xref: /openbmc/linux/drivers/virtio/virtio_ring.c (revision 72ed5d5624af384eaf74d84915810d54486a75e2)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /* Virtio ring implementation.
3  *
4  *  Copyright 2007 Rusty Russell IBM Corporation
5  */
6 #include <linux/virtio.h>
7 #include <linux/virtio_ring.h>
8 #include <linux/virtio_config.h>
9 #include <linux/device.h>
10 #include <linux/slab.h>
11 #include <linux/module.h>
12 #include <linux/hrtimer.h>
13 #include <linux/dma-mapping.h>
14 #include <linux/kmsan.h>
15 #include <linux/spinlock.h>
16 #include <xen/xen.h>
17 
18 #ifdef DEBUG
19 /* For development, we want to crash whenever the ring is screwed. */
20 #define BAD_RING(_vq, fmt, args...)				\
21 	do {							\
22 		dev_err(&(_vq)->vq.vdev->dev,			\
23 			"%s:"fmt, (_vq)->vq.name, ##args);	\
24 		BUG();						\
25 	} while (0)
26 /* Caller is supposed to guarantee no reentry. */
27 #define START_USE(_vq)						\
28 	do {							\
29 		if ((_vq)->in_use)				\
30 			panic("%s:in_use = %i\n",		\
31 			      (_vq)->vq.name, (_vq)->in_use);	\
32 		(_vq)->in_use = __LINE__;			\
33 	} while (0)
34 #define END_USE(_vq) \
35 	do { BUG_ON(!(_vq)->in_use); (_vq)->in_use = 0; } while(0)
36 #define LAST_ADD_TIME_UPDATE(_vq)				\
37 	do {							\
38 		ktime_t now = ktime_get();			\
39 								\
40 		/* No kick or get, with .1 second between?  Warn. */ \
41 		if ((_vq)->last_add_time_valid)			\
42 			WARN_ON(ktime_to_ms(ktime_sub(now,	\
43 				(_vq)->last_add_time)) > 100);	\
44 		(_vq)->last_add_time = now;			\
45 		(_vq)->last_add_time_valid = true;		\
46 	} while (0)
47 #define LAST_ADD_TIME_CHECK(_vq)				\
48 	do {							\
49 		if ((_vq)->last_add_time_valid) {		\
50 			WARN_ON(ktime_to_ms(ktime_sub(ktime_get(), \
51 				      (_vq)->last_add_time)) > 100); \
52 		}						\
53 	} while (0)
54 #define LAST_ADD_TIME_INVALID(_vq)				\
55 	((_vq)->last_add_time_valid = false)
56 #else
57 #define BAD_RING(_vq, fmt, args...)				\
58 	do {							\
59 		dev_err(&_vq->vq.vdev->dev,			\
60 			"%s:"fmt, (_vq)->vq.name, ##args);	\
61 		(_vq)->broken = true;				\
62 	} while (0)
63 #define START_USE(vq)
64 #define END_USE(vq)
65 #define LAST_ADD_TIME_UPDATE(vq)
66 #define LAST_ADD_TIME_CHECK(vq)
67 #define LAST_ADD_TIME_INVALID(vq)
68 #endif
69 
70 struct vring_desc_state_split {
71 	void *data;			/* Data for callback. */
72 	struct vring_desc *indir_desc;	/* Indirect descriptor, if any. */
73 };
74 
75 struct vring_desc_state_packed {
76 	void *data;			/* Data for callback. */
77 	struct vring_packed_desc *indir_desc; /* Indirect descriptor, if any. */
78 	u16 num;			/* Descriptor list length. */
79 	u16 last;			/* The last desc state in a list. */
80 };
81 
82 struct vring_desc_extra {
83 	dma_addr_t addr;		/* Descriptor DMA addr. */
84 	u32 len;			/* Descriptor length. */
85 	u16 flags;			/* Descriptor flags. */
86 	u16 next;			/* The next desc state in a list. */
87 };
88 
89 struct vring_virtqueue_split {
90 	/* Actual memory layout for this queue. */
91 	struct vring vring;
92 
93 	/* Last written value to avail->flags */
94 	u16 avail_flags_shadow;
95 
96 	/*
97 	 * Last written value to avail->idx in
98 	 * guest byte order.
99 	 */
100 	u16 avail_idx_shadow;
101 
102 	/* Per-descriptor state. */
103 	struct vring_desc_state_split *desc_state;
104 	struct vring_desc_extra *desc_extra;
105 
106 	/* DMA address and size information */
107 	dma_addr_t queue_dma_addr;
108 	size_t queue_size_in_bytes;
109 
110 	/*
111 	 * The parameters for creating vrings are reserved for creating new
112 	 * vring.
113 	 */
114 	u32 vring_align;
115 	bool may_reduce_num;
116 };
117 
118 struct vring_virtqueue_packed {
119 	/* Actual memory layout for this queue. */
120 	struct {
121 		unsigned int num;
122 		struct vring_packed_desc *desc;
123 		struct vring_packed_desc_event *driver;
124 		struct vring_packed_desc_event *device;
125 	} vring;
126 
127 	/* Driver ring wrap counter. */
128 	bool avail_wrap_counter;
129 
130 	/* Avail used flags. */
131 	u16 avail_used_flags;
132 
133 	/* Index of the next avail descriptor. */
134 	u16 next_avail_idx;
135 
136 	/*
137 	 * Last written value to driver->flags in
138 	 * guest byte order.
139 	 */
140 	u16 event_flags_shadow;
141 
142 	/* Per-descriptor state. */
143 	struct vring_desc_state_packed *desc_state;
144 	struct vring_desc_extra *desc_extra;
145 
146 	/* DMA address and size information */
147 	dma_addr_t ring_dma_addr;
148 	dma_addr_t driver_event_dma_addr;
149 	dma_addr_t device_event_dma_addr;
150 	size_t ring_size_in_bytes;
151 	size_t event_size_in_bytes;
152 };
153 
154 struct vring_virtqueue {
155 	struct virtqueue vq;
156 
157 	/* Is this a packed ring? */
158 	bool packed_ring;
159 
160 	/* Is DMA API used? */
161 	bool use_dma_api;
162 
163 	/* Can we use weak barriers? */
164 	bool weak_barriers;
165 
166 	/* Other side has made a mess, don't try any more. */
167 	bool broken;
168 
169 	/* Host supports indirect buffers */
170 	bool indirect;
171 
172 	/* Host publishes avail event idx */
173 	bool event;
174 
175 	/* Head of free buffer list. */
176 	unsigned int free_head;
177 	/* Number we've added since last sync. */
178 	unsigned int num_added;
179 
180 	/* Last used index  we've seen.
181 	 * for split ring, it just contains last used index
182 	 * for packed ring:
183 	 * bits up to VRING_PACKED_EVENT_F_WRAP_CTR include the last used index.
184 	 * bits from VRING_PACKED_EVENT_F_WRAP_CTR include the used wrap counter.
185 	 */
186 	u16 last_used_idx;
187 
188 	/* Hint for event idx: already triggered no need to disable. */
189 	bool event_triggered;
190 
191 	union {
192 		/* Available for split ring */
193 		struct vring_virtqueue_split split;
194 
195 		/* Available for packed ring */
196 		struct vring_virtqueue_packed packed;
197 	};
198 
199 	/* How to notify other side. FIXME: commonalize hcalls! */
200 	bool (*notify)(struct virtqueue *vq);
201 
202 	/* DMA, allocation, and size information */
203 	bool we_own_ring;
204 
205 #ifdef DEBUG
206 	/* They're supposed to lock for us. */
207 	unsigned int in_use;
208 
209 	/* Figure out if their kicks are too delayed. */
210 	bool last_add_time_valid;
211 	ktime_t last_add_time;
212 #endif
213 };
214 
215 static struct virtqueue *__vring_new_virtqueue(unsigned int index,
216 					       struct vring_virtqueue_split *vring_split,
217 					       struct virtio_device *vdev,
218 					       bool weak_barriers,
219 					       bool context,
220 					       bool (*notify)(struct virtqueue *),
221 					       void (*callback)(struct virtqueue *),
222 					       const char *name);
223 static struct vring_desc_extra *vring_alloc_desc_extra(unsigned int num);
224 static void vring_free(struct virtqueue *_vq);
225 
226 /*
227  * Helpers.
228  */
229 
230 #define to_vvq(_vq) container_of(_vq, struct vring_virtqueue, vq)
231 
232 static inline bool virtqueue_use_indirect(struct vring_virtqueue *vq,
233 					  unsigned int total_sg)
234 {
235 	/*
236 	 * If the host supports indirect descriptor tables, and we have multiple
237 	 * buffers, then go indirect. FIXME: tune this threshold
238 	 */
239 	return (vq->indirect && total_sg > 1 && vq->vq.num_free);
240 }
241 
242 /*
243  * Modern virtio devices have feature bits to specify whether they need a
244  * quirk and bypass the IOMMU. If not there, just use the DMA API.
245  *
246  * If there, the interaction between virtio and DMA API is messy.
247  *
248  * On most systems with virtio, physical addresses match bus addresses,
249  * and it doesn't particularly matter whether we use the DMA API.
250  *
251  * On some systems, including Xen and any system with a physical device
252  * that speaks virtio behind a physical IOMMU, we must use the DMA API
253  * for virtio DMA to work at all.
254  *
255  * On other systems, including SPARC and PPC64, virtio-pci devices are
256  * enumerated as though they are behind an IOMMU, but the virtio host
257  * ignores the IOMMU, so we must either pretend that the IOMMU isn't
258  * there or somehow map everything as the identity.
259  *
260  * For the time being, we preserve historic behavior and bypass the DMA
261  * API.
262  *
263  * TODO: install a per-device DMA ops structure that does the right thing
264  * taking into account all the above quirks, and use the DMA API
265  * unconditionally on data path.
266  */
267 
268 static bool vring_use_dma_api(struct virtio_device *vdev)
269 {
270 	if (!virtio_has_dma_quirk(vdev))
271 		return true;
272 
273 	/* Otherwise, we are left to guess. */
274 	/*
275 	 * In theory, it's possible to have a buggy QEMU-supposed
276 	 * emulated Q35 IOMMU and Xen enabled at the same time.  On
277 	 * such a configuration, virtio has never worked and will
278 	 * not work without an even larger kludge.  Instead, enable
279 	 * the DMA API if we're a Xen guest, which at least allows
280 	 * all of the sensible Xen configurations to work correctly.
281 	 */
282 	if (xen_domain())
283 		return true;
284 
285 	return false;
286 }
287 
288 size_t virtio_max_dma_size(struct virtio_device *vdev)
289 {
290 	size_t max_segment_size = SIZE_MAX;
291 
292 	if (vring_use_dma_api(vdev))
293 		max_segment_size = dma_max_mapping_size(vdev->dev.parent);
294 
295 	return max_segment_size;
296 }
297 EXPORT_SYMBOL_GPL(virtio_max_dma_size);
298 
299 static void *vring_alloc_queue(struct virtio_device *vdev, size_t size,
300 			      dma_addr_t *dma_handle, gfp_t flag)
301 {
302 	if (vring_use_dma_api(vdev)) {
303 		return dma_alloc_coherent(vdev->dev.parent, size,
304 					  dma_handle, flag);
305 	} else {
306 		void *queue = alloc_pages_exact(PAGE_ALIGN(size), flag);
307 
308 		if (queue) {
309 			phys_addr_t phys_addr = virt_to_phys(queue);
310 			*dma_handle = (dma_addr_t)phys_addr;
311 
312 			/*
313 			 * Sanity check: make sure we dind't truncate
314 			 * the address.  The only arches I can find that
315 			 * have 64-bit phys_addr_t but 32-bit dma_addr_t
316 			 * are certain non-highmem MIPS and x86
317 			 * configurations, but these configurations
318 			 * should never allocate physical pages above 32
319 			 * bits, so this is fine.  Just in case, throw a
320 			 * warning and abort if we end up with an
321 			 * unrepresentable address.
322 			 */
323 			if (WARN_ON_ONCE(*dma_handle != phys_addr)) {
324 				free_pages_exact(queue, PAGE_ALIGN(size));
325 				return NULL;
326 			}
327 		}
328 		return queue;
329 	}
330 }
331 
332 static void vring_free_queue(struct virtio_device *vdev, size_t size,
333 			     void *queue, dma_addr_t dma_handle)
334 {
335 	if (vring_use_dma_api(vdev))
336 		dma_free_coherent(vdev->dev.parent, size, queue, dma_handle);
337 	else
338 		free_pages_exact(queue, PAGE_ALIGN(size));
339 }
340 
341 /*
342  * The DMA ops on various arches are rather gnarly right now, and
343  * making all of the arch DMA ops work on the vring device itself
344  * is a mess.  For now, we use the parent device for DMA ops.
345  */
346 static inline struct device *vring_dma_dev(const struct vring_virtqueue *vq)
347 {
348 	return vq->vq.vdev->dev.parent;
349 }
350 
351 /* Map one sg entry. */
352 static dma_addr_t vring_map_one_sg(const struct vring_virtqueue *vq,
353 				   struct scatterlist *sg,
354 				   enum dma_data_direction direction)
355 {
356 	if (!vq->use_dma_api) {
357 		/*
358 		 * If DMA is not used, KMSAN doesn't know that the scatterlist
359 		 * is initialized by the hardware. Explicitly check/unpoison it
360 		 * depending on the direction.
361 		 */
362 		kmsan_handle_dma(sg_page(sg), sg->offset, sg->length, direction);
363 		return (dma_addr_t)sg_phys(sg);
364 	}
365 
366 	/*
367 	 * We can't use dma_map_sg, because we don't use scatterlists in
368 	 * the way it expects (we don't guarantee that the scatterlist
369 	 * will exist for the lifetime of the mapping).
370 	 */
371 	return dma_map_page(vring_dma_dev(vq),
372 			    sg_page(sg), sg->offset, sg->length,
373 			    direction);
374 }
375 
376 static dma_addr_t vring_map_single(const struct vring_virtqueue *vq,
377 				   void *cpu_addr, size_t size,
378 				   enum dma_data_direction direction)
379 {
380 	if (!vq->use_dma_api)
381 		return (dma_addr_t)virt_to_phys(cpu_addr);
382 
383 	return dma_map_single(vring_dma_dev(vq),
384 			      cpu_addr, size, direction);
385 }
386 
387 static int vring_mapping_error(const struct vring_virtqueue *vq,
388 			       dma_addr_t addr)
389 {
390 	if (!vq->use_dma_api)
391 		return 0;
392 
393 	return dma_mapping_error(vring_dma_dev(vq), addr);
394 }
395 
396 static void virtqueue_init(struct vring_virtqueue *vq, u32 num)
397 {
398 	vq->vq.num_free = num;
399 
400 	if (vq->packed_ring)
401 		vq->last_used_idx = 0 | (1 << VRING_PACKED_EVENT_F_WRAP_CTR);
402 	else
403 		vq->last_used_idx = 0;
404 
405 	vq->event_triggered = false;
406 	vq->num_added = 0;
407 
408 #ifdef DEBUG
409 	vq->in_use = false;
410 	vq->last_add_time_valid = false;
411 #endif
412 }
413 
414 
415 /*
416  * Split ring specific functions - *_split().
417  */
418 
419 static void vring_unmap_one_split_indirect(const struct vring_virtqueue *vq,
420 					   struct vring_desc *desc)
421 {
422 	u16 flags;
423 
424 	if (!vq->use_dma_api)
425 		return;
426 
427 	flags = virtio16_to_cpu(vq->vq.vdev, desc->flags);
428 
429 	dma_unmap_page(vring_dma_dev(vq),
430 		       virtio64_to_cpu(vq->vq.vdev, desc->addr),
431 		       virtio32_to_cpu(vq->vq.vdev, desc->len),
432 		       (flags & VRING_DESC_F_WRITE) ?
433 		       DMA_FROM_DEVICE : DMA_TO_DEVICE);
434 }
435 
436 static unsigned int vring_unmap_one_split(const struct vring_virtqueue *vq,
437 					  unsigned int i)
438 {
439 	struct vring_desc_extra *extra = vq->split.desc_extra;
440 	u16 flags;
441 
442 	if (!vq->use_dma_api)
443 		goto out;
444 
445 	flags = extra[i].flags;
446 
447 	if (flags & VRING_DESC_F_INDIRECT) {
448 		dma_unmap_single(vring_dma_dev(vq),
449 				 extra[i].addr,
450 				 extra[i].len,
451 				 (flags & VRING_DESC_F_WRITE) ?
452 				 DMA_FROM_DEVICE : DMA_TO_DEVICE);
453 	} else {
454 		dma_unmap_page(vring_dma_dev(vq),
455 			       extra[i].addr,
456 			       extra[i].len,
457 			       (flags & VRING_DESC_F_WRITE) ?
458 			       DMA_FROM_DEVICE : DMA_TO_DEVICE);
459 	}
460 
461 out:
462 	return extra[i].next;
463 }
464 
465 static struct vring_desc *alloc_indirect_split(struct virtqueue *_vq,
466 					       unsigned int total_sg,
467 					       gfp_t gfp)
468 {
469 	struct vring_desc *desc;
470 	unsigned int i;
471 
472 	/*
473 	 * We require lowmem mappings for the descriptors because
474 	 * otherwise virt_to_phys will give us bogus addresses in the
475 	 * virtqueue.
476 	 */
477 	gfp &= ~__GFP_HIGHMEM;
478 
479 	desc = kmalloc_array(total_sg, sizeof(struct vring_desc), gfp);
480 	if (!desc)
481 		return NULL;
482 
483 	for (i = 0; i < total_sg; i++)
484 		desc[i].next = cpu_to_virtio16(_vq->vdev, i + 1);
485 	return desc;
486 }
487 
488 static inline unsigned int virtqueue_add_desc_split(struct virtqueue *vq,
489 						    struct vring_desc *desc,
490 						    unsigned int i,
491 						    dma_addr_t addr,
492 						    unsigned int len,
493 						    u16 flags,
494 						    bool indirect)
495 {
496 	struct vring_virtqueue *vring = to_vvq(vq);
497 	struct vring_desc_extra *extra = vring->split.desc_extra;
498 	u16 next;
499 
500 	desc[i].flags = cpu_to_virtio16(vq->vdev, flags);
501 	desc[i].addr = cpu_to_virtio64(vq->vdev, addr);
502 	desc[i].len = cpu_to_virtio32(vq->vdev, len);
503 
504 	if (!indirect) {
505 		next = extra[i].next;
506 		desc[i].next = cpu_to_virtio16(vq->vdev, next);
507 
508 		extra[i].addr = addr;
509 		extra[i].len = len;
510 		extra[i].flags = flags;
511 	} else
512 		next = virtio16_to_cpu(vq->vdev, desc[i].next);
513 
514 	return next;
515 }
516 
517 static inline int virtqueue_add_split(struct virtqueue *_vq,
518 				      struct scatterlist *sgs[],
519 				      unsigned int total_sg,
520 				      unsigned int out_sgs,
521 				      unsigned int in_sgs,
522 				      void *data,
523 				      void *ctx,
524 				      gfp_t gfp)
525 {
526 	struct vring_virtqueue *vq = to_vvq(_vq);
527 	struct scatterlist *sg;
528 	struct vring_desc *desc;
529 	unsigned int i, n, avail, descs_used, prev, err_idx;
530 	int head;
531 	bool indirect;
532 
533 	START_USE(vq);
534 
535 	BUG_ON(data == NULL);
536 	BUG_ON(ctx && vq->indirect);
537 
538 	if (unlikely(vq->broken)) {
539 		END_USE(vq);
540 		return -EIO;
541 	}
542 
543 	LAST_ADD_TIME_UPDATE(vq);
544 
545 	BUG_ON(total_sg == 0);
546 
547 	head = vq->free_head;
548 
549 	if (virtqueue_use_indirect(vq, total_sg))
550 		desc = alloc_indirect_split(_vq, total_sg, gfp);
551 	else {
552 		desc = NULL;
553 		WARN_ON_ONCE(total_sg > vq->split.vring.num && !vq->indirect);
554 	}
555 
556 	if (desc) {
557 		/* Use a single buffer which doesn't continue */
558 		indirect = true;
559 		/* Set up rest to use this indirect table. */
560 		i = 0;
561 		descs_used = 1;
562 	} else {
563 		indirect = false;
564 		desc = vq->split.vring.desc;
565 		i = head;
566 		descs_used = total_sg;
567 	}
568 
569 	if (unlikely(vq->vq.num_free < descs_used)) {
570 		pr_debug("Can't add buf len %i - avail = %i\n",
571 			 descs_used, vq->vq.num_free);
572 		/* FIXME: for historical reasons, we force a notify here if
573 		 * there are outgoing parts to the buffer.  Presumably the
574 		 * host should service the ring ASAP. */
575 		if (out_sgs)
576 			vq->notify(&vq->vq);
577 		if (indirect)
578 			kfree(desc);
579 		END_USE(vq);
580 		return -ENOSPC;
581 	}
582 
583 	for (n = 0; n < out_sgs; n++) {
584 		for (sg = sgs[n]; sg; sg = sg_next(sg)) {
585 			dma_addr_t addr = vring_map_one_sg(vq, sg, DMA_TO_DEVICE);
586 			if (vring_mapping_error(vq, addr))
587 				goto unmap_release;
588 
589 			prev = i;
590 			/* Note that we trust indirect descriptor
591 			 * table since it use stream DMA mapping.
592 			 */
593 			i = virtqueue_add_desc_split(_vq, desc, i, addr, sg->length,
594 						     VRING_DESC_F_NEXT,
595 						     indirect);
596 		}
597 	}
598 	for (; n < (out_sgs + in_sgs); n++) {
599 		for (sg = sgs[n]; sg; sg = sg_next(sg)) {
600 			dma_addr_t addr = vring_map_one_sg(vq, sg, DMA_FROM_DEVICE);
601 			if (vring_mapping_error(vq, addr))
602 				goto unmap_release;
603 
604 			prev = i;
605 			/* Note that we trust indirect descriptor
606 			 * table since it use stream DMA mapping.
607 			 */
608 			i = virtqueue_add_desc_split(_vq, desc, i, addr,
609 						     sg->length,
610 						     VRING_DESC_F_NEXT |
611 						     VRING_DESC_F_WRITE,
612 						     indirect);
613 		}
614 	}
615 	/* Last one doesn't continue. */
616 	desc[prev].flags &= cpu_to_virtio16(_vq->vdev, ~VRING_DESC_F_NEXT);
617 	if (!indirect && vq->use_dma_api)
618 		vq->split.desc_extra[prev & (vq->split.vring.num - 1)].flags &=
619 			~VRING_DESC_F_NEXT;
620 
621 	if (indirect) {
622 		/* Now that the indirect table is filled in, map it. */
623 		dma_addr_t addr = vring_map_single(
624 			vq, desc, total_sg * sizeof(struct vring_desc),
625 			DMA_TO_DEVICE);
626 		if (vring_mapping_error(vq, addr))
627 			goto unmap_release;
628 
629 		virtqueue_add_desc_split(_vq, vq->split.vring.desc,
630 					 head, addr,
631 					 total_sg * sizeof(struct vring_desc),
632 					 VRING_DESC_F_INDIRECT,
633 					 false);
634 	}
635 
636 	/* We're using some buffers from the free list. */
637 	vq->vq.num_free -= descs_used;
638 
639 	/* Update free pointer */
640 	if (indirect)
641 		vq->free_head = vq->split.desc_extra[head].next;
642 	else
643 		vq->free_head = i;
644 
645 	/* Store token and indirect buffer state. */
646 	vq->split.desc_state[head].data = data;
647 	if (indirect)
648 		vq->split.desc_state[head].indir_desc = desc;
649 	else
650 		vq->split.desc_state[head].indir_desc = ctx;
651 
652 	/* Put entry in available array (but don't update avail->idx until they
653 	 * do sync). */
654 	avail = vq->split.avail_idx_shadow & (vq->split.vring.num - 1);
655 	vq->split.vring.avail->ring[avail] = cpu_to_virtio16(_vq->vdev, head);
656 
657 	/* Descriptors and available array need to be set before we expose the
658 	 * new available array entries. */
659 	virtio_wmb(vq->weak_barriers);
660 	vq->split.avail_idx_shadow++;
661 	vq->split.vring.avail->idx = cpu_to_virtio16(_vq->vdev,
662 						vq->split.avail_idx_shadow);
663 	vq->num_added++;
664 
665 	pr_debug("Added buffer head %i to %p\n", head, vq);
666 	END_USE(vq);
667 
668 	/* This is very unlikely, but theoretically possible.  Kick
669 	 * just in case. */
670 	if (unlikely(vq->num_added == (1 << 16) - 1))
671 		virtqueue_kick(_vq);
672 
673 	return 0;
674 
675 unmap_release:
676 	err_idx = i;
677 
678 	if (indirect)
679 		i = 0;
680 	else
681 		i = head;
682 
683 	for (n = 0; n < total_sg; n++) {
684 		if (i == err_idx)
685 			break;
686 		if (indirect) {
687 			vring_unmap_one_split_indirect(vq, &desc[i]);
688 			i = virtio16_to_cpu(_vq->vdev, desc[i].next);
689 		} else
690 			i = vring_unmap_one_split(vq, i);
691 	}
692 
693 	if (indirect)
694 		kfree(desc);
695 
696 	END_USE(vq);
697 	return -ENOMEM;
698 }
699 
700 static bool virtqueue_kick_prepare_split(struct virtqueue *_vq)
701 {
702 	struct vring_virtqueue *vq = to_vvq(_vq);
703 	u16 new, old;
704 	bool needs_kick;
705 
706 	START_USE(vq);
707 	/* We need to expose available array entries before checking avail
708 	 * event. */
709 	virtio_mb(vq->weak_barriers);
710 
711 	old = vq->split.avail_idx_shadow - vq->num_added;
712 	new = vq->split.avail_idx_shadow;
713 	vq->num_added = 0;
714 
715 	LAST_ADD_TIME_CHECK(vq);
716 	LAST_ADD_TIME_INVALID(vq);
717 
718 	if (vq->event) {
719 		needs_kick = vring_need_event(virtio16_to_cpu(_vq->vdev,
720 					vring_avail_event(&vq->split.vring)),
721 					      new, old);
722 	} else {
723 		needs_kick = !(vq->split.vring.used->flags &
724 					cpu_to_virtio16(_vq->vdev,
725 						VRING_USED_F_NO_NOTIFY));
726 	}
727 	END_USE(vq);
728 	return needs_kick;
729 }
730 
731 static void detach_buf_split(struct vring_virtqueue *vq, unsigned int head,
732 			     void **ctx)
733 {
734 	unsigned int i, j;
735 	__virtio16 nextflag = cpu_to_virtio16(vq->vq.vdev, VRING_DESC_F_NEXT);
736 
737 	/* Clear data ptr. */
738 	vq->split.desc_state[head].data = NULL;
739 
740 	/* Put back on free list: unmap first-level descriptors and find end */
741 	i = head;
742 
743 	while (vq->split.vring.desc[i].flags & nextflag) {
744 		vring_unmap_one_split(vq, i);
745 		i = vq->split.desc_extra[i].next;
746 		vq->vq.num_free++;
747 	}
748 
749 	vring_unmap_one_split(vq, i);
750 	vq->split.desc_extra[i].next = vq->free_head;
751 	vq->free_head = head;
752 
753 	/* Plus final descriptor */
754 	vq->vq.num_free++;
755 
756 	if (vq->indirect) {
757 		struct vring_desc *indir_desc =
758 				vq->split.desc_state[head].indir_desc;
759 		u32 len;
760 
761 		/* Free the indirect table, if any, now that it's unmapped. */
762 		if (!indir_desc)
763 			return;
764 
765 		len = vq->split.desc_extra[head].len;
766 
767 		BUG_ON(!(vq->split.desc_extra[head].flags &
768 				VRING_DESC_F_INDIRECT));
769 		BUG_ON(len == 0 || len % sizeof(struct vring_desc));
770 
771 		for (j = 0; j < len / sizeof(struct vring_desc); j++)
772 			vring_unmap_one_split_indirect(vq, &indir_desc[j]);
773 
774 		kfree(indir_desc);
775 		vq->split.desc_state[head].indir_desc = NULL;
776 	} else if (ctx) {
777 		*ctx = vq->split.desc_state[head].indir_desc;
778 	}
779 }
780 
781 static inline bool more_used_split(const struct vring_virtqueue *vq)
782 {
783 	return vq->last_used_idx != virtio16_to_cpu(vq->vq.vdev,
784 			vq->split.vring.used->idx);
785 }
786 
787 static void *virtqueue_get_buf_ctx_split(struct virtqueue *_vq,
788 					 unsigned int *len,
789 					 void **ctx)
790 {
791 	struct vring_virtqueue *vq = to_vvq(_vq);
792 	void *ret;
793 	unsigned int i;
794 	u16 last_used;
795 
796 	START_USE(vq);
797 
798 	if (unlikely(vq->broken)) {
799 		END_USE(vq);
800 		return NULL;
801 	}
802 
803 	if (!more_used_split(vq)) {
804 		pr_debug("No more buffers in queue\n");
805 		END_USE(vq);
806 		return NULL;
807 	}
808 
809 	/* Only get used array entries after they have been exposed by host. */
810 	virtio_rmb(vq->weak_barriers);
811 
812 	last_used = (vq->last_used_idx & (vq->split.vring.num - 1));
813 	i = virtio32_to_cpu(_vq->vdev,
814 			vq->split.vring.used->ring[last_used].id);
815 	*len = virtio32_to_cpu(_vq->vdev,
816 			vq->split.vring.used->ring[last_used].len);
817 
818 	if (unlikely(i >= vq->split.vring.num)) {
819 		BAD_RING(vq, "id %u out of range\n", i);
820 		return NULL;
821 	}
822 	if (unlikely(!vq->split.desc_state[i].data)) {
823 		BAD_RING(vq, "id %u is not a head!\n", i);
824 		return NULL;
825 	}
826 
827 	/* detach_buf_split clears data, so grab it now. */
828 	ret = vq->split.desc_state[i].data;
829 	detach_buf_split(vq, i, ctx);
830 	vq->last_used_idx++;
831 	/* If we expect an interrupt for the next entry, tell host
832 	 * by writing event index and flush out the write before
833 	 * the read in the next get_buf call. */
834 	if (!(vq->split.avail_flags_shadow & VRING_AVAIL_F_NO_INTERRUPT))
835 		virtio_store_mb(vq->weak_barriers,
836 				&vring_used_event(&vq->split.vring),
837 				cpu_to_virtio16(_vq->vdev, vq->last_used_idx));
838 
839 	LAST_ADD_TIME_INVALID(vq);
840 
841 	END_USE(vq);
842 	return ret;
843 }
844 
845 static void virtqueue_disable_cb_split(struct virtqueue *_vq)
846 {
847 	struct vring_virtqueue *vq = to_vvq(_vq);
848 
849 	if (!(vq->split.avail_flags_shadow & VRING_AVAIL_F_NO_INTERRUPT)) {
850 		vq->split.avail_flags_shadow |= VRING_AVAIL_F_NO_INTERRUPT;
851 		if (vq->event)
852 			/* TODO: this is a hack. Figure out a cleaner value to write. */
853 			vring_used_event(&vq->split.vring) = 0x0;
854 		else
855 			vq->split.vring.avail->flags =
856 				cpu_to_virtio16(_vq->vdev,
857 						vq->split.avail_flags_shadow);
858 	}
859 }
860 
861 static unsigned int virtqueue_enable_cb_prepare_split(struct virtqueue *_vq)
862 {
863 	struct vring_virtqueue *vq = to_vvq(_vq);
864 	u16 last_used_idx;
865 
866 	START_USE(vq);
867 
868 	/* We optimistically turn back on interrupts, then check if there was
869 	 * more to do. */
870 	/* Depending on the VIRTIO_RING_F_EVENT_IDX feature, we need to
871 	 * either clear the flags bit or point the event index at the next
872 	 * entry. Always do both to keep code simple. */
873 	if (vq->split.avail_flags_shadow & VRING_AVAIL_F_NO_INTERRUPT) {
874 		vq->split.avail_flags_shadow &= ~VRING_AVAIL_F_NO_INTERRUPT;
875 		if (!vq->event)
876 			vq->split.vring.avail->flags =
877 				cpu_to_virtio16(_vq->vdev,
878 						vq->split.avail_flags_shadow);
879 	}
880 	vring_used_event(&vq->split.vring) = cpu_to_virtio16(_vq->vdev,
881 			last_used_idx = vq->last_used_idx);
882 	END_USE(vq);
883 	return last_used_idx;
884 }
885 
886 static bool virtqueue_poll_split(struct virtqueue *_vq, unsigned int last_used_idx)
887 {
888 	struct vring_virtqueue *vq = to_vvq(_vq);
889 
890 	return (u16)last_used_idx != virtio16_to_cpu(_vq->vdev,
891 			vq->split.vring.used->idx);
892 }
893 
894 static bool virtqueue_enable_cb_delayed_split(struct virtqueue *_vq)
895 {
896 	struct vring_virtqueue *vq = to_vvq(_vq);
897 	u16 bufs;
898 
899 	START_USE(vq);
900 
901 	/* We optimistically turn back on interrupts, then check if there was
902 	 * more to do. */
903 	/* Depending on the VIRTIO_RING_F_USED_EVENT_IDX feature, we need to
904 	 * either clear the flags bit or point the event index at the next
905 	 * entry. Always update the event index to keep code simple. */
906 	if (vq->split.avail_flags_shadow & VRING_AVAIL_F_NO_INTERRUPT) {
907 		vq->split.avail_flags_shadow &= ~VRING_AVAIL_F_NO_INTERRUPT;
908 		if (!vq->event)
909 			vq->split.vring.avail->flags =
910 				cpu_to_virtio16(_vq->vdev,
911 						vq->split.avail_flags_shadow);
912 	}
913 	/* TODO: tune this threshold */
914 	bufs = (u16)(vq->split.avail_idx_shadow - vq->last_used_idx) * 3 / 4;
915 
916 	virtio_store_mb(vq->weak_barriers,
917 			&vring_used_event(&vq->split.vring),
918 			cpu_to_virtio16(_vq->vdev, vq->last_used_idx + bufs));
919 
920 	if (unlikely((u16)(virtio16_to_cpu(_vq->vdev, vq->split.vring.used->idx)
921 					- vq->last_used_idx) > bufs)) {
922 		END_USE(vq);
923 		return false;
924 	}
925 
926 	END_USE(vq);
927 	return true;
928 }
929 
930 static void *virtqueue_detach_unused_buf_split(struct virtqueue *_vq)
931 {
932 	struct vring_virtqueue *vq = to_vvq(_vq);
933 	unsigned int i;
934 	void *buf;
935 
936 	START_USE(vq);
937 
938 	for (i = 0; i < vq->split.vring.num; i++) {
939 		if (!vq->split.desc_state[i].data)
940 			continue;
941 		/* detach_buf_split clears data, so grab it now. */
942 		buf = vq->split.desc_state[i].data;
943 		detach_buf_split(vq, i, NULL);
944 		vq->split.avail_idx_shadow--;
945 		vq->split.vring.avail->idx = cpu_to_virtio16(_vq->vdev,
946 				vq->split.avail_idx_shadow);
947 		END_USE(vq);
948 		return buf;
949 	}
950 	/* That should have freed everything. */
951 	BUG_ON(vq->vq.num_free != vq->split.vring.num);
952 
953 	END_USE(vq);
954 	return NULL;
955 }
956 
957 static void virtqueue_vring_init_split(struct vring_virtqueue_split *vring_split,
958 				       struct vring_virtqueue *vq)
959 {
960 	struct virtio_device *vdev;
961 
962 	vdev = vq->vq.vdev;
963 
964 	vring_split->avail_flags_shadow = 0;
965 	vring_split->avail_idx_shadow = 0;
966 
967 	/* No callback?  Tell other side not to bother us. */
968 	if (!vq->vq.callback) {
969 		vring_split->avail_flags_shadow |= VRING_AVAIL_F_NO_INTERRUPT;
970 		if (!vq->event)
971 			vring_split->vring.avail->flags = cpu_to_virtio16(vdev,
972 					vring_split->avail_flags_shadow);
973 	}
974 }
975 
976 static void virtqueue_reinit_split(struct vring_virtqueue *vq)
977 {
978 	int num;
979 
980 	num = vq->split.vring.num;
981 
982 	vq->split.vring.avail->flags = 0;
983 	vq->split.vring.avail->idx = 0;
984 
985 	/* reset avail event */
986 	vq->split.vring.avail->ring[num] = 0;
987 
988 	vq->split.vring.used->flags = 0;
989 	vq->split.vring.used->idx = 0;
990 
991 	/* reset used event */
992 	*(__virtio16 *)&(vq->split.vring.used->ring[num]) = 0;
993 
994 	virtqueue_init(vq, num);
995 
996 	virtqueue_vring_init_split(&vq->split, vq);
997 }
998 
999 static void virtqueue_vring_attach_split(struct vring_virtqueue *vq,
1000 					 struct vring_virtqueue_split *vring_split)
1001 {
1002 	vq->split = *vring_split;
1003 
1004 	/* Put everything in free lists. */
1005 	vq->free_head = 0;
1006 }
1007 
1008 static int vring_alloc_state_extra_split(struct vring_virtqueue_split *vring_split)
1009 {
1010 	struct vring_desc_state_split *state;
1011 	struct vring_desc_extra *extra;
1012 	u32 num = vring_split->vring.num;
1013 
1014 	state = kmalloc_array(num, sizeof(struct vring_desc_state_split), GFP_KERNEL);
1015 	if (!state)
1016 		goto err_state;
1017 
1018 	extra = vring_alloc_desc_extra(num);
1019 	if (!extra)
1020 		goto err_extra;
1021 
1022 	memset(state, 0, num * sizeof(struct vring_desc_state_split));
1023 
1024 	vring_split->desc_state = state;
1025 	vring_split->desc_extra = extra;
1026 	return 0;
1027 
1028 err_extra:
1029 	kfree(state);
1030 err_state:
1031 	return -ENOMEM;
1032 }
1033 
1034 static void vring_free_split(struct vring_virtqueue_split *vring_split,
1035 			     struct virtio_device *vdev)
1036 {
1037 	vring_free_queue(vdev, vring_split->queue_size_in_bytes,
1038 			 vring_split->vring.desc,
1039 			 vring_split->queue_dma_addr);
1040 
1041 	kfree(vring_split->desc_state);
1042 	kfree(vring_split->desc_extra);
1043 }
1044 
1045 static int vring_alloc_queue_split(struct vring_virtqueue_split *vring_split,
1046 				   struct virtio_device *vdev,
1047 				   u32 num,
1048 				   unsigned int vring_align,
1049 				   bool may_reduce_num)
1050 {
1051 	void *queue = NULL;
1052 	dma_addr_t dma_addr;
1053 
1054 	/* We assume num is a power of 2. */
1055 	if (!is_power_of_2(num)) {
1056 		dev_warn(&vdev->dev, "Bad virtqueue length %u\n", num);
1057 		return -EINVAL;
1058 	}
1059 
1060 	/* TODO: allocate each queue chunk individually */
1061 	for (; num && vring_size(num, vring_align) > PAGE_SIZE; num /= 2) {
1062 		queue = vring_alloc_queue(vdev, vring_size(num, vring_align),
1063 					  &dma_addr,
1064 					  GFP_KERNEL | __GFP_NOWARN | __GFP_ZERO);
1065 		if (queue)
1066 			break;
1067 		if (!may_reduce_num)
1068 			return -ENOMEM;
1069 	}
1070 
1071 	if (!num)
1072 		return -ENOMEM;
1073 
1074 	if (!queue) {
1075 		/* Try to get a single page. You are my only hope! */
1076 		queue = vring_alloc_queue(vdev, vring_size(num, vring_align),
1077 					  &dma_addr, GFP_KERNEL | __GFP_ZERO);
1078 	}
1079 	if (!queue)
1080 		return -ENOMEM;
1081 
1082 	vring_init(&vring_split->vring, num, queue, vring_align);
1083 
1084 	vring_split->queue_dma_addr = dma_addr;
1085 	vring_split->queue_size_in_bytes = vring_size(num, vring_align);
1086 
1087 	vring_split->vring_align = vring_align;
1088 	vring_split->may_reduce_num = may_reduce_num;
1089 
1090 	return 0;
1091 }
1092 
1093 static struct virtqueue *vring_create_virtqueue_split(
1094 	unsigned int index,
1095 	unsigned int num,
1096 	unsigned int vring_align,
1097 	struct virtio_device *vdev,
1098 	bool weak_barriers,
1099 	bool may_reduce_num,
1100 	bool context,
1101 	bool (*notify)(struct virtqueue *),
1102 	void (*callback)(struct virtqueue *),
1103 	const char *name)
1104 {
1105 	struct vring_virtqueue_split vring_split = {};
1106 	struct virtqueue *vq;
1107 	int err;
1108 
1109 	err = vring_alloc_queue_split(&vring_split, vdev, num, vring_align,
1110 				      may_reduce_num);
1111 	if (err)
1112 		return NULL;
1113 
1114 	vq = __vring_new_virtqueue(index, &vring_split, vdev, weak_barriers,
1115 				   context, notify, callback, name);
1116 	if (!vq) {
1117 		vring_free_split(&vring_split, vdev);
1118 		return NULL;
1119 	}
1120 
1121 	to_vvq(vq)->we_own_ring = true;
1122 
1123 	return vq;
1124 }
1125 
1126 static int virtqueue_resize_split(struct virtqueue *_vq, u32 num)
1127 {
1128 	struct vring_virtqueue_split vring_split = {};
1129 	struct vring_virtqueue *vq = to_vvq(_vq);
1130 	struct virtio_device *vdev = _vq->vdev;
1131 	int err;
1132 
1133 	err = vring_alloc_queue_split(&vring_split, vdev, num,
1134 				      vq->split.vring_align,
1135 				      vq->split.may_reduce_num);
1136 	if (err)
1137 		goto err;
1138 
1139 	err = vring_alloc_state_extra_split(&vring_split);
1140 	if (err)
1141 		goto err_state_extra;
1142 
1143 	vring_free(&vq->vq);
1144 
1145 	virtqueue_vring_init_split(&vring_split, vq);
1146 
1147 	virtqueue_init(vq, vring_split.vring.num);
1148 	virtqueue_vring_attach_split(vq, &vring_split);
1149 
1150 	return 0;
1151 
1152 err_state_extra:
1153 	vring_free_split(&vring_split, vdev);
1154 err:
1155 	virtqueue_reinit_split(vq);
1156 	return -ENOMEM;
1157 }
1158 
1159 
1160 /*
1161  * Packed ring specific functions - *_packed().
1162  */
1163 static inline bool packed_used_wrap_counter(u16 last_used_idx)
1164 {
1165 	return !!(last_used_idx & (1 << VRING_PACKED_EVENT_F_WRAP_CTR));
1166 }
1167 
1168 static inline u16 packed_last_used(u16 last_used_idx)
1169 {
1170 	return last_used_idx & ~(-(1 << VRING_PACKED_EVENT_F_WRAP_CTR));
1171 }
1172 
1173 static void vring_unmap_extra_packed(const struct vring_virtqueue *vq,
1174 				     struct vring_desc_extra *extra)
1175 {
1176 	u16 flags;
1177 
1178 	if (!vq->use_dma_api)
1179 		return;
1180 
1181 	flags = extra->flags;
1182 
1183 	if (flags & VRING_DESC_F_INDIRECT) {
1184 		dma_unmap_single(vring_dma_dev(vq),
1185 				 extra->addr, extra->len,
1186 				 (flags & VRING_DESC_F_WRITE) ?
1187 				 DMA_FROM_DEVICE : DMA_TO_DEVICE);
1188 	} else {
1189 		dma_unmap_page(vring_dma_dev(vq),
1190 			       extra->addr, extra->len,
1191 			       (flags & VRING_DESC_F_WRITE) ?
1192 			       DMA_FROM_DEVICE : DMA_TO_DEVICE);
1193 	}
1194 }
1195 
1196 static void vring_unmap_desc_packed(const struct vring_virtqueue *vq,
1197 				   struct vring_packed_desc *desc)
1198 {
1199 	u16 flags;
1200 
1201 	if (!vq->use_dma_api)
1202 		return;
1203 
1204 	flags = le16_to_cpu(desc->flags);
1205 
1206 	dma_unmap_page(vring_dma_dev(vq),
1207 		       le64_to_cpu(desc->addr),
1208 		       le32_to_cpu(desc->len),
1209 		       (flags & VRING_DESC_F_WRITE) ?
1210 		       DMA_FROM_DEVICE : DMA_TO_DEVICE);
1211 }
1212 
1213 static struct vring_packed_desc *alloc_indirect_packed(unsigned int total_sg,
1214 						       gfp_t gfp)
1215 {
1216 	struct vring_packed_desc *desc;
1217 
1218 	/*
1219 	 * We require lowmem mappings for the descriptors because
1220 	 * otherwise virt_to_phys will give us bogus addresses in the
1221 	 * virtqueue.
1222 	 */
1223 	gfp &= ~__GFP_HIGHMEM;
1224 
1225 	desc = kmalloc_array(total_sg, sizeof(struct vring_packed_desc), gfp);
1226 
1227 	return desc;
1228 }
1229 
1230 static int virtqueue_add_indirect_packed(struct vring_virtqueue *vq,
1231 					 struct scatterlist *sgs[],
1232 					 unsigned int total_sg,
1233 					 unsigned int out_sgs,
1234 					 unsigned int in_sgs,
1235 					 void *data,
1236 					 gfp_t gfp)
1237 {
1238 	struct vring_packed_desc *desc;
1239 	struct scatterlist *sg;
1240 	unsigned int i, n, err_idx;
1241 	u16 head, id;
1242 	dma_addr_t addr;
1243 
1244 	head = vq->packed.next_avail_idx;
1245 	desc = alloc_indirect_packed(total_sg, gfp);
1246 	if (!desc)
1247 		return -ENOMEM;
1248 
1249 	if (unlikely(vq->vq.num_free < 1)) {
1250 		pr_debug("Can't add buf len 1 - avail = 0\n");
1251 		kfree(desc);
1252 		END_USE(vq);
1253 		return -ENOSPC;
1254 	}
1255 
1256 	i = 0;
1257 	id = vq->free_head;
1258 	BUG_ON(id == vq->packed.vring.num);
1259 
1260 	for (n = 0; n < out_sgs + in_sgs; n++) {
1261 		for (sg = sgs[n]; sg; sg = sg_next(sg)) {
1262 			addr = vring_map_one_sg(vq, sg, n < out_sgs ?
1263 					DMA_TO_DEVICE : DMA_FROM_DEVICE);
1264 			if (vring_mapping_error(vq, addr))
1265 				goto unmap_release;
1266 
1267 			desc[i].flags = cpu_to_le16(n < out_sgs ?
1268 						0 : VRING_DESC_F_WRITE);
1269 			desc[i].addr = cpu_to_le64(addr);
1270 			desc[i].len = cpu_to_le32(sg->length);
1271 			i++;
1272 		}
1273 	}
1274 
1275 	/* Now that the indirect table is filled in, map it. */
1276 	addr = vring_map_single(vq, desc,
1277 			total_sg * sizeof(struct vring_packed_desc),
1278 			DMA_TO_DEVICE);
1279 	if (vring_mapping_error(vq, addr))
1280 		goto unmap_release;
1281 
1282 	vq->packed.vring.desc[head].addr = cpu_to_le64(addr);
1283 	vq->packed.vring.desc[head].len = cpu_to_le32(total_sg *
1284 				sizeof(struct vring_packed_desc));
1285 	vq->packed.vring.desc[head].id = cpu_to_le16(id);
1286 
1287 	if (vq->use_dma_api) {
1288 		vq->packed.desc_extra[id].addr = addr;
1289 		vq->packed.desc_extra[id].len = total_sg *
1290 				sizeof(struct vring_packed_desc);
1291 		vq->packed.desc_extra[id].flags = VRING_DESC_F_INDIRECT |
1292 						  vq->packed.avail_used_flags;
1293 	}
1294 
1295 	/*
1296 	 * A driver MUST NOT make the first descriptor in the list
1297 	 * available before all subsequent descriptors comprising
1298 	 * the list are made available.
1299 	 */
1300 	virtio_wmb(vq->weak_barriers);
1301 	vq->packed.vring.desc[head].flags = cpu_to_le16(VRING_DESC_F_INDIRECT |
1302 						vq->packed.avail_used_flags);
1303 
1304 	/* We're using some buffers from the free list. */
1305 	vq->vq.num_free -= 1;
1306 
1307 	/* Update free pointer */
1308 	n = head + 1;
1309 	if (n >= vq->packed.vring.num) {
1310 		n = 0;
1311 		vq->packed.avail_wrap_counter ^= 1;
1312 		vq->packed.avail_used_flags ^=
1313 				1 << VRING_PACKED_DESC_F_AVAIL |
1314 				1 << VRING_PACKED_DESC_F_USED;
1315 	}
1316 	vq->packed.next_avail_idx = n;
1317 	vq->free_head = vq->packed.desc_extra[id].next;
1318 
1319 	/* Store token and indirect buffer state. */
1320 	vq->packed.desc_state[id].num = 1;
1321 	vq->packed.desc_state[id].data = data;
1322 	vq->packed.desc_state[id].indir_desc = desc;
1323 	vq->packed.desc_state[id].last = id;
1324 
1325 	vq->num_added += 1;
1326 
1327 	pr_debug("Added buffer head %i to %p\n", head, vq);
1328 	END_USE(vq);
1329 
1330 	return 0;
1331 
1332 unmap_release:
1333 	err_idx = i;
1334 
1335 	for (i = 0; i < err_idx; i++)
1336 		vring_unmap_desc_packed(vq, &desc[i]);
1337 
1338 	kfree(desc);
1339 
1340 	END_USE(vq);
1341 	return -ENOMEM;
1342 }
1343 
1344 static inline int virtqueue_add_packed(struct virtqueue *_vq,
1345 				       struct scatterlist *sgs[],
1346 				       unsigned int total_sg,
1347 				       unsigned int out_sgs,
1348 				       unsigned int in_sgs,
1349 				       void *data,
1350 				       void *ctx,
1351 				       gfp_t gfp)
1352 {
1353 	struct vring_virtqueue *vq = to_vvq(_vq);
1354 	struct vring_packed_desc *desc;
1355 	struct scatterlist *sg;
1356 	unsigned int i, n, c, descs_used, err_idx;
1357 	__le16 head_flags, flags;
1358 	u16 head, id, prev, curr, avail_used_flags;
1359 	int err;
1360 
1361 	START_USE(vq);
1362 
1363 	BUG_ON(data == NULL);
1364 	BUG_ON(ctx && vq->indirect);
1365 
1366 	if (unlikely(vq->broken)) {
1367 		END_USE(vq);
1368 		return -EIO;
1369 	}
1370 
1371 	LAST_ADD_TIME_UPDATE(vq);
1372 
1373 	BUG_ON(total_sg == 0);
1374 
1375 	if (virtqueue_use_indirect(vq, total_sg)) {
1376 		err = virtqueue_add_indirect_packed(vq, sgs, total_sg, out_sgs,
1377 						    in_sgs, data, gfp);
1378 		if (err != -ENOMEM) {
1379 			END_USE(vq);
1380 			return err;
1381 		}
1382 
1383 		/* fall back on direct */
1384 	}
1385 
1386 	head = vq->packed.next_avail_idx;
1387 	avail_used_flags = vq->packed.avail_used_flags;
1388 
1389 	WARN_ON_ONCE(total_sg > vq->packed.vring.num && !vq->indirect);
1390 
1391 	desc = vq->packed.vring.desc;
1392 	i = head;
1393 	descs_used = total_sg;
1394 
1395 	if (unlikely(vq->vq.num_free < descs_used)) {
1396 		pr_debug("Can't add buf len %i - avail = %i\n",
1397 			 descs_used, vq->vq.num_free);
1398 		END_USE(vq);
1399 		return -ENOSPC;
1400 	}
1401 
1402 	id = vq->free_head;
1403 	BUG_ON(id == vq->packed.vring.num);
1404 
1405 	curr = id;
1406 	c = 0;
1407 	for (n = 0; n < out_sgs + in_sgs; n++) {
1408 		for (sg = sgs[n]; sg; sg = sg_next(sg)) {
1409 			dma_addr_t addr = vring_map_one_sg(vq, sg, n < out_sgs ?
1410 					DMA_TO_DEVICE : DMA_FROM_DEVICE);
1411 			if (vring_mapping_error(vq, addr))
1412 				goto unmap_release;
1413 
1414 			flags = cpu_to_le16(vq->packed.avail_used_flags |
1415 				    (++c == total_sg ? 0 : VRING_DESC_F_NEXT) |
1416 				    (n < out_sgs ? 0 : VRING_DESC_F_WRITE));
1417 			if (i == head)
1418 				head_flags = flags;
1419 			else
1420 				desc[i].flags = flags;
1421 
1422 			desc[i].addr = cpu_to_le64(addr);
1423 			desc[i].len = cpu_to_le32(sg->length);
1424 			desc[i].id = cpu_to_le16(id);
1425 
1426 			if (unlikely(vq->use_dma_api)) {
1427 				vq->packed.desc_extra[curr].addr = addr;
1428 				vq->packed.desc_extra[curr].len = sg->length;
1429 				vq->packed.desc_extra[curr].flags =
1430 					le16_to_cpu(flags);
1431 			}
1432 			prev = curr;
1433 			curr = vq->packed.desc_extra[curr].next;
1434 
1435 			if ((unlikely(++i >= vq->packed.vring.num))) {
1436 				i = 0;
1437 				vq->packed.avail_used_flags ^=
1438 					1 << VRING_PACKED_DESC_F_AVAIL |
1439 					1 << VRING_PACKED_DESC_F_USED;
1440 			}
1441 		}
1442 	}
1443 
1444 	if (i < head)
1445 		vq->packed.avail_wrap_counter ^= 1;
1446 
1447 	/* We're using some buffers from the free list. */
1448 	vq->vq.num_free -= descs_used;
1449 
1450 	/* Update free pointer */
1451 	vq->packed.next_avail_idx = i;
1452 	vq->free_head = curr;
1453 
1454 	/* Store token. */
1455 	vq->packed.desc_state[id].num = descs_used;
1456 	vq->packed.desc_state[id].data = data;
1457 	vq->packed.desc_state[id].indir_desc = ctx;
1458 	vq->packed.desc_state[id].last = prev;
1459 
1460 	/*
1461 	 * A driver MUST NOT make the first descriptor in the list
1462 	 * available before all subsequent descriptors comprising
1463 	 * the list are made available.
1464 	 */
1465 	virtio_wmb(vq->weak_barriers);
1466 	vq->packed.vring.desc[head].flags = head_flags;
1467 	vq->num_added += descs_used;
1468 
1469 	pr_debug("Added buffer head %i to %p\n", head, vq);
1470 	END_USE(vq);
1471 
1472 	return 0;
1473 
1474 unmap_release:
1475 	err_idx = i;
1476 	i = head;
1477 	curr = vq->free_head;
1478 
1479 	vq->packed.avail_used_flags = avail_used_flags;
1480 
1481 	for (n = 0; n < total_sg; n++) {
1482 		if (i == err_idx)
1483 			break;
1484 		vring_unmap_extra_packed(vq, &vq->packed.desc_extra[curr]);
1485 		curr = vq->packed.desc_extra[curr].next;
1486 		i++;
1487 		if (i >= vq->packed.vring.num)
1488 			i = 0;
1489 	}
1490 
1491 	END_USE(vq);
1492 	return -EIO;
1493 }
1494 
1495 static bool virtqueue_kick_prepare_packed(struct virtqueue *_vq)
1496 {
1497 	struct vring_virtqueue *vq = to_vvq(_vq);
1498 	u16 new, old, off_wrap, flags, wrap_counter, event_idx;
1499 	bool needs_kick;
1500 	union {
1501 		struct {
1502 			__le16 off_wrap;
1503 			__le16 flags;
1504 		};
1505 		u32 u32;
1506 	} snapshot;
1507 
1508 	START_USE(vq);
1509 
1510 	/*
1511 	 * We need to expose the new flags value before checking notification
1512 	 * suppressions.
1513 	 */
1514 	virtio_mb(vq->weak_barriers);
1515 
1516 	old = vq->packed.next_avail_idx - vq->num_added;
1517 	new = vq->packed.next_avail_idx;
1518 	vq->num_added = 0;
1519 
1520 	snapshot.u32 = *(u32 *)vq->packed.vring.device;
1521 	flags = le16_to_cpu(snapshot.flags);
1522 
1523 	LAST_ADD_TIME_CHECK(vq);
1524 	LAST_ADD_TIME_INVALID(vq);
1525 
1526 	if (flags != VRING_PACKED_EVENT_FLAG_DESC) {
1527 		needs_kick = (flags != VRING_PACKED_EVENT_FLAG_DISABLE);
1528 		goto out;
1529 	}
1530 
1531 	off_wrap = le16_to_cpu(snapshot.off_wrap);
1532 
1533 	wrap_counter = off_wrap >> VRING_PACKED_EVENT_F_WRAP_CTR;
1534 	event_idx = off_wrap & ~(1 << VRING_PACKED_EVENT_F_WRAP_CTR);
1535 	if (wrap_counter != vq->packed.avail_wrap_counter)
1536 		event_idx -= vq->packed.vring.num;
1537 
1538 	needs_kick = vring_need_event(event_idx, new, old);
1539 out:
1540 	END_USE(vq);
1541 	return needs_kick;
1542 }
1543 
1544 static void detach_buf_packed(struct vring_virtqueue *vq,
1545 			      unsigned int id, void **ctx)
1546 {
1547 	struct vring_desc_state_packed *state = NULL;
1548 	struct vring_packed_desc *desc;
1549 	unsigned int i, curr;
1550 
1551 	state = &vq->packed.desc_state[id];
1552 
1553 	/* Clear data ptr. */
1554 	state->data = NULL;
1555 
1556 	vq->packed.desc_extra[state->last].next = vq->free_head;
1557 	vq->free_head = id;
1558 	vq->vq.num_free += state->num;
1559 
1560 	if (unlikely(vq->use_dma_api)) {
1561 		curr = id;
1562 		for (i = 0; i < state->num; i++) {
1563 			vring_unmap_extra_packed(vq,
1564 						 &vq->packed.desc_extra[curr]);
1565 			curr = vq->packed.desc_extra[curr].next;
1566 		}
1567 	}
1568 
1569 	if (vq->indirect) {
1570 		u32 len;
1571 
1572 		/* Free the indirect table, if any, now that it's unmapped. */
1573 		desc = state->indir_desc;
1574 		if (!desc)
1575 			return;
1576 
1577 		if (vq->use_dma_api) {
1578 			len = vq->packed.desc_extra[id].len;
1579 			for (i = 0; i < len / sizeof(struct vring_packed_desc);
1580 					i++)
1581 				vring_unmap_desc_packed(vq, &desc[i]);
1582 		}
1583 		kfree(desc);
1584 		state->indir_desc = NULL;
1585 	} else if (ctx) {
1586 		*ctx = state->indir_desc;
1587 	}
1588 }
1589 
1590 static inline bool is_used_desc_packed(const struct vring_virtqueue *vq,
1591 				       u16 idx, bool used_wrap_counter)
1592 {
1593 	bool avail, used;
1594 	u16 flags;
1595 
1596 	flags = le16_to_cpu(vq->packed.vring.desc[idx].flags);
1597 	avail = !!(flags & (1 << VRING_PACKED_DESC_F_AVAIL));
1598 	used = !!(flags & (1 << VRING_PACKED_DESC_F_USED));
1599 
1600 	return avail == used && used == used_wrap_counter;
1601 }
1602 
1603 static inline bool more_used_packed(const struct vring_virtqueue *vq)
1604 {
1605 	u16 last_used;
1606 	u16 last_used_idx;
1607 	bool used_wrap_counter;
1608 
1609 	last_used_idx = READ_ONCE(vq->last_used_idx);
1610 	last_used = packed_last_used(last_used_idx);
1611 	used_wrap_counter = packed_used_wrap_counter(last_used_idx);
1612 	return is_used_desc_packed(vq, last_used, used_wrap_counter);
1613 }
1614 
1615 static void *virtqueue_get_buf_ctx_packed(struct virtqueue *_vq,
1616 					  unsigned int *len,
1617 					  void **ctx)
1618 {
1619 	struct vring_virtqueue *vq = to_vvq(_vq);
1620 	u16 last_used, id, last_used_idx;
1621 	bool used_wrap_counter;
1622 	void *ret;
1623 
1624 	START_USE(vq);
1625 
1626 	if (unlikely(vq->broken)) {
1627 		END_USE(vq);
1628 		return NULL;
1629 	}
1630 
1631 	if (!more_used_packed(vq)) {
1632 		pr_debug("No more buffers in queue\n");
1633 		END_USE(vq);
1634 		return NULL;
1635 	}
1636 
1637 	/* Only get used elements after they have been exposed by host. */
1638 	virtio_rmb(vq->weak_barriers);
1639 
1640 	last_used_idx = READ_ONCE(vq->last_used_idx);
1641 	used_wrap_counter = packed_used_wrap_counter(last_used_idx);
1642 	last_used = packed_last_used(last_used_idx);
1643 	id = le16_to_cpu(vq->packed.vring.desc[last_used].id);
1644 	*len = le32_to_cpu(vq->packed.vring.desc[last_used].len);
1645 
1646 	if (unlikely(id >= vq->packed.vring.num)) {
1647 		BAD_RING(vq, "id %u out of range\n", id);
1648 		return NULL;
1649 	}
1650 	if (unlikely(!vq->packed.desc_state[id].data)) {
1651 		BAD_RING(vq, "id %u is not a head!\n", id);
1652 		return NULL;
1653 	}
1654 
1655 	/* detach_buf_packed clears data, so grab it now. */
1656 	ret = vq->packed.desc_state[id].data;
1657 	detach_buf_packed(vq, id, ctx);
1658 
1659 	last_used += vq->packed.desc_state[id].num;
1660 	if (unlikely(last_used >= vq->packed.vring.num)) {
1661 		last_used -= vq->packed.vring.num;
1662 		used_wrap_counter ^= 1;
1663 	}
1664 
1665 	last_used = (last_used | (used_wrap_counter << VRING_PACKED_EVENT_F_WRAP_CTR));
1666 	WRITE_ONCE(vq->last_used_idx, last_used);
1667 
1668 	/*
1669 	 * If we expect an interrupt for the next entry, tell host
1670 	 * by writing event index and flush out the write before
1671 	 * the read in the next get_buf call.
1672 	 */
1673 	if (vq->packed.event_flags_shadow == VRING_PACKED_EVENT_FLAG_DESC)
1674 		virtio_store_mb(vq->weak_barriers,
1675 				&vq->packed.vring.driver->off_wrap,
1676 				cpu_to_le16(vq->last_used_idx));
1677 
1678 	LAST_ADD_TIME_INVALID(vq);
1679 
1680 	END_USE(vq);
1681 	return ret;
1682 }
1683 
1684 static void virtqueue_disable_cb_packed(struct virtqueue *_vq)
1685 {
1686 	struct vring_virtqueue *vq = to_vvq(_vq);
1687 
1688 	if (vq->packed.event_flags_shadow != VRING_PACKED_EVENT_FLAG_DISABLE) {
1689 		vq->packed.event_flags_shadow = VRING_PACKED_EVENT_FLAG_DISABLE;
1690 		vq->packed.vring.driver->flags =
1691 			cpu_to_le16(vq->packed.event_flags_shadow);
1692 	}
1693 }
1694 
1695 static unsigned int virtqueue_enable_cb_prepare_packed(struct virtqueue *_vq)
1696 {
1697 	struct vring_virtqueue *vq = to_vvq(_vq);
1698 
1699 	START_USE(vq);
1700 
1701 	/*
1702 	 * We optimistically turn back on interrupts, then check if there was
1703 	 * more to do.
1704 	 */
1705 
1706 	if (vq->event) {
1707 		vq->packed.vring.driver->off_wrap =
1708 			cpu_to_le16(vq->last_used_idx);
1709 		/*
1710 		 * We need to update event offset and event wrap
1711 		 * counter first before updating event flags.
1712 		 */
1713 		virtio_wmb(vq->weak_barriers);
1714 	}
1715 
1716 	if (vq->packed.event_flags_shadow == VRING_PACKED_EVENT_FLAG_DISABLE) {
1717 		vq->packed.event_flags_shadow = vq->event ?
1718 				VRING_PACKED_EVENT_FLAG_DESC :
1719 				VRING_PACKED_EVENT_FLAG_ENABLE;
1720 		vq->packed.vring.driver->flags =
1721 				cpu_to_le16(vq->packed.event_flags_shadow);
1722 	}
1723 
1724 	END_USE(vq);
1725 	return vq->last_used_idx;
1726 }
1727 
1728 static bool virtqueue_poll_packed(struct virtqueue *_vq, u16 off_wrap)
1729 {
1730 	struct vring_virtqueue *vq = to_vvq(_vq);
1731 	bool wrap_counter;
1732 	u16 used_idx;
1733 
1734 	wrap_counter = off_wrap >> VRING_PACKED_EVENT_F_WRAP_CTR;
1735 	used_idx = off_wrap & ~(1 << VRING_PACKED_EVENT_F_WRAP_CTR);
1736 
1737 	return is_used_desc_packed(vq, used_idx, wrap_counter);
1738 }
1739 
1740 static bool virtqueue_enable_cb_delayed_packed(struct virtqueue *_vq)
1741 {
1742 	struct vring_virtqueue *vq = to_vvq(_vq);
1743 	u16 used_idx, wrap_counter, last_used_idx;
1744 	u16 bufs;
1745 
1746 	START_USE(vq);
1747 
1748 	/*
1749 	 * We optimistically turn back on interrupts, then check if there was
1750 	 * more to do.
1751 	 */
1752 
1753 	if (vq->event) {
1754 		/* TODO: tune this threshold */
1755 		bufs = (vq->packed.vring.num - vq->vq.num_free) * 3 / 4;
1756 		last_used_idx = READ_ONCE(vq->last_used_idx);
1757 		wrap_counter = packed_used_wrap_counter(last_used_idx);
1758 
1759 		used_idx = packed_last_used(last_used_idx) + bufs;
1760 		if (used_idx >= vq->packed.vring.num) {
1761 			used_idx -= vq->packed.vring.num;
1762 			wrap_counter ^= 1;
1763 		}
1764 
1765 		vq->packed.vring.driver->off_wrap = cpu_to_le16(used_idx |
1766 			(wrap_counter << VRING_PACKED_EVENT_F_WRAP_CTR));
1767 
1768 		/*
1769 		 * We need to update event offset and event wrap
1770 		 * counter first before updating event flags.
1771 		 */
1772 		virtio_wmb(vq->weak_barriers);
1773 	}
1774 
1775 	if (vq->packed.event_flags_shadow == VRING_PACKED_EVENT_FLAG_DISABLE) {
1776 		vq->packed.event_flags_shadow = vq->event ?
1777 				VRING_PACKED_EVENT_FLAG_DESC :
1778 				VRING_PACKED_EVENT_FLAG_ENABLE;
1779 		vq->packed.vring.driver->flags =
1780 				cpu_to_le16(vq->packed.event_flags_shadow);
1781 	}
1782 
1783 	/*
1784 	 * We need to update event suppression structure first
1785 	 * before re-checking for more used buffers.
1786 	 */
1787 	virtio_mb(vq->weak_barriers);
1788 
1789 	last_used_idx = READ_ONCE(vq->last_used_idx);
1790 	wrap_counter = packed_used_wrap_counter(last_used_idx);
1791 	used_idx = packed_last_used(last_used_idx);
1792 	if (is_used_desc_packed(vq, used_idx, wrap_counter)) {
1793 		END_USE(vq);
1794 		return false;
1795 	}
1796 
1797 	END_USE(vq);
1798 	return true;
1799 }
1800 
1801 static void *virtqueue_detach_unused_buf_packed(struct virtqueue *_vq)
1802 {
1803 	struct vring_virtqueue *vq = to_vvq(_vq);
1804 	unsigned int i;
1805 	void *buf;
1806 
1807 	START_USE(vq);
1808 
1809 	for (i = 0; i < vq->packed.vring.num; i++) {
1810 		if (!vq->packed.desc_state[i].data)
1811 			continue;
1812 		/* detach_buf clears data, so grab it now. */
1813 		buf = vq->packed.desc_state[i].data;
1814 		detach_buf_packed(vq, i, NULL);
1815 		END_USE(vq);
1816 		return buf;
1817 	}
1818 	/* That should have freed everything. */
1819 	BUG_ON(vq->vq.num_free != vq->packed.vring.num);
1820 
1821 	END_USE(vq);
1822 	return NULL;
1823 }
1824 
1825 static struct vring_desc_extra *vring_alloc_desc_extra(unsigned int num)
1826 {
1827 	struct vring_desc_extra *desc_extra;
1828 	unsigned int i;
1829 
1830 	desc_extra = kmalloc_array(num, sizeof(struct vring_desc_extra),
1831 				   GFP_KERNEL);
1832 	if (!desc_extra)
1833 		return NULL;
1834 
1835 	memset(desc_extra, 0, num * sizeof(struct vring_desc_extra));
1836 
1837 	for (i = 0; i < num - 1; i++)
1838 		desc_extra[i].next = i + 1;
1839 
1840 	return desc_extra;
1841 }
1842 
1843 static void vring_free_packed(struct vring_virtqueue_packed *vring_packed,
1844 			      struct virtio_device *vdev)
1845 {
1846 	if (vring_packed->vring.desc)
1847 		vring_free_queue(vdev, vring_packed->ring_size_in_bytes,
1848 				 vring_packed->vring.desc,
1849 				 vring_packed->ring_dma_addr);
1850 
1851 	if (vring_packed->vring.driver)
1852 		vring_free_queue(vdev, vring_packed->event_size_in_bytes,
1853 				 vring_packed->vring.driver,
1854 				 vring_packed->driver_event_dma_addr);
1855 
1856 	if (vring_packed->vring.device)
1857 		vring_free_queue(vdev, vring_packed->event_size_in_bytes,
1858 				 vring_packed->vring.device,
1859 				 vring_packed->device_event_dma_addr);
1860 
1861 	kfree(vring_packed->desc_state);
1862 	kfree(vring_packed->desc_extra);
1863 }
1864 
1865 static int vring_alloc_queue_packed(struct vring_virtqueue_packed *vring_packed,
1866 				    struct virtio_device *vdev,
1867 				    u32 num)
1868 {
1869 	struct vring_packed_desc *ring;
1870 	struct vring_packed_desc_event *driver, *device;
1871 	dma_addr_t ring_dma_addr, driver_event_dma_addr, device_event_dma_addr;
1872 	size_t ring_size_in_bytes, event_size_in_bytes;
1873 
1874 	ring_size_in_bytes = num * sizeof(struct vring_packed_desc);
1875 
1876 	ring = vring_alloc_queue(vdev, ring_size_in_bytes,
1877 				 &ring_dma_addr,
1878 				 GFP_KERNEL | __GFP_NOWARN | __GFP_ZERO);
1879 	if (!ring)
1880 		goto err;
1881 
1882 	vring_packed->vring.desc         = ring;
1883 	vring_packed->ring_dma_addr      = ring_dma_addr;
1884 	vring_packed->ring_size_in_bytes = ring_size_in_bytes;
1885 
1886 	event_size_in_bytes = sizeof(struct vring_packed_desc_event);
1887 
1888 	driver = vring_alloc_queue(vdev, event_size_in_bytes,
1889 				   &driver_event_dma_addr,
1890 				   GFP_KERNEL | __GFP_NOWARN | __GFP_ZERO);
1891 	if (!driver)
1892 		goto err;
1893 
1894 	vring_packed->vring.driver          = driver;
1895 	vring_packed->event_size_in_bytes   = event_size_in_bytes;
1896 	vring_packed->driver_event_dma_addr = driver_event_dma_addr;
1897 
1898 	device = vring_alloc_queue(vdev, event_size_in_bytes,
1899 				   &device_event_dma_addr,
1900 				   GFP_KERNEL | __GFP_NOWARN | __GFP_ZERO);
1901 	if (!device)
1902 		goto err;
1903 
1904 	vring_packed->vring.device          = device;
1905 	vring_packed->device_event_dma_addr = device_event_dma_addr;
1906 
1907 	vring_packed->vring.num = num;
1908 
1909 	return 0;
1910 
1911 err:
1912 	vring_free_packed(vring_packed, vdev);
1913 	return -ENOMEM;
1914 }
1915 
1916 static int vring_alloc_state_extra_packed(struct vring_virtqueue_packed *vring_packed)
1917 {
1918 	struct vring_desc_state_packed *state;
1919 	struct vring_desc_extra *extra;
1920 	u32 num = vring_packed->vring.num;
1921 
1922 	state = kmalloc_array(num, sizeof(struct vring_desc_state_packed), GFP_KERNEL);
1923 	if (!state)
1924 		goto err_desc_state;
1925 
1926 	memset(state, 0, num * sizeof(struct vring_desc_state_packed));
1927 
1928 	extra = vring_alloc_desc_extra(num);
1929 	if (!extra)
1930 		goto err_desc_extra;
1931 
1932 	vring_packed->desc_state = state;
1933 	vring_packed->desc_extra = extra;
1934 
1935 	return 0;
1936 
1937 err_desc_extra:
1938 	kfree(state);
1939 err_desc_state:
1940 	return -ENOMEM;
1941 }
1942 
1943 static void virtqueue_vring_init_packed(struct vring_virtqueue_packed *vring_packed,
1944 					bool callback)
1945 {
1946 	vring_packed->next_avail_idx = 0;
1947 	vring_packed->avail_wrap_counter = 1;
1948 	vring_packed->event_flags_shadow = 0;
1949 	vring_packed->avail_used_flags = 1 << VRING_PACKED_DESC_F_AVAIL;
1950 
1951 	/* No callback?  Tell other side not to bother us. */
1952 	if (!callback) {
1953 		vring_packed->event_flags_shadow = VRING_PACKED_EVENT_FLAG_DISABLE;
1954 		vring_packed->vring.driver->flags =
1955 			cpu_to_le16(vring_packed->event_flags_shadow);
1956 	}
1957 }
1958 
1959 static void virtqueue_vring_attach_packed(struct vring_virtqueue *vq,
1960 					  struct vring_virtqueue_packed *vring_packed)
1961 {
1962 	vq->packed = *vring_packed;
1963 
1964 	/* Put everything in free lists. */
1965 	vq->free_head = 0;
1966 }
1967 
1968 static void virtqueue_reinit_packed(struct vring_virtqueue *vq)
1969 {
1970 	memset(vq->packed.vring.device, 0, vq->packed.event_size_in_bytes);
1971 	memset(vq->packed.vring.driver, 0, vq->packed.event_size_in_bytes);
1972 
1973 	/* we need to reset the desc.flags. For more, see is_used_desc_packed() */
1974 	memset(vq->packed.vring.desc, 0, vq->packed.ring_size_in_bytes);
1975 
1976 	virtqueue_init(vq, vq->packed.vring.num);
1977 	virtqueue_vring_init_packed(&vq->packed, !!vq->vq.callback);
1978 }
1979 
1980 static struct virtqueue *vring_create_virtqueue_packed(
1981 	unsigned int index,
1982 	unsigned int num,
1983 	unsigned int vring_align,
1984 	struct virtio_device *vdev,
1985 	bool weak_barriers,
1986 	bool may_reduce_num,
1987 	bool context,
1988 	bool (*notify)(struct virtqueue *),
1989 	void (*callback)(struct virtqueue *),
1990 	const char *name)
1991 {
1992 	struct vring_virtqueue_packed vring_packed = {};
1993 	struct vring_virtqueue *vq;
1994 	int err;
1995 
1996 	if (vring_alloc_queue_packed(&vring_packed, vdev, num))
1997 		goto err_ring;
1998 
1999 	vq = kmalloc(sizeof(*vq), GFP_KERNEL);
2000 	if (!vq)
2001 		goto err_vq;
2002 
2003 	vq->vq.callback = callback;
2004 	vq->vq.vdev = vdev;
2005 	vq->vq.name = name;
2006 	vq->vq.index = index;
2007 	vq->vq.reset = false;
2008 	vq->we_own_ring = true;
2009 	vq->notify = notify;
2010 	vq->weak_barriers = weak_barriers;
2011 #ifdef CONFIG_VIRTIO_HARDEN_NOTIFICATION
2012 	vq->broken = true;
2013 #else
2014 	vq->broken = false;
2015 #endif
2016 	vq->packed_ring = true;
2017 	vq->use_dma_api = vring_use_dma_api(vdev);
2018 
2019 	vq->indirect = virtio_has_feature(vdev, VIRTIO_RING_F_INDIRECT_DESC) &&
2020 		!context;
2021 	vq->event = virtio_has_feature(vdev, VIRTIO_RING_F_EVENT_IDX);
2022 
2023 	if (virtio_has_feature(vdev, VIRTIO_F_ORDER_PLATFORM))
2024 		vq->weak_barriers = false;
2025 
2026 	err = vring_alloc_state_extra_packed(&vring_packed);
2027 	if (err)
2028 		goto err_state_extra;
2029 
2030 	virtqueue_vring_init_packed(&vring_packed, !!callback);
2031 
2032 	virtqueue_init(vq, num);
2033 	virtqueue_vring_attach_packed(vq, &vring_packed);
2034 
2035 	spin_lock(&vdev->vqs_list_lock);
2036 	list_add_tail(&vq->vq.list, &vdev->vqs);
2037 	spin_unlock(&vdev->vqs_list_lock);
2038 	return &vq->vq;
2039 
2040 err_state_extra:
2041 	kfree(vq);
2042 err_vq:
2043 	vring_free_packed(&vring_packed, vdev);
2044 err_ring:
2045 	return NULL;
2046 }
2047 
2048 static int virtqueue_resize_packed(struct virtqueue *_vq, u32 num)
2049 {
2050 	struct vring_virtqueue_packed vring_packed = {};
2051 	struct vring_virtqueue *vq = to_vvq(_vq);
2052 	struct virtio_device *vdev = _vq->vdev;
2053 	int err;
2054 
2055 	if (vring_alloc_queue_packed(&vring_packed, vdev, num))
2056 		goto err_ring;
2057 
2058 	err = vring_alloc_state_extra_packed(&vring_packed);
2059 	if (err)
2060 		goto err_state_extra;
2061 
2062 	vring_free(&vq->vq);
2063 
2064 	virtqueue_vring_init_packed(&vring_packed, !!vq->vq.callback);
2065 
2066 	virtqueue_init(vq, vring_packed.vring.num);
2067 	virtqueue_vring_attach_packed(vq, &vring_packed);
2068 
2069 	return 0;
2070 
2071 err_state_extra:
2072 	vring_free_packed(&vring_packed, vdev);
2073 err_ring:
2074 	virtqueue_reinit_packed(vq);
2075 	return -ENOMEM;
2076 }
2077 
2078 
2079 /*
2080  * Generic functions and exported symbols.
2081  */
2082 
2083 static inline int virtqueue_add(struct virtqueue *_vq,
2084 				struct scatterlist *sgs[],
2085 				unsigned int total_sg,
2086 				unsigned int out_sgs,
2087 				unsigned int in_sgs,
2088 				void *data,
2089 				void *ctx,
2090 				gfp_t gfp)
2091 {
2092 	struct vring_virtqueue *vq = to_vvq(_vq);
2093 
2094 	return vq->packed_ring ? virtqueue_add_packed(_vq, sgs, total_sg,
2095 					out_sgs, in_sgs, data, ctx, gfp) :
2096 				 virtqueue_add_split(_vq, sgs, total_sg,
2097 					out_sgs, in_sgs, data, ctx, gfp);
2098 }
2099 
2100 /**
2101  * virtqueue_add_sgs - expose buffers to other end
2102  * @_vq: the struct virtqueue we're talking about.
2103  * @sgs: array of terminated scatterlists.
2104  * @out_sgs: the number of scatterlists readable by other side
2105  * @in_sgs: the number of scatterlists which are writable (after readable ones)
2106  * @data: the token identifying the buffer.
2107  * @gfp: how to do memory allocations (if necessary).
2108  *
2109  * Caller must ensure we don't call this with other virtqueue operations
2110  * at the same time (except where noted).
2111  *
2112  * Returns zero or a negative error (ie. ENOSPC, ENOMEM, EIO).
2113  */
2114 int virtqueue_add_sgs(struct virtqueue *_vq,
2115 		      struct scatterlist *sgs[],
2116 		      unsigned int out_sgs,
2117 		      unsigned int in_sgs,
2118 		      void *data,
2119 		      gfp_t gfp)
2120 {
2121 	unsigned int i, total_sg = 0;
2122 
2123 	/* Count them first. */
2124 	for (i = 0; i < out_sgs + in_sgs; i++) {
2125 		struct scatterlist *sg;
2126 
2127 		for (sg = sgs[i]; sg; sg = sg_next(sg))
2128 			total_sg++;
2129 	}
2130 	return virtqueue_add(_vq, sgs, total_sg, out_sgs, in_sgs,
2131 			     data, NULL, gfp);
2132 }
2133 EXPORT_SYMBOL_GPL(virtqueue_add_sgs);
2134 
2135 /**
2136  * virtqueue_add_outbuf - expose output buffers to other end
2137  * @vq: the struct virtqueue we're talking about.
2138  * @sg: scatterlist (must be well-formed and terminated!)
2139  * @num: the number of entries in @sg readable by other side
2140  * @data: the token identifying the buffer.
2141  * @gfp: how to do memory allocations (if necessary).
2142  *
2143  * Caller must ensure we don't call this with other virtqueue operations
2144  * at the same time (except where noted).
2145  *
2146  * Returns zero or a negative error (ie. ENOSPC, ENOMEM, EIO).
2147  */
2148 int virtqueue_add_outbuf(struct virtqueue *vq,
2149 			 struct scatterlist *sg, unsigned int num,
2150 			 void *data,
2151 			 gfp_t gfp)
2152 {
2153 	return virtqueue_add(vq, &sg, num, 1, 0, data, NULL, gfp);
2154 }
2155 EXPORT_SYMBOL_GPL(virtqueue_add_outbuf);
2156 
2157 /**
2158  * virtqueue_add_inbuf - expose input buffers to other end
2159  * @vq: the struct virtqueue we're talking about.
2160  * @sg: scatterlist (must be well-formed and terminated!)
2161  * @num: the number of entries in @sg writable by other side
2162  * @data: the token identifying the buffer.
2163  * @gfp: how to do memory allocations (if necessary).
2164  *
2165  * Caller must ensure we don't call this with other virtqueue operations
2166  * at the same time (except where noted).
2167  *
2168  * Returns zero or a negative error (ie. ENOSPC, ENOMEM, EIO).
2169  */
2170 int virtqueue_add_inbuf(struct virtqueue *vq,
2171 			struct scatterlist *sg, unsigned int num,
2172 			void *data,
2173 			gfp_t gfp)
2174 {
2175 	return virtqueue_add(vq, &sg, num, 0, 1, data, NULL, gfp);
2176 }
2177 EXPORT_SYMBOL_GPL(virtqueue_add_inbuf);
2178 
2179 /**
2180  * virtqueue_add_inbuf_ctx - expose input buffers to other end
2181  * @vq: the struct virtqueue we're talking about.
2182  * @sg: scatterlist (must be well-formed and terminated!)
2183  * @num: the number of entries in @sg writable by other side
2184  * @data: the token identifying the buffer.
2185  * @ctx: extra context for the token
2186  * @gfp: how to do memory allocations (if necessary).
2187  *
2188  * Caller must ensure we don't call this with other virtqueue operations
2189  * at the same time (except where noted).
2190  *
2191  * Returns zero or a negative error (ie. ENOSPC, ENOMEM, EIO).
2192  */
2193 int virtqueue_add_inbuf_ctx(struct virtqueue *vq,
2194 			struct scatterlist *sg, unsigned int num,
2195 			void *data,
2196 			void *ctx,
2197 			gfp_t gfp)
2198 {
2199 	return virtqueue_add(vq, &sg, num, 0, 1, data, ctx, gfp);
2200 }
2201 EXPORT_SYMBOL_GPL(virtqueue_add_inbuf_ctx);
2202 
2203 /**
2204  * virtqueue_kick_prepare - first half of split virtqueue_kick call.
2205  * @_vq: the struct virtqueue
2206  *
2207  * Instead of virtqueue_kick(), you can do:
2208  *	if (virtqueue_kick_prepare(vq))
2209  *		virtqueue_notify(vq);
2210  *
2211  * This is sometimes useful because the virtqueue_kick_prepare() needs
2212  * to be serialized, but the actual virtqueue_notify() call does not.
2213  */
2214 bool virtqueue_kick_prepare(struct virtqueue *_vq)
2215 {
2216 	struct vring_virtqueue *vq = to_vvq(_vq);
2217 
2218 	return vq->packed_ring ? virtqueue_kick_prepare_packed(_vq) :
2219 				 virtqueue_kick_prepare_split(_vq);
2220 }
2221 EXPORT_SYMBOL_GPL(virtqueue_kick_prepare);
2222 
2223 /**
2224  * virtqueue_notify - second half of split virtqueue_kick call.
2225  * @_vq: the struct virtqueue
2226  *
2227  * This does not need to be serialized.
2228  *
2229  * Returns false if host notify failed or queue is broken, otherwise true.
2230  */
2231 bool virtqueue_notify(struct virtqueue *_vq)
2232 {
2233 	struct vring_virtqueue *vq = to_vvq(_vq);
2234 
2235 	if (unlikely(vq->broken))
2236 		return false;
2237 
2238 	/* Prod other side to tell it about changes. */
2239 	if (!vq->notify(_vq)) {
2240 		vq->broken = true;
2241 		return false;
2242 	}
2243 	return true;
2244 }
2245 EXPORT_SYMBOL_GPL(virtqueue_notify);
2246 
2247 /**
2248  * virtqueue_kick - update after add_buf
2249  * @vq: the struct virtqueue
2250  *
2251  * After one or more virtqueue_add_* calls, invoke this to kick
2252  * the other side.
2253  *
2254  * Caller must ensure we don't call this with other virtqueue
2255  * operations at the same time (except where noted).
2256  *
2257  * Returns false if kick failed, otherwise true.
2258  */
2259 bool virtqueue_kick(struct virtqueue *vq)
2260 {
2261 	if (virtqueue_kick_prepare(vq))
2262 		return virtqueue_notify(vq);
2263 	return true;
2264 }
2265 EXPORT_SYMBOL_GPL(virtqueue_kick);
2266 
2267 /**
2268  * virtqueue_get_buf_ctx - get the next used buffer
2269  * @_vq: the struct virtqueue we're talking about.
2270  * @len: the length written into the buffer
2271  * @ctx: extra context for the token
2272  *
2273  * If the device wrote data into the buffer, @len will be set to the
2274  * amount written.  This means you don't need to clear the buffer
2275  * beforehand to ensure there's no data leakage in the case of short
2276  * writes.
2277  *
2278  * Caller must ensure we don't call this with other virtqueue
2279  * operations at the same time (except where noted).
2280  *
2281  * Returns NULL if there are no used buffers, or the "data" token
2282  * handed to virtqueue_add_*().
2283  */
2284 void *virtqueue_get_buf_ctx(struct virtqueue *_vq, unsigned int *len,
2285 			    void **ctx)
2286 {
2287 	struct vring_virtqueue *vq = to_vvq(_vq);
2288 
2289 	return vq->packed_ring ? virtqueue_get_buf_ctx_packed(_vq, len, ctx) :
2290 				 virtqueue_get_buf_ctx_split(_vq, len, ctx);
2291 }
2292 EXPORT_SYMBOL_GPL(virtqueue_get_buf_ctx);
2293 
2294 void *virtqueue_get_buf(struct virtqueue *_vq, unsigned int *len)
2295 {
2296 	return virtqueue_get_buf_ctx(_vq, len, NULL);
2297 }
2298 EXPORT_SYMBOL_GPL(virtqueue_get_buf);
2299 /**
2300  * virtqueue_disable_cb - disable callbacks
2301  * @_vq: the struct virtqueue we're talking about.
2302  *
2303  * Note that this is not necessarily synchronous, hence unreliable and only
2304  * useful as an optimization.
2305  *
2306  * Unlike other operations, this need not be serialized.
2307  */
2308 void virtqueue_disable_cb(struct virtqueue *_vq)
2309 {
2310 	struct vring_virtqueue *vq = to_vvq(_vq);
2311 
2312 	/* If device triggered an event already it won't trigger one again:
2313 	 * no need to disable.
2314 	 */
2315 	if (vq->event_triggered)
2316 		return;
2317 
2318 	if (vq->packed_ring)
2319 		virtqueue_disable_cb_packed(_vq);
2320 	else
2321 		virtqueue_disable_cb_split(_vq);
2322 }
2323 EXPORT_SYMBOL_GPL(virtqueue_disable_cb);
2324 
2325 /**
2326  * virtqueue_enable_cb_prepare - restart callbacks after disable_cb
2327  * @_vq: the struct virtqueue we're talking about.
2328  *
2329  * This re-enables callbacks; it returns current queue state
2330  * in an opaque unsigned value. This value should be later tested by
2331  * virtqueue_poll, to detect a possible race between the driver checking for
2332  * more work, and enabling callbacks.
2333  *
2334  * Caller must ensure we don't call this with other virtqueue
2335  * operations at the same time (except where noted).
2336  */
2337 unsigned int virtqueue_enable_cb_prepare(struct virtqueue *_vq)
2338 {
2339 	struct vring_virtqueue *vq = to_vvq(_vq);
2340 
2341 	if (vq->event_triggered)
2342 		vq->event_triggered = false;
2343 
2344 	return vq->packed_ring ? virtqueue_enable_cb_prepare_packed(_vq) :
2345 				 virtqueue_enable_cb_prepare_split(_vq);
2346 }
2347 EXPORT_SYMBOL_GPL(virtqueue_enable_cb_prepare);
2348 
2349 /**
2350  * virtqueue_poll - query pending used buffers
2351  * @_vq: the struct virtqueue we're talking about.
2352  * @last_used_idx: virtqueue state (from call to virtqueue_enable_cb_prepare).
2353  *
2354  * Returns "true" if there are pending used buffers in the queue.
2355  *
2356  * This does not need to be serialized.
2357  */
2358 bool virtqueue_poll(struct virtqueue *_vq, unsigned int last_used_idx)
2359 {
2360 	struct vring_virtqueue *vq = to_vvq(_vq);
2361 
2362 	if (unlikely(vq->broken))
2363 		return false;
2364 
2365 	virtio_mb(vq->weak_barriers);
2366 	return vq->packed_ring ? virtqueue_poll_packed(_vq, last_used_idx) :
2367 				 virtqueue_poll_split(_vq, last_used_idx);
2368 }
2369 EXPORT_SYMBOL_GPL(virtqueue_poll);
2370 
2371 /**
2372  * virtqueue_enable_cb - restart callbacks after disable_cb.
2373  * @_vq: the struct virtqueue we're talking about.
2374  *
2375  * This re-enables callbacks; it returns "false" if there are pending
2376  * buffers in the queue, to detect a possible race between the driver
2377  * checking for more work, and enabling callbacks.
2378  *
2379  * Caller must ensure we don't call this with other virtqueue
2380  * operations at the same time (except where noted).
2381  */
2382 bool virtqueue_enable_cb(struct virtqueue *_vq)
2383 {
2384 	unsigned int last_used_idx = virtqueue_enable_cb_prepare(_vq);
2385 
2386 	return !virtqueue_poll(_vq, last_used_idx);
2387 }
2388 EXPORT_SYMBOL_GPL(virtqueue_enable_cb);
2389 
2390 /**
2391  * virtqueue_enable_cb_delayed - restart callbacks after disable_cb.
2392  * @_vq: the struct virtqueue we're talking about.
2393  *
2394  * This re-enables callbacks but hints to the other side to delay
2395  * interrupts until most of the available buffers have been processed;
2396  * it returns "false" if there are many pending buffers in the queue,
2397  * to detect a possible race between the driver checking for more work,
2398  * and enabling callbacks.
2399  *
2400  * Caller must ensure we don't call this with other virtqueue
2401  * operations at the same time (except where noted).
2402  */
2403 bool virtqueue_enable_cb_delayed(struct virtqueue *_vq)
2404 {
2405 	struct vring_virtqueue *vq = to_vvq(_vq);
2406 
2407 	if (vq->event_triggered)
2408 		vq->event_triggered = false;
2409 
2410 	return vq->packed_ring ? virtqueue_enable_cb_delayed_packed(_vq) :
2411 				 virtqueue_enable_cb_delayed_split(_vq);
2412 }
2413 EXPORT_SYMBOL_GPL(virtqueue_enable_cb_delayed);
2414 
2415 /**
2416  * virtqueue_detach_unused_buf - detach first unused buffer
2417  * @_vq: the struct virtqueue we're talking about.
2418  *
2419  * Returns NULL or the "data" token handed to virtqueue_add_*().
2420  * This is not valid on an active queue; it is useful for device
2421  * shutdown or the reset queue.
2422  */
2423 void *virtqueue_detach_unused_buf(struct virtqueue *_vq)
2424 {
2425 	struct vring_virtqueue *vq = to_vvq(_vq);
2426 
2427 	return vq->packed_ring ? virtqueue_detach_unused_buf_packed(_vq) :
2428 				 virtqueue_detach_unused_buf_split(_vq);
2429 }
2430 EXPORT_SYMBOL_GPL(virtqueue_detach_unused_buf);
2431 
2432 static inline bool more_used(const struct vring_virtqueue *vq)
2433 {
2434 	return vq->packed_ring ? more_used_packed(vq) : more_used_split(vq);
2435 }
2436 
2437 /**
2438  * vring_interrupt - notify a virtqueue on an interrupt
2439  * @irq: the IRQ number (ignored)
2440  * @_vq: the struct virtqueue to notify
2441  *
2442  * Calls the callback function of @_vq to process the virtqueue
2443  * notification.
2444  */
2445 irqreturn_t vring_interrupt(int irq, void *_vq)
2446 {
2447 	struct vring_virtqueue *vq = to_vvq(_vq);
2448 
2449 	if (!more_used(vq)) {
2450 		pr_debug("virtqueue interrupt with no work for %p\n", vq);
2451 		return IRQ_NONE;
2452 	}
2453 
2454 	if (unlikely(vq->broken)) {
2455 #ifdef CONFIG_VIRTIO_HARDEN_NOTIFICATION
2456 		dev_warn_once(&vq->vq.vdev->dev,
2457 			      "virtio vring IRQ raised before DRIVER_OK");
2458 		return IRQ_NONE;
2459 #else
2460 		return IRQ_HANDLED;
2461 #endif
2462 	}
2463 
2464 	/* Just a hint for performance: so it's ok that this can be racy! */
2465 	if (vq->event)
2466 		vq->event_triggered = true;
2467 
2468 	pr_debug("virtqueue callback for %p (%p)\n", vq, vq->vq.callback);
2469 	if (vq->vq.callback)
2470 		vq->vq.callback(&vq->vq);
2471 
2472 	return IRQ_HANDLED;
2473 }
2474 EXPORT_SYMBOL_GPL(vring_interrupt);
2475 
2476 /* Only available for split ring */
2477 static struct virtqueue *__vring_new_virtqueue(unsigned int index,
2478 					       struct vring_virtqueue_split *vring_split,
2479 					       struct virtio_device *vdev,
2480 					       bool weak_barriers,
2481 					       bool context,
2482 					       bool (*notify)(struct virtqueue *),
2483 					       void (*callback)(struct virtqueue *),
2484 					       const char *name)
2485 {
2486 	struct vring_virtqueue *vq;
2487 	int err;
2488 
2489 	if (virtio_has_feature(vdev, VIRTIO_F_RING_PACKED))
2490 		return NULL;
2491 
2492 	vq = kmalloc(sizeof(*vq), GFP_KERNEL);
2493 	if (!vq)
2494 		return NULL;
2495 
2496 	vq->packed_ring = false;
2497 	vq->vq.callback = callback;
2498 	vq->vq.vdev = vdev;
2499 	vq->vq.name = name;
2500 	vq->vq.index = index;
2501 	vq->vq.reset = false;
2502 	vq->we_own_ring = false;
2503 	vq->notify = notify;
2504 	vq->weak_barriers = weak_barriers;
2505 #ifdef CONFIG_VIRTIO_HARDEN_NOTIFICATION
2506 	vq->broken = true;
2507 #else
2508 	vq->broken = false;
2509 #endif
2510 	vq->use_dma_api = vring_use_dma_api(vdev);
2511 
2512 	vq->indirect = virtio_has_feature(vdev, VIRTIO_RING_F_INDIRECT_DESC) &&
2513 		!context;
2514 	vq->event = virtio_has_feature(vdev, VIRTIO_RING_F_EVENT_IDX);
2515 
2516 	if (virtio_has_feature(vdev, VIRTIO_F_ORDER_PLATFORM))
2517 		vq->weak_barriers = false;
2518 
2519 	err = vring_alloc_state_extra_split(vring_split);
2520 	if (err) {
2521 		kfree(vq);
2522 		return NULL;
2523 	}
2524 
2525 	virtqueue_vring_init_split(vring_split, vq);
2526 
2527 	virtqueue_init(vq, vring_split->vring.num);
2528 	virtqueue_vring_attach_split(vq, vring_split);
2529 
2530 	spin_lock(&vdev->vqs_list_lock);
2531 	list_add_tail(&vq->vq.list, &vdev->vqs);
2532 	spin_unlock(&vdev->vqs_list_lock);
2533 	return &vq->vq;
2534 }
2535 
2536 struct virtqueue *vring_create_virtqueue(
2537 	unsigned int index,
2538 	unsigned int num,
2539 	unsigned int vring_align,
2540 	struct virtio_device *vdev,
2541 	bool weak_barriers,
2542 	bool may_reduce_num,
2543 	bool context,
2544 	bool (*notify)(struct virtqueue *),
2545 	void (*callback)(struct virtqueue *),
2546 	const char *name)
2547 {
2548 
2549 	if (virtio_has_feature(vdev, VIRTIO_F_RING_PACKED))
2550 		return vring_create_virtqueue_packed(index, num, vring_align,
2551 				vdev, weak_barriers, may_reduce_num,
2552 				context, notify, callback, name);
2553 
2554 	return vring_create_virtqueue_split(index, num, vring_align,
2555 			vdev, weak_barriers, may_reduce_num,
2556 			context, notify, callback, name);
2557 }
2558 EXPORT_SYMBOL_GPL(vring_create_virtqueue);
2559 
2560 /**
2561  * virtqueue_resize - resize the vring of vq
2562  * @_vq: the struct virtqueue we're talking about.
2563  * @num: new ring num
2564  * @recycle: callback for recycle the useless buffer
2565  *
2566  * When it is really necessary to create a new vring, it will set the current vq
2567  * into the reset state. Then call the passed callback to recycle the buffer
2568  * that is no longer used. Only after the new vring is successfully created, the
2569  * old vring will be released.
2570  *
2571  * Caller must ensure we don't call this with other virtqueue operations
2572  * at the same time (except where noted).
2573  *
2574  * Returns zero or a negative error.
2575  * 0: success.
2576  * -ENOMEM: Failed to allocate a new ring, fall back to the original ring size.
2577  *  vq can still work normally
2578  * -EBUSY: Failed to sync with device, vq may not work properly
2579  * -ENOENT: Transport or device not supported
2580  * -E2BIG/-EINVAL: num error
2581  * -EPERM: Operation not permitted
2582  *
2583  */
2584 int virtqueue_resize(struct virtqueue *_vq, u32 num,
2585 		     void (*recycle)(struct virtqueue *vq, void *buf))
2586 {
2587 	struct vring_virtqueue *vq = to_vvq(_vq);
2588 	struct virtio_device *vdev = vq->vq.vdev;
2589 	void *buf;
2590 	int err;
2591 
2592 	if (!vq->we_own_ring)
2593 		return -EPERM;
2594 
2595 	if (num > vq->vq.num_max)
2596 		return -E2BIG;
2597 
2598 	if (!num)
2599 		return -EINVAL;
2600 
2601 	if ((vq->packed_ring ? vq->packed.vring.num : vq->split.vring.num) == num)
2602 		return 0;
2603 
2604 	if (!vdev->config->disable_vq_and_reset)
2605 		return -ENOENT;
2606 
2607 	if (!vdev->config->enable_vq_after_reset)
2608 		return -ENOENT;
2609 
2610 	err = vdev->config->disable_vq_and_reset(_vq);
2611 	if (err)
2612 		return err;
2613 
2614 	while ((buf = virtqueue_detach_unused_buf(_vq)) != NULL)
2615 		recycle(_vq, buf);
2616 
2617 	if (vq->packed_ring)
2618 		err = virtqueue_resize_packed(_vq, num);
2619 	else
2620 		err = virtqueue_resize_split(_vq, num);
2621 
2622 	if (vdev->config->enable_vq_after_reset(_vq))
2623 		return -EBUSY;
2624 
2625 	return err;
2626 }
2627 EXPORT_SYMBOL_GPL(virtqueue_resize);
2628 
2629 /* Only available for split ring */
2630 struct virtqueue *vring_new_virtqueue(unsigned int index,
2631 				      unsigned int num,
2632 				      unsigned int vring_align,
2633 				      struct virtio_device *vdev,
2634 				      bool weak_barriers,
2635 				      bool context,
2636 				      void *pages,
2637 				      bool (*notify)(struct virtqueue *vq),
2638 				      void (*callback)(struct virtqueue *vq),
2639 				      const char *name)
2640 {
2641 	struct vring_virtqueue_split vring_split = {};
2642 
2643 	if (virtio_has_feature(vdev, VIRTIO_F_RING_PACKED))
2644 		return NULL;
2645 
2646 	vring_init(&vring_split.vring, num, pages, vring_align);
2647 	return __vring_new_virtqueue(index, &vring_split, vdev, weak_barriers,
2648 				     context, notify, callback, name);
2649 }
2650 EXPORT_SYMBOL_GPL(vring_new_virtqueue);
2651 
2652 static void vring_free(struct virtqueue *_vq)
2653 {
2654 	struct vring_virtqueue *vq = to_vvq(_vq);
2655 
2656 	if (vq->we_own_ring) {
2657 		if (vq->packed_ring) {
2658 			vring_free_queue(vq->vq.vdev,
2659 					 vq->packed.ring_size_in_bytes,
2660 					 vq->packed.vring.desc,
2661 					 vq->packed.ring_dma_addr);
2662 
2663 			vring_free_queue(vq->vq.vdev,
2664 					 vq->packed.event_size_in_bytes,
2665 					 vq->packed.vring.driver,
2666 					 vq->packed.driver_event_dma_addr);
2667 
2668 			vring_free_queue(vq->vq.vdev,
2669 					 vq->packed.event_size_in_bytes,
2670 					 vq->packed.vring.device,
2671 					 vq->packed.device_event_dma_addr);
2672 
2673 			kfree(vq->packed.desc_state);
2674 			kfree(vq->packed.desc_extra);
2675 		} else {
2676 			vring_free_queue(vq->vq.vdev,
2677 					 vq->split.queue_size_in_bytes,
2678 					 vq->split.vring.desc,
2679 					 vq->split.queue_dma_addr);
2680 		}
2681 	}
2682 	if (!vq->packed_ring) {
2683 		kfree(vq->split.desc_state);
2684 		kfree(vq->split.desc_extra);
2685 	}
2686 }
2687 
2688 void vring_del_virtqueue(struct virtqueue *_vq)
2689 {
2690 	struct vring_virtqueue *vq = to_vvq(_vq);
2691 
2692 	spin_lock(&vq->vq.vdev->vqs_list_lock);
2693 	list_del(&_vq->list);
2694 	spin_unlock(&vq->vq.vdev->vqs_list_lock);
2695 
2696 	vring_free(_vq);
2697 
2698 	kfree(vq);
2699 }
2700 EXPORT_SYMBOL_GPL(vring_del_virtqueue);
2701 
2702 /* Manipulates transport-specific feature bits. */
2703 void vring_transport_features(struct virtio_device *vdev)
2704 {
2705 	unsigned int i;
2706 
2707 	for (i = VIRTIO_TRANSPORT_F_START; i < VIRTIO_TRANSPORT_F_END; i++) {
2708 		switch (i) {
2709 		case VIRTIO_RING_F_INDIRECT_DESC:
2710 			break;
2711 		case VIRTIO_RING_F_EVENT_IDX:
2712 			break;
2713 		case VIRTIO_F_VERSION_1:
2714 			break;
2715 		case VIRTIO_F_ACCESS_PLATFORM:
2716 			break;
2717 		case VIRTIO_F_RING_PACKED:
2718 			break;
2719 		case VIRTIO_F_ORDER_PLATFORM:
2720 			break;
2721 		default:
2722 			/* We don't understand this bit. */
2723 			__virtio_clear_bit(vdev, i);
2724 		}
2725 	}
2726 }
2727 EXPORT_SYMBOL_GPL(vring_transport_features);
2728 
2729 /**
2730  * virtqueue_get_vring_size - return the size of the virtqueue's vring
2731  * @_vq: the struct virtqueue containing the vring of interest.
2732  *
2733  * Returns the size of the vring.  This is mainly used for boasting to
2734  * userspace.  Unlike other operations, this need not be serialized.
2735  */
2736 unsigned int virtqueue_get_vring_size(struct virtqueue *_vq)
2737 {
2738 
2739 	struct vring_virtqueue *vq = to_vvq(_vq);
2740 
2741 	return vq->packed_ring ? vq->packed.vring.num : vq->split.vring.num;
2742 }
2743 EXPORT_SYMBOL_GPL(virtqueue_get_vring_size);
2744 
2745 /*
2746  * This function should only be called by the core, not directly by the driver.
2747  */
2748 void __virtqueue_break(struct virtqueue *_vq)
2749 {
2750 	struct vring_virtqueue *vq = to_vvq(_vq);
2751 
2752 	/* Pairs with READ_ONCE() in virtqueue_is_broken(). */
2753 	WRITE_ONCE(vq->broken, true);
2754 }
2755 EXPORT_SYMBOL_GPL(__virtqueue_break);
2756 
2757 /*
2758  * This function should only be called by the core, not directly by the driver.
2759  */
2760 void __virtqueue_unbreak(struct virtqueue *_vq)
2761 {
2762 	struct vring_virtqueue *vq = to_vvq(_vq);
2763 
2764 	/* Pairs with READ_ONCE() in virtqueue_is_broken(). */
2765 	WRITE_ONCE(vq->broken, false);
2766 }
2767 EXPORT_SYMBOL_GPL(__virtqueue_unbreak);
2768 
2769 bool virtqueue_is_broken(struct virtqueue *_vq)
2770 {
2771 	struct vring_virtqueue *vq = to_vvq(_vq);
2772 
2773 	return READ_ONCE(vq->broken);
2774 }
2775 EXPORT_SYMBOL_GPL(virtqueue_is_broken);
2776 
2777 /*
2778  * This should prevent the device from being used, allowing drivers to
2779  * recover.  You may need to grab appropriate locks to flush.
2780  */
2781 void virtio_break_device(struct virtio_device *dev)
2782 {
2783 	struct virtqueue *_vq;
2784 
2785 	spin_lock(&dev->vqs_list_lock);
2786 	list_for_each_entry(_vq, &dev->vqs, list) {
2787 		struct vring_virtqueue *vq = to_vvq(_vq);
2788 
2789 		/* Pairs with READ_ONCE() in virtqueue_is_broken(). */
2790 		WRITE_ONCE(vq->broken, true);
2791 	}
2792 	spin_unlock(&dev->vqs_list_lock);
2793 }
2794 EXPORT_SYMBOL_GPL(virtio_break_device);
2795 
2796 /*
2797  * This should allow the device to be used by the driver. You may
2798  * need to grab appropriate locks to flush the write to
2799  * vq->broken. This should only be used in some specific case e.g
2800  * (probing and restoring). This function should only be called by the
2801  * core, not directly by the driver.
2802  */
2803 void __virtio_unbreak_device(struct virtio_device *dev)
2804 {
2805 	struct virtqueue *_vq;
2806 
2807 	spin_lock(&dev->vqs_list_lock);
2808 	list_for_each_entry(_vq, &dev->vqs, list) {
2809 		struct vring_virtqueue *vq = to_vvq(_vq);
2810 
2811 		/* Pairs with READ_ONCE() in virtqueue_is_broken(). */
2812 		WRITE_ONCE(vq->broken, false);
2813 	}
2814 	spin_unlock(&dev->vqs_list_lock);
2815 }
2816 EXPORT_SYMBOL_GPL(__virtio_unbreak_device);
2817 
2818 dma_addr_t virtqueue_get_desc_addr(struct virtqueue *_vq)
2819 {
2820 	struct vring_virtqueue *vq = to_vvq(_vq);
2821 
2822 	BUG_ON(!vq->we_own_ring);
2823 
2824 	if (vq->packed_ring)
2825 		return vq->packed.ring_dma_addr;
2826 
2827 	return vq->split.queue_dma_addr;
2828 }
2829 EXPORT_SYMBOL_GPL(virtqueue_get_desc_addr);
2830 
2831 dma_addr_t virtqueue_get_avail_addr(struct virtqueue *_vq)
2832 {
2833 	struct vring_virtqueue *vq = to_vvq(_vq);
2834 
2835 	BUG_ON(!vq->we_own_ring);
2836 
2837 	if (vq->packed_ring)
2838 		return vq->packed.driver_event_dma_addr;
2839 
2840 	return vq->split.queue_dma_addr +
2841 		((char *)vq->split.vring.avail - (char *)vq->split.vring.desc);
2842 }
2843 EXPORT_SYMBOL_GPL(virtqueue_get_avail_addr);
2844 
2845 dma_addr_t virtqueue_get_used_addr(struct virtqueue *_vq)
2846 {
2847 	struct vring_virtqueue *vq = to_vvq(_vq);
2848 
2849 	BUG_ON(!vq->we_own_ring);
2850 
2851 	if (vq->packed_ring)
2852 		return vq->packed.device_event_dma_addr;
2853 
2854 	return vq->split.queue_dma_addr +
2855 		((char *)vq->split.vring.used - (char *)vq->split.vring.desc);
2856 }
2857 EXPORT_SYMBOL_GPL(virtqueue_get_used_addr);
2858 
2859 /* Only available for split ring */
2860 const struct vring *virtqueue_get_vring(struct virtqueue *vq)
2861 {
2862 	return &to_vvq(vq)->split.vring;
2863 }
2864 EXPORT_SYMBOL_GPL(virtqueue_get_vring);
2865 
2866 MODULE_LICENSE("GPL");
2867