xref: /openbmc/linux/drivers/virtio/virtio_ring.c (revision 6d425d7c)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /* Virtio ring implementation.
3  *
4  *  Copyright 2007 Rusty Russell IBM Corporation
5  */
6 #include <linux/virtio.h>
7 #include <linux/virtio_ring.h>
8 #include <linux/virtio_config.h>
9 #include <linux/device.h>
10 #include <linux/slab.h>
11 #include <linux/module.h>
12 #include <linux/hrtimer.h>
13 #include <linux/dma-mapping.h>
14 #include <linux/spinlock.h>
15 #include <xen/xen.h>
16 
17 #ifdef DEBUG
18 /* For development, we want to crash whenever the ring is screwed. */
19 #define BAD_RING(_vq, fmt, args...)				\
20 	do {							\
21 		dev_err(&(_vq)->vq.vdev->dev,			\
22 			"%s:"fmt, (_vq)->vq.name, ##args);	\
23 		BUG();						\
24 	} while (0)
25 /* Caller is supposed to guarantee no reentry. */
26 #define START_USE(_vq)						\
27 	do {							\
28 		if ((_vq)->in_use)				\
29 			panic("%s:in_use = %i\n",		\
30 			      (_vq)->vq.name, (_vq)->in_use);	\
31 		(_vq)->in_use = __LINE__;			\
32 	} while (0)
33 #define END_USE(_vq) \
34 	do { BUG_ON(!(_vq)->in_use); (_vq)->in_use = 0; } while(0)
35 #define LAST_ADD_TIME_UPDATE(_vq)				\
36 	do {							\
37 		ktime_t now = ktime_get();			\
38 								\
39 		/* No kick or get, with .1 second between?  Warn. */ \
40 		if ((_vq)->last_add_time_valid)			\
41 			WARN_ON(ktime_to_ms(ktime_sub(now,	\
42 				(_vq)->last_add_time)) > 100);	\
43 		(_vq)->last_add_time = now;			\
44 		(_vq)->last_add_time_valid = true;		\
45 	} while (0)
46 #define LAST_ADD_TIME_CHECK(_vq)				\
47 	do {							\
48 		if ((_vq)->last_add_time_valid) {		\
49 			WARN_ON(ktime_to_ms(ktime_sub(ktime_get(), \
50 				      (_vq)->last_add_time)) > 100); \
51 		}						\
52 	} while (0)
53 #define LAST_ADD_TIME_INVALID(_vq)				\
54 	((_vq)->last_add_time_valid = false)
55 #else
56 #define BAD_RING(_vq, fmt, args...)				\
57 	do {							\
58 		dev_err(&_vq->vq.vdev->dev,			\
59 			"%s:"fmt, (_vq)->vq.name, ##args);	\
60 		(_vq)->broken = true;				\
61 	} while (0)
62 #define START_USE(vq)
63 #define END_USE(vq)
64 #define LAST_ADD_TIME_UPDATE(vq)
65 #define LAST_ADD_TIME_CHECK(vq)
66 #define LAST_ADD_TIME_INVALID(vq)
67 #endif
68 
69 struct vring_desc_state_split {
70 	void *data;			/* Data for callback. */
71 	struct vring_desc *indir_desc;	/* Indirect descriptor, if any. */
72 };
73 
74 struct vring_desc_state_packed {
75 	void *data;			/* Data for callback. */
76 	struct vring_packed_desc *indir_desc; /* Indirect descriptor, if any. */
77 	u16 num;			/* Descriptor list length. */
78 	u16 last;			/* The last desc state in a list. */
79 };
80 
81 struct vring_desc_extra {
82 	dma_addr_t addr;		/* Descriptor DMA addr. */
83 	u32 len;			/* Descriptor length. */
84 	u16 flags;			/* Descriptor flags. */
85 	u16 next;			/* The next desc state in a list. */
86 };
87 
88 struct vring_virtqueue {
89 	struct virtqueue vq;
90 
91 	/* Is this a packed ring? */
92 	bool packed_ring;
93 
94 	/* Is DMA API used? */
95 	bool use_dma_api;
96 
97 	/* Can we use weak barriers? */
98 	bool weak_barriers;
99 
100 	/* Other side has made a mess, don't try any more. */
101 	bool broken;
102 
103 	/* Host supports indirect buffers */
104 	bool indirect;
105 
106 	/* Host publishes avail event idx */
107 	bool event;
108 
109 	/* Head of free buffer list. */
110 	unsigned int free_head;
111 	/* Number we've added since last sync. */
112 	unsigned int num_added;
113 
114 	/* Last used index we've seen. */
115 	u16 last_used_idx;
116 
117 	/* Hint for event idx: already triggered no need to disable. */
118 	bool event_triggered;
119 
120 	union {
121 		/* Available for split ring */
122 		struct {
123 			/* Actual memory layout for this queue. */
124 			struct vring vring;
125 
126 			/* Last written value to avail->flags */
127 			u16 avail_flags_shadow;
128 
129 			/*
130 			 * Last written value to avail->idx in
131 			 * guest byte order.
132 			 */
133 			u16 avail_idx_shadow;
134 
135 			/* Per-descriptor state. */
136 			struct vring_desc_state_split *desc_state;
137 			struct vring_desc_extra *desc_extra;
138 
139 			/* DMA address and size information */
140 			dma_addr_t queue_dma_addr;
141 			size_t queue_size_in_bytes;
142 		} split;
143 
144 		/* Available for packed ring */
145 		struct {
146 			/* Actual memory layout for this queue. */
147 			struct {
148 				unsigned int num;
149 				struct vring_packed_desc *desc;
150 				struct vring_packed_desc_event *driver;
151 				struct vring_packed_desc_event *device;
152 			} vring;
153 
154 			/* Driver ring wrap counter. */
155 			bool avail_wrap_counter;
156 
157 			/* Device ring wrap counter. */
158 			bool used_wrap_counter;
159 
160 			/* Avail used flags. */
161 			u16 avail_used_flags;
162 
163 			/* Index of the next avail descriptor. */
164 			u16 next_avail_idx;
165 
166 			/*
167 			 * Last written value to driver->flags in
168 			 * guest byte order.
169 			 */
170 			u16 event_flags_shadow;
171 
172 			/* Per-descriptor state. */
173 			struct vring_desc_state_packed *desc_state;
174 			struct vring_desc_extra *desc_extra;
175 
176 			/* DMA address and size information */
177 			dma_addr_t ring_dma_addr;
178 			dma_addr_t driver_event_dma_addr;
179 			dma_addr_t device_event_dma_addr;
180 			size_t ring_size_in_bytes;
181 			size_t event_size_in_bytes;
182 		} packed;
183 	};
184 
185 	/* How to notify other side. FIXME: commonalize hcalls! */
186 	bool (*notify)(struct virtqueue *vq);
187 
188 	/* DMA, allocation, and size information */
189 	bool we_own_ring;
190 
191 #ifdef DEBUG
192 	/* They're supposed to lock for us. */
193 	unsigned int in_use;
194 
195 	/* Figure out if their kicks are too delayed. */
196 	bool last_add_time_valid;
197 	ktime_t last_add_time;
198 #endif
199 };
200 
201 
202 /*
203  * Helpers.
204  */
205 
206 #define to_vvq(_vq) container_of(_vq, struct vring_virtqueue, vq)
207 
208 static inline bool virtqueue_use_indirect(struct virtqueue *_vq,
209 					  unsigned int total_sg)
210 {
211 	struct vring_virtqueue *vq = to_vvq(_vq);
212 
213 	/*
214 	 * If the host supports indirect descriptor tables, and we have multiple
215 	 * buffers, then go indirect. FIXME: tune this threshold
216 	 */
217 	return (vq->indirect && total_sg > 1 && vq->vq.num_free);
218 }
219 
220 /*
221  * Modern virtio devices have feature bits to specify whether they need a
222  * quirk and bypass the IOMMU. If not there, just use the DMA API.
223  *
224  * If there, the interaction between virtio and DMA API is messy.
225  *
226  * On most systems with virtio, physical addresses match bus addresses,
227  * and it doesn't particularly matter whether we use the DMA API.
228  *
229  * On some systems, including Xen and any system with a physical device
230  * that speaks virtio behind a physical IOMMU, we must use the DMA API
231  * for virtio DMA to work at all.
232  *
233  * On other systems, including SPARC and PPC64, virtio-pci devices are
234  * enumerated as though they are behind an IOMMU, but the virtio host
235  * ignores the IOMMU, so we must either pretend that the IOMMU isn't
236  * there or somehow map everything as the identity.
237  *
238  * For the time being, we preserve historic behavior and bypass the DMA
239  * API.
240  *
241  * TODO: install a per-device DMA ops structure that does the right thing
242  * taking into account all the above quirks, and use the DMA API
243  * unconditionally on data path.
244  */
245 
246 static bool vring_use_dma_api(struct virtio_device *vdev)
247 {
248 	if (!virtio_has_dma_quirk(vdev))
249 		return true;
250 
251 	/* Otherwise, we are left to guess. */
252 	/*
253 	 * In theory, it's possible to have a buggy QEMU-supposed
254 	 * emulated Q35 IOMMU and Xen enabled at the same time.  On
255 	 * such a configuration, virtio has never worked and will
256 	 * not work without an even larger kludge.  Instead, enable
257 	 * the DMA API if we're a Xen guest, which at least allows
258 	 * all of the sensible Xen configurations to work correctly.
259 	 */
260 	if (xen_domain())
261 		return true;
262 
263 	return false;
264 }
265 
266 size_t virtio_max_dma_size(struct virtio_device *vdev)
267 {
268 	size_t max_segment_size = SIZE_MAX;
269 
270 	if (vring_use_dma_api(vdev))
271 		max_segment_size = dma_max_mapping_size(&vdev->dev);
272 
273 	return max_segment_size;
274 }
275 EXPORT_SYMBOL_GPL(virtio_max_dma_size);
276 
277 static void *vring_alloc_queue(struct virtio_device *vdev, size_t size,
278 			      dma_addr_t *dma_handle, gfp_t flag)
279 {
280 	if (vring_use_dma_api(vdev)) {
281 		return dma_alloc_coherent(vdev->dev.parent, size,
282 					  dma_handle, flag);
283 	} else {
284 		void *queue = alloc_pages_exact(PAGE_ALIGN(size), flag);
285 
286 		if (queue) {
287 			phys_addr_t phys_addr = virt_to_phys(queue);
288 			*dma_handle = (dma_addr_t)phys_addr;
289 
290 			/*
291 			 * Sanity check: make sure we dind't truncate
292 			 * the address.  The only arches I can find that
293 			 * have 64-bit phys_addr_t but 32-bit dma_addr_t
294 			 * are certain non-highmem MIPS and x86
295 			 * configurations, but these configurations
296 			 * should never allocate physical pages above 32
297 			 * bits, so this is fine.  Just in case, throw a
298 			 * warning and abort if we end up with an
299 			 * unrepresentable address.
300 			 */
301 			if (WARN_ON_ONCE(*dma_handle != phys_addr)) {
302 				free_pages_exact(queue, PAGE_ALIGN(size));
303 				return NULL;
304 			}
305 		}
306 		return queue;
307 	}
308 }
309 
310 static void vring_free_queue(struct virtio_device *vdev, size_t size,
311 			     void *queue, dma_addr_t dma_handle)
312 {
313 	if (vring_use_dma_api(vdev))
314 		dma_free_coherent(vdev->dev.parent, size, queue, dma_handle);
315 	else
316 		free_pages_exact(queue, PAGE_ALIGN(size));
317 }
318 
319 /*
320  * The DMA ops on various arches are rather gnarly right now, and
321  * making all of the arch DMA ops work on the vring device itself
322  * is a mess.  For now, we use the parent device for DMA ops.
323  */
324 static inline struct device *vring_dma_dev(const struct vring_virtqueue *vq)
325 {
326 	return vq->vq.vdev->dev.parent;
327 }
328 
329 /* Map one sg entry. */
330 static dma_addr_t vring_map_one_sg(const struct vring_virtqueue *vq,
331 				   struct scatterlist *sg,
332 				   enum dma_data_direction direction)
333 {
334 	if (!vq->use_dma_api)
335 		return (dma_addr_t)sg_phys(sg);
336 
337 	/*
338 	 * We can't use dma_map_sg, because we don't use scatterlists in
339 	 * the way it expects (we don't guarantee that the scatterlist
340 	 * will exist for the lifetime of the mapping).
341 	 */
342 	return dma_map_page(vring_dma_dev(vq),
343 			    sg_page(sg), sg->offset, sg->length,
344 			    direction);
345 }
346 
347 static dma_addr_t vring_map_single(const struct vring_virtqueue *vq,
348 				   void *cpu_addr, size_t size,
349 				   enum dma_data_direction direction)
350 {
351 	if (!vq->use_dma_api)
352 		return (dma_addr_t)virt_to_phys(cpu_addr);
353 
354 	return dma_map_single(vring_dma_dev(vq),
355 			      cpu_addr, size, direction);
356 }
357 
358 static int vring_mapping_error(const struct vring_virtqueue *vq,
359 			       dma_addr_t addr)
360 {
361 	if (!vq->use_dma_api)
362 		return 0;
363 
364 	return dma_mapping_error(vring_dma_dev(vq), addr);
365 }
366 
367 
368 /*
369  * Split ring specific functions - *_split().
370  */
371 
372 static void vring_unmap_one_split_indirect(const struct vring_virtqueue *vq,
373 					   struct vring_desc *desc)
374 {
375 	u16 flags;
376 
377 	if (!vq->use_dma_api)
378 		return;
379 
380 	flags = virtio16_to_cpu(vq->vq.vdev, desc->flags);
381 
382 	if (flags & VRING_DESC_F_INDIRECT) {
383 		dma_unmap_single(vring_dma_dev(vq),
384 				 virtio64_to_cpu(vq->vq.vdev, desc->addr),
385 				 virtio32_to_cpu(vq->vq.vdev, desc->len),
386 				 (flags & VRING_DESC_F_WRITE) ?
387 				 DMA_FROM_DEVICE : DMA_TO_DEVICE);
388 	} else {
389 		dma_unmap_page(vring_dma_dev(vq),
390 			       virtio64_to_cpu(vq->vq.vdev, desc->addr),
391 			       virtio32_to_cpu(vq->vq.vdev, desc->len),
392 			       (flags & VRING_DESC_F_WRITE) ?
393 			       DMA_FROM_DEVICE : DMA_TO_DEVICE);
394 	}
395 }
396 
397 static unsigned int vring_unmap_one_split(const struct vring_virtqueue *vq,
398 					  unsigned int i)
399 {
400 	struct vring_desc_extra *extra = vq->split.desc_extra;
401 	u16 flags;
402 
403 	if (!vq->use_dma_api)
404 		goto out;
405 
406 	flags = extra[i].flags;
407 
408 	if (flags & VRING_DESC_F_INDIRECT) {
409 		dma_unmap_single(vring_dma_dev(vq),
410 				 extra[i].addr,
411 				 extra[i].len,
412 				 (flags & VRING_DESC_F_WRITE) ?
413 				 DMA_FROM_DEVICE : DMA_TO_DEVICE);
414 	} else {
415 		dma_unmap_page(vring_dma_dev(vq),
416 			       extra[i].addr,
417 			       extra[i].len,
418 			       (flags & VRING_DESC_F_WRITE) ?
419 			       DMA_FROM_DEVICE : DMA_TO_DEVICE);
420 	}
421 
422 out:
423 	return extra[i].next;
424 }
425 
426 static struct vring_desc *alloc_indirect_split(struct virtqueue *_vq,
427 					       unsigned int total_sg,
428 					       gfp_t gfp)
429 {
430 	struct vring_desc *desc;
431 	unsigned int i;
432 
433 	/*
434 	 * We require lowmem mappings for the descriptors because
435 	 * otherwise virt_to_phys will give us bogus addresses in the
436 	 * virtqueue.
437 	 */
438 	gfp &= ~__GFP_HIGHMEM;
439 
440 	desc = kmalloc_array(total_sg, sizeof(struct vring_desc), gfp);
441 	if (!desc)
442 		return NULL;
443 
444 	for (i = 0; i < total_sg; i++)
445 		desc[i].next = cpu_to_virtio16(_vq->vdev, i + 1);
446 	return desc;
447 }
448 
449 static inline unsigned int virtqueue_add_desc_split(struct virtqueue *vq,
450 						    struct vring_desc *desc,
451 						    unsigned int i,
452 						    dma_addr_t addr,
453 						    unsigned int len,
454 						    u16 flags,
455 						    bool indirect)
456 {
457 	struct vring_virtqueue *vring = to_vvq(vq);
458 	struct vring_desc_extra *extra = vring->split.desc_extra;
459 	u16 next;
460 
461 	desc[i].flags = cpu_to_virtio16(vq->vdev, flags);
462 	desc[i].addr = cpu_to_virtio64(vq->vdev, addr);
463 	desc[i].len = cpu_to_virtio32(vq->vdev, len);
464 
465 	if (!indirect) {
466 		next = extra[i].next;
467 		desc[i].next = cpu_to_virtio16(vq->vdev, next);
468 
469 		extra[i].addr = addr;
470 		extra[i].len = len;
471 		extra[i].flags = flags;
472 	} else
473 		next = virtio16_to_cpu(vq->vdev, desc[i].next);
474 
475 	return next;
476 }
477 
478 static inline int virtqueue_add_split(struct virtqueue *_vq,
479 				      struct scatterlist *sgs[],
480 				      unsigned int total_sg,
481 				      unsigned int out_sgs,
482 				      unsigned int in_sgs,
483 				      void *data,
484 				      void *ctx,
485 				      gfp_t gfp)
486 {
487 	struct vring_virtqueue *vq = to_vvq(_vq);
488 	struct scatterlist *sg;
489 	struct vring_desc *desc;
490 	unsigned int i, n, avail, descs_used, prev, err_idx;
491 	int head;
492 	bool indirect;
493 
494 	START_USE(vq);
495 
496 	BUG_ON(data == NULL);
497 	BUG_ON(ctx && vq->indirect);
498 
499 	if (unlikely(vq->broken)) {
500 		END_USE(vq);
501 		return -EIO;
502 	}
503 
504 	LAST_ADD_TIME_UPDATE(vq);
505 
506 	BUG_ON(total_sg == 0);
507 
508 	head = vq->free_head;
509 
510 	if (virtqueue_use_indirect(_vq, total_sg))
511 		desc = alloc_indirect_split(_vq, total_sg, gfp);
512 	else {
513 		desc = NULL;
514 		WARN_ON_ONCE(total_sg > vq->split.vring.num && !vq->indirect);
515 	}
516 
517 	if (desc) {
518 		/* Use a single buffer which doesn't continue */
519 		indirect = true;
520 		/* Set up rest to use this indirect table. */
521 		i = 0;
522 		descs_used = 1;
523 	} else {
524 		indirect = false;
525 		desc = vq->split.vring.desc;
526 		i = head;
527 		descs_used = total_sg;
528 	}
529 
530 	if (vq->vq.num_free < descs_used) {
531 		pr_debug("Can't add buf len %i - avail = %i\n",
532 			 descs_used, vq->vq.num_free);
533 		/* FIXME: for historical reasons, we force a notify here if
534 		 * there are outgoing parts to the buffer.  Presumably the
535 		 * host should service the ring ASAP. */
536 		if (out_sgs)
537 			vq->notify(&vq->vq);
538 		if (indirect)
539 			kfree(desc);
540 		END_USE(vq);
541 		return -ENOSPC;
542 	}
543 
544 	for (n = 0; n < out_sgs; n++) {
545 		for (sg = sgs[n]; sg; sg = sg_next(sg)) {
546 			dma_addr_t addr = vring_map_one_sg(vq, sg, DMA_TO_DEVICE);
547 			if (vring_mapping_error(vq, addr))
548 				goto unmap_release;
549 
550 			prev = i;
551 			/* Note that we trust indirect descriptor
552 			 * table since it use stream DMA mapping.
553 			 */
554 			i = virtqueue_add_desc_split(_vq, desc, i, addr, sg->length,
555 						     VRING_DESC_F_NEXT,
556 						     indirect);
557 		}
558 	}
559 	for (; n < (out_sgs + in_sgs); n++) {
560 		for (sg = sgs[n]; sg; sg = sg_next(sg)) {
561 			dma_addr_t addr = vring_map_one_sg(vq, sg, DMA_FROM_DEVICE);
562 			if (vring_mapping_error(vq, addr))
563 				goto unmap_release;
564 
565 			prev = i;
566 			/* Note that we trust indirect descriptor
567 			 * table since it use stream DMA mapping.
568 			 */
569 			i = virtqueue_add_desc_split(_vq, desc, i, addr,
570 						     sg->length,
571 						     VRING_DESC_F_NEXT |
572 						     VRING_DESC_F_WRITE,
573 						     indirect);
574 		}
575 	}
576 	/* Last one doesn't continue. */
577 	desc[prev].flags &= cpu_to_virtio16(_vq->vdev, ~VRING_DESC_F_NEXT);
578 	if (!indirect && vq->use_dma_api)
579 		vq->split.desc_extra[prev & (vq->split.vring.num - 1)].flags &=
580 			~VRING_DESC_F_NEXT;
581 
582 	if (indirect) {
583 		/* Now that the indirect table is filled in, map it. */
584 		dma_addr_t addr = vring_map_single(
585 			vq, desc, total_sg * sizeof(struct vring_desc),
586 			DMA_TO_DEVICE);
587 		if (vring_mapping_error(vq, addr))
588 			goto unmap_release;
589 
590 		virtqueue_add_desc_split(_vq, vq->split.vring.desc,
591 					 head, addr,
592 					 total_sg * sizeof(struct vring_desc),
593 					 VRING_DESC_F_INDIRECT,
594 					 false);
595 	}
596 
597 	/* We're using some buffers from the free list. */
598 	vq->vq.num_free -= descs_used;
599 
600 	/* Update free pointer */
601 	if (indirect)
602 		vq->free_head = vq->split.desc_extra[head].next;
603 	else
604 		vq->free_head = i;
605 
606 	/* Store token and indirect buffer state. */
607 	vq->split.desc_state[head].data = data;
608 	if (indirect)
609 		vq->split.desc_state[head].indir_desc = desc;
610 	else
611 		vq->split.desc_state[head].indir_desc = ctx;
612 
613 	/* Put entry in available array (but don't update avail->idx until they
614 	 * do sync). */
615 	avail = vq->split.avail_idx_shadow & (vq->split.vring.num - 1);
616 	vq->split.vring.avail->ring[avail] = cpu_to_virtio16(_vq->vdev, head);
617 
618 	/* Descriptors and available array need to be set before we expose the
619 	 * new available array entries. */
620 	virtio_wmb(vq->weak_barriers);
621 	vq->split.avail_idx_shadow++;
622 	vq->split.vring.avail->idx = cpu_to_virtio16(_vq->vdev,
623 						vq->split.avail_idx_shadow);
624 	vq->num_added++;
625 
626 	pr_debug("Added buffer head %i to %p\n", head, vq);
627 	END_USE(vq);
628 
629 	/* This is very unlikely, but theoretically possible.  Kick
630 	 * just in case. */
631 	if (unlikely(vq->num_added == (1 << 16) - 1))
632 		virtqueue_kick(_vq);
633 
634 	return 0;
635 
636 unmap_release:
637 	err_idx = i;
638 
639 	if (indirect)
640 		i = 0;
641 	else
642 		i = head;
643 
644 	for (n = 0; n < total_sg; n++) {
645 		if (i == err_idx)
646 			break;
647 		if (indirect) {
648 			vring_unmap_one_split_indirect(vq, &desc[i]);
649 			i = virtio16_to_cpu(_vq->vdev, desc[i].next);
650 		} else
651 			i = vring_unmap_one_split(vq, i);
652 	}
653 
654 	if (indirect)
655 		kfree(desc);
656 
657 	END_USE(vq);
658 	return -ENOMEM;
659 }
660 
661 static bool virtqueue_kick_prepare_split(struct virtqueue *_vq)
662 {
663 	struct vring_virtqueue *vq = to_vvq(_vq);
664 	u16 new, old;
665 	bool needs_kick;
666 
667 	START_USE(vq);
668 	/* We need to expose available array entries before checking avail
669 	 * event. */
670 	virtio_mb(vq->weak_barriers);
671 
672 	old = vq->split.avail_idx_shadow - vq->num_added;
673 	new = vq->split.avail_idx_shadow;
674 	vq->num_added = 0;
675 
676 	LAST_ADD_TIME_CHECK(vq);
677 	LAST_ADD_TIME_INVALID(vq);
678 
679 	if (vq->event) {
680 		needs_kick = vring_need_event(virtio16_to_cpu(_vq->vdev,
681 					vring_avail_event(&vq->split.vring)),
682 					      new, old);
683 	} else {
684 		needs_kick = !(vq->split.vring.used->flags &
685 					cpu_to_virtio16(_vq->vdev,
686 						VRING_USED_F_NO_NOTIFY));
687 	}
688 	END_USE(vq);
689 	return needs_kick;
690 }
691 
692 static void detach_buf_split(struct vring_virtqueue *vq, unsigned int head,
693 			     void **ctx)
694 {
695 	unsigned int i, j;
696 	__virtio16 nextflag = cpu_to_virtio16(vq->vq.vdev, VRING_DESC_F_NEXT);
697 
698 	/* Clear data ptr. */
699 	vq->split.desc_state[head].data = NULL;
700 
701 	/* Put back on free list: unmap first-level descriptors and find end */
702 	i = head;
703 
704 	while (vq->split.vring.desc[i].flags & nextflag) {
705 		vring_unmap_one_split(vq, i);
706 		i = vq->split.desc_extra[i].next;
707 		vq->vq.num_free++;
708 	}
709 
710 	vring_unmap_one_split(vq, i);
711 	vq->split.desc_extra[i].next = vq->free_head;
712 	vq->free_head = head;
713 
714 	/* Plus final descriptor */
715 	vq->vq.num_free++;
716 
717 	if (vq->indirect) {
718 		struct vring_desc *indir_desc =
719 				vq->split.desc_state[head].indir_desc;
720 		u32 len;
721 
722 		/* Free the indirect table, if any, now that it's unmapped. */
723 		if (!indir_desc)
724 			return;
725 
726 		len = vq->split.desc_extra[head].len;
727 
728 		BUG_ON(!(vq->split.desc_extra[head].flags &
729 				VRING_DESC_F_INDIRECT));
730 		BUG_ON(len == 0 || len % sizeof(struct vring_desc));
731 
732 		for (j = 0; j < len / sizeof(struct vring_desc); j++)
733 			vring_unmap_one_split_indirect(vq, &indir_desc[j]);
734 
735 		kfree(indir_desc);
736 		vq->split.desc_state[head].indir_desc = NULL;
737 	} else if (ctx) {
738 		*ctx = vq->split.desc_state[head].indir_desc;
739 	}
740 }
741 
742 static inline bool more_used_split(const struct vring_virtqueue *vq)
743 {
744 	return vq->last_used_idx != virtio16_to_cpu(vq->vq.vdev,
745 			vq->split.vring.used->idx);
746 }
747 
748 static void *virtqueue_get_buf_ctx_split(struct virtqueue *_vq,
749 					 unsigned int *len,
750 					 void **ctx)
751 {
752 	struct vring_virtqueue *vq = to_vvq(_vq);
753 	void *ret;
754 	unsigned int i;
755 	u16 last_used;
756 
757 	START_USE(vq);
758 
759 	if (unlikely(vq->broken)) {
760 		END_USE(vq);
761 		return NULL;
762 	}
763 
764 	if (!more_used_split(vq)) {
765 		pr_debug("No more buffers in queue\n");
766 		END_USE(vq);
767 		return NULL;
768 	}
769 
770 	/* Only get used array entries after they have been exposed by host. */
771 	virtio_rmb(vq->weak_barriers);
772 
773 	last_used = (vq->last_used_idx & (vq->split.vring.num - 1));
774 	i = virtio32_to_cpu(_vq->vdev,
775 			vq->split.vring.used->ring[last_used].id);
776 	*len = virtio32_to_cpu(_vq->vdev,
777 			vq->split.vring.used->ring[last_used].len);
778 
779 	if (unlikely(i >= vq->split.vring.num)) {
780 		BAD_RING(vq, "id %u out of range\n", i);
781 		return NULL;
782 	}
783 	if (unlikely(!vq->split.desc_state[i].data)) {
784 		BAD_RING(vq, "id %u is not a head!\n", i);
785 		return NULL;
786 	}
787 
788 	/* detach_buf_split clears data, so grab it now. */
789 	ret = vq->split.desc_state[i].data;
790 	detach_buf_split(vq, i, ctx);
791 	vq->last_used_idx++;
792 	/* If we expect an interrupt for the next entry, tell host
793 	 * by writing event index and flush out the write before
794 	 * the read in the next get_buf call. */
795 	if (!(vq->split.avail_flags_shadow & VRING_AVAIL_F_NO_INTERRUPT))
796 		virtio_store_mb(vq->weak_barriers,
797 				&vring_used_event(&vq->split.vring),
798 				cpu_to_virtio16(_vq->vdev, vq->last_used_idx));
799 
800 	LAST_ADD_TIME_INVALID(vq);
801 
802 	END_USE(vq);
803 	return ret;
804 }
805 
806 static void virtqueue_disable_cb_split(struct virtqueue *_vq)
807 {
808 	struct vring_virtqueue *vq = to_vvq(_vq);
809 
810 	if (!(vq->split.avail_flags_shadow & VRING_AVAIL_F_NO_INTERRUPT)) {
811 		vq->split.avail_flags_shadow |= VRING_AVAIL_F_NO_INTERRUPT;
812 		if (vq->event)
813 			/* TODO: this is a hack. Figure out a cleaner value to write. */
814 			vring_used_event(&vq->split.vring) = 0x0;
815 		else
816 			vq->split.vring.avail->flags =
817 				cpu_to_virtio16(_vq->vdev,
818 						vq->split.avail_flags_shadow);
819 	}
820 }
821 
822 static unsigned virtqueue_enable_cb_prepare_split(struct virtqueue *_vq)
823 {
824 	struct vring_virtqueue *vq = to_vvq(_vq);
825 	u16 last_used_idx;
826 
827 	START_USE(vq);
828 
829 	/* We optimistically turn back on interrupts, then check if there was
830 	 * more to do. */
831 	/* Depending on the VIRTIO_RING_F_EVENT_IDX feature, we need to
832 	 * either clear the flags bit or point the event index at the next
833 	 * entry. Always do both to keep code simple. */
834 	if (vq->split.avail_flags_shadow & VRING_AVAIL_F_NO_INTERRUPT) {
835 		vq->split.avail_flags_shadow &= ~VRING_AVAIL_F_NO_INTERRUPT;
836 		if (!vq->event)
837 			vq->split.vring.avail->flags =
838 				cpu_to_virtio16(_vq->vdev,
839 						vq->split.avail_flags_shadow);
840 	}
841 	vring_used_event(&vq->split.vring) = cpu_to_virtio16(_vq->vdev,
842 			last_used_idx = vq->last_used_idx);
843 	END_USE(vq);
844 	return last_used_idx;
845 }
846 
847 static bool virtqueue_poll_split(struct virtqueue *_vq, unsigned last_used_idx)
848 {
849 	struct vring_virtqueue *vq = to_vvq(_vq);
850 
851 	return (u16)last_used_idx != virtio16_to_cpu(_vq->vdev,
852 			vq->split.vring.used->idx);
853 }
854 
855 static bool virtqueue_enable_cb_delayed_split(struct virtqueue *_vq)
856 {
857 	struct vring_virtqueue *vq = to_vvq(_vq);
858 	u16 bufs;
859 
860 	START_USE(vq);
861 
862 	/* We optimistically turn back on interrupts, then check if there was
863 	 * more to do. */
864 	/* Depending on the VIRTIO_RING_F_USED_EVENT_IDX feature, we need to
865 	 * either clear the flags bit or point the event index at the next
866 	 * entry. Always update the event index to keep code simple. */
867 	if (vq->split.avail_flags_shadow & VRING_AVAIL_F_NO_INTERRUPT) {
868 		vq->split.avail_flags_shadow &= ~VRING_AVAIL_F_NO_INTERRUPT;
869 		if (!vq->event)
870 			vq->split.vring.avail->flags =
871 				cpu_to_virtio16(_vq->vdev,
872 						vq->split.avail_flags_shadow);
873 	}
874 	/* TODO: tune this threshold */
875 	bufs = (u16)(vq->split.avail_idx_shadow - vq->last_used_idx) * 3 / 4;
876 
877 	virtio_store_mb(vq->weak_barriers,
878 			&vring_used_event(&vq->split.vring),
879 			cpu_to_virtio16(_vq->vdev, vq->last_used_idx + bufs));
880 
881 	if (unlikely((u16)(virtio16_to_cpu(_vq->vdev, vq->split.vring.used->idx)
882 					- vq->last_used_idx) > bufs)) {
883 		END_USE(vq);
884 		return false;
885 	}
886 
887 	END_USE(vq);
888 	return true;
889 }
890 
891 static void *virtqueue_detach_unused_buf_split(struct virtqueue *_vq)
892 {
893 	struct vring_virtqueue *vq = to_vvq(_vq);
894 	unsigned int i;
895 	void *buf;
896 
897 	START_USE(vq);
898 
899 	for (i = 0; i < vq->split.vring.num; i++) {
900 		if (!vq->split.desc_state[i].data)
901 			continue;
902 		/* detach_buf_split clears data, so grab it now. */
903 		buf = vq->split.desc_state[i].data;
904 		detach_buf_split(vq, i, NULL);
905 		vq->split.avail_idx_shadow--;
906 		vq->split.vring.avail->idx = cpu_to_virtio16(_vq->vdev,
907 				vq->split.avail_idx_shadow);
908 		END_USE(vq);
909 		return buf;
910 	}
911 	/* That should have freed everything. */
912 	BUG_ON(vq->vq.num_free != vq->split.vring.num);
913 
914 	END_USE(vq);
915 	return NULL;
916 }
917 
918 static struct virtqueue *vring_create_virtqueue_split(
919 	unsigned int index,
920 	unsigned int num,
921 	unsigned int vring_align,
922 	struct virtio_device *vdev,
923 	bool weak_barriers,
924 	bool may_reduce_num,
925 	bool context,
926 	bool (*notify)(struct virtqueue *),
927 	void (*callback)(struct virtqueue *),
928 	const char *name)
929 {
930 	struct virtqueue *vq;
931 	void *queue = NULL;
932 	dma_addr_t dma_addr;
933 	size_t queue_size_in_bytes;
934 	struct vring vring;
935 
936 	/* We assume num is a power of 2. */
937 	if (num & (num - 1)) {
938 		dev_warn(&vdev->dev, "Bad virtqueue length %u\n", num);
939 		return NULL;
940 	}
941 
942 	/* TODO: allocate each queue chunk individually */
943 	for (; num && vring_size(num, vring_align) > PAGE_SIZE; num /= 2) {
944 		queue = vring_alloc_queue(vdev, vring_size(num, vring_align),
945 					  &dma_addr,
946 					  GFP_KERNEL|__GFP_NOWARN|__GFP_ZERO);
947 		if (queue)
948 			break;
949 		if (!may_reduce_num)
950 			return NULL;
951 	}
952 
953 	if (!num)
954 		return NULL;
955 
956 	if (!queue) {
957 		/* Try to get a single page. You are my only hope! */
958 		queue = vring_alloc_queue(vdev, vring_size(num, vring_align),
959 					  &dma_addr, GFP_KERNEL|__GFP_ZERO);
960 	}
961 	if (!queue)
962 		return NULL;
963 
964 	queue_size_in_bytes = vring_size(num, vring_align);
965 	vring_init(&vring, num, queue, vring_align);
966 
967 	vq = __vring_new_virtqueue(index, vring, vdev, weak_barriers, context,
968 				   notify, callback, name);
969 	if (!vq) {
970 		vring_free_queue(vdev, queue_size_in_bytes, queue,
971 				 dma_addr);
972 		return NULL;
973 	}
974 
975 	to_vvq(vq)->split.queue_dma_addr = dma_addr;
976 	to_vvq(vq)->split.queue_size_in_bytes = queue_size_in_bytes;
977 	to_vvq(vq)->we_own_ring = true;
978 
979 	return vq;
980 }
981 
982 
983 /*
984  * Packed ring specific functions - *_packed().
985  */
986 
987 static void vring_unmap_state_packed(const struct vring_virtqueue *vq,
988 				     struct vring_desc_extra *state)
989 {
990 	u16 flags;
991 
992 	if (!vq->use_dma_api)
993 		return;
994 
995 	flags = state->flags;
996 
997 	if (flags & VRING_DESC_F_INDIRECT) {
998 		dma_unmap_single(vring_dma_dev(vq),
999 				 state->addr, state->len,
1000 				 (flags & VRING_DESC_F_WRITE) ?
1001 				 DMA_FROM_DEVICE : DMA_TO_DEVICE);
1002 	} else {
1003 		dma_unmap_page(vring_dma_dev(vq),
1004 			       state->addr, state->len,
1005 			       (flags & VRING_DESC_F_WRITE) ?
1006 			       DMA_FROM_DEVICE : DMA_TO_DEVICE);
1007 	}
1008 }
1009 
1010 static void vring_unmap_desc_packed(const struct vring_virtqueue *vq,
1011 				   struct vring_packed_desc *desc)
1012 {
1013 	u16 flags;
1014 
1015 	if (!vq->use_dma_api)
1016 		return;
1017 
1018 	flags = le16_to_cpu(desc->flags);
1019 
1020 	if (flags & VRING_DESC_F_INDIRECT) {
1021 		dma_unmap_single(vring_dma_dev(vq),
1022 				 le64_to_cpu(desc->addr),
1023 				 le32_to_cpu(desc->len),
1024 				 (flags & VRING_DESC_F_WRITE) ?
1025 				 DMA_FROM_DEVICE : DMA_TO_DEVICE);
1026 	} else {
1027 		dma_unmap_page(vring_dma_dev(vq),
1028 			       le64_to_cpu(desc->addr),
1029 			       le32_to_cpu(desc->len),
1030 			       (flags & VRING_DESC_F_WRITE) ?
1031 			       DMA_FROM_DEVICE : DMA_TO_DEVICE);
1032 	}
1033 }
1034 
1035 static struct vring_packed_desc *alloc_indirect_packed(unsigned int total_sg,
1036 						       gfp_t gfp)
1037 {
1038 	struct vring_packed_desc *desc;
1039 
1040 	/*
1041 	 * We require lowmem mappings for the descriptors because
1042 	 * otherwise virt_to_phys will give us bogus addresses in the
1043 	 * virtqueue.
1044 	 */
1045 	gfp &= ~__GFP_HIGHMEM;
1046 
1047 	desc = kmalloc_array(total_sg, sizeof(struct vring_packed_desc), gfp);
1048 
1049 	return desc;
1050 }
1051 
1052 static int virtqueue_add_indirect_packed(struct vring_virtqueue *vq,
1053 					 struct scatterlist *sgs[],
1054 					 unsigned int total_sg,
1055 					 unsigned int out_sgs,
1056 					 unsigned int in_sgs,
1057 					 void *data,
1058 					 gfp_t gfp)
1059 {
1060 	struct vring_packed_desc *desc;
1061 	struct scatterlist *sg;
1062 	unsigned int i, n, err_idx;
1063 	u16 head, id;
1064 	dma_addr_t addr;
1065 
1066 	head = vq->packed.next_avail_idx;
1067 	desc = alloc_indirect_packed(total_sg, gfp);
1068 	if (!desc)
1069 		return -ENOMEM;
1070 
1071 	if (unlikely(vq->vq.num_free < 1)) {
1072 		pr_debug("Can't add buf len 1 - avail = 0\n");
1073 		kfree(desc);
1074 		END_USE(vq);
1075 		return -ENOSPC;
1076 	}
1077 
1078 	i = 0;
1079 	id = vq->free_head;
1080 	BUG_ON(id == vq->packed.vring.num);
1081 
1082 	for (n = 0; n < out_sgs + in_sgs; n++) {
1083 		for (sg = sgs[n]; sg; sg = sg_next(sg)) {
1084 			addr = vring_map_one_sg(vq, sg, n < out_sgs ?
1085 					DMA_TO_DEVICE : DMA_FROM_DEVICE);
1086 			if (vring_mapping_error(vq, addr))
1087 				goto unmap_release;
1088 
1089 			desc[i].flags = cpu_to_le16(n < out_sgs ?
1090 						0 : VRING_DESC_F_WRITE);
1091 			desc[i].addr = cpu_to_le64(addr);
1092 			desc[i].len = cpu_to_le32(sg->length);
1093 			i++;
1094 		}
1095 	}
1096 
1097 	/* Now that the indirect table is filled in, map it. */
1098 	addr = vring_map_single(vq, desc,
1099 			total_sg * sizeof(struct vring_packed_desc),
1100 			DMA_TO_DEVICE);
1101 	if (vring_mapping_error(vq, addr))
1102 		goto unmap_release;
1103 
1104 	vq->packed.vring.desc[head].addr = cpu_to_le64(addr);
1105 	vq->packed.vring.desc[head].len = cpu_to_le32(total_sg *
1106 				sizeof(struct vring_packed_desc));
1107 	vq->packed.vring.desc[head].id = cpu_to_le16(id);
1108 
1109 	if (vq->use_dma_api) {
1110 		vq->packed.desc_extra[id].addr = addr;
1111 		vq->packed.desc_extra[id].len = total_sg *
1112 				sizeof(struct vring_packed_desc);
1113 		vq->packed.desc_extra[id].flags = VRING_DESC_F_INDIRECT |
1114 						  vq->packed.avail_used_flags;
1115 	}
1116 
1117 	/*
1118 	 * A driver MUST NOT make the first descriptor in the list
1119 	 * available before all subsequent descriptors comprising
1120 	 * the list are made available.
1121 	 */
1122 	virtio_wmb(vq->weak_barriers);
1123 	vq->packed.vring.desc[head].flags = cpu_to_le16(VRING_DESC_F_INDIRECT |
1124 						vq->packed.avail_used_flags);
1125 
1126 	/* We're using some buffers from the free list. */
1127 	vq->vq.num_free -= 1;
1128 
1129 	/* Update free pointer */
1130 	n = head + 1;
1131 	if (n >= vq->packed.vring.num) {
1132 		n = 0;
1133 		vq->packed.avail_wrap_counter ^= 1;
1134 		vq->packed.avail_used_flags ^=
1135 				1 << VRING_PACKED_DESC_F_AVAIL |
1136 				1 << VRING_PACKED_DESC_F_USED;
1137 	}
1138 	vq->packed.next_avail_idx = n;
1139 	vq->free_head = vq->packed.desc_extra[id].next;
1140 
1141 	/* Store token and indirect buffer state. */
1142 	vq->packed.desc_state[id].num = 1;
1143 	vq->packed.desc_state[id].data = data;
1144 	vq->packed.desc_state[id].indir_desc = desc;
1145 	vq->packed.desc_state[id].last = id;
1146 
1147 	vq->num_added += 1;
1148 
1149 	pr_debug("Added buffer head %i to %p\n", head, vq);
1150 	END_USE(vq);
1151 
1152 	return 0;
1153 
1154 unmap_release:
1155 	err_idx = i;
1156 
1157 	for (i = 0; i < err_idx; i++)
1158 		vring_unmap_desc_packed(vq, &desc[i]);
1159 
1160 	kfree(desc);
1161 
1162 	END_USE(vq);
1163 	return -ENOMEM;
1164 }
1165 
1166 static inline int virtqueue_add_packed(struct virtqueue *_vq,
1167 				       struct scatterlist *sgs[],
1168 				       unsigned int total_sg,
1169 				       unsigned int out_sgs,
1170 				       unsigned int in_sgs,
1171 				       void *data,
1172 				       void *ctx,
1173 				       gfp_t gfp)
1174 {
1175 	struct vring_virtqueue *vq = to_vvq(_vq);
1176 	struct vring_packed_desc *desc;
1177 	struct scatterlist *sg;
1178 	unsigned int i, n, c, descs_used, err_idx;
1179 	__le16 head_flags, flags;
1180 	u16 head, id, prev, curr, avail_used_flags;
1181 	int err;
1182 
1183 	START_USE(vq);
1184 
1185 	BUG_ON(data == NULL);
1186 	BUG_ON(ctx && vq->indirect);
1187 
1188 	if (unlikely(vq->broken)) {
1189 		END_USE(vq);
1190 		return -EIO;
1191 	}
1192 
1193 	LAST_ADD_TIME_UPDATE(vq);
1194 
1195 	BUG_ON(total_sg == 0);
1196 
1197 	if (virtqueue_use_indirect(_vq, total_sg)) {
1198 		err = virtqueue_add_indirect_packed(vq, sgs, total_sg, out_sgs,
1199 						    in_sgs, data, gfp);
1200 		if (err != -ENOMEM)
1201 			return err;
1202 
1203 		/* fall back on direct */
1204 	}
1205 
1206 	head = vq->packed.next_avail_idx;
1207 	avail_used_flags = vq->packed.avail_used_flags;
1208 
1209 	WARN_ON_ONCE(total_sg > vq->packed.vring.num && !vq->indirect);
1210 
1211 	desc = vq->packed.vring.desc;
1212 	i = head;
1213 	descs_used = total_sg;
1214 
1215 	if (unlikely(vq->vq.num_free < descs_used)) {
1216 		pr_debug("Can't add buf len %i - avail = %i\n",
1217 			 descs_used, vq->vq.num_free);
1218 		END_USE(vq);
1219 		return -ENOSPC;
1220 	}
1221 
1222 	id = vq->free_head;
1223 	BUG_ON(id == vq->packed.vring.num);
1224 
1225 	curr = id;
1226 	c = 0;
1227 	for (n = 0; n < out_sgs + in_sgs; n++) {
1228 		for (sg = sgs[n]; sg; sg = sg_next(sg)) {
1229 			dma_addr_t addr = vring_map_one_sg(vq, sg, n < out_sgs ?
1230 					DMA_TO_DEVICE : DMA_FROM_DEVICE);
1231 			if (vring_mapping_error(vq, addr))
1232 				goto unmap_release;
1233 
1234 			flags = cpu_to_le16(vq->packed.avail_used_flags |
1235 				    (++c == total_sg ? 0 : VRING_DESC_F_NEXT) |
1236 				    (n < out_sgs ? 0 : VRING_DESC_F_WRITE));
1237 			if (i == head)
1238 				head_flags = flags;
1239 			else
1240 				desc[i].flags = flags;
1241 
1242 			desc[i].addr = cpu_to_le64(addr);
1243 			desc[i].len = cpu_to_le32(sg->length);
1244 			desc[i].id = cpu_to_le16(id);
1245 
1246 			if (unlikely(vq->use_dma_api)) {
1247 				vq->packed.desc_extra[curr].addr = addr;
1248 				vq->packed.desc_extra[curr].len = sg->length;
1249 				vq->packed.desc_extra[curr].flags =
1250 					le16_to_cpu(flags);
1251 			}
1252 			prev = curr;
1253 			curr = vq->packed.desc_extra[curr].next;
1254 
1255 			if ((unlikely(++i >= vq->packed.vring.num))) {
1256 				i = 0;
1257 				vq->packed.avail_used_flags ^=
1258 					1 << VRING_PACKED_DESC_F_AVAIL |
1259 					1 << VRING_PACKED_DESC_F_USED;
1260 			}
1261 		}
1262 	}
1263 
1264 	if (i < head)
1265 		vq->packed.avail_wrap_counter ^= 1;
1266 
1267 	/* We're using some buffers from the free list. */
1268 	vq->vq.num_free -= descs_used;
1269 
1270 	/* Update free pointer */
1271 	vq->packed.next_avail_idx = i;
1272 	vq->free_head = curr;
1273 
1274 	/* Store token. */
1275 	vq->packed.desc_state[id].num = descs_used;
1276 	vq->packed.desc_state[id].data = data;
1277 	vq->packed.desc_state[id].indir_desc = ctx;
1278 	vq->packed.desc_state[id].last = prev;
1279 
1280 	/*
1281 	 * A driver MUST NOT make the first descriptor in the list
1282 	 * available before all subsequent descriptors comprising
1283 	 * the list are made available.
1284 	 */
1285 	virtio_wmb(vq->weak_barriers);
1286 	vq->packed.vring.desc[head].flags = head_flags;
1287 	vq->num_added += descs_used;
1288 
1289 	pr_debug("Added buffer head %i to %p\n", head, vq);
1290 	END_USE(vq);
1291 
1292 	return 0;
1293 
1294 unmap_release:
1295 	err_idx = i;
1296 	i = head;
1297 	curr = vq->free_head;
1298 
1299 	vq->packed.avail_used_flags = avail_used_flags;
1300 
1301 	for (n = 0; n < total_sg; n++) {
1302 		if (i == err_idx)
1303 			break;
1304 		vring_unmap_state_packed(vq,
1305 					 &vq->packed.desc_extra[curr]);
1306 		curr = vq->packed.desc_extra[curr].next;
1307 		i++;
1308 		if (i >= vq->packed.vring.num)
1309 			i = 0;
1310 	}
1311 
1312 	END_USE(vq);
1313 	return -EIO;
1314 }
1315 
1316 static bool virtqueue_kick_prepare_packed(struct virtqueue *_vq)
1317 {
1318 	struct vring_virtqueue *vq = to_vvq(_vq);
1319 	u16 new, old, off_wrap, flags, wrap_counter, event_idx;
1320 	bool needs_kick;
1321 	union {
1322 		struct {
1323 			__le16 off_wrap;
1324 			__le16 flags;
1325 		};
1326 		u32 u32;
1327 	} snapshot;
1328 
1329 	START_USE(vq);
1330 
1331 	/*
1332 	 * We need to expose the new flags value before checking notification
1333 	 * suppressions.
1334 	 */
1335 	virtio_mb(vq->weak_barriers);
1336 
1337 	old = vq->packed.next_avail_idx - vq->num_added;
1338 	new = vq->packed.next_avail_idx;
1339 	vq->num_added = 0;
1340 
1341 	snapshot.u32 = *(u32 *)vq->packed.vring.device;
1342 	flags = le16_to_cpu(snapshot.flags);
1343 
1344 	LAST_ADD_TIME_CHECK(vq);
1345 	LAST_ADD_TIME_INVALID(vq);
1346 
1347 	if (flags != VRING_PACKED_EVENT_FLAG_DESC) {
1348 		needs_kick = (flags != VRING_PACKED_EVENT_FLAG_DISABLE);
1349 		goto out;
1350 	}
1351 
1352 	off_wrap = le16_to_cpu(snapshot.off_wrap);
1353 
1354 	wrap_counter = off_wrap >> VRING_PACKED_EVENT_F_WRAP_CTR;
1355 	event_idx = off_wrap & ~(1 << VRING_PACKED_EVENT_F_WRAP_CTR);
1356 	if (wrap_counter != vq->packed.avail_wrap_counter)
1357 		event_idx -= vq->packed.vring.num;
1358 
1359 	needs_kick = vring_need_event(event_idx, new, old);
1360 out:
1361 	END_USE(vq);
1362 	return needs_kick;
1363 }
1364 
1365 static void detach_buf_packed(struct vring_virtqueue *vq,
1366 			      unsigned int id, void **ctx)
1367 {
1368 	struct vring_desc_state_packed *state = NULL;
1369 	struct vring_packed_desc *desc;
1370 	unsigned int i, curr;
1371 
1372 	state = &vq->packed.desc_state[id];
1373 
1374 	/* Clear data ptr. */
1375 	state->data = NULL;
1376 
1377 	vq->packed.desc_extra[state->last].next = vq->free_head;
1378 	vq->free_head = id;
1379 	vq->vq.num_free += state->num;
1380 
1381 	if (unlikely(vq->use_dma_api)) {
1382 		curr = id;
1383 		for (i = 0; i < state->num; i++) {
1384 			vring_unmap_state_packed(vq,
1385 				&vq->packed.desc_extra[curr]);
1386 			curr = vq->packed.desc_extra[curr].next;
1387 		}
1388 	}
1389 
1390 	if (vq->indirect) {
1391 		u32 len;
1392 
1393 		/* Free the indirect table, if any, now that it's unmapped. */
1394 		desc = state->indir_desc;
1395 		if (!desc)
1396 			return;
1397 
1398 		if (vq->use_dma_api) {
1399 			len = vq->packed.desc_extra[id].len;
1400 			for (i = 0; i < len / sizeof(struct vring_packed_desc);
1401 					i++)
1402 				vring_unmap_desc_packed(vq, &desc[i]);
1403 		}
1404 		kfree(desc);
1405 		state->indir_desc = NULL;
1406 	} else if (ctx) {
1407 		*ctx = state->indir_desc;
1408 	}
1409 }
1410 
1411 static inline bool is_used_desc_packed(const struct vring_virtqueue *vq,
1412 				       u16 idx, bool used_wrap_counter)
1413 {
1414 	bool avail, used;
1415 	u16 flags;
1416 
1417 	flags = le16_to_cpu(vq->packed.vring.desc[idx].flags);
1418 	avail = !!(flags & (1 << VRING_PACKED_DESC_F_AVAIL));
1419 	used = !!(flags & (1 << VRING_PACKED_DESC_F_USED));
1420 
1421 	return avail == used && used == used_wrap_counter;
1422 }
1423 
1424 static inline bool more_used_packed(const struct vring_virtqueue *vq)
1425 {
1426 	return is_used_desc_packed(vq, vq->last_used_idx,
1427 			vq->packed.used_wrap_counter);
1428 }
1429 
1430 static void *virtqueue_get_buf_ctx_packed(struct virtqueue *_vq,
1431 					  unsigned int *len,
1432 					  void **ctx)
1433 {
1434 	struct vring_virtqueue *vq = to_vvq(_vq);
1435 	u16 last_used, id;
1436 	void *ret;
1437 
1438 	START_USE(vq);
1439 
1440 	if (unlikely(vq->broken)) {
1441 		END_USE(vq);
1442 		return NULL;
1443 	}
1444 
1445 	if (!more_used_packed(vq)) {
1446 		pr_debug("No more buffers in queue\n");
1447 		END_USE(vq);
1448 		return NULL;
1449 	}
1450 
1451 	/* Only get used elements after they have been exposed by host. */
1452 	virtio_rmb(vq->weak_barriers);
1453 
1454 	last_used = vq->last_used_idx;
1455 	id = le16_to_cpu(vq->packed.vring.desc[last_used].id);
1456 	*len = le32_to_cpu(vq->packed.vring.desc[last_used].len);
1457 
1458 	if (unlikely(id >= vq->packed.vring.num)) {
1459 		BAD_RING(vq, "id %u out of range\n", id);
1460 		return NULL;
1461 	}
1462 	if (unlikely(!vq->packed.desc_state[id].data)) {
1463 		BAD_RING(vq, "id %u is not a head!\n", id);
1464 		return NULL;
1465 	}
1466 
1467 	/* detach_buf_packed clears data, so grab it now. */
1468 	ret = vq->packed.desc_state[id].data;
1469 	detach_buf_packed(vq, id, ctx);
1470 
1471 	vq->last_used_idx += vq->packed.desc_state[id].num;
1472 	if (unlikely(vq->last_used_idx >= vq->packed.vring.num)) {
1473 		vq->last_used_idx -= vq->packed.vring.num;
1474 		vq->packed.used_wrap_counter ^= 1;
1475 	}
1476 
1477 	/*
1478 	 * If we expect an interrupt for the next entry, tell host
1479 	 * by writing event index and flush out the write before
1480 	 * the read in the next get_buf call.
1481 	 */
1482 	if (vq->packed.event_flags_shadow == VRING_PACKED_EVENT_FLAG_DESC)
1483 		virtio_store_mb(vq->weak_barriers,
1484 				&vq->packed.vring.driver->off_wrap,
1485 				cpu_to_le16(vq->last_used_idx |
1486 					(vq->packed.used_wrap_counter <<
1487 					 VRING_PACKED_EVENT_F_WRAP_CTR)));
1488 
1489 	LAST_ADD_TIME_INVALID(vq);
1490 
1491 	END_USE(vq);
1492 	return ret;
1493 }
1494 
1495 static void virtqueue_disable_cb_packed(struct virtqueue *_vq)
1496 {
1497 	struct vring_virtqueue *vq = to_vvq(_vq);
1498 
1499 	if (vq->packed.event_flags_shadow != VRING_PACKED_EVENT_FLAG_DISABLE) {
1500 		vq->packed.event_flags_shadow = VRING_PACKED_EVENT_FLAG_DISABLE;
1501 		vq->packed.vring.driver->flags =
1502 			cpu_to_le16(vq->packed.event_flags_shadow);
1503 	}
1504 }
1505 
1506 static unsigned virtqueue_enable_cb_prepare_packed(struct virtqueue *_vq)
1507 {
1508 	struct vring_virtqueue *vq = to_vvq(_vq);
1509 
1510 	START_USE(vq);
1511 
1512 	/*
1513 	 * We optimistically turn back on interrupts, then check if there was
1514 	 * more to do.
1515 	 */
1516 
1517 	if (vq->event) {
1518 		vq->packed.vring.driver->off_wrap =
1519 			cpu_to_le16(vq->last_used_idx |
1520 				(vq->packed.used_wrap_counter <<
1521 				 VRING_PACKED_EVENT_F_WRAP_CTR));
1522 		/*
1523 		 * We need to update event offset and event wrap
1524 		 * counter first before updating event flags.
1525 		 */
1526 		virtio_wmb(vq->weak_barriers);
1527 	}
1528 
1529 	if (vq->packed.event_flags_shadow == VRING_PACKED_EVENT_FLAG_DISABLE) {
1530 		vq->packed.event_flags_shadow = vq->event ?
1531 				VRING_PACKED_EVENT_FLAG_DESC :
1532 				VRING_PACKED_EVENT_FLAG_ENABLE;
1533 		vq->packed.vring.driver->flags =
1534 				cpu_to_le16(vq->packed.event_flags_shadow);
1535 	}
1536 
1537 	END_USE(vq);
1538 	return vq->last_used_idx | ((u16)vq->packed.used_wrap_counter <<
1539 			VRING_PACKED_EVENT_F_WRAP_CTR);
1540 }
1541 
1542 static bool virtqueue_poll_packed(struct virtqueue *_vq, u16 off_wrap)
1543 {
1544 	struct vring_virtqueue *vq = to_vvq(_vq);
1545 	bool wrap_counter;
1546 	u16 used_idx;
1547 
1548 	wrap_counter = off_wrap >> VRING_PACKED_EVENT_F_WRAP_CTR;
1549 	used_idx = off_wrap & ~(1 << VRING_PACKED_EVENT_F_WRAP_CTR);
1550 
1551 	return is_used_desc_packed(vq, used_idx, wrap_counter);
1552 }
1553 
1554 static bool virtqueue_enable_cb_delayed_packed(struct virtqueue *_vq)
1555 {
1556 	struct vring_virtqueue *vq = to_vvq(_vq);
1557 	u16 used_idx, wrap_counter;
1558 	u16 bufs;
1559 
1560 	START_USE(vq);
1561 
1562 	/*
1563 	 * We optimistically turn back on interrupts, then check if there was
1564 	 * more to do.
1565 	 */
1566 
1567 	if (vq->event) {
1568 		/* TODO: tune this threshold */
1569 		bufs = (vq->packed.vring.num - vq->vq.num_free) * 3 / 4;
1570 		wrap_counter = vq->packed.used_wrap_counter;
1571 
1572 		used_idx = vq->last_used_idx + bufs;
1573 		if (used_idx >= vq->packed.vring.num) {
1574 			used_idx -= vq->packed.vring.num;
1575 			wrap_counter ^= 1;
1576 		}
1577 
1578 		vq->packed.vring.driver->off_wrap = cpu_to_le16(used_idx |
1579 			(wrap_counter << VRING_PACKED_EVENT_F_WRAP_CTR));
1580 
1581 		/*
1582 		 * We need to update event offset and event wrap
1583 		 * counter first before updating event flags.
1584 		 */
1585 		virtio_wmb(vq->weak_barriers);
1586 	}
1587 
1588 	if (vq->packed.event_flags_shadow == VRING_PACKED_EVENT_FLAG_DISABLE) {
1589 		vq->packed.event_flags_shadow = vq->event ?
1590 				VRING_PACKED_EVENT_FLAG_DESC :
1591 				VRING_PACKED_EVENT_FLAG_ENABLE;
1592 		vq->packed.vring.driver->flags =
1593 				cpu_to_le16(vq->packed.event_flags_shadow);
1594 	}
1595 
1596 	/*
1597 	 * We need to update event suppression structure first
1598 	 * before re-checking for more used buffers.
1599 	 */
1600 	virtio_mb(vq->weak_barriers);
1601 
1602 	if (is_used_desc_packed(vq,
1603 				vq->last_used_idx,
1604 				vq->packed.used_wrap_counter)) {
1605 		END_USE(vq);
1606 		return false;
1607 	}
1608 
1609 	END_USE(vq);
1610 	return true;
1611 }
1612 
1613 static void *virtqueue_detach_unused_buf_packed(struct virtqueue *_vq)
1614 {
1615 	struct vring_virtqueue *vq = to_vvq(_vq);
1616 	unsigned int i;
1617 	void *buf;
1618 
1619 	START_USE(vq);
1620 
1621 	for (i = 0; i < vq->packed.vring.num; i++) {
1622 		if (!vq->packed.desc_state[i].data)
1623 			continue;
1624 		/* detach_buf clears data, so grab it now. */
1625 		buf = vq->packed.desc_state[i].data;
1626 		detach_buf_packed(vq, i, NULL);
1627 		END_USE(vq);
1628 		return buf;
1629 	}
1630 	/* That should have freed everything. */
1631 	BUG_ON(vq->vq.num_free != vq->packed.vring.num);
1632 
1633 	END_USE(vq);
1634 	return NULL;
1635 }
1636 
1637 static struct vring_desc_extra *vring_alloc_desc_extra(struct vring_virtqueue *vq,
1638 						       unsigned int num)
1639 {
1640 	struct vring_desc_extra *desc_extra;
1641 	unsigned int i;
1642 
1643 	desc_extra = kmalloc_array(num, sizeof(struct vring_desc_extra),
1644 				   GFP_KERNEL);
1645 	if (!desc_extra)
1646 		return NULL;
1647 
1648 	memset(desc_extra, 0, num * sizeof(struct vring_desc_extra));
1649 
1650 	for (i = 0; i < num - 1; i++)
1651 		desc_extra[i].next = i + 1;
1652 
1653 	return desc_extra;
1654 }
1655 
1656 static struct virtqueue *vring_create_virtqueue_packed(
1657 	unsigned int index,
1658 	unsigned int num,
1659 	unsigned int vring_align,
1660 	struct virtio_device *vdev,
1661 	bool weak_barriers,
1662 	bool may_reduce_num,
1663 	bool context,
1664 	bool (*notify)(struct virtqueue *),
1665 	void (*callback)(struct virtqueue *),
1666 	const char *name)
1667 {
1668 	struct vring_virtqueue *vq;
1669 	struct vring_packed_desc *ring;
1670 	struct vring_packed_desc_event *driver, *device;
1671 	dma_addr_t ring_dma_addr, driver_event_dma_addr, device_event_dma_addr;
1672 	size_t ring_size_in_bytes, event_size_in_bytes;
1673 
1674 	ring_size_in_bytes = num * sizeof(struct vring_packed_desc);
1675 
1676 	ring = vring_alloc_queue(vdev, ring_size_in_bytes,
1677 				 &ring_dma_addr,
1678 				 GFP_KERNEL|__GFP_NOWARN|__GFP_ZERO);
1679 	if (!ring)
1680 		goto err_ring;
1681 
1682 	event_size_in_bytes = sizeof(struct vring_packed_desc_event);
1683 
1684 	driver = vring_alloc_queue(vdev, event_size_in_bytes,
1685 				   &driver_event_dma_addr,
1686 				   GFP_KERNEL|__GFP_NOWARN|__GFP_ZERO);
1687 	if (!driver)
1688 		goto err_driver;
1689 
1690 	device = vring_alloc_queue(vdev, event_size_in_bytes,
1691 				   &device_event_dma_addr,
1692 				   GFP_KERNEL|__GFP_NOWARN|__GFP_ZERO);
1693 	if (!device)
1694 		goto err_device;
1695 
1696 	vq = kmalloc(sizeof(*vq), GFP_KERNEL);
1697 	if (!vq)
1698 		goto err_vq;
1699 
1700 	vq->vq.callback = callback;
1701 	vq->vq.vdev = vdev;
1702 	vq->vq.name = name;
1703 	vq->vq.num_free = num;
1704 	vq->vq.index = index;
1705 	vq->we_own_ring = true;
1706 	vq->notify = notify;
1707 	vq->weak_barriers = weak_barriers;
1708 	vq->broken = false;
1709 	vq->last_used_idx = 0;
1710 	vq->event_triggered = false;
1711 	vq->num_added = 0;
1712 	vq->packed_ring = true;
1713 	vq->use_dma_api = vring_use_dma_api(vdev);
1714 #ifdef DEBUG
1715 	vq->in_use = false;
1716 	vq->last_add_time_valid = false;
1717 #endif
1718 
1719 	vq->indirect = virtio_has_feature(vdev, VIRTIO_RING_F_INDIRECT_DESC) &&
1720 		!context;
1721 	vq->event = virtio_has_feature(vdev, VIRTIO_RING_F_EVENT_IDX);
1722 
1723 	if (virtio_has_feature(vdev, VIRTIO_F_ORDER_PLATFORM))
1724 		vq->weak_barriers = false;
1725 
1726 	vq->packed.ring_dma_addr = ring_dma_addr;
1727 	vq->packed.driver_event_dma_addr = driver_event_dma_addr;
1728 	vq->packed.device_event_dma_addr = device_event_dma_addr;
1729 
1730 	vq->packed.ring_size_in_bytes = ring_size_in_bytes;
1731 	vq->packed.event_size_in_bytes = event_size_in_bytes;
1732 
1733 	vq->packed.vring.num = num;
1734 	vq->packed.vring.desc = ring;
1735 	vq->packed.vring.driver = driver;
1736 	vq->packed.vring.device = device;
1737 
1738 	vq->packed.next_avail_idx = 0;
1739 	vq->packed.avail_wrap_counter = 1;
1740 	vq->packed.used_wrap_counter = 1;
1741 	vq->packed.event_flags_shadow = 0;
1742 	vq->packed.avail_used_flags = 1 << VRING_PACKED_DESC_F_AVAIL;
1743 
1744 	vq->packed.desc_state = kmalloc_array(num,
1745 			sizeof(struct vring_desc_state_packed),
1746 			GFP_KERNEL);
1747 	if (!vq->packed.desc_state)
1748 		goto err_desc_state;
1749 
1750 	memset(vq->packed.desc_state, 0,
1751 		num * sizeof(struct vring_desc_state_packed));
1752 
1753 	/* Put everything in free lists. */
1754 	vq->free_head = 0;
1755 
1756 	vq->packed.desc_extra = vring_alloc_desc_extra(vq, num);
1757 	if (!vq->packed.desc_extra)
1758 		goto err_desc_extra;
1759 
1760 	/* No callback?  Tell other side not to bother us. */
1761 	if (!callback) {
1762 		vq->packed.event_flags_shadow = VRING_PACKED_EVENT_FLAG_DISABLE;
1763 		vq->packed.vring.driver->flags =
1764 			cpu_to_le16(vq->packed.event_flags_shadow);
1765 	}
1766 
1767 	spin_lock(&vdev->vqs_list_lock);
1768 	list_add_tail(&vq->vq.list, &vdev->vqs);
1769 	spin_unlock(&vdev->vqs_list_lock);
1770 	return &vq->vq;
1771 
1772 err_desc_extra:
1773 	kfree(vq->packed.desc_state);
1774 err_desc_state:
1775 	kfree(vq);
1776 err_vq:
1777 	vring_free_queue(vdev, event_size_in_bytes, device, device_event_dma_addr);
1778 err_device:
1779 	vring_free_queue(vdev, event_size_in_bytes, driver, driver_event_dma_addr);
1780 err_driver:
1781 	vring_free_queue(vdev, ring_size_in_bytes, ring, ring_dma_addr);
1782 err_ring:
1783 	return NULL;
1784 }
1785 
1786 
1787 /*
1788  * Generic functions and exported symbols.
1789  */
1790 
1791 static inline int virtqueue_add(struct virtqueue *_vq,
1792 				struct scatterlist *sgs[],
1793 				unsigned int total_sg,
1794 				unsigned int out_sgs,
1795 				unsigned int in_sgs,
1796 				void *data,
1797 				void *ctx,
1798 				gfp_t gfp)
1799 {
1800 	struct vring_virtqueue *vq = to_vvq(_vq);
1801 
1802 	return vq->packed_ring ? virtqueue_add_packed(_vq, sgs, total_sg,
1803 					out_sgs, in_sgs, data, ctx, gfp) :
1804 				 virtqueue_add_split(_vq, sgs, total_sg,
1805 					out_sgs, in_sgs, data, ctx, gfp);
1806 }
1807 
1808 /**
1809  * virtqueue_add_sgs - expose buffers to other end
1810  * @_vq: the struct virtqueue we're talking about.
1811  * @sgs: array of terminated scatterlists.
1812  * @out_sgs: the number of scatterlists readable by other side
1813  * @in_sgs: the number of scatterlists which are writable (after readable ones)
1814  * @data: the token identifying the buffer.
1815  * @gfp: how to do memory allocations (if necessary).
1816  *
1817  * Caller must ensure we don't call this with other virtqueue operations
1818  * at the same time (except where noted).
1819  *
1820  * Returns zero or a negative error (ie. ENOSPC, ENOMEM, EIO).
1821  */
1822 int virtqueue_add_sgs(struct virtqueue *_vq,
1823 		      struct scatterlist *sgs[],
1824 		      unsigned int out_sgs,
1825 		      unsigned int in_sgs,
1826 		      void *data,
1827 		      gfp_t gfp)
1828 {
1829 	unsigned int i, total_sg = 0;
1830 
1831 	/* Count them first. */
1832 	for (i = 0; i < out_sgs + in_sgs; i++) {
1833 		struct scatterlist *sg;
1834 
1835 		for (sg = sgs[i]; sg; sg = sg_next(sg))
1836 			total_sg++;
1837 	}
1838 	return virtqueue_add(_vq, sgs, total_sg, out_sgs, in_sgs,
1839 			     data, NULL, gfp);
1840 }
1841 EXPORT_SYMBOL_GPL(virtqueue_add_sgs);
1842 
1843 /**
1844  * virtqueue_add_outbuf - expose output buffers to other end
1845  * @vq: the struct virtqueue we're talking about.
1846  * @sg: scatterlist (must be well-formed and terminated!)
1847  * @num: the number of entries in @sg readable by other side
1848  * @data: the token identifying the buffer.
1849  * @gfp: how to do memory allocations (if necessary).
1850  *
1851  * Caller must ensure we don't call this with other virtqueue operations
1852  * at the same time (except where noted).
1853  *
1854  * Returns zero or a negative error (ie. ENOSPC, ENOMEM, EIO).
1855  */
1856 int virtqueue_add_outbuf(struct virtqueue *vq,
1857 			 struct scatterlist *sg, unsigned int num,
1858 			 void *data,
1859 			 gfp_t gfp)
1860 {
1861 	return virtqueue_add(vq, &sg, num, 1, 0, data, NULL, gfp);
1862 }
1863 EXPORT_SYMBOL_GPL(virtqueue_add_outbuf);
1864 
1865 /**
1866  * virtqueue_add_inbuf - expose input buffers to other end
1867  * @vq: the struct virtqueue we're talking about.
1868  * @sg: scatterlist (must be well-formed and terminated!)
1869  * @num: the number of entries in @sg writable by other side
1870  * @data: the token identifying the buffer.
1871  * @gfp: how to do memory allocations (if necessary).
1872  *
1873  * Caller must ensure we don't call this with other virtqueue operations
1874  * at the same time (except where noted).
1875  *
1876  * Returns zero or a negative error (ie. ENOSPC, ENOMEM, EIO).
1877  */
1878 int virtqueue_add_inbuf(struct virtqueue *vq,
1879 			struct scatterlist *sg, unsigned int num,
1880 			void *data,
1881 			gfp_t gfp)
1882 {
1883 	return virtqueue_add(vq, &sg, num, 0, 1, data, NULL, gfp);
1884 }
1885 EXPORT_SYMBOL_GPL(virtqueue_add_inbuf);
1886 
1887 /**
1888  * virtqueue_add_inbuf_ctx - expose input buffers to other end
1889  * @vq: the struct virtqueue we're talking about.
1890  * @sg: scatterlist (must be well-formed and terminated!)
1891  * @num: the number of entries in @sg writable by other side
1892  * @data: the token identifying the buffer.
1893  * @ctx: extra context for the token
1894  * @gfp: how to do memory allocations (if necessary).
1895  *
1896  * Caller must ensure we don't call this with other virtqueue operations
1897  * at the same time (except where noted).
1898  *
1899  * Returns zero or a negative error (ie. ENOSPC, ENOMEM, EIO).
1900  */
1901 int virtqueue_add_inbuf_ctx(struct virtqueue *vq,
1902 			struct scatterlist *sg, unsigned int num,
1903 			void *data,
1904 			void *ctx,
1905 			gfp_t gfp)
1906 {
1907 	return virtqueue_add(vq, &sg, num, 0, 1, data, ctx, gfp);
1908 }
1909 EXPORT_SYMBOL_GPL(virtqueue_add_inbuf_ctx);
1910 
1911 /**
1912  * virtqueue_kick_prepare - first half of split virtqueue_kick call.
1913  * @_vq: the struct virtqueue
1914  *
1915  * Instead of virtqueue_kick(), you can do:
1916  *	if (virtqueue_kick_prepare(vq))
1917  *		virtqueue_notify(vq);
1918  *
1919  * This is sometimes useful because the virtqueue_kick_prepare() needs
1920  * to be serialized, but the actual virtqueue_notify() call does not.
1921  */
1922 bool virtqueue_kick_prepare(struct virtqueue *_vq)
1923 {
1924 	struct vring_virtqueue *vq = to_vvq(_vq);
1925 
1926 	return vq->packed_ring ? virtqueue_kick_prepare_packed(_vq) :
1927 				 virtqueue_kick_prepare_split(_vq);
1928 }
1929 EXPORT_SYMBOL_GPL(virtqueue_kick_prepare);
1930 
1931 /**
1932  * virtqueue_notify - second half of split virtqueue_kick call.
1933  * @_vq: the struct virtqueue
1934  *
1935  * This does not need to be serialized.
1936  *
1937  * Returns false if host notify failed or queue is broken, otherwise true.
1938  */
1939 bool virtqueue_notify(struct virtqueue *_vq)
1940 {
1941 	struct vring_virtqueue *vq = to_vvq(_vq);
1942 
1943 	if (unlikely(vq->broken))
1944 		return false;
1945 
1946 	/* Prod other side to tell it about changes. */
1947 	if (!vq->notify(_vq)) {
1948 		vq->broken = true;
1949 		return false;
1950 	}
1951 	return true;
1952 }
1953 EXPORT_SYMBOL_GPL(virtqueue_notify);
1954 
1955 /**
1956  * virtqueue_kick - update after add_buf
1957  * @vq: the struct virtqueue
1958  *
1959  * After one or more virtqueue_add_* calls, invoke this to kick
1960  * the other side.
1961  *
1962  * Caller must ensure we don't call this with other virtqueue
1963  * operations at the same time (except where noted).
1964  *
1965  * Returns false if kick failed, otherwise true.
1966  */
1967 bool virtqueue_kick(struct virtqueue *vq)
1968 {
1969 	if (virtqueue_kick_prepare(vq))
1970 		return virtqueue_notify(vq);
1971 	return true;
1972 }
1973 EXPORT_SYMBOL_GPL(virtqueue_kick);
1974 
1975 /**
1976  * virtqueue_get_buf_ctx - get the next used buffer
1977  * @_vq: the struct virtqueue we're talking about.
1978  * @len: the length written into the buffer
1979  * @ctx: extra context for the token
1980  *
1981  * If the device wrote data into the buffer, @len will be set to the
1982  * amount written.  This means you don't need to clear the buffer
1983  * beforehand to ensure there's no data leakage in the case of short
1984  * writes.
1985  *
1986  * Caller must ensure we don't call this with other virtqueue
1987  * operations at the same time (except where noted).
1988  *
1989  * Returns NULL if there are no used buffers, or the "data" token
1990  * handed to virtqueue_add_*().
1991  */
1992 void *virtqueue_get_buf_ctx(struct virtqueue *_vq, unsigned int *len,
1993 			    void **ctx)
1994 {
1995 	struct vring_virtqueue *vq = to_vvq(_vq);
1996 
1997 	return vq->packed_ring ? virtqueue_get_buf_ctx_packed(_vq, len, ctx) :
1998 				 virtqueue_get_buf_ctx_split(_vq, len, ctx);
1999 }
2000 EXPORT_SYMBOL_GPL(virtqueue_get_buf_ctx);
2001 
2002 void *virtqueue_get_buf(struct virtqueue *_vq, unsigned int *len)
2003 {
2004 	return virtqueue_get_buf_ctx(_vq, len, NULL);
2005 }
2006 EXPORT_SYMBOL_GPL(virtqueue_get_buf);
2007 /**
2008  * virtqueue_disable_cb - disable callbacks
2009  * @_vq: the struct virtqueue we're talking about.
2010  *
2011  * Note that this is not necessarily synchronous, hence unreliable and only
2012  * useful as an optimization.
2013  *
2014  * Unlike other operations, this need not be serialized.
2015  */
2016 void virtqueue_disable_cb(struct virtqueue *_vq)
2017 {
2018 	struct vring_virtqueue *vq = to_vvq(_vq);
2019 
2020 	/* If device triggered an event already it won't trigger one again:
2021 	 * no need to disable.
2022 	 */
2023 	if (vq->event_triggered)
2024 		return;
2025 
2026 	if (vq->packed_ring)
2027 		virtqueue_disable_cb_packed(_vq);
2028 	else
2029 		virtqueue_disable_cb_split(_vq);
2030 }
2031 EXPORT_SYMBOL_GPL(virtqueue_disable_cb);
2032 
2033 /**
2034  * virtqueue_enable_cb_prepare - restart callbacks after disable_cb
2035  * @_vq: the struct virtqueue we're talking about.
2036  *
2037  * This re-enables callbacks; it returns current queue state
2038  * in an opaque unsigned value. This value should be later tested by
2039  * virtqueue_poll, to detect a possible race between the driver checking for
2040  * more work, and enabling callbacks.
2041  *
2042  * Caller must ensure we don't call this with other virtqueue
2043  * operations at the same time (except where noted).
2044  */
2045 unsigned virtqueue_enable_cb_prepare(struct virtqueue *_vq)
2046 {
2047 	struct vring_virtqueue *vq = to_vvq(_vq);
2048 
2049 	if (vq->event_triggered)
2050 		vq->event_triggered = false;
2051 
2052 	return vq->packed_ring ? virtqueue_enable_cb_prepare_packed(_vq) :
2053 				 virtqueue_enable_cb_prepare_split(_vq);
2054 }
2055 EXPORT_SYMBOL_GPL(virtqueue_enable_cb_prepare);
2056 
2057 /**
2058  * virtqueue_poll - query pending used buffers
2059  * @_vq: the struct virtqueue we're talking about.
2060  * @last_used_idx: virtqueue state (from call to virtqueue_enable_cb_prepare).
2061  *
2062  * Returns "true" if there are pending used buffers in the queue.
2063  *
2064  * This does not need to be serialized.
2065  */
2066 bool virtqueue_poll(struct virtqueue *_vq, unsigned last_used_idx)
2067 {
2068 	struct vring_virtqueue *vq = to_vvq(_vq);
2069 
2070 	if (unlikely(vq->broken))
2071 		return false;
2072 
2073 	virtio_mb(vq->weak_barriers);
2074 	return vq->packed_ring ? virtqueue_poll_packed(_vq, last_used_idx) :
2075 				 virtqueue_poll_split(_vq, last_used_idx);
2076 }
2077 EXPORT_SYMBOL_GPL(virtqueue_poll);
2078 
2079 /**
2080  * virtqueue_enable_cb - restart callbacks after disable_cb.
2081  * @_vq: the struct virtqueue we're talking about.
2082  *
2083  * This re-enables callbacks; it returns "false" if there are pending
2084  * buffers in the queue, to detect a possible race between the driver
2085  * checking for more work, and enabling callbacks.
2086  *
2087  * Caller must ensure we don't call this with other virtqueue
2088  * operations at the same time (except where noted).
2089  */
2090 bool virtqueue_enable_cb(struct virtqueue *_vq)
2091 {
2092 	unsigned last_used_idx = virtqueue_enable_cb_prepare(_vq);
2093 
2094 	return !virtqueue_poll(_vq, last_used_idx);
2095 }
2096 EXPORT_SYMBOL_GPL(virtqueue_enable_cb);
2097 
2098 /**
2099  * virtqueue_enable_cb_delayed - restart callbacks after disable_cb.
2100  * @_vq: the struct virtqueue we're talking about.
2101  *
2102  * This re-enables callbacks but hints to the other side to delay
2103  * interrupts until most of the available buffers have been processed;
2104  * it returns "false" if there are many pending buffers in the queue,
2105  * to detect a possible race between the driver checking for more work,
2106  * and enabling callbacks.
2107  *
2108  * Caller must ensure we don't call this with other virtqueue
2109  * operations at the same time (except where noted).
2110  */
2111 bool virtqueue_enable_cb_delayed(struct virtqueue *_vq)
2112 {
2113 	struct vring_virtqueue *vq = to_vvq(_vq);
2114 
2115 	if (vq->event_triggered)
2116 		vq->event_triggered = false;
2117 
2118 	return vq->packed_ring ? virtqueue_enable_cb_delayed_packed(_vq) :
2119 				 virtqueue_enable_cb_delayed_split(_vq);
2120 }
2121 EXPORT_SYMBOL_GPL(virtqueue_enable_cb_delayed);
2122 
2123 /**
2124  * virtqueue_detach_unused_buf - detach first unused buffer
2125  * @_vq: the struct virtqueue we're talking about.
2126  *
2127  * Returns NULL or the "data" token handed to virtqueue_add_*().
2128  * This is not valid on an active queue; it is useful only for device
2129  * shutdown.
2130  */
2131 void *virtqueue_detach_unused_buf(struct virtqueue *_vq)
2132 {
2133 	struct vring_virtqueue *vq = to_vvq(_vq);
2134 
2135 	return vq->packed_ring ? virtqueue_detach_unused_buf_packed(_vq) :
2136 				 virtqueue_detach_unused_buf_split(_vq);
2137 }
2138 EXPORT_SYMBOL_GPL(virtqueue_detach_unused_buf);
2139 
2140 static inline bool more_used(const struct vring_virtqueue *vq)
2141 {
2142 	return vq->packed_ring ? more_used_packed(vq) : more_used_split(vq);
2143 }
2144 
2145 irqreturn_t vring_interrupt(int irq, void *_vq)
2146 {
2147 	struct vring_virtqueue *vq = to_vvq(_vq);
2148 
2149 	if (!more_used(vq)) {
2150 		pr_debug("virtqueue interrupt with no work for %p\n", vq);
2151 		return IRQ_NONE;
2152 	}
2153 
2154 	if (unlikely(vq->broken))
2155 		return IRQ_HANDLED;
2156 
2157 	/* Just a hint for performance: so it's ok that this can be racy! */
2158 	if (vq->event)
2159 		vq->event_triggered = true;
2160 
2161 	pr_debug("virtqueue callback for %p (%p)\n", vq, vq->vq.callback);
2162 	if (vq->vq.callback)
2163 		vq->vq.callback(&vq->vq);
2164 
2165 	return IRQ_HANDLED;
2166 }
2167 EXPORT_SYMBOL_GPL(vring_interrupt);
2168 
2169 /* Only available for split ring */
2170 struct virtqueue *__vring_new_virtqueue(unsigned int index,
2171 					struct vring vring,
2172 					struct virtio_device *vdev,
2173 					bool weak_barriers,
2174 					bool context,
2175 					bool (*notify)(struct virtqueue *),
2176 					void (*callback)(struct virtqueue *),
2177 					const char *name)
2178 {
2179 	struct vring_virtqueue *vq;
2180 
2181 	if (virtio_has_feature(vdev, VIRTIO_F_RING_PACKED))
2182 		return NULL;
2183 
2184 	vq = kmalloc(sizeof(*vq), GFP_KERNEL);
2185 	if (!vq)
2186 		return NULL;
2187 
2188 	vq->packed_ring = false;
2189 	vq->vq.callback = callback;
2190 	vq->vq.vdev = vdev;
2191 	vq->vq.name = name;
2192 	vq->vq.num_free = vring.num;
2193 	vq->vq.index = index;
2194 	vq->we_own_ring = false;
2195 	vq->notify = notify;
2196 	vq->weak_barriers = weak_barriers;
2197 	vq->broken = false;
2198 	vq->last_used_idx = 0;
2199 	vq->event_triggered = false;
2200 	vq->num_added = 0;
2201 	vq->use_dma_api = vring_use_dma_api(vdev);
2202 #ifdef DEBUG
2203 	vq->in_use = false;
2204 	vq->last_add_time_valid = false;
2205 #endif
2206 
2207 	vq->indirect = virtio_has_feature(vdev, VIRTIO_RING_F_INDIRECT_DESC) &&
2208 		!context;
2209 	vq->event = virtio_has_feature(vdev, VIRTIO_RING_F_EVENT_IDX);
2210 
2211 	if (virtio_has_feature(vdev, VIRTIO_F_ORDER_PLATFORM))
2212 		vq->weak_barriers = false;
2213 
2214 	vq->split.queue_dma_addr = 0;
2215 	vq->split.queue_size_in_bytes = 0;
2216 
2217 	vq->split.vring = vring;
2218 	vq->split.avail_flags_shadow = 0;
2219 	vq->split.avail_idx_shadow = 0;
2220 
2221 	/* No callback?  Tell other side not to bother us. */
2222 	if (!callback) {
2223 		vq->split.avail_flags_shadow |= VRING_AVAIL_F_NO_INTERRUPT;
2224 		if (!vq->event)
2225 			vq->split.vring.avail->flags = cpu_to_virtio16(vdev,
2226 					vq->split.avail_flags_shadow);
2227 	}
2228 
2229 	vq->split.desc_state = kmalloc_array(vring.num,
2230 			sizeof(struct vring_desc_state_split), GFP_KERNEL);
2231 	if (!vq->split.desc_state)
2232 		goto err_state;
2233 
2234 	vq->split.desc_extra = vring_alloc_desc_extra(vq, vring.num);
2235 	if (!vq->split.desc_extra)
2236 		goto err_extra;
2237 
2238 	/* Put everything in free lists. */
2239 	vq->free_head = 0;
2240 	memset(vq->split.desc_state, 0, vring.num *
2241 			sizeof(struct vring_desc_state_split));
2242 
2243 	spin_lock(&vdev->vqs_list_lock);
2244 	list_add_tail(&vq->vq.list, &vdev->vqs);
2245 	spin_unlock(&vdev->vqs_list_lock);
2246 	return &vq->vq;
2247 
2248 err_extra:
2249 	kfree(vq->split.desc_state);
2250 err_state:
2251 	kfree(vq);
2252 	return NULL;
2253 }
2254 EXPORT_SYMBOL_GPL(__vring_new_virtqueue);
2255 
2256 struct virtqueue *vring_create_virtqueue(
2257 	unsigned int index,
2258 	unsigned int num,
2259 	unsigned int vring_align,
2260 	struct virtio_device *vdev,
2261 	bool weak_barriers,
2262 	bool may_reduce_num,
2263 	bool context,
2264 	bool (*notify)(struct virtqueue *),
2265 	void (*callback)(struct virtqueue *),
2266 	const char *name)
2267 {
2268 
2269 	if (virtio_has_feature(vdev, VIRTIO_F_RING_PACKED))
2270 		return vring_create_virtqueue_packed(index, num, vring_align,
2271 				vdev, weak_barriers, may_reduce_num,
2272 				context, notify, callback, name);
2273 
2274 	return vring_create_virtqueue_split(index, num, vring_align,
2275 			vdev, weak_barriers, may_reduce_num,
2276 			context, notify, callback, name);
2277 }
2278 EXPORT_SYMBOL_GPL(vring_create_virtqueue);
2279 
2280 /* Only available for split ring */
2281 struct virtqueue *vring_new_virtqueue(unsigned int index,
2282 				      unsigned int num,
2283 				      unsigned int vring_align,
2284 				      struct virtio_device *vdev,
2285 				      bool weak_barriers,
2286 				      bool context,
2287 				      void *pages,
2288 				      bool (*notify)(struct virtqueue *vq),
2289 				      void (*callback)(struct virtqueue *vq),
2290 				      const char *name)
2291 {
2292 	struct vring vring;
2293 
2294 	if (virtio_has_feature(vdev, VIRTIO_F_RING_PACKED))
2295 		return NULL;
2296 
2297 	vring_init(&vring, num, pages, vring_align);
2298 	return __vring_new_virtqueue(index, vring, vdev, weak_barriers, context,
2299 				     notify, callback, name);
2300 }
2301 EXPORT_SYMBOL_GPL(vring_new_virtqueue);
2302 
2303 void vring_del_virtqueue(struct virtqueue *_vq)
2304 {
2305 	struct vring_virtqueue *vq = to_vvq(_vq);
2306 
2307 	spin_lock(&vq->vq.vdev->vqs_list_lock);
2308 	list_del(&_vq->list);
2309 	spin_unlock(&vq->vq.vdev->vqs_list_lock);
2310 
2311 	if (vq->we_own_ring) {
2312 		if (vq->packed_ring) {
2313 			vring_free_queue(vq->vq.vdev,
2314 					 vq->packed.ring_size_in_bytes,
2315 					 vq->packed.vring.desc,
2316 					 vq->packed.ring_dma_addr);
2317 
2318 			vring_free_queue(vq->vq.vdev,
2319 					 vq->packed.event_size_in_bytes,
2320 					 vq->packed.vring.driver,
2321 					 vq->packed.driver_event_dma_addr);
2322 
2323 			vring_free_queue(vq->vq.vdev,
2324 					 vq->packed.event_size_in_bytes,
2325 					 vq->packed.vring.device,
2326 					 vq->packed.device_event_dma_addr);
2327 
2328 			kfree(vq->packed.desc_state);
2329 			kfree(vq->packed.desc_extra);
2330 		} else {
2331 			vring_free_queue(vq->vq.vdev,
2332 					 vq->split.queue_size_in_bytes,
2333 					 vq->split.vring.desc,
2334 					 vq->split.queue_dma_addr);
2335 		}
2336 	}
2337 	if (!vq->packed_ring) {
2338 		kfree(vq->split.desc_state);
2339 		kfree(vq->split.desc_extra);
2340 	}
2341 	kfree(vq);
2342 }
2343 EXPORT_SYMBOL_GPL(vring_del_virtqueue);
2344 
2345 /* Manipulates transport-specific feature bits. */
2346 void vring_transport_features(struct virtio_device *vdev)
2347 {
2348 	unsigned int i;
2349 
2350 	for (i = VIRTIO_TRANSPORT_F_START; i < VIRTIO_TRANSPORT_F_END; i++) {
2351 		switch (i) {
2352 		case VIRTIO_RING_F_INDIRECT_DESC:
2353 			break;
2354 		case VIRTIO_RING_F_EVENT_IDX:
2355 			break;
2356 		case VIRTIO_F_VERSION_1:
2357 			break;
2358 		case VIRTIO_F_ACCESS_PLATFORM:
2359 			break;
2360 		case VIRTIO_F_RING_PACKED:
2361 			break;
2362 		case VIRTIO_F_ORDER_PLATFORM:
2363 			break;
2364 		default:
2365 			/* We don't understand this bit. */
2366 			__virtio_clear_bit(vdev, i);
2367 		}
2368 	}
2369 }
2370 EXPORT_SYMBOL_GPL(vring_transport_features);
2371 
2372 /**
2373  * virtqueue_get_vring_size - return the size of the virtqueue's vring
2374  * @_vq: the struct virtqueue containing the vring of interest.
2375  *
2376  * Returns the size of the vring.  This is mainly used for boasting to
2377  * userspace.  Unlike other operations, this need not be serialized.
2378  */
2379 unsigned int virtqueue_get_vring_size(struct virtqueue *_vq)
2380 {
2381 
2382 	struct vring_virtqueue *vq = to_vvq(_vq);
2383 
2384 	return vq->packed_ring ? vq->packed.vring.num : vq->split.vring.num;
2385 }
2386 EXPORT_SYMBOL_GPL(virtqueue_get_vring_size);
2387 
2388 bool virtqueue_is_broken(struct virtqueue *_vq)
2389 {
2390 	struct vring_virtqueue *vq = to_vvq(_vq);
2391 
2392 	return READ_ONCE(vq->broken);
2393 }
2394 EXPORT_SYMBOL_GPL(virtqueue_is_broken);
2395 
2396 /*
2397  * This should prevent the device from being used, allowing drivers to
2398  * recover.  You may need to grab appropriate locks to flush.
2399  */
2400 void virtio_break_device(struct virtio_device *dev)
2401 {
2402 	struct virtqueue *_vq;
2403 
2404 	spin_lock(&dev->vqs_list_lock);
2405 	list_for_each_entry(_vq, &dev->vqs, list) {
2406 		struct vring_virtqueue *vq = to_vvq(_vq);
2407 
2408 		/* Pairs with READ_ONCE() in virtqueue_is_broken(). */
2409 		WRITE_ONCE(vq->broken, true);
2410 	}
2411 	spin_unlock(&dev->vqs_list_lock);
2412 }
2413 EXPORT_SYMBOL_GPL(virtio_break_device);
2414 
2415 dma_addr_t virtqueue_get_desc_addr(struct virtqueue *_vq)
2416 {
2417 	struct vring_virtqueue *vq = to_vvq(_vq);
2418 
2419 	BUG_ON(!vq->we_own_ring);
2420 
2421 	if (vq->packed_ring)
2422 		return vq->packed.ring_dma_addr;
2423 
2424 	return vq->split.queue_dma_addr;
2425 }
2426 EXPORT_SYMBOL_GPL(virtqueue_get_desc_addr);
2427 
2428 dma_addr_t virtqueue_get_avail_addr(struct virtqueue *_vq)
2429 {
2430 	struct vring_virtqueue *vq = to_vvq(_vq);
2431 
2432 	BUG_ON(!vq->we_own_ring);
2433 
2434 	if (vq->packed_ring)
2435 		return vq->packed.driver_event_dma_addr;
2436 
2437 	return vq->split.queue_dma_addr +
2438 		((char *)vq->split.vring.avail - (char *)vq->split.vring.desc);
2439 }
2440 EXPORT_SYMBOL_GPL(virtqueue_get_avail_addr);
2441 
2442 dma_addr_t virtqueue_get_used_addr(struct virtqueue *_vq)
2443 {
2444 	struct vring_virtqueue *vq = to_vvq(_vq);
2445 
2446 	BUG_ON(!vq->we_own_ring);
2447 
2448 	if (vq->packed_ring)
2449 		return vq->packed.device_event_dma_addr;
2450 
2451 	return vq->split.queue_dma_addr +
2452 		((char *)vq->split.vring.used - (char *)vq->split.vring.desc);
2453 }
2454 EXPORT_SYMBOL_GPL(virtqueue_get_used_addr);
2455 
2456 /* Only available for split ring */
2457 const struct vring *virtqueue_get_vring(struct virtqueue *vq)
2458 {
2459 	return &to_vvq(vq)->split.vring;
2460 }
2461 EXPORT_SYMBOL_GPL(virtqueue_get_vring);
2462 
2463 MODULE_LICENSE("GPL");
2464