	/* Indirect descriptor, if any. */
73 };
74 
75 struct vring_desc_state_packed {
76 	void *data;			/* Data for callback. */
77 	struct vring_packed_desc *indir_desc; /* Indirect descriptor, if any. */
78 	u16 num;			/* Descriptor list length. */
79 	u16 last;			/* The last desc state in a list. */
80 };
81 
82 struct vring_desc_extra {
83 	dma_addr_t addr;		/* Descriptor DMA addr. */
84 	u32 len;			/* Descriptor length. */
85 	u16 flags;			/* Descriptor flags. */
86 	u16 next;			/* The next desc state in a list. */
87 };
88 
89 struct vring_virtqueue_split {
90 	/* Actual memory layout for this queue. */
91 	struct vring vring;
92 
93 	/* Last written value to avail->flags */
94 	u16 avail_flags_shadow;
95 
96 	/*
97 	 * Last written value to avail->idx in
98 	 * guest byte order.
99 	 */
100 	u16 avail_idx_shadow;
101 
102 	/* Per-descriptor state. */
103 	struct vring_desc_state_split *desc_state;
104 	struct vring_desc_extra *desc_extra;
105 
106 	/* DMA address and size information */
107 	dma_addr_t queue_dma_addr;
108 	size_t queue_size_in_bytes;
109 
110 	/*
111 	 * The parameters for creating vrings are reserved for creating new
112 	 * vring.
113 	 */
114 	u32 vring_align;
115 	bool may_reduce_num;
116 };
117 
118 struct vring_virtqueue_packed {
119 	/* Actual memory layout for this queue. */
120 	struct {
121 		unsigned int num;
122 		struct vring_packed_desc *desc;
123 		struct vring_packed_desc_event *driver;
124 		struct vring_packed_desc_event *device;
125 	} vring;
126 
127 	/* Driver ring wrap counter. */
128 	bool avail_wrap_counter;
129 
130 	/* Avail used flags. */
131 	u16 avail_used_flags;
132 
133 	/* Index of the next avail descriptor. */
134 	u16 next_avail_idx;
135 
136 	/*
137 	 * Last written value to driver->flags in
138 	 * guest byte order.
139 	 */
140 	u16 event_flags_shadow;
141 
142 	/* Per-descriptor state. */
143 	struct vring_desc_state_packed *desc_state;
144 	struct vring_desc_extra *desc_extra;
145 
146 	/* DMA address and size information */
147 	dma_addr_t ring_dma_addr;
148 	dma_addr_t driver_event_dma_addr;
149 	dma_addr_t device_event_dma_addr;
150 	size_t ring_size_in_bytes;
151 	size_t event_size_in_bytes;
152 };
153 
154 struct vring_virtqueue {
155 	struct virtqueue vq;
156 
157 	/* Is this a packed ring? */
158 	bool packed_ring;
159 
160 	/* Is DMA API used? */
161 	bool use_dma_api;
162 
163 	/* Can we use weak barriers? */
164 	bool weak_barriers;
165 
166 	/* Other side has made a mess, don't try any more. */
167 	bool broken;
168 
169 	/* Host supports indirect buffers */
170 	bool indirect;
171 
172 	/* Host publishes avail event idx */
173 	bool event;
174 
175 	/* Head of free buffer list. */
176 	unsigned int free_head;
177 	/* Number we've added since last sync. */
178 	unsigned int num_added;
179 
180 	/* Last used index  we've seen.
181 	 * for split ring, it just contains last used index
182 	 * for packed ring:
183 	 * bits up to VRING_PACKED_EVENT_F_WRAP_CTR include the last used index.
184 	 * bits from VRING_PACKED_EVENT_F_WRAP_CTR include the used wrap counter.
185 	 */
186 	u16 last_used_idx;
187 
188 	/* Hint for event idx: already triggered no need to disable. */
189 	bool event_triggered;
190 
191 	union {
192 		/* Available for split ring */
193 		struct vring_virtqueue_split split;
194 
195 		/* Available for packed ring */
196 		struct vring_virtqueue_packed packed;
197 	};
198 
199 	/* How to notify other side. FIXME: commonalize hcalls! */
200 	bool (*notify)(struct virtqueue *vq);
201 
202 	/* DMA, allocation, and size information */
203 	bool we_own_ring;
204 
205 	/* Device used for doing DMA */
206 	struct device *dma_dev;
207 
208 #ifdef DEBUG
209 	/* They're supposed to lock for us. */
210 	unsigned int in_use;
211 
212 	/* Figure out if their kicks are too delayed. */
213 	bool last_add_time_valid;
214 	ktime_t last_add_time;
215 #endif
216 };
217 
218 static struct virtqueue *__vring_new_virtqueue(unsigned int index,
219 					       struct vring_virtqueue_split *vring_split,
220 					       struct virtio_device *vdev,
221 					       bool weak_barriers,
222 					       bool context,
223 					       bool (*notify)(struct virtqueue *),
224 					       void (*callback)(struct virtqueue *),
225 					       const char *name,
226 					       struct device *dma_dev);
227 static struct vring_desc_extra *vring_alloc_desc_extra(unsigned int num);
228 static void vring_free(struct virtqueue *_vq);
229 
230 /*
231  * Helpers.
232  */
233 
234 #define to_vvq(_vq) container_of_const(_vq, struct vring_virtqueue, vq)
235 
236 static bool virtqueue_use_indirect(const struct vring_virtqueue *vq,
237 				   unsigned int total_sg)
238 {
239 	/*
240 	 * If the host supports indirect descriptor tables, and we have multiple
241 	 * buffers, then go indirect. FIXME: tune this threshold
242 	 */
243 	return (vq->indirect && total_sg > 1 && vq->vq.num_free);
244 }
245 
246 /*
247  * Modern virtio devices have feature bits to specify whether they need a
248  * quirk and bypass the IOMMU. If not there, just use the DMA API.
249  *
250  * If there, the interaction between virtio and DMA API is messy.
251  *
252  * On most systems with virtio, physical addresses match bus addresses,
253  * and it doesn't particularly matter whether we use the DMA API.
254  *
255  * On some systems, including Xen and any system with a physical device
256  * that speaks virtio behind a physical IOMMU, we must use the DMA API
257  * for virtio DMA to work at all.
258  *
259  * On other systems, including SPARC and PPC64, virtio-pci devices are
260  * enumerated as though they are behind an IOMMU, but the virtio host
261  * ignores the IOMMU, so we must either pretend that the IOMMU isn't
262  * there or somehow map everything as the identity.
263  *
264  * For the time being, we preserve historic behavior and bypass the DMA
265  * API.
266  *
267  * TODO: install a per-device DMA ops structure that does the right thing
268  * taking into account all the above quirks, and use the DMA API
269  * unconditionally on data path.
270  */
271 
272 static bool vring_use_dma_api(const struct virtio_device *vdev)
273 {
274 	if (!virtio_has_dma_quirk(vdev))
275 		return true;
276 
277 	/* Otherwise, we are left to guess. */
278 	/*
279 	 * In theory, it's possible to have a buggy QEMU-supposed
280 	 * emulated Q35 IOMMU and Xen enabled at the same time.  On
281 	 * such a configuration, virtio has never worked and will
282 	 * not work without an even larger kludge.  Instead, enable
283 	 * the DMA API if we're a Xen guest, which at least allows
284 	 * all of the sensible Xen configurations to work correctly.
285 	 */
286 	if (xen_domain())
287 		return true;
288 
289 	return false;
290 }
291 
292 size_t virtio_max_dma_size(const struct virtio_device *vdev)
293 {
294 	size_t max_segment_size = SIZE_MAX;
295 
296 	if (vring_use_dma_api(vdev))
297 		max_segment_size = dma_max_mapping_size(vdev->dev.parent);
298 
299 	return max_segment_size;
300 }
301 EXPORT_SYMBOL_GPL(virtio_max_dma_size);
302 
303 static void *vring_alloc_queue(struct virtio_device *vdev, size_t size,
304 			       dma_addr_t *dma_handle, gfp_t flag,
305 			       struct device *dma_dev)
306 {
307 	if (vring_use_dma_api(vdev)) {
308 		return dma_alloc_coherent(dma_dev, size,
309 					  dma_handle, flag);
310 	} else {
311 		void *queue = alloc_pages_exact(PAGE_ALIGN(size), flag);
312 
313 		if (queue) {
314 			phys_addr_t phys_addr = virt_to_phys(queue);
315 			*dma_handle = (dma_addr_t)phys_addr;
316 
317 			/*
318 			 * Sanity check: make sure we dind't truncate
319 			 * the address.  The only arches I can find that
320 			 * have 64-bit phys_addr_t but 32-bit dma_addr_t
321 			 * are certain non-highmem MIPS and x86
322 			 * configurations, but these configurations
323 			 * should never allocate physical pages above 32
324 			 * bits, so this is fine.  Just in case, throw a
325 			 * warning and abort if we end up with an
326 			 * unrepresentable address.
327 			 */
328 			if (WARN_ON_ONCE(*dma_handle != phys_addr)) {
329 				free_pages_exact(queue, PAGE_ALIGN(size));
330 				return NULL;
331 			}
332 		}
333 		return queue;
334 	}
335 }
336 
337 static void vring_free_queue(struct virtio_device *vdev, size_t size,
338 			     void *queue, dma_addr_t dma_handle,
339 			     struct device *dma_dev)
340 {
341 	if (vring_use_dma_api(vdev))
342 		dma_free_coherent(dma_dev, size, queue, dma_handle);
343 	else
344 		free_pages_exact(queue, PAGE_ALIGN(size));
345 }
346 
347 /*
348  * The DMA ops on various arches are rather gnarly right now, and
349  * making all of the arch DMA ops work on the vring device itself
350  * is a mess.
351  */
352 static struct device *vring_dma_dev(const struct vring_virtqueue *vq)
353 {
354 	return vq->dma_dev;
355 }
356 
357 /* Map one sg entry. */
358 static dma_addr_t vring_map_one_sg(const struct vring_virtqueue *vq,
359 				   struct scatterlist *sg,
360 				   enum dma_data_direction direction)
361 {
362 	if (!vq->use_dma_api) {
363 		/*
364 		 * If DMA is not used, KMSAN doesn't know that the scatterlist
365 		 * is initialized by the hardware. Explicitly check/unpoison it
366 		 * depending on the direction.
367 		 */
368 		kmsan_handle_dma(sg_page(sg), sg->offset, sg->length, direction);
369 		return (dma_addr_t)sg_phys(sg);
370 	}
371 
372 	/*
373 	 * We can't use dma_map_sg, because we don't use scatterlists in
374 	 * the way it expects (we don't guarantee that the scatterlist
375 	 * will exist for the lifetime of the mapping).
376 	 */
377 	return dma_map_page(vring_dma_dev(vq),
378 			    sg_page(sg), sg->offset, sg->length,
379 			    direction);
380 }
381 
382 static dma_addr_t vring_map_single(const struct vring_virtqueue *vq,
383 				   void *cpu_addr, size_t size,
384 				   enum dma_data_direction direction)
385 {
386 	if (!vq->use_dma_api)
387 		return (dma_addr_t)virt_to_phys(cpu_addr);
388 
389 	return dma_map_single(vring_dma_dev(vq),
390 			      cpu_addr, size, direction);
391 }
392 
393 static int vring_mapping_error(const struct vring_virtqueue *vq,
394 			       dma_addr_t addr)
395 {
396 	if (!vq->use_dma_api)
397 		return 0;
398 
399 	return dma_mapping_error(vring_dma_dev(vq), addr);
400 }
401 
402 static void virtqueue_init(struct vring_virtqueue *vq, u32 num)
403 {
404 	vq->vq.num_free = num;
405 
406 	if (vq->packed_ring)
407 		vq->last_used_idx = 0 | (1 << VRING_PACKED_EVENT_F_WRAP_CTR);
408 	else
409 		vq->last_used_idx = 0;
410 
411 	vq->event_triggered = false;
412 	vq->num_added = 0;
413 
414 #ifdef DEBUG
415 	vq->in_use = false;
416 	vq->last_add_time_valid = false;
417 #endif
418 }
419 
420 
421 /*
422  * Split ring specific functions - *_split().
423  */
424 
425 static void vring_unmap_one_split_indirect(const struct vring_virtqueue *vq,
426 					   const struct vring_desc *desc)
427 {
428 	u16 flags;
429 
430 	if (!vq->use_dma_api)
431 		return;
432 
433 	flags = virtio16_to_cpu(vq->vq.vdev, desc->flags);
434 
435 	dma_unmap_page(vring_dma_dev(vq),
436 		       virtio64_to_cpu(vq->vq.vdev, desc->addr),
437 		       virtio32_to_cpu(vq->vq.vdev, desc->len),
438 		       (flags & VRING_DESC_F_WRITE) ?
439 		       DMA_FROM_DEVICE : DMA_TO_DEVICE);
440 }
441 
442 static unsigned int vring_unmap_one_split(const struct vring_virtqueue *vq,
443 					  unsigned int i)
444 {
445 	struct vring_desc_extra *extra = vq->split.desc_extra;
446 	u16 flags;
447 
448 	if (!vq->use_dma_api)
449 		goto out;
450 
451 	flags = extra[i].flags;
452 
453 	if (flags & VRING_DESC_F_INDIRECT) {
454 		dma_unmap_single(vring_dma_dev(vq),
455 				 extra[i].addr,
456 				 extra[i].len,
457 				 (flags & VRING_DESC_F_WRITE) ?
458 				 DMA_FROM_DEVICE : DMA_TO_DEVICE);
459 	} else {
460 		dma_unmap_page(vring_dma_dev(vq),
461 			       extra[i].addr,
462 			       extra[i].len,
463 			       (flags & VRING_DESC_F_WRITE) ?
464 			       DMA_FROM_DEVICE : DMA_TO_DEVICE);
465 	}
466 
467 out:
468 	return extra[i].next;
469 }
470 
471 static struct vring_desc *alloc_indirect_split(struct virtqueue *_vq,
472 					       unsigned int total_sg,
473 					       gfp_t gfp)
474 {
475 	struct vring_desc *desc;
476 	unsigned int i;
477 
478 	/*
479 	 * We require lowmem mappings for the descriptors because
480 	 * otherwise virt_to_phys will give us bogus addresses in the
481 	 * virtqueue.
482 	 */
483 	gfp &= ~__GFP_HIGHMEM;
484 
485 	desc = kmalloc_array(total_sg, sizeof(struct vring_desc), gfp);
486 	if (!desc)
487 		return NULL;
488 
489 	for (i = 0; i < total_sg; i++)
490 		desc[i].next = cpu_to_virtio16(_vq->vdev, i + 1);
491 	return desc;
492 }
493 
494 static inline unsigned int virtqueue_add_desc_split(struct virtqueue *vq,
495 						    struct vring_desc *desc,
496 						    unsigned int i,
497 						    dma_addr_t addr,
498 						    unsigned int len,
499 						    u16 flags,
500 						    bool indirect)
501 {
502 	struct vring_virtqueue *vring = to_vvq(vq);
503 	struct vring_desc_extra *extra = vring->split.desc_extra;
504 	u16 next;
505 
506 	desc[i].flags = cpu_to_virtio16(vq->vdev, flags);
507 	desc[i].addr = cpu_to_virtio64(vq->vdev, addr);
508 	desc[i].len = cpu_to_virtio32(vq->vdev, len);
509 
510 	if (!indirect) {
511 		next = extra[i].next;
512 		desc[i].next = cpu_to_virtio16(vq->vdev, next);
513 
514 		extra[i].addr = addr;
515 		extra[i].len = len;
516 		extra[i].flags = flags;
517 	} else
518 		next = virtio16_to_cpu(vq->vdev, desc[i].next);
519 
520 	return next;
521 }
522 
523 static inline int virtqueue_add_split(struct virtqueue *_vq,
524 				      struct scatterlist *sgs[],
525 				      unsigned int total_sg,
526 				      unsigned int out_sgs,
527 				      unsigned int in_sgs,
528 				      void *data,
529 				      void *ctx,
530 				      gfp_t gfp)
531 {
532 	struct vring_virtqueue *vq = to_vvq(_vq);
533 	struct scatterlist *sg;
534 	struct vring_desc *desc;
535 	unsigned int i, n, avail, descs_used, prev, err_idx;
536 	int head;
537 	bool indirect;
538 
539 	START_USE(vq);
540 
541 	BUG_ON(data == NULL);
542 	BUG_ON(ctx && vq->indirect);
543 
544 	if (unlikely(vq->broken)) {
545 		END_USE(vq);
546 		return -EIO;
547 	}
548 
549 	LAST_ADD_TIME_UPDATE(vq);
550 
551 	BUG_ON(total_sg == 0);
552 
553 	head = vq->free_head;
554 
555 	if (virtqueue_use_indirect(vq, total_sg))
556 		desc = alloc_indirect_split(_vq, total_sg, gfp);
557 	else {
558 		desc = NULL;
559 		WARN_ON_ONCE(total_sg > vq->split.vring.num && !vq->indirect);
560 	}
561 
562 	if (desc) {
563 		/* Use a single buffer which doesn't continue */
564 		indirect = true;
565 		/* Set up rest to use this indirect table. */
566 		i = 0;
567 		descs_used = 1;
568 	} else {
569 		indirect = false;
570 		desc = vq->split.vring.desc;
571 		i = head;
572 		descs_used = total_sg;
573 	}
574 
575 	if (unlikely(vq->vq.num_free < descs_used)) {
576 		pr_debug("Can't add buf len %i - avail = %i\n",
577 			 descs_used, vq->vq.num_free);
578 		/* FIXME: for historical reasons, we force a notify here if
579 		 * there are outgoing parts to the buffer.  Presumably the
580 		 * host should service the ring ASAP. */
581 		if (out_sgs)
582 			vq->notify(&vq->vq);
583 		if (indirect)
584 			kfree(desc);
585 		END_USE(vq);
586 		return -ENOSPC;
587 	}
588 
589 	for (n = 0; n < out_sgs; n++) {
590 		for (sg = sgs[n]; sg; sg = sg_next(sg)) {
591 			dma_addr_t addr = vring_map_one_sg(vq, sg, DMA_TO_DEVICE);
592 			if (vring_mapping_error(vq, addr))
593 				goto unmap_release;
594 
595 			prev = i;
596 			/* Note that we trust indirect descriptor
597 			 * table since it use stream DMA mapping.
598 			 */
599 			i = virtqueue_add_desc_split(_vq, desc, i, addr, sg->length,
600 						     VRING_DESC_F_NEXT,
601 						     indirect);
602 		}
603 	}
604 	for (; n < (out_sgs + in_sgs); n++) {
605 		for (sg = sgs[n]; sg; sg = sg_next(sg)) {
606 			dma_addr_t addr = vring_map_one_sg(vq, sg, DMA_FROM_DEVICE);
607 			if (vring_mapping_error(vq, addr))
608 				goto unmap_release;
609 
610 			prev = i;
611 			/* Note that we trust indirect descriptor
612 			 * table since it use stream DMA mapping.
613 			 */
614 			i = virtqueue_add_desc_split(_vq, desc, i, addr,
615 						     sg->length,
616 						     VRING_DESC_F_NEXT |
617 						     VRING_DESC_F_WRITE,
618 						     indirect);
619 		}
620 	}
621 	/* Last one doesn't continue. */
622 	desc[prev].flags &= cpu_to_virtio16(_vq->vdev, ~VRING_DESC_F_NEXT);
623 	if (!indirect && vq->use_dma_api)
624 		vq->split.desc_extra[prev & (vq->split.vring.num - 1)].flags &=
625 			~VRING_DESC_F_NEXT;
626 
627 	if (indirect) {
628 		/* Now that the indirect table is filled in, map it. */
629 		dma_addr_t addr = vring_map_single(
630 			vq, desc, total_sg * sizeof(struct vring_desc),
631 			DMA_TO_DEVICE);
632 		if (vring_mapping_error(vq, addr))
633 			goto unmap_release;
634 
635 		virtqueue_add_desc_split(_vq, vq->split.vring.desc,
636 					 head, addr,
637 					 total_sg * sizeof(struct vring_desc),
638 					 VRING_DESC_F_INDIRECT,
639 					 false);
640 	}
641 
642 	/* We're using some buffers from the free list. */
643 	vq->vq.num_free -= descs_used;
644 
645 	/* Update free pointer */
646 	if (indirect)
647 		vq->free_head = vq->split.desc_extra[head].next;
648 	else
649 		vq->free_head = i;
650 
651 	/* Store token and indirect buffer state. */
652 	vq->split.desc_state[head].data = data;
653 	if (indirect)
654 		vq->split.desc_state[head].indir_desc = desc;
655 	else
656 		vq->split.desc_state[head].indir_desc = ctx;
657 
658 	/* Put entry in available array (but don't update avail->idx until they
659 	 * do sync). */
660 	avail = vq->split.avail_idx_shadow & (vq->split.vring.num - 1);
661 	vq->split.vring.avail->ring[avail] = cpu_to_virtio16(_vq->vdev, head);
662 
663 	/* Descriptors and available array need to be set before we expose the
664 	 * new available array entries. */
665 	virtio_wmb(vq->weak_barriers);
666 	vq->split.avail_idx_shadow++;
667 	vq->split.vring.avail->idx = cpu_to_virtio16(_vq->vdev,
668 						vq->split.avail_idx_shadow);
669 	vq->num_added++;
670 
671 	pr_debug("Added buffer head %i to %p\n", head, vq);
672 	END_USE(vq);
673 
674 	/* This is very unlikely, but theoretically possible.  Kick
675 	 * just in case. */
676 	if (unlikely(vq->num_added == (1 << 16) - 1))
677 		virtqueue_kick(_vq);
678 
679 	return 0;
680 
681 unmap_release:
682 	err_idx = i;
683 
684 	if (indirect)
685 		i = 0;
686 	else
687 		i = head;
688 
689 	for (n = 0; n < total_sg; n++) {
690 		if (i == err_idx)
691 			break;
692 		if (indirect) {
693 			vring_unmap_one_split_indirect(vq, &desc[i]);
694 			i = virtio16_to_cpu(_vq->vdev, desc[i].next);
695 		} else
696 			i = vring_unmap_one_split(vq, i);
697 	}
698 
699 	if (indirect)
700 		kfree(desc);
701 
702 	END_USE(vq);
703 	return -ENOMEM;
704 }
705 
706 static bool virtqueue_kick_prepare_split(struct virtqueue *_vq)
707 {
708 	struct vring_virtqueue *vq = to_vvq(_vq);
709 	u16 new, old;
710 	bool needs_kick;
711 
712 	START_USE(vq);
713 	/* We need to expose available array entries before checking avail
714 	 * event. */
715 	virtio_mb(vq->weak_barriers);
716 
717 	old = vq->split.avail_idx_shadow - vq->num_added;
718 	new = vq->split.avail_idx_shadow;
719 	vq->num_added = 0;
720 
721 	LAST_ADD_TIME_CHECK(vq);
722 	LAST_ADD_TIME_INVALID(vq);
723 
724 	if (vq->event) {
725 		needs_kick = vring_need_event(virtio16_to_cpu(_vq->vdev,
726 					vring_avail_event(&vq->split.vring)),
727 					      new, old);
728 	} else {
729 		needs_kick = !(vq->split.vring.used->flags &
730 					cpu_to_virtio16(_vq->vdev,
731 						VRING_USED_F_NO_NOTIFY));
732 	}
733 	END_USE(vq);
734 	return needs_kick;
735 }
736 
737 static void detach_buf_split(struct vring_virtqueue *vq, unsigned int head,
738 			     void **ctx)
739 {
740 	unsigned int i, j;
741 	__virtio16 nextflag = cpu_to_virtio16(vq->vq.vdev, VRING_DESC_F_NEXT);
742 
743 	/* Clear data ptr. */
744 	vq->split.desc_state[head].data = NULL;
745 
746 	/* Put back on free list: unmap first-level descriptors and find end */
747 	i = head;
748 
749 	while (vq->split.vring.desc[i].flags & nextflag) {
750 		vring_unmap_one_split(vq, i);
751 		i = vq->split.desc_extra[i].next;
752 		vq->vq.num_free++;
753 	}
754 
755 	vring_unmap_one_split(vq, i);
756 	vq->split.desc_extra[i].next = vq->free_head;
757 	vq->free_head = head;
758 
759 	/* Plus final descriptor */
760 	vq->vq.num_free++;
761 
762 	if (vq->indirect) {
763 		struct vring_desc *indir_desc =
764 				vq->split.desc_state[head].indir_desc;
765 		u32 len;
766 
767 		/* Free the indirect table, if any, now that it's unmapped. */
768 		if (!indir_desc)
769 			return;
770 
771 		len = vq->split.desc_extra[head].len;
772 
773 		BUG_ON(!(vq->split.desc_extra[head].flags &
774 				VRING_DESC_F_INDIRECT));
775 		BUG_ON(len == 0 || len % sizeof(struct vring_desc));
776 
777 		for (j = 0; j < len / sizeof(struct vring_desc); j++)
778 			vring_unmap_one_split_indirect(vq, &indir_desc[j]);
779 
780 		kfree(indir_desc);
781 		vq->split.desc_state[head].indir_desc = NULL;
782 	} else if (ctx) {
783 		*ctx = vq->split.desc_state[head].indir_desc;
784 	}
785 }
786 
787 static bool more_used_split(const struct vring_virtqueue *vq)
788 {
789 	return vq->last_used_idx != virtio16_to_cpu(vq->vq.vdev,
790 			vq->split.vring.used->idx);
791 }
792 
793 static void *virtqueue_get_buf_ctx_split(struct virtqueue *_vq,
794 					 unsigned int *len,
795 					 void **ctx)
796 {
797 	struct vring_virtqueue *vq = to_vvq(_vq);
798 	void *ret;
799 	unsigned int i;
800 	u16 last_used;
801 
802 	START_USE(vq);
803 
804 	if (unlikely(vq->broken)) {
805 		END_USE(vq);
806 		return NULL;
807 	}
808 
809 	if (!more_used_split(vq)) {
810 		pr_debug("No more buffers in queue\n");
811 		END_USE(vq);
812 		return NULL;
813 	}
814 
815 	/* Only get used array entries after they have been exposed by host. */
816 	virtio_rmb(vq->weak_barriers);
817 
818 	last_used = (vq->last_used_idx & (vq->split.vring.num - 1));
819 	i = virtio32_to_cpu(_vq->vdev,
820 			vq->split.vring.used->ring[last_used].id);
821 	*len = virtio32_to_cpu(_vq->vdev,
822 			vq->split.vring.used->ring[last_used].len);
823 
824 	if (unlikely(i >= vq->split.vring.num)) {
825 		BAD_RING(vq, "id %u out of range\n", i);
826 		return NULL;
827 	}
828 	if (unlikely(!vq->split.desc_state[i].data)) {
829 		BAD_RING(vq, "id %u is not a head!\n", i);
830 		return NULL;
831 	}
832 
833 	/* detach_buf_split clears data, so grab it now. */
834 	ret = vq->split.desc_state[i].data;
835 	detach_buf_split(vq, i, ctx);
836 	vq->last_used_idx++;
837 	/* If we expect an interrupt for the next entry, tell host
838 	 * by writing event index and flush out the write before
839 	 * the read in the next get_buf call. */
840 	if (!(vq->split.avail_flags_shadow & VRING_AVAIL_F_NO_INTERRUPT))
841 		virtio_store_mb(vq->weak_barriers,
842 				&vring_used_event(&vq->split.vring),
843 				cpu_to_virtio16(_vq->vdev, vq->last_used_idx));
844 
845 	LAST_ADD_TIME_INVALID(vq);
846 
847 	END_USE(vq);
848 	return ret;
849 }
850 
851 static void virtqueue_disable_cb_split(struct virtqueue *_vq)
852 {
853 	struct vring_virtqueue *vq = to_vvq(_vq);
854 
855 	if (!(vq->split.avail_flags_shadow & VRING_AVAIL_F_NO_INTERRUPT)) {
856 		vq->split.avail_flags_shadow |= VRING_AVAIL_F_NO_INTERRUPT;
857 
858 		/*
859 		 * If device triggered an event already it won't trigger one again:
860 		 * no need to disable.
861 		 */
862 		if (vq->event_triggered)
863 			return;
864 
865 		if (vq->event)
866 			/* TODO: this is a hack. Figure out a cleaner value to write. */
867 			vring_used_event(&vq->split.vring) = 0x0;
868 		else
869 			vq->split.vring.avail->flags =
870 				cpu_to_virtio16(_vq->vdev,
871 						vq->split.avail_flags_shadow);
872 	}
873 }
874 
875 static unsigned int virtqueue_enable_cb_prepare_split(struct virtqueue *_vq)
876 {
877 	struct vring_virtqueue *vq = to_vvq(_vq);
878 	u16 last_used_idx;
879 
880 	START_USE(vq);
881 
882 	/* We optimistically turn back on interrupts, then check if there was
883 	 * more to do. */
884 	/* Depending on the VIRTIO_RING_F_EVENT_IDX feature, we need to
885 	 * either clear the flags bit or point the event index at the next
886 	 * entry. Always do both to keep code simple. */
887 	if (vq->split.avail_flags_shadow & VRING_AVAIL_F_NO_INTERRUPT) {
888 		vq->split.avail_flags_shadow &= ~VRING_AVAIL_F_NO_INTERRUPT;
889 		if (!vq->event)
890 			vq->split.vring.avail->flags =
891 				cpu_to_virtio16(_vq->vdev,
892 						vq->split.avail_flags_shadow);
893 	}
894 	vring_used_event(&vq->split.vring) = cpu_to_virtio16(_vq->vdev,
895 			last_used_idx = vq->last_used_idx);
896 	END_USE(vq);
897 	return last_used_idx;
898 }
899 
900 static bool virtqueue_poll_split(struct virtqueue *_vq, unsigned int last_used_idx)
901 {
902 	struct vring_virtqueue *vq = to_vvq(_vq);
903 
904 	return (u16)last_used_idx != virtio16_to_cpu(_vq->vdev,
905 			vq->split.vring.used->idx);
906 }
907 
908 static bool virtqueue_enable_cb_delayed_split(struct virtqueue *_vq)
909 {
910 	struct vring_virtqueue *vq = to_vvq(_vq);
911 	u16 bufs;
912 
913 	START_USE(vq);
914 
915 	/* We optimistically turn back on interrupts, then check if there was
916 	 * more to do. */
917 	/* Depending on the VIRTIO_RING_F_USED_EVENT_IDX feature, we need to
918 	 * either clear the flags bit or point the event index at the next
919 	 * entry. Always update the event index to keep code simple. */
920 	if (vq->split.avail_flags_shadow & VRING_AVAIL_F_NO_INTERRUPT) {
921 		vq->split.avail_flags_shadow &= ~VRING_AVAIL_F_NO_INTERRUPT;
922 		if (!vq->event)
923 			vq->split.vring.avail->flags =
924 				cpu_to_virtio16(_vq->vdev,
925 						vq->split.avail_flags_shadow);
926 	}
927 	/* TODO: tune this threshold */
928 	bufs = (u16)(vq->split.avail_idx_shadow - vq->last_used_idx) * 3 / 4;
929 
930 	virtio_store_mb(vq->weak_barriers,
931 			&vring_used_event(&vq->split.vring),
932 			cpu_to_virtio16(_vq->vdev, vq->last_used_idx + bufs));
933 
934 	if (unlikely((u16)(virtio16_to_cpu(_vq->vdev, vq->split.vring.used->idx)
935 					- vq->last_used_idx) > bufs)) {
936 		END_USE(vq);
937 		return false;
938 	}
939 
940 	END_USE(vq);
941 	return true;
942 }
943 
944 static void *virtqueue_detach_unused_buf_split(struct virtqueue *_vq)
945 {
946 	struct vring_virtqueue *vq = to_vvq(_vq);
947 	unsigned int i;
948 	void *buf;
949 
950 	START_USE(vq);
951 
952 	for (i = 0; i < vq->split.vring.num; i++) {
953 		if (!vq->split.desc_state[i].data)
954 			continue;
955 		/* detach_buf_split clears data, so grab it now. */
956 		buf = vq->split.desc_state[i].data;
957 		detach_buf_split(vq, i, NULL);
958 		vq->split.avail_idx_shadow--;
959 		vq->split.vring.avail->idx = cpu_to_virtio16(_vq->vdev,
960 				vq->split.avail_idx_shadow);
961 		END_USE(vq);
962 		return buf;
963 	}
964 	/* That should have freed everything. */
965 	BUG_ON(vq->vq.num_free != vq->split.vring.num);
966 
967 	END_USE(vq);
968 	return NULL;
969 }
970 
971 static void virtqueue_vring_init_split(struct vring_virtqueue_split *vring_split,
972 				       struct vring_virtqueue *vq)
973 {
974 	struct virtio_device *vdev;
975 
976 	vdev = vq->vq.vdev;
977 
978 	vring_split->avail_flags_shadow = 0;
979 	vring_split->avail_idx_shadow = 0;
980 
981 	/* No callback?  Tell other side not to bother us. */
982 	if (!vq->vq.callback) {
983 		vring_split->avail_flags_shadow |= VRING_AVAIL_F_NO_INTERRUPT;
984 		if (!vq->event)
985 			vring_split->vring.avail->flags = cpu_to_virtio16(vdev,
986 					vring_split->avail_flags_shadow);
987 	}
988 }
989 
990 static void virtqueue_reinit_split(struct vring_virtqueue *vq)
991 {
992 	int num;
993 
994 	num = vq->split.vring.num;
995 
996 	vq->split.vring.avail->flags = 0;
997 	vq->split.vring.avail->idx = 0;
998 
999 	/* reset avail event */
1000 	vq->split.vring.avail->ring[num] = 0;
1001 
1002 	vq->split.vring.used->flags = 0;
1003 	vq->split.vring.used->idx = 0;
1004 
1005 	/* reset used event */
1006 	*(__virtio16 *)&(vq->split.vring.used->ring[num]) = 0;
1007 
1008 	virtqueue_init(vq, num);
1009 
1010 	virtqueue_vring_init_split(&vq->split, vq);
1011 }
1012 
1013 static void virtqueue_vring_attach_split(struct vring_virtqueue *vq,
1014 					 struct vring_virtqueue_split *vring_split)
1015 {
1016 	vq->split = *vring_split;
1017 
1018 	/* Put everything in free lists. */
1019 	vq->free_head = 0;
1020 }
1021 
1022 static int vring_alloc_state_extra_split(struct vring_virtqueue_split *vring_split)
1023 {
1024 	struct vring_desc_state_split *state;
1025 	struct vring_desc_extra *extra;
1026 	u32 num = vring_split->vring.num;
1027 
1028 	state = kmalloc_array(num, sizeof(struct vring_desc_state_split), GFP_KERNEL);
1029 	if (!state)
1030 		goto err_state;
1031 
1032 	extra = vring_alloc_desc_extra(num);
1033 	if (!extra)
1034 		goto err_extra;
1035 
1036 	memset(state, 0, num * sizeof(struct vring_desc_state_split));
1037 
1038 	vring_split->desc_state = state;
1039 	vring_split->desc_extra = extra;
1040 	return 0;
1041 
1042 err_extra:
1043 	kfree(state);
1044 err_state:
1045 	return -ENOMEM;
1046 }
1047 
1048 static void vring_free_split(struct vring_virtqueue_split *vring_split,
1049 			     struct virtio_device *vdev, struct device *dma_dev)
1050 {
1051 	vring_free_queue(vdev, vring_split->queue_size_in_bytes,
1052 			 vring_split->vring.desc,
1053 			 vring_split->queue_dma_addr,
1054 			 dma_dev);
1055 
1056 	kfree(vring_split->desc_state);
1057 	kfree(vring_split->desc_extra);
1058 }
1059 
1060 static int vring_alloc_queue_split(struct vring_virtqueue_split *vring_split,
1061 				   struct virtio_device *vdev,
1062 				   u32 num,
1063 				   unsigned int vring_align,
1064 				   bool may_reduce_num,
1065 				   struct device *dma_dev)
1066 {
1067 	void *queue = NULL;
1068 	dma_addr_t dma_addr;
1069 
1070 	/* We assume num is a power of 2. */
1071 	if (!is_power_of_2(num)) {
1072 		dev_warn(&vdev->dev, "Bad virtqueue length %u\n", num);
1073 		return -EINVAL;
1074 	}
1075 
1076 	/* TODO: allocate each queue chunk individually */
1077 	for (; num && vring_size(num, vring_align) > PAGE_SIZE; num /= 2) {
1078 		queue = vring_alloc_queue(vdev, vring_size(num, vring_align),
1079 					  &dma_addr,
1080 					  GFP_KERNEL | __GFP_NOWARN | __GFP_ZERO,
1081 					  dma_dev);
1082 		if (queue)
1083 			break;
1084 		if (!may_reduce_num)
1085 			return -ENOMEM;
1086 	}
1087 
1088 	if (!num)
1089 		return -ENOMEM;
1090 
1091 	if (!queue) {
1092 		/* Try to get a single page. You are my only hope! */
1093 		queue = vring_alloc_queue(vdev, vring_size(num, vring_align),
1094 					  &dma_addr, GFP_KERNEL | __GFP_ZERO,
1095 					  dma_dev);
1096 	}
1097 	if (!queue)
1098 		return -ENOMEM;
1099 
1100 	vring_init(&vring_split->vring, num, queue, vring_align);
1101 
1102 	vring_split->queue_dma_addr = dma_addr;
1103 	vring_split->queue_size_in_bytes = vring_size(num, vring_align);
1104 
1105 	vring_split->vring_align = vring_align;
1106 	vring_split->may_reduce_num = may_reduce_num;
1107 
1108 	return 0;
1109 }
1110 
1111 static struct virtqueue *vring_create_virtqueue_split(
1112 	unsigned int index,
1113 	unsigned int num,
1114 	unsigned int vring_align,
1115 	struct virtio_device *vdev,
1116 	bool weak_barriers,
1117 	bool may_reduce_num,
1118 	bool context,
1119 	bool (*notify)(struct virtqueue *),
1120 	void (*callback)(struct virtqueue *),
1121 	const char *name,
1122 	struct device *dma_dev)
1123 {
1124 	struct vring_virtqueue_split vring_split = {};
1125 	struct virtqueue *vq;
1126 	int err;
1127 
1128 	err = vring_alloc_queue_split(&vring_split, vdev, num, vring_align,
1129 				      may_reduce_num, dma_dev);
1130 	if (err)
1131 		return NULL;
1132 
1133 	vq = __vring_new_virtqueue(index, &vring_split, vdev, weak_barriers,
1134 				   context, notify, callback, name, dma_dev);
1135 	if (!vq) {
1136 		vring_free_split(&vring_split, vdev, dma_dev);
1137 		return NULL;
1138 	}
1139 
1140 	to_vvq(vq)->we_own_ring = true;
1141 
1142 	return vq;
1143 }
1144 
1145 static int virtqueue_resize_split(struct virtqueue *_vq, u32 num)
1146 {
1147 	struct vring_virtqueue_split vring_split = {};
1148 	struct vring_virtqueue *vq = to_vvq(_vq);
1149 	struct virtio_device *vdev = _vq->vdev;
1150 	int err;
1151 
1152 	err = vring_alloc_queue_split(&vring_split, vdev, num,
1153 				      vq->split.vring_align,
1154 				      vq->split.may_reduce_num,
1155 				      vring_dma_dev(vq));
1156 	if (err)
1157 		goto err;
1158 
1159 	err = vring_alloc_state_extra_split(&vring_split);
1160 	if (err)
1161 		goto err_state_extra;
1162 
1163 	vring_free(&vq->vq);
1164 
1165 	virtqueue_vring_init_split(&vring_split, vq);
1166 
1167 	virtqueue_init(vq, vring_split.vring.num);
1168 	virtqueue_vring_attach_split(vq, &vring_split);
1169 
1170 	return 0;
1171 
1172 err_state_extra:
1173 	vring_free_split(&vring_split, vdev, vring_dma_dev(vq));
1174 err:
1175 	virtqueue_reinit_split(vq);
1176 	return -ENOMEM;
1177 }
1178 
1179 
1180 /*
1181  * Packed ring specific functions - *_packed().
1182  */
1183 static bool packed_used_wrap_counter(u16 last_used_idx)
1184 {
1185 	return !!(last_used_idx & (1 << VRING_PACKED_EVENT_F_WRAP_CTR));
1186 }
1187 
1188 static u16 packed_last_used(u16 last_used_idx)
1189 {
1190 	return last_used_idx & ~(-(1 << VRING_PACKED_EVENT_F_WRAP_CTR));
1191 }
1192 
1193 static void vring_unmap_extra_packed(const struct vring_virtqueue *vq,
1194 				     const struct vring_desc_extra *extra)
1195 {
1196 	u16 flags;
1197 
1198 	if (!vq->use_dma_api)
1199 		return;
1200 
1201 	flags = extra->flags;
1202 
1203 	if (flags & VRING_DESC_F_INDIRECT) {
1204 		dma_unmap_single(vring_dma_dev(vq),
1205 				 extra->addr, extra->len,
1206 				 (flags & VRING_DESC_F_WRITE) ?
1207 				 DMA_FROM_DEVICE : DMA_TO_DEVICE);
1208 	} else {
1209 		dma_unmap_page(vring_dma_dev(vq),
1210 			       extra->addr, extra->len,
1211 			       (flags & VRING_DESC_F_WRITE) ?
1212 			       DMA_FROM_DEVICE : DMA_TO_DEVICE);
1213 	}
1214 }
1215 
1216 static void vring_unmap_desc_packed(const struct vring_virtqueue *vq,
1217 				    const struct vring_packed_desc *desc)
1218 {
1219 	u16 flags;
1220 
1221 	if (!vq->use_dma_api)
1222 		return;
1223 
1224 	flags = le16_to_cpu(desc->flags);
1225 
1226 	dma_unmap_page(vring_dma_dev(vq),
1227 		       le64_to_cpu(desc->addr),
1228 		       le32_to_cpu(desc->len),
1229 		       (flags & VRING_DESC_F_WRITE) ?
1230 		       DMA_FROM_DEVICE : DMA_TO_DEVICE);
1231 }
1232 
1233 static struct vring_packed_desc *alloc_indirect_packed(unsigned int total_sg,
1234 						       gfp_t gfp)
1235 {
1236 	struct vring_packed_desc *desc;
1237 
1238 	/*
1239 	 * We require lowmem mappings for the descriptors because
1240 	 * otherwise virt_to_phys will give us bogus addresses in the
1241 	 * virtqueue.
1242 	 */
1243 	gfp &= ~__GFP_HIGHMEM;
1244 
1245 	desc = kmalloc_array(total_sg, sizeof(struct vring_packed_desc), gfp);
1246 
1247 	return desc;
1248 }
1249 
1250 static int virtqueue_add_indirect_packed(struct vring_virtqueue *vq,
1251 					 struct scatterlist *sgs[],
1252 					 unsigned int total_sg,
1253 					 unsigned int out_sgs,
1254 					 unsigned int in_sgs,
1255 					 void *data,
1256 					 gfp_t gfp)
1257 {
1258 	struct vring_packed_desc *desc;
1259 	struct scatterlist *sg;
1260 	unsigned int i, n, err_idx;
1261 	u16 head, id;
1262 	dma_addr_t addr;
1263 
1264 	head = vq->packed.next_avail_idx;
1265 	desc = alloc_indirect_packed(total_sg, gfp);
1266 	if (!desc)
1267 		return -ENOMEM;
1268 
1269 	if (unlikely(vq->vq.num_free < 1)) {
1270 		pr_debug("Can't add buf len 1 - avail = 0\n");
1271 		kfree(desc);
1272 		END_USE(vq);
1273 		return -ENOSPC;
1274 	}
1275 
1276 	i = 0;
1277 	id = vq->free_head;
1278 	BUG_ON(id == vq->packed.vring.num);
1279 
1280 	for (n = 0; n < out_sgs + in_sgs; n++) {
1281 		for (sg = sgs[n]; sg; sg = sg_next(sg)) {
1282 			addr = vring_map_one_sg(vq, sg, n < out_sgs ?
1283 					DMA_TO_DEVICE : DMA_FROM_DEVICE);
1284 			if (vring_mapping_error(vq, addr))
1285 				goto unmap_release;
1286 
1287 			desc[i].flags = cpu_to_le16(n < out_sgs ?
1288 						0 : VRING_DESC_F_WRITE);
1289 			desc[i].addr = cpu_to_le64(addr);
1290 			desc[i].len = cpu_to_le32(sg->length);
1291 			i++;
1292 		}
1293 	}
1294 
1295 	/* Now that the indirect table is filled in, map it. */
1296 	addr = vring_map_single(vq, desc,
1297 			total_sg * sizeof(struct vring_packed_desc),
1298 			DMA_TO_DEVICE);
1299 	if (vring_mapping_error(vq, addr))
1300 		goto unmap_release;
1301 
1302 	vq->packed.vring.desc[head].addr = cpu_to_le64(addr);
1303 	vq->packed.vring.desc[head].len = cpu_to_le32(total_sg *
1304 				sizeof(struct vring_packed_desc));
1305 	vq->packed.vring.desc[head].id = cpu_to_le16(id);
1306 
1307 	if (vq->use_dma_api) {
1308 		vq->packed.desc_extra[id].addr = addr;
1309 		vq->packed.desc_extra[id].len = total_sg *
1310 				sizeof(struct vring_packed_desc);
1311 		vq->packed.desc_extra[id].flags = VRING_DESC_F_INDIRECT |
1312 						  vq->packed.avail_used_flags;
1313 	}
1314 
1315 	/*
1316 	 * A driver MUST NOT make the first descriptor in the list
1317 	 * available before all subsequent descriptors comprising
1318 	 * the list are made available.
1319 	 */
1320 	virtio_wmb(vq->weak_barriers);
1321 	vq->packed.vring.desc[head].flags = cpu_to_le16(VRING_DESC_F_INDIRECT |
1322 						vq->packed.avail_used_flags);
1323 
1324 	/* We're using some buffers from the free list. */
1325 	vq->vq.num_free -= 1;
1326 
1327 	/* Update free pointer */
1328 	n = head + 1;
1329 	if (n >= vq->packed.vring.num) {
1330 		n = 0;
1331 		vq->packed.avail_wrap_counter ^= 1;
1332 		vq->packed.avail_used_flags ^=
1333 				1 << VRING_PACKED_DESC_F_AVAIL |
1334 				1 << VRING_PACKED_DESC_F_USED;
1335 	}
1336 	vq->packed.next_avail_idx = n;
1337 	vq->free_head = vq->packed.desc_extra[id].next;
1338 
1339 	/* Store token and indirect buffer state. */
1340 	vq->packed.desc_state[id].num = 1;
1341 	vq->packed.desc_state[id].data = data;
1342 	vq->packed.desc_state[id].indir_desc = desc;
1343 	vq->packed.desc_state[id].last = id;
1344 
1345 	vq->num_added += 1;
1346 
1347 	pr_debug("Added buffer head %i to %p\n", head, vq);
1348 	END_USE(vq);
1349 
1350 	return 0;
1351 
1352 unmap_release:
1353 	err_idx = i;
1354 
1355 	for (i = 0; i < err_idx; i++)
1356 		vring_unmap_desc_packed(vq, &desc[i]);
1357 
1358 	kfree(desc);
1359 
1360 	END_USE(vq);
1361 	return -ENOMEM;
1362 }
1363 
1364 static inline int virtqueue_add_packed(struct virtqueue *_vq,
1365 				       struct scatterlist *sgs[],
1366 				       unsigned int total_sg,
1367 				       unsigned int out_sgs,
1368 				       unsigned int in_sgs,
1369 				       void *data,
1370 				       void *ctx,
1371 				       gfp_t gfp)
1372 {
1373 	struct vring_virtqueue *vq = to_vvq(_vq);
1374 	struct vring_packed_desc *desc;
1375 	struct scatterlist *sg;
1376 	unsigned int i, n, c, descs_used, err_idx;
1377 	__le16 head_flags, flags;
1378 	u16 head, id, prev, curr, avail_used_flags;
1379 	int err;
1380 
1381 	START_USE(vq);
1382 
1383 	BUG_ON(data == NULL);
1384 	BUG_ON(ctx && vq->indirect);
1385 
1386 	if (unlikely(vq->broken)) {
1387 		END_USE(vq);
1388 		return -EIO;
1389 	}
1390 
1391 	LAST_ADD_TIME_UPDATE(vq);
1392 
1393 	BUG_ON(total_sg == 0);
1394 
1395 	if (virtqueue_use_indirect(vq, total_sg)) {
1396 		err = virtqueue_add_indirect_packed(vq, sgs, total_sg, out_sgs,
1397 						    in_sgs, data, gfp);
1398 		if (err != -ENOMEM) {
1399 			END_USE(vq);
1400 			return err;
1401 		}
1402 
1403 		/* fall back on direct */
1404 	}
1405 
1406 	head = vq->packed.next_avail_idx;
1407 	avail_used_flags = vq->packed.avail_used_flags;
1408 
1409 	WARN_ON_ONCE(total_sg > vq->packed.vring.num && !vq->indirect);
1410 
1411 	desc = vq->packed.vring.desc;
1412 	i = head;
1413 	descs_used = total_sg;
1414 
1415 	if (unlikely(vq->vq.num_free < descs_used)) {
1416 		pr_debug("Can't add buf len %i - avail = %i\n",
1417 			 descs_used, vq->vq.num_free);
1418 		END_USE(vq);
1419 		return -ENOSPC;
1420 	}
1421 
1422 	id = vq->free_head;
1423 	BUG_ON(id == vq->packed.vring.num);
1424 
1425 	curr = id;
1426 	c = 0;
1427 	for (n = 0; n < out_sgs + in_sgs; n++) {
1428 		for (sg = sgs[n]; sg; sg = sg_next(sg)) {
1429 			dma_addr_t addr = vring_map_one_sg(vq, sg, n < out_sgs ?
1430 					DMA_TO_DEVICE : DMA_FROM_DEVICE);
1431 			if (vring_mapping_error(vq, addr))
1432 				goto unmap_release;
1433 
1434 			flags = cpu_to_le16(vq->packed.avail_used_flags |
1435 				    (++c == total_sg ? 0 : VRING_DESC_F_NEXT) |
1436 				    (n < out_sgs ? 0 : VRING_DESC_F_WRITE));
1437 			if (i == head)
1438 				head_flags = flags;
1439 			else
1440 				desc[i].flags = flags;
1441 
1442 			desc[i].addr = cpu_to_le64(addr);
1443 			desc[i].len = cpu_to_le32(sg->length);
1444 			desc[i].id = cpu_to_le16(id);
1445 
1446 			if (unlikely(vq->use_dma_api)) {
1447 				vq->packed.desc_extra[curr].addr = addr;
1448 				vq->packed.desc_extra[curr].len = sg->length;
1449 				vq->packed.desc_extra[curr].flags =
1450 					le16_to_cpu(flags);
1451 			}
1452 			prev = curr;
1453 			curr = vq->packed.desc_extra[curr].next;
1454 
1455 			if ((unlikely(++i >= vq->packed.vring.num))) {
1456 				i = 0;
1457 				vq->packed.avail_used_flags ^=
1458 					1 << VRING_PACKED_DESC_F_AVAIL |
1459 					1 << VRING_PACKED_DESC_F_USED;
1460 			}
1461 		}
1462 	}
1463 
1464 	if (i < head)
1465 		vq->packed.avail_wrap_counter ^= 1;
1466 
1467 	/* We're using some buffers from the free list. */
1468 	vq->vq.num_free -= descs_used;
1469 
1470 	/* Update free pointer */
1471 	vq->packed.next_avail_idx = i;
1472 	vq->free_head = curr;
1473 
1474 	/* Store token. */
1475 	vq->packed.desc_state[id].num = descs_used;
1476 	vq->packed.desc_state[id].data = data;
1477 	vq->packed.desc_state[id].indir_desc = ctx;
1478 	vq->packed.desc_state[id].last = prev;
1479 
1480 	/*
1481 	 * A driver MUST NOT make the first descriptor in the list
1482 	 * available before all subsequent descriptors comprising
1483 	 * the list are made available.
1484 	 */
1485 	virtio_wmb(vq->weak_barriers);
1486 	vq->packed.vring.desc[head].flags = head_flags;
1487 	vq->num_added += descs_used;
1488 
1489 	pr_debug("Added buffer head %i to %p\n", head, vq);
1490 	END_USE(vq);
1491 
1492 	return 0;
1493 
1494 unmap_release:
1495 	err_idx = i;
1496 	i = head;
1497 	curr = vq->free_head;
1498 
1499 	vq->packed.avail_used_flags = avail_used_flags;
1500 
1501 	for (n = 0; n < total_sg; n++) {
1502 		if (i == err_idx)
1503 			break;
1504 		vring_unmap_extra_packed(vq, &vq->packed.desc_extra[curr]);
1505 		curr = vq->packed.desc_extra[curr].next;
1506 		i++;
1507 		if (i >= vq->packed.vring.num)
1508 			i = 0;
1509 	}
1510 
1511 	END_USE(vq);
1512 	return -EIO;
1513 }
1514 
1515 static bool virtqueue_kick_prepare_packed(struct virtqueue *_vq)
1516 {
1517 	struct vring_virtqueue *vq = to_vvq(_vq);
1518 	u16 new, old, off_wrap, flags, wrap_counter, event_idx;
1519 	bool needs_kick;
1520 	union {
1521 		struct {
1522 			__le16 off_wrap;
1523 			__le16 flags;
1524 		};
1525 		u32 u32;
1526 	} snapshot;
1527 
1528 	START_USE(vq);
1529 
1530 	/*
1531 	 * We need to expose the new flags value before checking notification
1532 	 * suppressions.
1533 	 */
1534 	virtio_mb(vq->weak_barriers);
1535 
1536 	old = vq->packed.next_avail_idx - vq->num_added;
1537 	new = vq->packed.next_avail_idx;
1538 	vq->num_added = 0;
1539 
1540 	snapshot.u32 = *(u32 *)vq->packed.vring.device;
1541 	flags = le16_to_cpu(snapshot.flags);
1542 
1543 	LAST_ADD_TIME_CHECK(vq);
1544 	LAST_ADD_TIME_INVALID(vq);
1545 
1546 	if (flags != VRING_PACKED_EVENT_FLAG_DESC) {
1547 		needs_kick = (flags != VRING_PACKED_EVENT_FLAG_DISABLE);
1548 		goto out;
1549 	}
1550 
1551 	off_wrap = le16_to_cpu(snapshot.off_wrap);
1552 
1553 	wrap_counter = off_wrap >> VRING_PACKED_EVENT_F_WRAP_CTR;
1554 	event_idx = off_wrap & ~(1 << VRING_PACKED_EVENT_F_WRAP_CTR);
1555 	if (wrap_counter != vq->packed.avail_wrap_counter)
1556 		event_idx -= vq->packed.vring.num;
1557 
1558 	needs_kick = vring_need_event(event_idx, new, old);
1559 out:
1560 	END_USE(vq);
1561 	return needs_kick;
1562 }
1563 
1564 static void detach_buf_packed(struct vring_virtqueue *vq,
1565 			      unsigned int id, void **ctx)
1566 {
1567 	struct vring_desc_state_packed *state = NULL;
1568 	struct vring_packed_desc *desc;
1569 	unsigned int i, curr;
1570 
1571 	state = &vq->packed.desc_state[id];
1572 
1573 	/* Clear data ptr. */
1574 	state->data = NULL;
1575 
1576 	vq->packed.desc_extra[state->last].next = vq->free_head;
1577 	vq->free_head = id;
1578 	vq->vq.num_free += state->num;
1579 
1580 	if (unlikely(vq->use_dma_api)) {
1581 		curr = id;
1582 		for (i = 0; i < state->num; i++) {
1583 			vring_unmap_extra_packed(vq,
1584 						 &vq->packed.desc_extra[curr]);
1585 			curr = vq->packed.desc_extra[curr].next;
1586 		}
1587 	}
1588 
1589 	if (vq->indirect) {
1590 		u32 len;
1591 
1592 		/* Free the indirect table, if any, now that it's unmapped. */
1593 		desc = state->indir_desc;
1594 		if (!desc)
1595 			return;
1596 
1597 		if (vq->use_dma_api) {
1598 			len = vq->packed.desc_extra[id].len;
1599 			for (i = 0; i < len / sizeof(struct vring_packed_desc);
1600 					i++)
1601 				vring_unmap_desc_packed(vq, &desc[i]);
1602 		}
1603 		kfree(desc);
1604 		state->indir_desc = NULL;
1605 	} else if (ctx) {
1606 		*ctx = state->indir_desc;
1607 	}
1608 }
1609 
1610 static inline bool is_used_desc_packed(const struct vring_virtqueue *vq,
1611 				       u16 idx, bool used_wrap_counter)
1612 {
1613 	bool avail, used;
1614 	u16 flags;
1615 
1616 	flags = le16_to_cpu(vq->packed.vring.desc[idx].flags);
1617 	avail = !!(flags & (1 << VRING_PACKED_DESC_F_AVAIL));
1618 	used = !!(flags & (1 << VRING_PACKED_DESC_F_USED));
1619 
1620 	return avail == used && used == used_wrap_counter;
1621 }
1622 
1623 static bool more_used_packed(const struct vring_virtqueue *vq)
1624 {
1625 	u16 last_used;
1626 	u16 last_used_idx;
1627 	bool used_wrap_counter;
1628 
1629 	last_used_idx = READ_ONCE(vq->last_used_idx);
1630 	last_used = packed_last_used(last_used_idx);
1631 	used_wrap_counter = packed_used_wrap_counter(last_used_idx);
1632 	return is_used_desc_packed(vq, last_used, used_wrap_counter);
1633 }
1634 
1635 static void *virtqueue_get_buf_ctx_packed(struct virtqueue *_vq,
1636 					  unsigned int *len,
1637 					  void **ctx)
1638 {
1639 	struct vring_virtqueue *vq = to_vvq(_vq);
1640 	u16 last_used, id, last_used_idx;
1641 	bool used_wrap_counter;
1642 	void *ret;
1643 
1644 	START_USE(vq);
1645 
1646 	if (unlikely(vq->broken)) {
1647 		END_USE(vq);
1648 		return NULL;
1649 	}
1650 
1651 	if (!more_used_packed(vq)) {
1652 		pr_debug("No more buffers in queue\n");
1653 		END_USE(vq);
1654 		return NULL;
1655 	}
1656 
1657 	/* Only get used elements after they have been exposed by host. */
1658 	virtio_rmb(vq->weak_barriers);
1659 
1660 	last_used_idx = READ_ONCE(vq->last_used_idx);
1661 	used_wrap_counter = packed_used_wrap_counter(last_used_idx);
1662 	last_used = packed_last_used(last_used_idx);
1663 	id = le16_to_cpu(vq->packed.vring.desc[last_used].id);
1664 	*len = le32_to_cpu(vq->packed.vring.desc[last_used].len);
1665 
1666 	if (unlikely(id >= vq->packed.vring.num)) {
1667 		BAD_RING(vq, "id %u out of range\n", id);
1668 		return NULL;
1669 	}
1670 	if (unlikely(!vq->packed.desc_state[id].data)) {
1671 		BAD_RING(vq, "id %u is not a head!\n", id);
1672 		return NULL;
1673 	}
1674 
1675 	/* detach_buf_packed clears data, so grab it now. */
1676 	ret = vq->packed.desc_state[id].data;
1677 	detach_buf_packed(vq, id, ctx);
1678 
1679 	last_used += vq->packed.desc_state[id].num;
1680 	if (unlikely(last_used >= vq->packed.vring.num)) {
1681 		last_used -= vq->packed.vring.num;
1682 		used_wrap_counter ^= 1;
1683 	}
1684 
1685 	last_used = (last_used | (used_wrap_counter << VRING_PACKED_EVENT_F_WRAP_CTR));
1686 	WRITE_ONCE(vq->last_used_idx, last_used);
1687 
1688 	/*
1689 	 * If we expect an interrupt for the next entry, tell host
1690 	 * by writing event index and flush out the write before
1691 	 * the read in the next get_buf call.
1692 	 */
1693 	if (vq->packed.event_flags_shadow == VRING_PACKED_EVENT_FLAG_DESC)
1694 		virtio_store_mb(vq->weak_barriers,
1695 				&vq->packed.vring.driver->off_wrap,
1696 				cpu_to_le16(vq->last_used_idx));
1697 
1698 	LAST_ADD_TIME_INVALID(vq);
1699 
1700 	END_USE(vq);
1701 	return ret;
1702 }
1703 
1704 static void virtqueue_disable_cb_packed(struct virtqueue *_vq)
1705 {
1706 	struct vring_virtqueue *vq = to_vvq(_vq);
1707 
1708 	if (vq->packed.event_flags_shadow != VRING_PACKED_EVENT_FLAG_DISABLE) {
1709 		vq->packed.event_flags_shadow = VRING_PACKED_EVENT_FLAG_DISABLE;
1710 
1711 		/*
1712 		 * If device triggered an event already it won't trigger one again:
1713 		 * no need to disable.
1714 		 */
1715 		if (vq->event_triggered)
1716 			return;
1717 
1718 		vq->packed.vring.driver->flags =
1719 			cpu_to_le16(vq->packed.event_flags_shadow);
1720 	}
1721 }
1722 
1723 static unsigned int virtqueue_enable_cb_prepare_packed(struct virtqueue *_vq)
1724 {
1725 	struct vring_virtqueue *vq = to_vvq(_vq);
1726 
1727 	START_USE(vq);
1728 
1729 	/*
1730 	 * We optimistically turn back on interrupts, then check if there was
1731 	 * more to do.
1732 	 */
1733 
1734 	if (vq->event) {
1735 		vq->packed.vring.driver->off_wrap =
1736 			cpu_to_le16(vq->last_used_idx);
1737 		/*
1738 		 * We need to update event offset and event wrap
1739 		 * counter first before updating event flags.
1740 		 */
1741 		virtio_wmb(vq->weak_barriers);
1742 	}
1743 
1744 	if (vq->packed.event_flags_shadow == VRING_PACKED_EVENT_FLAG_DISABLE) {
1745 		vq->packed.event_flags_shadow = vq->event ?
1746 				VRING_PACKED_EVENT_FLAG_DESC :
1747 				VRING_PACKED_EVENT_FLAG_ENABLE;
1748 		vq->packed.vring.driver->flags =
1749 				cpu_to_le16(vq->packed.event_flags_shadow);
1750 	}
1751 
1752 	END_USE(vq);
1753 	return vq->last_used_idx;
1754 }
1755 
1756 static bool virtqueue_poll_packed(struct virtqueue *_vq, u16 off_wrap)
1757 {
1758 	struct vring_virtqueue *vq = to_vvq(_vq);
1759 	bool wrap_counter;
1760 	u16 used_idx;
1761 
1762 	wrap_counter = off_wrap >> VRING_PACKED_EVENT_F_WRAP_CTR;
1763 	used_idx = off_wrap & ~(1 << VRING_PACKED_EVENT_F_WRAP_CTR);
1764 
1765 	return is_used_desc_packed(vq, used_idx, wrap_counter);
1766 }
1767 
1768 static bool virtqueue_enable_cb_delayed_packed(struct virtqueue *_vq)
1769 {
1770 	struct vring_virtqueue *vq = to_vvq(_vq);
1771 	u16 used_idx, wrap_counter, last_used_idx;
1772 	u16 bufs;
1773 
1774 	START_USE(vq);
1775 
1776 	/*
1777 	 * We optimistically turn back on interrupts, then check if there was
1778 	 * more to do.
1779 	 */
1780 
1781 	if (vq->event) {
1782 		/* TODO: tune this threshold */
1783 		bufs = (vq->packed.vring.num - vq->vq.num_free) * 3 / 4;
1784 		last_used_idx = READ_ONCE(vq->last_used_idx);
1785 		wrap_counter = packed_used_wrap_counter(last_used_idx);
1786 
1787 		used_idx = packed_last_used(last_used_idx) + bufs;
1788 		if (used_idx >= vq->packed.vring.num) {
1789 			used_idx -= vq->packed.vring.num;
1790 			wrap_counter ^= 1;
1791 		}
1792 
1793 		vq->packed.vring.driver->off_wrap = cpu_to_le16(used_idx |
1794 			(wrap_counter << VRING_PACKED_EVENT_F_WRAP_CTR));
1795 
1796 		/*
1797 		 * We need to update event offset and event wrap
1798 		 * counter first before updating event flags.
1799 		 */
1800 		virtio_wmb(vq->weak_barriers);
1801 	}
1802 
1803 	if (vq->packed.event_flags_shadow == VRING_PACKED_EVENT_FLAG_DISABLE) {
1804 		vq->packed.event_flags_shadow = vq->event ?
1805 				VRING_PACKED_EVENT_FLAG_DESC :
1806 				VRING_PACKED_EVENT_FLAG_ENABLE;
1807 		vq->packed.vring.driver->flags =
1808 				cpu_to_le16(vq->packed.event_flags_shadow);
1809 	}
1810 
1811 	/*
1812 	 * We need to update event suppression structure first
1813 	 * before re-checking for more used buffers.
1814 	 */
1815 	virtio_mb(vq->weak_barriers);
1816 
1817 	last_used_idx = READ_ONCE(vq->last_used_idx);
1818 	wrap_counter = packed_used_wrap_counter(last_used_idx);
1819 	used_idx = packed_last_used(last_used_idx);
1820 	if (is_used_desc_packed(vq, used_idx, wrap_counter)) {
1821 		END_USE(vq);
1822 		return false;
1823 	}
1824 
1825 	END_USE(vq);
1826 	return true;
1827 }
1828 
1829 static void *virtqueue_detach_unused_buf_packed(struct virtqueue *_vq)
1830 {
1831 	struct vring_virtqueue *vq = to_vvq(_vq);
1832 	unsigned int i;
1833 	void *buf;
1834 
1835 	START_USE(vq);
1836 
1837 	for (i = 0; i < vq->packed.vring.num; i++) {
1838 		if (!vq->packed.desc_state[i].data)
1839 			continue;
1840 		/* detach_buf clears data, so grab it now. */
1841 		buf = vq->packed.desc_state[i].data;
1842 		detach_buf_packed(vq, i, NULL);
1843 		END_USE(vq);
1844 		return buf;
1845 	}
1846 	/* That should have freed everything. */
1847 	BUG_ON(vq->vq.num_free != vq->packed.vring.num);
1848 
1849 	END_USE(vq);
1850 	return NULL;
1851 }
1852 
1853 static struct vring_desc_extra *vring_alloc_desc_extra(unsigned int num)
1854 {
1855 	struct vring_desc_extra *desc_extra;
1856 	unsigned int i;
1857 
1858 	desc_extra = kmalloc_array(num, sizeof(struct vring_desc_extra),
1859 				   GFP_KERNEL);
1860 	if (!desc_extra)
1861 		return NULL;
1862 
1863 	memset(desc_extra, 0, num * sizeof(struct vring_desc_extra));
1864 
1865 	for (i = 0; i < num - 1; i++)
1866 		desc_extra[i].next = i + 1;
1867 
1868 	return desc_extra;
1869 }
1870 
1871 static void vring_free_packed(struct vring_virtqueue_packed *vring_packed,
1872 			      struct virtio_device *vdev,
1873 			      struct device *dma_dev)
1874 {
1875 	if (vring_packed->vring.desc)
1876 		vring_free_queue(vdev, vring_packed->ring_size_in_bytes,
1877 				 vring_packed->vring.desc,
1878 				 vring_packed->ring_dma_addr,
1879 				 dma_dev);
1880 
1881 	if (vring_packed->vring.driver)
1882 		vring_free_queue(vdev, vring_packed->event_size_in_bytes,
1883 				 vring_packed->vring.driver,
1884 				 vring_packed->driver_event_dma_addr,
1885 				 dma_dev);
1886 
1887 	if (vring_packed->vring.device)
1888 		vring_free_queue(vdev, vring_packed->event_size_in_bytes,
1889 				 vring_packed->vring.device,
1890 				 vring_packed->device_event_dma_addr,
1891 				 dma_dev);
1892 
1893 	kfree(vring_packed->desc_state);
1894 	kfree(vring_packed->desc_extra);
1895 }
1896 
1897 static int vring_alloc_queue_packed(struct vring_virtqueue_packed *vring_packed,
1898 				    struct virtio_device *vdev,
1899 				    u32 num, struct device *dma_dev)
1900 {
1901 	struct vring_packed_desc *ring;
1902 	struct vring_packed_desc_event *driver, *device;
1903 	dma_addr_t ring_dma_addr, driver_event_dma_addr, device_event_dma_addr;
1904 	size_t ring_size_in_bytes, event_size_in_bytes;
1905 
1906 	ring_size_in_bytes = num * sizeof(struct vring_packed_desc);
1907 
1908 	ring = vring_alloc_queue(vdev, ring_size_in_bytes,
1909 				 &ring_dma_addr,
1910 				 GFP_KERNEL | __GFP_NOWARN | __GFP_ZERO,
1911 				 dma_dev);
1912 	if (!ring)
1913 		goto err;
1914 
1915 	vring_packed->vring.desc         = ring;
1916 	vring_packed->ring_dma_addr      = ring_dma_addr;
1917 	vring_packed->ring_size_in_bytes = ring_size_in_bytes;
1918 
1919 	event_size_in_bytes = sizeof(struct vring_packed_desc_event);
1920 
1921 	driver = vring_alloc_queue(vdev, event_size_in_bytes,
1922 				   &driver_event_dma_addr,
1923 				   GFP_KERNEL | __GFP_NOWARN | __GFP_ZERO,
1924 				   dma_dev);
1925 	if (!driver)
1926 		goto err;
1927 
1928 	vring_packed->vring.driver          = driver;
1929 	vring_packed->event_size_in_bytes   = event_size_in_bytes;
1930 	vring_packed->driver_event_dma_addr = driver_event_dma_addr;
1931 
1932 	device = vring_alloc_queue(vdev, event_size_in_bytes,
1933 				   &device_event_dma_addr,
1934 				   GFP_KERNEL | __GFP_NOWARN | __GFP_ZERO,
1935 				   dma_dev);
1936 	if (!device)
1937 		goto err;
1938 
1939 	vring_packed->vring.device          = device;
1940 	vring_packed->device_event_dma_addr = device_event_dma_addr;
1941 
1942 	vring_packed->vring.num = num;
1943 
1944 	return 0;
1945 
1946 err:
1947 	vring_free_packed(vring_packed, vdev, dma_dev);
1948 	return -ENOMEM;
1949 }
1950 
1951 static int vring_alloc_state_extra_packed(struct vring_virtqueue_packed *vring_packed)
1952 {
1953 	struct vring_desc_state_packed *state;
1954 	struct vring_desc_extra *extra;
1955 	u32 num = vring_packed->vring.num;
1956 
1957 	state = kmalloc_array(num, sizeof(struct vring_desc_state_packed), GFP_KERNEL);
1958 	if (!state)
1959 		goto err_desc_state;
1960 
1961 	memset(state, 0, num * sizeof(struct vring_desc_state_packed));
1962 
1963 	extra = vring_alloc_desc_extra(num);
1964 	if (!extra)
1965 		goto err_desc_extra;
1966 
1967 	vring_packed->desc_state = state;
1968 	vring_packed->desc_extra = extra;
1969 
1970 	return 0;
1971 
1972 err_desc_extra:
1973 	kfree(state);
1974 err_desc_state:
1975 	return -ENOMEM;
1976 }
1977 
1978 static void virtqueue_vring_init_packed(struct vring_virtqueue_packed *vring_packed,
1979 					bool callback)
1980 {
1981 	vring_packed->next_avail_idx = 0;
1982 	vring_packed->avail_wrap_counter = 1;
1983 	vring_packed->event_flags_shadow = 0;
1984 	vring_packed->avail_used_flags = 1 << VRING_PACKED_DESC_F_AVAIL;
1985 
1986 	/* No callback?  Tell other side not to bother us. */
1987 	if (!callback) {
1988 		vring_packed->event_flags_shadow = VRING_PACKED_EVENT_FLAG_DISABLE;
1989 		vring_packed->vring.driver->flags =
1990 			cpu_to_le16(vring_packed->event_flags_shadow);
1991 	}
1992 }
1993 
1994 static void virtqueue_vring_attach_packed(struct vring_virtqueue *vq,
1995 					  struct vring_virtqueue_packed *vring_packed)
1996 {
1997 	vq->packed = *vring_packed;
1998 
1999 	/* Put everything in free lists. */
2000 	vq->free_head = 0;
2001 }
2002 
2003 static void virtqueue_reinit_packed(struct vring_virtqueue *vq)
2004 {
2005 	memset(vq->packed.vring.device, 0, vq->packed.event_size_in_bytes);
2006 	memset(vq->packed.vring.driver, 0, vq->packed.event_size_in_bytes);
2007 
2008 	/* we need to reset the desc.flags. For more, see is_used_desc_packed() */
2009 	memset(vq->packed.vring.desc, 0, vq->packed.ring_size_in_bytes);
2010 
2011 	virtqueue_init(vq, vq->packed.vring.num);
2012 	virtqueue_vring_init_packed(&vq->packed, !!vq->vq.callback);
2013 }
2014 
2015 static struct virtqueue *vring_create_virtqueue_packed(
2016 	unsigned int index,
2017 	unsigned int num,
2018 	unsigned int vring_align,
2019 	struct virtio_device *vdev,
2020 	bool weak_barriers,
2021 	bool may_reduce_num,
2022 	bool context,
2023 	bool (*notify)(struct virtqueue *),
2024 	void (*callback)(struct virtqueue *),
2025 	const char *name,
2026 	struct device *dma_dev)
2027 {
2028 	struct vring_virtqueue_packed vring_packed = {};
2029 	struct vring_virtqueue *vq;
2030 	int err;
2031 
2032 	if (vring_alloc_queue_packed(&vring_packed, vdev, num, dma_dev))
2033 		goto err_ring;
2034 
2035 	vq = kmalloc(sizeof(*vq), GFP_KERNEL);
2036 	if (!vq)
2037 		goto err_vq;
2038 
2039 	vq->vq.callback = callback;
2040 	vq->vq.vdev = vdev;
2041 	vq->vq.name = name;
2042 	vq->vq.index = index;
2043 	vq->vq.reset = false;
2044 	vq->we_own_ring = true;
2045 	vq->notify = notify;
2046 	vq->weak_barriers = weak_barriers;
2047 #ifdef CONFIG_VIRTIO_HARDEN_NOTIFICATION
2048 	vq->broken = true;
2049 #else
2050 	vq->broken = false;
2051 #endif
2052 	vq->packed_ring = true;
2053 	vq->dma_dev = dma_dev;
2054 	vq->use_dma_api = vring_use_dma_api(vdev);
2055 
2056 	vq->indirect = virtio_has_feature(vdev, VIRTIO_RING_F_INDIRECT_DESC) &&
2057 		!context;
2058 	vq->event = virtio_has_feature(vdev, VIRTIO_RING_F_EVENT_IDX);
2059 
2060 	if (virtio_has_feature(vdev, VIRTIO_F_ORDER_PLATFORM))
2061 		vq->weak_barriers = false;
2062 
2063 	err = vring_alloc_state_extra_packed(&vring_packed);
2064 	if (err)
2065 		goto err_state_extra;
2066 
2067 	virtqueue_vring_init_packed(&vring_packed, !!callback);
2068 
2069 	virtqueue_init(vq, num);
2070 	virtqueue_vring_attach_packed(vq, &vring_packed);
2071 
2072 	spin_lock(&vdev->vqs_list_lock);
2073 	list_add_tail(&vq->vq.list, &vdev->vqs);
2074 	spin_unlock(&vdev->vqs_list_lock);
2075 	return &vq->vq;
2076 
2077 err_state_extra:
2078 	kfree(vq);
2079 err_vq:
2080 	vring_free_packed(&vring_packed, vdev, dma_dev);
2081 err_ring:
2082 	return NULL;
2083 }
2084 
2085 static int virtqueue_resize_packed(struct virtqueue *_vq, u32 num)
2086 {
2087 	struct vring_virtqueue_packed vring_packed = {};
2088 	struct vring_virtqueue *vq = to_vvq(_vq);
2089 	struct virtio_device *vdev = _vq->vdev;
2090 	int err;
2091 
2092 	if (vring_alloc_queue_packed(&vring_packed, vdev, num, vring_dma_dev(vq)))
2093 		goto err_ring;
2094 
2095 	err = vring_alloc_state_extra_packed(&vring_packed);
2096 	if (err)
2097 		goto err_state_extra;
2098 
2099 	vring_free(&vq->vq);
2100 
2101 	virtqueue_vring_init_packed(&vring_packed, !!vq->vq.callback);
2102 
2103 	virtqueue_init(vq, vring_packed.vring.num);
2104 	virtqueue_vring_attach_packed(vq, &vring_packed);
2105 
2106 	return 0;
2107 
2108 err_state_extra:
2109 	vring_free_packed(&vring_packed, vdev, vring_dma_dev(vq));
2110 err_ring:
2111 	virtqueue_reinit_packed(vq);
2112 	return -ENOMEM;
2113 }
2114 
2115 
2116 /*
2117  * Generic functions and exported symbols.
2118  */
2119 
2120 static inline int virtqueue_add(struct virtqueue *_vq,
2121 				struct scatterlist *sgs[],
2122 				unsigned int total_sg,
2123 				unsigned int out_sgs,
2124 				unsigned int in_sgs,
2125 				void *data,
2126 				void *ctx,
2127 				gfp_t gfp)
2128 {
2129 	struct vring_virtqueue *vq = to_vvq(_vq);
2130 
2131 	return vq->packed_ring ? virtqueue_add_packed(_vq, sgs, total_sg,
2132 					out_sgs, in_sgs, data, ctx, gfp) :
2133 				 virtqueue_add_split(_vq, sgs, total_sg,
2134 					out_sgs, in_sgs, data, ctx, gfp);
2135 }
2136 
2137 /**
2138  * virtqueue_add_sgs - expose buffers to other end
2139  * @_vq: the struct virtqueue we're talking about.
2140  * @sgs: array of terminated scatterlists.
2141  * @out_sgs: the number of scatterlists readable by other side
2142  * @in_sgs: the number of scatterlists which are writable (after readable ones)
2143  * @data: the token identifying the buffer.
2144  * @gfp: how to do memory allocations (if necessary).
2145  *
2146  * Caller must ensure we don't call this with other virtqueue operations
2147  * at the same time (except where noted).
2148  *
2149  * Returns zero or a negative error (ie. ENOSPC, ENOMEM, EIO).
2150  */
2151 int virtqueue_add_sgs(struct virtqueue *_vq,
2152 		      struct scatterlist *sgs[],
2153 		      unsigned int out_sgs,
2154 		      unsigned int in_sgs,
2155 		      void *data,
2156 		      gfp_t gfp)
2157 {
2158 	unsigned int i, total_sg = 0;
2159 
2160 	/* Count them first. */
2161 	for (i = 0; i < out_sgs + in_sgs; i++) {
2162 		struct scatterlist *sg;
2163 
2164 		for (sg = sgs[i]; sg; sg = sg_next(sg))
2165 			total_sg++;
2166 	}
2167 	return virtqueue_add(_vq, sgs, total_sg, out_sgs, in_sgs,
2168 			     data, NULL, gfp);
2169 }
2170 EXPORT_SYMBOL_GPL(virtqueue_add_sgs);
2171 
2172 /**
2173  * virtqueue_add_outbuf - expose output buffers to other end
2174  * @vq: the struct virtqueue we're talking about.
2175  * @sg: scatterlist (must be well-formed and terminated!)
2176  * @num: the number of entries in @sg readable by other side
2177  * @data: the token identifying the buffer.
2178  * @gfp: how to do memory allocations (if necessary).
2179  *
2180  * Caller must ensure we don't call this with other virtqueue operations
2181  * at the same time (except where noted).
2182  *
2183  * Returns zero or a negative error (ie. ENOSPC, ENOMEM, EIO).
2184  */
2185 int virtqueue_add_outbuf(struct virtqueue *vq,
2186 			 struct scatterlist *sg, unsigned int num,
2187 			 void *data,
2188 			 gfp_t gfp)
2189 {
2190 	return virtqueue_add(vq, &sg, num, 1, 0, data, NULL, gfp);
2191 }
2192 EXPORT_SYMBOL_GPL(virtqueue_add_outbuf);
2193 
2194 /**
2195  * virtqueue_add_inbuf - expose input buffers to other end
2196  * @vq: the struct virtqueue we're talking about.
2197  * @sg: scatterlist (must be well-formed and terminated!)
2198  * @num: the number of entries in @sg writable by other side
2199  * @data: the token identifying the buffer.
2200  * @gfp: how to do memory allocations (if necessary).
2201  *
2202  * Caller must ensure we don't call this with other virtqueue operations
2203  * at the same time (except where noted).
2204  *
2205  * Returns zero or a negative error (ie. ENOSPC, ENOMEM, EIO).
2206  */
2207 int virtqueue_add_inbuf(struct virtqueue *vq,
2208 			struct scatterlist *sg, unsigned int num,
2209 			void *data,
2210 			gfp_t gfp)
2211 {
2212 	return virtqueue_add(vq, &sg, num, 0, 1, data, NULL, gfp);
2213 }
2214 EXPORT_SYMBOL_GPL(virtqueue_add_inbuf);
2215 
2216 /**
2217  * virtqueue_add_inbuf_ctx - expose input buffers to other end
2218  * @vq: the struct virtqueue we're talking about.
2219  * @sg: scatterlist (must be well-formed and terminated!)
2220  * @num: the number of entries in @sg writable by other side
2221  * @data: the token identifying the buffer.
2222  * @ctx: extra context for the token
2223  * @gfp: how to do memory allocations (if necessary).
2224  *
2225  * Caller must ensure we don't call this with other virtqueue operations
2226  * at the same time (except where noted).
2227  *
2228  * Returns zero or a negative error (ie. ENOSPC, ENOMEM, EIO).
2229  */
2230 int virtqueue_add_inbuf_ctx(struct virtqueue *vq,
2231 			struct scatterlist *sg, unsigned int num,
2232 			void *data,
2233 			void *ctx,
2234 			gfp_t gfp)
2235 {
2236 	return virtqueue_add(vq, &sg, num, 0, 1, data, ctx, gfp);
2237 }
2238 EXPORT_SYMBOL_GPL(virtqueue_add_inbuf_ctx);
2239 
2240 /**
2241  * virtqueue_kick_prepare - first half of split virtqueue_kick call.
2242  * @_vq: the struct virtqueue
2243  *
2244  * Instead of virtqueue_kick(), you can do:
2245  *	if (virtqueue_kick_prepare(vq))
2246  *		virtqueue_notify(vq);
2247  *
2248  * This is sometimes useful because the virtqueue_kick_prepare() needs
2249  * to be serialized, but the actual virtqueue_notify() call does not.
2250  */
2251 bool virtqueue_kick_prepare(struct virtqueue *_vq)
2252 {
2253 	struct vring_virtqueue *vq = to_vvq(_vq);
2254 
2255 	return vq->packed_ring ? virtqueue_kick_prepare_packed(_vq) :
2256 				 virtqueue_kick_prepare_split(_vq);
2257 }
2258 EXPORT_SYMBOL_GPL(virtqueue_kick_prepare);
2259 
2260 /**
2261  * virtqueue_notify - second half of split virtqueue_kick call.
2262  * @_vq: the struct virtqueue
2263  *
2264  * This does not need to be serialized.
2265  *
2266  * Returns false if host notify failed or queue is broken, otherwise true.
2267  */
2268 bool virtqueue_notify(struct virtqueue *_vq)
2269 {
2270 	struct vring_virtqueue *vq = to_vvq(_vq);
2271 
2272 	if (unlikely(vq->broken))
2273 		return false;
2274 
2275 	/* Prod other side to tell it about changes. */
2276 	if (!vq->notify(_vq)) {
2277 		vq->broken = true;
2278 		return false;
2279 	}
2280 	return true;
2281 }
2282 EXPORT_SYMBOL_GPL(virtqueue_notify);
2283 
2284 /**
2285  * virtqueue_kick - update after add_buf
2286  * @vq: the struct virtqueue
2287  *
2288  * After one or more virtqueue_add_* calls, invoke this to kick
2289  * the other side.
2290  *
2291  * Caller must ensure we don't call this with other virtqueue
2292  * operations at the same time (except where noted).
2293  *
2294  * Returns false if kick failed, otherwise true.
2295  */
2296 bool virtqueue_kick(struct virtqueue *vq)
2297 {
2298 	if (virtqueue_kick_prepare(vq))
2299 		return virtqueue_notify(vq);
2300 	return true;
2301 }
2302 EXPORT_SYMBOL_GPL(virtqueue_kick);
2303 
2304 /**
2305  * virtqueue_get_buf_ctx - get the next used buffer
2306  * @_vq: the struct virtqueue we're talking about.
2307  * @len: the length written into the buffer
2308  * @ctx: extra context for the token
2309  *
2310  * If the device wrote data into the buffer, @len will be set to the
2311  * amount written.  This means you don't need to clear the buffer
2312  * beforehand to ensure there's no data leakage in the case of short
2313  * writes.
2314  *
2315  * Caller must ensure we don't call this with other virtqueue
2316  * operations at the same time (except where noted).
2317  *
2318  * Returns NULL if there are no used buffers, or the "data" token
2319  * handed to virtqueue_add_*().
2320  */
2321 void *virtqueue_get_buf_ctx(struct virtqueue *_vq, unsigned int *len,
2322 			    void **ctx)
2323 {
2324 	struct vring_virtqueue *vq = to_vvq(_vq);
2325 
2326 	return vq->packed_ring ? virtqueue_get_buf_ctx_packed(_vq, len, ctx) :
2327 				 virtqueue_get_buf_ctx_split(_vq, len, ctx);
2328 }
2329 EXPORT_SYMBOL_GPL(virtqueue_get_buf_ctx);
2330 
2331 void *virtqueue_get_buf(struct virtqueue *_vq, unsigned int *len)
2332 {
2333 	return virtqueue_get_buf_ctx(_vq, len, NULL);
2334 }
2335 EXPORT_SYMBOL_GPL(virtqueue_get_buf);
2336 /**
2337  * virtqueue_disable_cb - disable callbacks
2338  * @_vq: the struct virtqueue we're talking about.
2339  *
2340  * Note that this is not necessarily synchronous, hence unreliable and only
2341  * useful as an optimization.
2342  *
2343  * Unlike other operations, this need not be serialized.
2344  */
2345 void virtqueue_disable_cb(struct virtqueue *_vq)
2346 {
2347 	struct vring_virtqueue *vq = to_vvq(_vq);
2348 
2349 	if (vq->packed_ring)
2350 		virtqueue_disable_cb_packed(_vq);
2351 	else
2352 		virtqueue_disable_cb_split(_vq);
2353 }
2354 EXPORT_SYMBOL_GPL(virtqueue_disable_cb);
2355 
2356 /**
2357  * virtqueue_enable_cb_prepare - restart callbacks after disable_cb
2358  * @_vq: the struct virtqueue we're talking about.
2359  *
2360  * This re-enables callbacks; it returns current queue state
2361  * in an opaque unsigned value. This value should be later tested by
2362  * virtqueue_poll, to detect a possible race between the driver checking for
2363  * more work, and enabling callbacks.
2364  *
2365  * Caller must ensure we don't call this with other virtqueue
2366  * operations at the same time (except where noted).
2367  */
2368 unsigned int virtqueue_enable_cb_prepare(struct virtqueue *_vq)
2369 {
2370 	struct vring_virtqueue *vq = to_vvq(_vq);
2371 
2372 	if (vq->event_triggered)
2373 		vq->event_triggered = false;
2374 
2375 	return vq->packed_ring ? virtqueue_enable_cb_prepare_packed(_vq) :
2376 				 virtqueue_enable_cb_prepare_split(_vq);
2377 }
2378 EXPORT_SYMBOL_GPL(virtqueue_enable_cb_prepare);
2379 
2380 /**
2381  * virtqueue_poll - query pending used buffers
2382  * @_vq: the struct virtqueue we're talking about.
2383  * @last_used_idx: virtqueue state (from call to virtqueue_enable_cb_prepare).
2384  *
2385  * Returns "true" if there are pending used buffers in the queue.
2386  *
2387  * This does not need to be serialized.
2388  */
2389 bool virtqueue_poll(struct virtqueue *_vq, unsigned int last_used_idx)
2390 {
2391 	struct vring_virtqueue *vq = to_vvq(_vq);
2392 
2393 	if (unlikely(vq->broken))
2394 		return false;
2395 
2396 	virtio_mb(vq->weak_barriers);
2397 	return vq->packed_ring ? virtqueue_poll_packed(_vq, last_used_idx) :
2398 				 virtqueue_poll_split(_vq, last_used_idx);
2399 }
2400 EXPORT_SYMBOL_GPL(virtqueue_poll);
2401 
2402 /**
2403  * virtqueue_enable_cb - restart callbacks after disable_cb.
2404  * @_vq: the struct virtqueue we're talking about.
2405  *
2406  * This re-enables callbacks; it returns "false" if there are pending
2407  * buffers in the queue, to detect a possible race between the driver
2408  * checking for more work, and enabling callbacks.
2409  *
2410  * Caller must ensure we don't call this with other virtqueue
2411  * operations at the same time (except where noted).
2412  */
2413 bool virtqueue_enable_cb(struct virtqueue *_vq)
2414 {
2415 	unsigned int last_used_idx = virtqueue_enable_cb_prepare(_vq);
2416 
2417 	return !virtqueue_poll(_vq, last_used_idx);
2418 }
2419 EXPORT_SYMBOL_GPL(virtqueue_enable_cb);
2420 
2421 /**
2422  * virtqueue_enable_cb_delayed - restart callbacks after disable_cb.
2423  * @_vq: the struct virtqueue we're talking about.
2424  *
2425  * This re-enables callbacks but hints to the other side to delay
2426  * interrupts until most of the available buffers have been processed;
2427  * it returns "false" if there are many pending buffers in the queue,
2428  * to detect a possible race between the driver checking for more work,
2429  * and enabling callbacks.
2430  *
2431  * Caller must ensure we don't call this with other virtqueue
2432  * operations at the same time (except where noted).
2433  */
2434 bool virtqueue_enable_cb_delayed(struct virtqueue *_vq)
2435 {
2436 	struct vring_virtqueue *vq = to_vvq(_vq);
2437 
2438 	if (vq->event_triggered)
2439 		vq->event_triggered = false;
2440 
2441 	return vq->packed_ring ? virtqueue_enable_cb_delayed_packed(_vq) :
2442 				 virtqueue_enable_cb_delayed_split(_vq);
2443 }
2444 EXPORT_SYMBOL_GPL(virtqueue_enable_cb_delayed);
2445 
2446 /**
2447  * virtqueue_detach_unused_buf - detach first unused buffer
2448  * @_vq: the struct virtqueue we're talking about.
2449  *
2450  * Returns NULL or the "data" token handed to virtqueue_add_*().
2451  * This is not valid on an active queue; it is useful for device
2452  * shutdown or the reset queue.
2453  */
2454 void *virtqueue_detach_unused_buf(struct virtqueue *_vq)
2455 {
2456 	struct vring_virtqueue *vq = to_vvq(_vq);
2457 
2458 	return vq->packed_ring ? virtqueue_detach_unused_buf_packed(_vq) :
2459 				 virtqueue_detach_unused_buf_split(_vq);
2460 }
2461 EXPORT_SYMBOL_GPL(virtqueue_detach_unused_buf);
2462 
2463 static inline bool more_used(const struct vring_virtqueue *vq)
2464 {
2465 	return vq->packed_ring ? more_used_packed(vq) : more_used_split(vq);
2466 }
2467 
2468 /**
2469  * vring_interrupt - notify a virtqueue on an interrupt
2470  * @irq: the IRQ number (ignored)
2471  * @_vq: the struct virtqueue to notify
2472  *
2473  * Calls the callback function of @_vq to process the virtqueue
2474  * notification.
2475  */
2476 irqreturn_t vring_interrupt(int irq, void *_vq)
2477 {
2478 	struct vring_virtqueue *vq = to_vvq(_vq);
2479 
2480 	if (!more_used(vq)) {
2481 		pr_debug("virtqueue interrupt with no work for %p\n", vq);
2482 		return IRQ_NONE;
2483 	}
2484 
2485 	if (unlikely(vq->broken)) {
2486 #ifdef CONFIG_VIRTIO_HARDEN_NOTIFICATION
2487 		dev_warn_once(&vq->vq.vdev->dev,
2488 			      "virtio vring IRQ raised before DRIVER_OK");
2489 		return IRQ_NONE;
2490 #else
2491 		return IRQ_HANDLED;
2492 #endif
2493 	}
2494 
2495 	/* Just a hint for performance: so it's ok that this can be racy! */
2496 	if (vq->event)
2497 		vq->event_triggered = true;
2498 
2499 	pr_debug("virtqueue callback for %p (%p)\n", vq, vq->vq.callback);
2500 	if (vq->vq.callback)
2501 		vq->vq.callback(&vq->vq);
2502 
2503 	return IRQ_HANDLED;
2504 }
2505 EXPORT_SYMBOL_GPL(vring_interrupt);
2506 
2507 /* Only available for split ring */
2508 static struct virtqueue *__vring_new_virtqueue(unsigned int index,
2509 					       struct vring_virtqueue_split *vring_split,
2510 					       struct virtio_device *vdev,
2511 					       bool weak_barriers,
2512 					       bool context,
2513 					       bool (*notify)(struct virtqueue *),
2514 					       void (*callback)(struct virtqueue *),
2515 					       const char *name,
2516 					       struct device *dma_dev)
2517 {
2518 	struct vring_virtqueue *vq;
2519 	int err;
2520 
2521 	if (virtio_has_feature(vdev, VIRTIO_F_RING_PACKED))
2522 		return NULL;
2523 
2524 	vq = kmalloc(sizeof(*vq), GFP_KERNEL);
2525 	if (!vq)
2526 		return NULL;
2527 
2528 	vq->packed_ring = false;
2529 	vq->vq.callback = callback;
2530 	vq->vq.vdev = vdev;
2531 	vq->vq.name = name;
2532 	vq->vq.index = index;
2533 	vq->vq.reset = false;
2534 	vq->we_own_ring = false;
2535 	vq->notify = notify;
2536 	vq->weak_barriers = weak_barriers;
2537 #ifdef CONFIG_VIRTIO_HARDEN_NOTIFICATION
2538 	vq->broken = true;
2539 #else
2540 	vq->broken = false;
2541 #endif
2542 	vq->dma_dev = dma_dev;
2543 	vq->use_dma_api = vring_use_dma_api(vdev);
2544 
2545 	vq->indirect = virtio_has_feature(vdev, VIRTIO_RING_F_INDIRECT_DESC) &&
2546 		!context;
2547 	vq->event = virtio_has_feature(vdev, VIRTIO_RING_F_EVENT_IDX);
2548 
2549 	if (virtio_has_feature(vdev, VIRTIO_F_ORDER_PLATFORM))
2550 		vq->weak_barriers = false;
2551 
2552 	err = vring_alloc_state_extra_split(vring_split);
2553 	if (err) {
2554 		kfree(vq);
2555 		return NULL;
2556 	}
2557 
2558 	virtqueue_vring_init_split(vring_split, vq);
2559 
2560 	virtqueue_init(vq, vring_split->vring.num);
2561 	virtqueue_vring_attach_split(vq, vring_split);
2562 
2563 	spin_lock(&vdev->vqs_list_lock);
2564 	list_add_tail(&vq->vq.list, &vdev->vqs);
2565 	spin_unlock(&vdev->vqs_list_lock);
2566 	return &vq->vq;
2567 }
2568 
2569 struct virtqueue *vring_create_virtqueue(
2570 	unsigned int index,
2571 	unsigned int num,
2572 	unsigned int vring_align,
2573 	struct virtio_device *vdev,
2574 	bool weak_barriers,
2575 	bool may_reduce_num,
2576 	bool context,
2577 	bool (*notify)(struct virtqueue *),
2578 	void (*callback)(struct virtqueue *),
2579 	const char *name)
2580 {
2581 
2582 	if (virtio_has_feature(vdev, VIRTIO_F_RING_PACKED))
2583 		return vring_create_virtqueue_packed(index, num, vring_align,
2584 				vdev, weak_barriers, may_reduce_num,
2585 				context, notify, callback, name, vdev->dev.parent);
2586 
2587 	return vring_create_virtqueue_split(index, num, vring_align,
2588 			vdev, weak_barriers, may_reduce_num,
2589 			context, notify, callback, name, vdev->dev.parent);
2590 }
2591 EXPORT_SYMBOL_GPL(vring_create_virtqueue);
2592 
2593 struct virtqueue *vring_create_virtqueue_dma(
2594 	unsigned int index,
2595 	unsigned int num,
2596 	unsigned int vring_align,
2597 	struct virtio_device *vdev,
2598 	bool weak_barriers,
2599 	bool may_reduce_num,
2600 	bool context,
2601 	bool (*notify)(struct virtqueue *),
2602 	void (*callback)(struct virtqueue *),
2603 	const char *name,
2604 	struct device *dma_dev)
2605 {
2606 
2607 	if (virtio_has_feature(vdev, VIRTIO_F_RING_PACKED))
2608 		return vring_create_virtqueue_packed(index, num, vring_align,
2609 				vdev, weak_barriers, may_reduce_num,
2610 				context, notify, callback, name, dma_dev);
2611 
2612 	return vring_create_virtqueue_split(index, num, vring_align,
2613 			vdev, weak_barriers, may_reduce_num,
2614 			context, notify, callback, name, dma_dev);
2615 }
2616 EXPORT_SYMBOL_GPL(vring_create_virtqueue_dma);
2617 
2618 /**
2619  * virtqueue_resize - resize the vring of vq
2620  * @_vq: the struct virtqueue we're talking about.
2621  * @num: new ring num
2622  * @recycle: callback for recycle the useless buffer
2623  *
2624  * When it is really necessary to create a new vring, it will set the current vq
2625  * into the reset state. Then call the passed callback to recycle the buffer
2626  * that is no longer used. Only after the new vring is successfully created, the
2627  * old vring will be released.
2628  *
2629  * Caller must ensure we don't call this with other virtqueue operations
2630  * at the same time (except where noted).
2631  *
2632  * Returns zero or a negative error.
2633  * 0: success.
2634  * -ENOMEM: Failed to allocate a new ring, fall back to the original ring size.
2635  *  vq can still work normally
2636  * -EBUSY: Failed to sync with device, vq may not work properly
2637  * -ENOENT: Transport or device not supported
2638  * -E2BIG/-EINVAL: num error
2639  * -EPERM: Operation not permitted
2640  *
2641  */
2642 int virtqueue_resize(struct virtqueue *_vq, u32 num,
2643 		     void (*recycle)(struct virtqueue *vq, void *buf))
2644 {
2645 	struct vring_virtqueue *vq = to_vvq(_vq);
2646 	struct virtio_device *vdev = vq->vq.vdev;
2647 	void *buf;
2648 	int err;
2649 
2650 	if (!vq->we_own_ring)
2651 		return -EPERM;
2652 
2653 	if (num > vq->vq.num_max)
2654 		return -E2BIG;
2655 
2656 	if (!num)
2657 		return -EINVAL;
2658 
2659 	if ((vq->packed_ring ? vq->packed.vring.num : vq->split.vring.num) == num)
2660 		return 0;
2661 
2662 	if (!vdev->config->disable_vq_and_reset)
2663 		return -ENOENT;
2664 
2665 	if (!vdev->config->enable_vq_after_reset)
2666 		return -ENOENT;
2667 
2668 	err = vdev->config->disable_vq_and_reset(_vq);
2669 	if (err)
2670 		return err;
2671 
2672 	while ((buf = virtqueue_detach_unused_buf(_vq)) != NULL)
2673 		recycle(_vq, buf);
2674 
2675 	if (vq->packed_ring)
2676 		err = virtqueue_resize_packed(_vq, num);
2677 	else
2678 		err = virtqueue_resize_split(_vq, num);
2679 
2680 	if (vdev->config->enable_vq_after_reset(_vq))
2681 		return -EBUSY;
2682 
2683 	return err;
2684 }
2685 EXPORT_SYMBOL_GPL(virtqueue_resize);
2686 
2687 /* Only available for split ring */
2688 struct virtqueue *vring_new_virtqueue(unsigned int index,
2689 				      unsigned int num,
2690 				      unsigned int vring_align,
2691 				      struct virtio_device *vdev,
2692 				      bool weak_barriers,
2693 				      bool context,
2694 				      void *pages,
2695 				      bool (*notify)(struct virtqueue *vq),
2696 				      void (*callback)(struct virtqueue *vq),
2697 				      const char *name)
2698 {
2699 	struct vring_virtqueue_split vring_split = {};
2700 
2701 	if (virtio_has_feature(vdev, VIRTIO_F_RING_PACKED))
2702 		return NULL;
2703 
2704 	vring_init(&vring_split.vring, num, pages, vring_align);
2705 	return __vring_new_virtqueue(index, &vring_split, vdev, weak_barriers,
2706 				     context, notify, callback, name,
2707 				     vdev->dev.parent);
2708 }
2709 EXPORT_SYMBOL_GPL(vring_new_virtqueue);
2710 
2711 static void vring_free(struct virtqueue *_vq)
2712 {
2713 	struct vring_virtqueue *vq = to_vvq(_vq);
2714 
2715 	if (vq->we_own_ring) {
2716 		if (vq->packed_ring) {
2717 			vring_free_queue(vq->vq.vdev,
2718 					 vq->packed.ring_size_in_bytes,
2719 					 vq->packed.vring.desc,
2720 					 vq->packed.ring_dma_addr,
2721 					 vring_dma_dev(vq));
2722 
2723 			vring_free_queue(vq->vq.vdev,
2724 					 vq->packed.event_size_in_bytes,
2725 					 vq->packed.vring.driver,
2726 					 vq->packed.driver_event_dma_addr,
2727 					 vring_dma_dev(vq));
2728 
2729 			vring_free_queue(vq->vq.vdev,
2730 					 vq->packed.event_size_in_bytes,
2731 					 vq->packed.vring.device,
2732 					 vq->packed.device_event_dma_addr,
2733 					 vring_dma_dev(vq));
2734 
2735 			kfree(vq->packed.desc_state);
2736 			kfree(vq->packed.desc_extra);
2737 		} else {
2738 			vring_free_queue(vq->vq.vdev,
2739 					 vq->split.queue_size_in_bytes,
2740 					 vq->split.vring.desc,
2741 					 vq->split.queue_dma_addr,
2742 					 vring_dma_dev(vq));
2743 		}
2744 	}
2745 	if (!vq->packed_ring) {
2746 		kfree(vq->split.desc_state);
2747 		kfree(vq->split.desc_extra);
2748 	}
2749 }
2750 
2751 void vring_del_virtqueue(struct virtqueue *_vq)
2752 {
2753 	struct vring_virtqueue *vq = to_vvq(_vq);
2754 
2755 	spin_lock(&vq->vq.vdev->vqs_list_lock);
2756 	list_del(&_vq->list);
2757 	spin_unlock(&vq->vq.vdev->vqs_list_lock);
2758 
2759 	vring_free(_vq);
2760 
2761 	kfree(vq);
2762 }
2763 EXPORT_SYMBOL_GPL(vring_del_virtqueue);
2764 
2765 u32 vring_notification_data(struct virtqueue *_vq)
2766 {
2767 	struct vring_virtqueue *vq = to_vvq(_vq);
2768 	u16 next;
2769 
2770 	if (vq->packed_ring)
2771 		next = (vq->packed.next_avail_idx &
2772 				~(-(1 << VRING_PACKED_EVENT_F_WRAP_CTR))) |
2773 			vq->packed.avail_wrap_counter <<
2774 				VRING_PACKED_EVENT_F_WRAP_CTR;
2775 	else
2776 		next = vq->split.avail_idx_shadow;
2777 
2778 	return next << 16 | _vq->index;
2779 }
2780 EXPORT_SYMBOL_GPL(vring_notification_data);
2781 
2782 /* Manipulates transport-specific feature bits. */
2783 void vring_transport_features(struct virtio_device *vdev)
2784 {
2785 	unsigned int i;
2786 
2787 	for (i = VIRTIO_TRANSPORT_F_START; i < VIRTIO_TRANSPORT_F_END; i++) {
2788 		switch (i) {
2789 		case VIRTIO_RING_F_INDIRECT_DESC:
2790 			break;
2791 		case VIRTIO_RING_F_EVENT_IDX:
2792 			break;
2793 		case VIRTIO_F_VERSION_1:
2794 			break;
2795 		case VIRTIO_F_ACCESS_PLATFORM:
2796 			break;
2797 		case VIRTIO_F_RING_PACKED:
2798 			break;
2799 		case VIRTIO_F_ORDER_PLATFORM:
2800 			break;
2801 		case VIRTIO_F_NOTIFICATION_DATA:
2802 			break;
2803 		default:
2804 			/* We don't understand this bit. */
2805 			__virtio_clear_bit(vdev, i);
2806 		}
2807 	}
2808 }
2809 EXPORT_SYMBOL_GPL(vring_transport_features);
2810 
2811 /**
2812  * virtqueue_get_vring_size - return the size of the virtqueue's vring
2813  * @_vq: the struct virtqueue containing the vring of interest.
2814  *
2815  * Returns the size of the vring.  This is mainly used for boasting to
2816  * userspace.  Unlike other operations, this need not be serialized.
2817  */
2818 unsigned int virtqueue_get_vring_size(const struct virtqueue *_vq)
2819 {
2820 
2821 	const struct vring_virtqueue *vq = to_vvq(_vq);
2822 
2823 	return vq->packed_ring ? vq->packed.vring.num : vq->split.vring.num;
2824 }
2825 EXPORT_SYMBOL_GPL(virtqueue_get_vring_size);
2826 
2827 /*
2828  * This function should only be called by the core, not directly by the driver.
2829  */
2830 void __virtqueue_break(struct virtqueue *_vq)
2831 {
2832 	struct vring_virtqueue *vq = to_vvq(_vq);
2833 
2834 	/* Pairs with READ_ONCE() in virtqueue_is_broken(). */
2835 	WRITE_ONCE(vq->broken, true);
2836 }
2837 EXPORT_SYMBOL_GPL(__virtqueue_break);
2838 
2839 /*
2840  * This function should only be called by the core, not directly by the driver.
2841  */
2842 void __virtqueue_unbreak(struct virtqueue *_vq)
2843 {
2844 	struct vring_virtqueue *vq = to_vvq(_vq);
2845 
2846 	/* Pairs with READ_ONCE() in virtqueue_is_broken(). */
2847 	WRITE_ONCE(vq->broken, false);
2848 }
2849 EXPORT_SYMBOL_GPL(__virtqueue_unbreak);
2850 
2851 bool virtqueue_is_broken(const struct virtqueue *_vq)
2852 {
2853 	const struct vring_virtqueue *vq = to_vvq(_vq);
2854 
2855 	return READ_ONCE(vq->broken);
2856 }
2857 EXPORT_SYMBOL_GPL(virtqueue_is_broken);
2858 
2859 /*
2860  * This should prevent the device from being used, allowing drivers to
2861  * recover.  You may need to grab appropriate locks to flush.
2862  */
2863 void virtio_break_device(struct virtio_device *dev)
2864 {
2865 	struct virtqueue *_vq;
2866 
2867 	spin_lock(&dev->vqs_list_lock);
2868 	list_for_each_entry(_vq, &dev->vqs, list) {
2869 		struct vring_virtqueue *vq = to_vvq(_vq);
2870 
2871 		/* Pairs with READ_ONCE() in virtqueue_is_broken(). */
2872 		WRITE_ONCE(vq->broken, true);
2873 	}
2874 	spin_unlock(&dev->vqs_list_lock);
2875 }
2876 EXPORT_SYMBOL_GPL(virtio_break_device);
2877 
2878 /*
2879  * This should allow the device to be used by the driver. You may
2880  * need to grab appropriate locks to flush the write to
2881  * vq->broken. This should only be used in some specific case e.g
2882  * (probing and restoring). This function should only be called by the
2883  * core, not directly by the driver.
2884  */
2885 void __virtio_unbreak_device(struct virtio_device *dev)
2886 {
2887 	struct virtqueue *_vq;
2888 
2889 	spin_lock(&dev->vqs_list_lock);
2890 	list_for_each_entry(_vq, &dev->vqs, list) {
2891 		struct vring_virtqueue *vq = to_vvq(_vq);
2892 
2893 		/* Pairs with READ_ONCE() in virtqueue_is_broken(). */
2894 		WRITE_ONCE(vq->broken, false);
2895 	}
2896 	spin_unlock(&dev->vqs_list_lock);
2897 }
2898 EXPORT_SYMBOL_GPL(__virtio_unbreak_device);
2899 
2900 dma_addr_t virtqueue_get_desc_addr(const struct virtqueue *_vq)
2901 {
2902 	const struct vring_virtqueue *vq = to_vvq(_vq);
2903 
2904 	BUG_ON(!vq->we_own_ring);
2905 
2906 	if (vq->packed_ring)
2907 		return vq->packed.ring_dma_addr;
2908 
2909 	return vq->split.queue_dma_addr;
2910 }
2911 EXPORT_SYMBOL_GPL(virtqueue_get_desc_addr);
2912 
2913 dma_addr_t virtqueue_get_avail_addr(const struct virtqueue *_vq)
2914 {
2915 	const struct vring_virtqueue *vq = to_vvq(_vq);
2916 
2917 	BUG_ON(!vq->we_own_ring);
2918 
2919 	if (vq->packed_ring)
2920 		return vq->packed.driver_event_dma_addr;
2921 
2922 	return vq->split.queue_dma_addr +
2923 		((char *)vq->split.vring.avail - (char *)vq->split.vring.desc);
2924 }
2925 EXPORT_SYMBOL_GPL(virtqueue_get_avail_addr);
2926 
2927 dma_addr_t virtqueue_get_used_addr(const struct virtqueue *_vq)
2928 {
2929 	const struct vring_virtqueue *vq = to_vvq(_vq);
2930 
2931 	BUG_ON(!vq->we_own_ring);
2932 
2933 	if (vq->packed_ring)
2934 		return vq->packed.device_event_dma_addr;
2935 
2936 	return vq->split.queue_dma_addr +
2937 		((char *)vq->split.vring.used - (char *)vq->split.vring.desc);
2938 }
2939 EXPORT_SYMBOL_GPL(virtqueue_get_used_addr);
2940 
2941 /* Only available for split ring */
2942 const struct vring *virtqueue_get_vring(const struct virtqueue *vq)
2943 {
2944 	return &to_vvq(vq)->split.vring;
2945 }
2946 EXPORT_SYMBOL_GPL(virtqueue_get_vring);
2947 
2948 MODULE_LICENSE("GPL");
2949