xref: /openbmc/linux/drivers/virtio/virtio_ring.c (revision 59f216cf04d973b4316761cbf3e7cb9556715b7a)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /* Virtio ring implementation.
3  *
4  *  Copyright 2007 Rusty Russell IBM Corporation
5  */
6 #include <linux/virtio.h>
7 #include <linux/virtio_ring.h>
8 #include <linux/virtio_config.h>
9 #include <linux/device.h>
10 #include <linux/slab.h>
11 #include <linux/module.h>
12 #include <linux/hrtimer.h>
13 #include <linux/dma-mapping.h>
14 #include <xen/xen.h>
15 
16 #ifdef DEBUG
17 /* For development, we want to crash whenever the ring is screwed. */
18 #define BAD_RING(_vq, fmt, args...)				\
19 	do {							\
20 		dev_err(&(_vq)->vq.vdev->dev,			\
21 			"%s:"fmt, (_vq)->vq.name, ##args);	\
22 		BUG();						\
23 	} while (0)
24 /* Caller is supposed to guarantee no reentry. */
25 #define START_USE(_vq)						\
26 	do {							\
27 		if ((_vq)->in_use)				\
28 			panic("%s:in_use = %i\n",		\
29 			      (_vq)->vq.name, (_vq)->in_use);	\
30 		(_vq)->in_use = __LINE__;			\
31 	} while (0)
32 #define END_USE(_vq) \
33 	do { BUG_ON(!(_vq)->in_use); (_vq)->in_use = 0; } while(0)
34 #define LAST_ADD_TIME_UPDATE(_vq)				\
35 	do {							\
36 		ktime_t now = ktime_get();			\
37 								\
38 		/* No kick or get, with .1 second between?  Warn. */ \
39 		if ((_vq)->last_add_time_valid)			\
40 			WARN_ON(ktime_to_ms(ktime_sub(now,	\
41 				(_vq)->last_add_time)) > 100);	\
42 		(_vq)->last_add_time = now;			\
43 		(_vq)->last_add_time_valid = true;		\
44 	} while (0)
45 #define LAST_ADD_TIME_CHECK(_vq)				\
46 	do {							\
47 		if ((_vq)->last_add_time_valid) {		\
48 			WARN_ON(ktime_to_ms(ktime_sub(ktime_get(), \
49 				      (_vq)->last_add_time)) > 100); \
50 		}						\
51 	} while (0)
52 #define LAST_ADD_TIME_INVALID(_vq)				\
53 	((_vq)->last_add_time_valid = false)
54 #else
55 #define BAD_RING(_vq, fmt, args...)				\
56 	do {							\
57 		dev_err(&_vq->vq.vdev->dev,			\
58 			"%s:"fmt, (_vq)->vq.name, ##args);	\
59 		(_vq)->broken = true;				\
60 	} while (0)
61 #define START_USE(vq)
62 #define END_USE(vq)
63 #define LAST_ADD_TIME_UPDATE(vq)
64 #define LAST_ADD_TIME_CHECK(vq)
65 #define LAST_ADD_TIME_INVALID(vq)
66 #endif
67 
68 struct vring_desc_state_split {
69 	void *data;			/* Data for callback. */
70 	struct vring_desc *indir_desc;	/* Indirect descriptor, if any. */
71 };
72 
73 struct vring_desc_state_packed {
74 	void *data;			/* Data for callback. */
75 	struct vring_packed_desc *indir_desc; /* Indirect descriptor, if any. */
76 	u16 num;			/* Descriptor list length. */
77 	u16 last;			/* The last desc state in a list. */
78 };
79 
80 struct vring_desc_extra {
81 	dma_addr_t addr;		/* Buffer DMA addr. */
82 	u32 len;			/* Buffer length. */
83 	u16 flags;			/* Descriptor flags. */
84 	u16 next;			/* The next desc state in a list. */
85 };
86 
87 struct vring_virtqueue {
88 	struct virtqueue vq;
89 
90 	/* Is this a packed ring? */
91 	bool packed_ring;
92 
93 	/* Is DMA API used? */
94 	bool use_dma_api;
95 
96 	/* Can we use weak barriers? */
97 	bool weak_barriers;
98 
99 	/* Other side has made a mess, don't try any more. */
100 	bool broken;
101 
102 	/* Host supports indirect buffers */
103 	bool indirect;
104 
105 	/* Host publishes avail event idx */
106 	bool event;
107 
108 	/* Head of free buffer list. */
109 	unsigned int free_head;
110 	/* Number we've added since last sync. */
111 	unsigned int num_added;
112 
113 	/* Last used index we've seen. */
114 	u16 last_used_idx;
115 
116 	/* Hint for event idx: already triggered no need to disable. */
117 	bool event_triggered;
118 
119 	union {
120 		/* Available for split ring */
121 		struct {
122 			/* Actual memory layout for this queue. */
123 			struct vring vring;
124 
125 			/* Last written value to avail->flags */
126 			u16 avail_flags_shadow;
127 
128 			/*
129 			 * Last written value to avail->idx in
130 			 * guest byte order.
131 			 */
132 			u16 avail_idx_shadow;
133 
134 			/* Per-descriptor state. */
135 			struct vring_desc_state_split *desc_state;
136 			struct vring_desc_extra *desc_extra;
137 
138 			/* DMA address and size information */
139 			dma_addr_t queue_dma_addr;
140 			size_t queue_size_in_bytes;
141 		} split;
142 
143 		/* Available for packed ring */
144 		struct {
145 			/* Actual memory layout for this queue. */
146 			struct {
147 				unsigned int num;
148 				struct vring_packed_desc *desc;
149 				struct vring_packed_desc_event *driver;
150 				struct vring_packed_desc_event *device;
151 			} vring;
152 
153 			/* Driver ring wrap counter. */
154 			bool avail_wrap_counter;
155 
156 			/* Device ring wrap counter. */
157 			bool used_wrap_counter;
158 
159 			/* Avail used flags. */
160 			u16 avail_used_flags;
161 
162 			/* Index of the next avail descriptor. */
163 			u16 next_avail_idx;
164 
165 			/*
166 			 * Last written value to driver->flags in
167 			 * guest byte order.
168 			 */
169 			u16 event_flags_shadow;
170 
171 			/* Per-descriptor state. */
172 			struct vring_desc_state_packed *desc_state;
173 			struct vring_desc_extra *desc_extra;
174 
175 			/* DMA address and size information */
176 			dma_addr_t ring_dma_addr;
177 			dma_addr_t driver_event_dma_addr;
178 			dma_addr_t device_event_dma_addr;
179 			size_t ring_size_in_bytes;
180 			size_t event_size_in_bytes;
181 		} packed;
182 	};
183 
184 	/* How to notify other side. FIXME: commonalize hcalls! */
185 	bool (*notify)(struct virtqueue *vq);
186 
187 	/* DMA, allocation, and size information */
188 	bool we_own_ring;
189 
190 #ifdef DEBUG
191 	/* They're supposed to lock for us. */
192 	unsigned int in_use;
193 
194 	/* Figure out if their kicks are too delayed. */
195 	bool last_add_time_valid;
196 	ktime_t last_add_time;
197 #endif
198 };
199 
200 
201 /*
202  * Helpers.
203  */
204 
205 #define to_vvq(_vq) container_of(_vq, struct vring_virtqueue, vq)
206 
207 static inline bool virtqueue_use_indirect(struct virtqueue *_vq,
208 					  unsigned int total_sg)
209 {
210 	struct vring_virtqueue *vq = to_vvq(_vq);
211 
212 	/*
213 	 * If the host supports indirect descriptor tables, and we have multiple
214 	 * buffers, then go indirect. FIXME: tune this threshold
215 	 */
216 	return (vq->indirect && total_sg > 1 && vq->vq.num_free);
217 }
218 
219 /*
220  * Modern virtio devices have feature bits to specify whether they need a
221  * quirk and bypass the IOMMU. If not there, just use the DMA API.
222  *
223  * If there, the interaction between virtio and DMA API is messy.
224  *
225  * On most systems with virtio, physical addresses match bus addresses,
226  * and it doesn't particularly matter whether we use the DMA API.
227  *
228  * On some systems, including Xen and any system with a physical device
229  * that speaks virtio behind a physical IOMMU, we must use the DMA API
230  * for virtio DMA to work at all.
231  *
232  * On other systems, including SPARC and PPC64, virtio-pci devices are
233  * enumerated as though they are behind an IOMMU, but the virtio host
234  * ignores the IOMMU, so we must either pretend that the IOMMU isn't
235  * there or somehow map everything as the identity.
236  *
237  * For the time being, we preserve historic behavior and bypass the DMA
238  * API.
239  *
240  * TODO: install a per-device DMA ops structure that does the right thing
241  * taking into account all the above quirks, and use the DMA API
242  * unconditionally on data path.
243  */
244 
245 static bool vring_use_dma_api(struct virtio_device *vdev)
246 {
247 	if (!virtio_has_dma_quirk(vdev))
248 		return true;
249 
250 	/* Otherwise, we are left to guess. */
251 	/*
252 	 * In theory, it's possible to have a buggy QEMU-supposed
253 	 * emulated Q35 IOMMU and Xen enabled at the same time.  On
254 	 * such a configuration, virtio has never worked and will
255 	 * not work without an even larger kludge.  Instead, enable
256 	 * the DMA API if we're a Xen guest, which at least allows
257 	 * all of the sensible Xen configurations to work correctly.
258 	 */
259 	if (xen_domain())
260 		return true;
261 
262 	return false;
263 }
264 
265 size_t virtio_max_dma_size(struct virtio_device *vdev)
266 {
267 	size_t max_segment_size = SIZE_MAX;
268 
269 	if (vring_use_dma_api(vdev))
270 		max_segment_size = dma_max_mapping_size(&vdev->dev);
271 
272 	return max_segment_size;
273 }
274 EXPORT_SYMBOL_GPL(virtio_max_dma_size);
275 
276 static void *vring_alloc_queue(struct virtio_device *vdev, size_t size,
277 			      dma_addr_t *dma_handle, gfp_t flag)
278 {
279 	if (vring_use_dma_api(vdev)) {
280 		return dma_alloc_coherent(vdev->dev.parent, size,
281 					  dma_handle, flag);
282 	} else {
283 		void *queue = alloc_pages_exact(PAGE_ALIGN(size), flag);
284 
285 		if (queue) {
286 			phys_addr_t phys_addr = virt_to_phys(queue);
287 			*dma_handle = (dma_addr_t)phys_addr;
288 
289 			/*
290 			 * Sanity check: make sure we dind't truncate
291 			 * the address.  The only arches I can find that
292 			 * have 64-bit phys_addr_t but 32-bit dma_addr_t
293 			 * are certain non-highmem MIPS and x86
294 			 * configurations, but these configurations
295 			 * should never allocate physical pages above 32
296 			 * bits, so this is fine.  Just in case, throw a
297 			 * warning and abort if we end up with an
298 			 * unrepresentable address.
299 			 */
300 			if (WARN_ON_ONCE(*dma_handle != phys_addr)) {
301 				free_pages_exact(queue, PAGE_ALIGN(size));
302 				return NULL;
303 			}
304 		}
305 		return queue;
306 	}
307 }
308 
309 static void vring_free_queue(struct virtio_device *vdev, size_t size,
310 			     void *queue, dma_addr_t dma_handle)
311 {
312 	if (vring_use_dma_api(vdev))
313 		dma_free_coherent(vdev->dev.parent, size, queue, dma_handle);
314 	else
315 		free_pages_exact(queue, PAGE_ALIGN(size));
316 }
317 
318 /*
319  * The DMA ops on various arches are rather gnarly right now, and
320  * making all of the arch DMA ops work on the vring device itself
321  * is a mess.  For now, we use the parent device for DMA ops.
322  */
323 static inline struct device *vring_dma_dev(const struct vring_virtqueue *vq)
324 {
325 	return vq->vq.vdev->dev.parent;
326 }
327 
328 /* Map one sg entry. */
329 static dma_addr_t vring_map_one_sg(const struct vring_virtqueue *vq,
330 				   struct scatterlist *sg,
331 				   enum dma_data_direction direction)
332 {
333 	if (!vq->use_dma_api)
334 		return (dma_addr_t)sg_phys(sg);
335 
336 	/*
337 	 * We can't use dma_map_sg, because we don't use scatterlists in
338 	 * the way it expects (we don't guarantee that the scatterlist
339 	 * will exist for the lifetime of the mapping).
340 	 */
341 	return dma_map_page(vring_dma_dev(vq),
342 			    sg_page(sg), sg->offset, sg->length,
343 			    direction);
344 }
345 
346 static dma_addr_t vring_map_single(const struct vring_virtqueue *vq,
347 				   void *cpu_addr, size_t size,
348 				   enum dma_data_direction direction)
349 {
350 	if (!vq->use_dma_api)
351 		return (dma_addr_t)virt_to_phys(cpu_addr);
352 
353 	return dma_map_single(vring_dma_dev(vq),
354 			      cpu_addr, size, direction);
355 }
356 
357 static int vring_mapping_error(const struct vring_virtqueue *vq,
358 			       dma_addr_t addr)
359 {
360 	if (!vq->use_dma_api)
361 		return 0;
362 
363 	return dma_mapping_error(vring_dma_dev(vq), addr);
364 }
365 
366 
367 /*
368  * Split ring specific functions - *_split().
369  */
370 
371 static void vring_unmap_one_split_indirect(const struct vring_virtqueue *vq,
372 					   struct vring_desc *desc)
373 {
374 	u16 flags;
375 
376 	if (!vq->use_dma_api)
377 		return;
378 
379 	flags = virtio16_to_cpu(vq->vq.vdev, desc->flags);
380 
381 	if (flags & VRING_DESC_F_INDIRECT) {
382 		dma_unmap_single(vring_dma_dev(vq),
383 				 virtio64_to_cpu(vq->vq.vdev, desc->addr),
384 				 virtio32_to_cpu(vq->vq.vdev, desc->len),
385 				 (flags & VRING_DESC_F_WRITE) ?
386 				 DMA_FROM_DEVICE : DMA_TO_DEVICE);
387 	} else {
388 		dma_unmap_page(vring_dma_dev(vq),
389 			       virtio64_to_cpu(vq->vq.vdev, desc->addr),
390 			       virtio32_to_cpu(vq->vq.vdev, desc->len),
391 			       (flags & VRING_DESC_F_WRITE) ?
392 			       DMA_FROM_DEVICE : DMA_TO_DEVICE);
393 	}
394 }
395 
396 static unsigned int vring_unmap_one_split(const struct vring_virtqueue *vq,
397 					  unsigned int i)
398 {
399 	struct vring_desc_extra *extra = vq->split.desc_extra;
400 	u16 flags;
401 
402 	if (!vq->use_dma_api)
403 		goto out;
404 
405 	flags = extra[i].flags;
406 
407 	if (flags & VRING_DESC_F_INDIRECT) {
408 		dma_unmap_single(vring_dma_dev(vq),
409 				 extra[i].addr,
410 				 extra[i].len,
411 				 (flags & VRING_DESC_F_WRITE) ?
412 				 DMA_FROM_DEVICE : DMA_TO_DEVICE);
413 	} else {
414 		dma_unmap_page(vring_dma_dev(vq),
415 			       extra[i].addr,
416 			       extra[i].len,
417 			       (flags & VRING_DESC_F_WRITE) ?
418 			       DMA_FROM_DEVICE : DMA_TO_DEVICE);
419 	}
420 
421 out:
422 	return extra[i].next;
423 }
424 
425 static struct vring_desc *alloc_indirect_split(struct virtqueue *_vq,
426 					       unsigned int total_sg,
427 					       gfp_t gfp)
428 {
429 	struct vring_desc *desc;
430 	unsigned int i;
431 
432 	/*
433 	 * We require lowmem mappings for the descriptors because
434 	 * otherwise virt_to_phys will give us bogus addresses in the
435 	 * virtqueue.
436 	 */
437 	gfp &= ~__GFP_HIGHMEM;
438 
439 	desc = kmalloc_array(total_sg, sizeof(struct vring_desc), gfp);
440 	if (!desc)
441 		return NULL;
442 
443 	for (i = 0; i < total_sg; i++)
444 		desc[i].next = cpu_to_virtio16(_vq->vdev, i + 1);
445 	return desc;
446 }
447 
448 static inline unsigned int virtqueue_add_desc_split(struct virtqueue *vq,
449 						    struct vring_desc *desc,
450 						    unsigned int i,
451 						    dma_addr_t addr,
452 						    unsigned int len,
453 						    u16 flags,
454 						    bool indirect)
455 {
456 	struct vring_virtqueue *vring = to_vvq(vq);
457 	struct vring_desc_extra *extra = vring->split.desc_extra;
458 	u16 next;
459 
460 	desc[i].flags = cpu_to_virtio16(vq->vdev, flags);
461 	desc[i].addr = cpu_to_virtio64(vq->vdev, addr);
462 	desc[i].len = cpu_to_virtio32(vq->vdev, len);
463 
464 	if (!indirect) {
465 		next = extra[i].next;
466 		desc[i].next = cpu_to_virtio16(vq->vdev, next);
467 
468 		extra[i].addr = addr;
469 		extra[i].len = len;
470 		extra[i].flags = flags;
471 	} else
472 		next = virtio16_to_cpu(vq->vdev, desc[i].next);
473 
474 	return next;
475 }
476 
477 static inline int virtqueue_add_split(struct virtqueue *_vq,
478 				      struct scatterlist *sgs[],
479 				      unsigned int total_sg,
480 				      unsigned int out_sgs,
481 				      unsigned int in_sgs,
482 				      void *data,
483 				      void *ctx,
484 				      gfp_t gfp)
485 {
486 	struct vring_virtqueue *vq = to_vvq(_vq);
487 	struct scatterlist *sg;
488 	struct vring_desc *desc;
489 	unsigned int i, n, avail, descs_used, prev, err_idx;
490 	int head;
491 	bool indirect;
492 
493 	START_USE(vq);
494 
495 	BUG_ON(data == NULL);
496 	BUG_ON(ctx && vq->indirect);
497 
498 	if (unlikely(vq->broken)) {
499 		END_USE(vq);
500 		return -EIO;
501 	}
502 
503 	LAST_ADD_TIME_UPDATE(vq);
504 
505 	BUG_ON(total_sg == 0);
506 
507 	head = vq->free_head;
508 
509 	if (virtqueue_use_indirect(_vq, total_sg))
510 		desc = alloc_indirect_split(_vq, total_sg, gfp);
511 	else {
512 		desc = NULL;
513 		WARN_ON_ONCE(total_sg > vq->split.vring.num && !vq->indirect);
514 	}
515 
516 	if (desc) {
517 		/* Use a single buffer which doesn't continue */
518 		indirect = true;
519 		/* Set up rest to use this indirect table. */
520 		i = 0;
521 		descs_used = 1;
522 	} else {
523 		indirect = false;
524 		desc = vq->split.vring.desc;
525 		i = head;
526 		descs_used = total_sg;
527 	}
528 
529 	if (vq->vq.num_free < descs_used) {
530 		pr_debug("Can't add buf len %i - avail = %i\n",
531 			 descs_used, vq->vq.num_free);
532 		/* FIXME: for historical reasons, we force a notify here if
533 		 * there are outgoing parts to the buffer.  Presumably the
534 		 * host should service the ring ASAP. */
535 		if (out_sgs)
536 			vq->notify(&vq->vq);
537 		if (indirect)
538 			kfree(desc);
539 		END_USE(vq);
540 		return -ENOSPC;
541 	}
542 
543 	for (n = 0; n < out_sgs; n++) {
544 		for (sg = sgs[n]; sg; sg = sg_next(sg)) {
545 			dma_addr_t addr = vring_map_one_sg(vq, sg, DMA_TO_DEVICE);
546 			if (vring_mapping_error(vq, addr))
547 				goto unmap_release;
548 
549 			prev = i;
550 			/* Note that we trust indirect descriptor
551 			 * table since it use stream DMA mapping.
552 			 */
553 			i = virtqueue_add_desc_split(_vq, desc, i, addr, sg->length,
554 						     VRING_DESC_F_NEXT,
555 						     indirect);
556 		}
557 	}
558 	for (; n < (out_sgs + in_sgs); n++) {
559 		for (sg = sgs[n]; sg; sg = sg_next(sg)) {
560 			dma_addr_t addr = vring_map_one_sg(vq, sg, DMA_FROM_DEVICE);
561 			if (vring_mapping_error(vq, addr))
562 				goto unmap_release;
563 
564 			prev = i;
565 			/* Note that we trust indirect descriptor
566 			 * table since it use stream DMA mapping.
567 			 */
568 			i = virtqueue_add_desc_split(_vq, desc, i, addr,
569 						     sg->length,
570 						     VRING_DESC_F_NEXT |
571 						     VRING_DESC_F_WRITE,
572 						     indirect);
573 		}
574 	}
575 	/* Last one doesn't continue. */
576 	desc[prev].flags &= cpu_to_virtio16(_vq->vdev, ~VRING_DESC_F_NEXT);
577 	if (!indirect && vq->use_dma_api)
578 		vq->split.desc_extra[prev & (vq->split.vring.num - 1)].flags =
579 			~VRING_DESC_F_NEXT;
580 
581 	if (indirect) {
582 		/* Now that the indirect table is filled in, map it. */
583 		dma_addr_t addr = vring_map_single(
584 			vq, desc, total_sg * sizeof(struct vring_desc),
585 			DMA_TO_DEVICE);
586 		if (vring_mapping_error(vq, addr))
587 			goto unmap_release;
588 
589 		virtqueue_add_desc_split(_vq, vq->split.vring.desc,
590 					 head, addr,
591 					 total_sg * sizeof(struct vring_desc),
592 					 VRING_DESC_F_INDIRECT,
593 					 false);
594 	}
595 
596 	/* We're using some buffers from the free list. */
597 	vq->vq.num_free -= descs_used;
598 
599 	/* Update free pointer */
600 	if (indirect)
601 		vq->free_head = vq->split.desc_extra[head].next;
602 	else
603 		vq->free_head = i;
604 
605 	/* Store token and indirect buffer state. */
606 	vq->split.desc_state[head].data = data;
607 	if (indirect)
608 		vq->split.desc_state[head].indir_desc = desc;
609 	else
610 		vq->split.desc_state[head].indir_desc = ctx;
611 
612 	/* Put entry in available array (but don't update avail->idx until they
613 	 * do sync). */
614 	avail = vq->split.avail_idx_shadow & (vq->split.vring.num - 1);
615 	vq->split.vring.avail->ring[avail] = cpu_to_virtio16(_vq->vdev, head);
616 
617 	/* Descriptors and available array need to be set before we expose the
618 	 * new available array entries. */
619 	virtio_wmb(vq->weak_barriers);
620 	vq->split.avail_idx_shadow++;
621 	vq->split.vring.avail->idx = cpu_to_virtio16(_vq->vdev,
622 						vq->split.avail_idx_shadow);
623 	vq->num_added++;
624 
625 	pr_debug("Added buffer head %i to %p\n", head, vq);
626 	END_USE(vq);
627 
628 	/* This is very unlikely, but theoretically possible.  Kick
629 	 * just in case. */
630 	if (unlikely(vq->num_added == (1 << 16) - 1))
631 		virtqueue_kick(_vq);
632 
633 	return 0;
634 
635 unmap_release:
636 	err_idx = i;
637 
638 	if (indirect)
639 		i = 0;
640 	else
641 		i = head;
642 
643 	for (n = 0; n < total_sg; n++) {
644 		if (i == err_idx)
645 			break;
646 		if (indirect) {
647 			vring_unmap_one_split_indirect(vq, &desc[i]);
648 			i = virtio16_to_cpu(_vq->vdev, desc[i].next);
649 		} else
650 			i = vring_unmap_one_split(vq, i);
651 	}
652 
653 	if (indirect)
654 		kfree(desc);
655 
656 	END_USE(vq);
657 	return -ENOMEM;
658 }
659 
660 static bool virtqueue_kick_prepare_split(struct virtqueue *_vq)
661 {
662 	struct vring_virtqueue *vq = to_vvq(_vq);
663 	u16 new, old;
664 	bool needs_kick;
665 
666 	START_USE(vq);
667 	/* We need to expose available array entries before checking avail
668 	 * event. */
669 	virtio_mb(vq->weak_barriers);
670 
671 	old = vq->split.avail_idx_shadow - vq->num_added;
672 	new = vq->split.avail_idx_shadow;
673 	vq->num_added = 0;
674 
675 	LAST_ADD_TIME_CHECK(vq);
676 	LAST_ADD_TIME_INVALID(vq);
677 
678 	if (vq->event) {
679 		needs_kick = vring_need_event(virtio16_to_cpu(_vq->vdev,
680 					vring_avail_event(&vq->split.vring)),
681 					      new, old);
682 	} else {
683 		needs_kick = !(vq->split.vring.used->flags &
684 					cpu_to_virtio16(_vq->vdev,
685 						VRING_USED_F_NO_NOTIFY));
686 	}
687 	END_USE(vq);
688 	return needs_kick;
689 }
690 
691 static void detach_buf_split(struct vring_virtqueue *vq, unsigned int head,
692 			     void **ctx)
693 {
694 	unsigned int i, j;
695 	__virtio16 nextflag = cpu_to_virtio16(vq->vq.vdev, VRING_DESC_F_NEXT);
696 
697 	/* Clear data ptr. */
698 	vq->split.desc_state[head].data = NULL;
699 
700 	/* Put back on free list: unmap first-level descriptors and find end */
701 	i = head;
702 
703 	while (vq->split.vring.desc[i].flags & nextflag) {
704 		vring_unmap_one_split(vq, i);
705 		i = vq->split.desc_extra[i].next;
706 		vq->vq.num_free++;
707 	}
708 
709 	vring_unmap_one_split(vq, i);
710 	vq->split.desc_extra[i].next = vq->free_head;
711 	vq->free_head = head;
712 
713 	/* Plus final descriptor */
714 	vq->vq.num_free++;
715 
716 	if (vq->indirect) {
717 		struct vring_desc *indir_desc =
718 				vq->split.desc_state[head].indir_desc;
719 		u32 len;
720 
721 		/* Free the indirect table, if any, now that it's unmapped. */
722 		if (!indir_desc)
723 			return;
724 
725 		len = vq->split.desc_extra[head].len;
726 
727 		BUG_ON(!(vq->split.desc_extra[head].flags &
728 				VRING_DESC_F_INDIRECT));
729 		BUG_ON(len == 0 || len % sizeof(struct vring_desc));
730 
731 		for (j = 0; j < len / sizeof(struct vring_desc); j++)
732 			vring_unmap_one_split_indirect(vq, &indir_desc[j]);
733 
734 		kfree(indir_desc);
735 		vq->split.desc_state[head].indir_desc = NULL;
736 	} else if (ctx) {
737 		*ctx = vq->split.desc_state[head].indir_desc;
738 	}
739 }
740 
741 static inline bool more_used_split(const struct vring_virtqueue *vq)
742 {
743 	return vq->last_used_idx != virtio16_to_cpu(vq->vq.vdev,
744 			vq->split.vring.used->idx);
745 }
746 
747 static void *virtqueue_get_buf_ctx_split(struct virtqueue *_vq,
748 					 unsigned int *len,
749 					 void **ctx)
750 {
751 	struct vring_virtqueue *vq = to_vvq(_vq);
752 	void *ret;
753 	unsigned int i;
754 	u16 last_used;
755 
756 	START_USE(vq);
757 
758 	if (unlikely(vq->broken)) {
759 		END_USE(vq);
760 		return NULL;
761 	}
762 
763 	if (!more_used_split(vq)) {
764 		pr_debug("No more buffers in queue\n");
765 		END_USE(vq);
766 		return NULL;
767 	}
768 
769 	/* Only get used array entries after they have been exposed by host. */
770 	virtio_rmb(vq->weak_barriers);
771 
772 	last_used = (vq->last_used_idx & (vq->split.vring.num - 1));
773 	i = virtio32_to_cpu(_vq->vdev,
774 			vq->split.vring.used->ring[last_used].id);
775 	*len = virtio32_to_cpu(_vq->vdev,
776 			vq->split.vring.used->ring[last_used].len);
777 
778 	if (unlikely(i >= vq->split.vring.num)) {
779 		BAD_RING(vq, "id %u out of range\n", i);
780 		return NULL;
781 	}
782 	if (unlikely(!vq->split.desc_state[i].data)) {
783 		BAD_RING(vq, "id %u is not a head!\n", i);
784 		return NULL;
785 	}
786 
787 	/* detach_buf_split clears data, so grab it now. */
788 	ret = vq->split.desc_state[i].data;
789 	detach_buf_split(vq, i, ctx);
790 	vq->last_used_idx++;
791 	/* If we expect an interrupt for the next entry, tell host
792 	 * by writing event index and flush out the write before
793 	 * the read in the next get_buf call. */
794 	if (!(vq->split.avail_flags_shadow & VRING_AVAIL_F_NO_INTERRUPT))
795 		virtio_store_mb(vq->weak_barriers,
796 				&vring_used_event(&vq->split.vring),
797 				cpu_to_virtio16(_vq->vdev, vq->last_used_idx));
798 
799 	LAST_ADD_TIME_INVALID(vq);
800 
801 	END_USE(vq);
802 	return ret;
803 }
804 
805 static void virtqueue_disable_cb_split(struct virtqueue *_vq)
806 {
807 	struct vring_virtqueue *vq = to_vvq(_vq);
808 
809 	if (!(vq->split.avail_flags_shadow & VRING_AVAIL_F_NO_INTERRUPT)) {
810 		vq->split.avail_flags_shadow |= VRING_AVAIL_F_NO_INTERRUPT;
811 		if (vq->event)
812 			/* TODO: this is a hack. Figure out a cleaner value to write. */
813 			vring_used_event(&vq->split.vring) = 0x0;
814 		else
815 			vq->split.vring.avail->flags =
816 				cpu_to_virtio16(_vq->vdev,
817 						vq->split.avail_flags_shadow);
818 	}
819 }
820 
821 static unsigned virtqueue_enable_cb_prepare_split(struct virtqueue *_vq)
822 {
823 	struct vring_virtqueue *vq = to_vvq(_vq);
824 	u16 last_used_idx;
825 
826 	START_USE(vq);
827 
828 	/* We optimistically turn back on interrupts, then check if there was
829 	 * more to do. */
830 	/* Depending on the VIRTIO_RING_F_EVENT_IDX feature, we need to
831 	 * either clear the flags bit or point the event index at the next
832 	 * entry. Always do both to keep code simple. */
833 	if (vq->split.avail_flags_shadow & VRING_AVAIL_F_NO_INTERRUPT) {
834 		vq->split.avail_flags_shadow &= ~VRING_AVAIL_F_NO_INTERRUPT;
835 		if (!vq->event)
836 			vq->split.vring.avail->flags =
837 				cpu_to_virtio16(_vq->vdev,
838 						vq->split.avail_flags_shadow);
839 	}
840 	vring_used_event(&vq->split.vring) = cpu_to_virtio16(_vq->vdev,
841 			last_used_idx = vq->last_used_idx);
842 	END_USE(vq);
843 	return last_used_idx;
844 }
845 
846 static bool virtqueue_poll_split(struct virtqueue *_vq, unsigned last_used_idx)
847 {
848 	struct vring_virtqueue *vq = to_vvq(_vq);
849 
850 	return (u16)last_used_idx != virtio16_to_cpu(_vq->vdev,
851 			vq->split.vring.used->idx);
852 }
853 
854 static bool virtqueue_enable_cb_delayed_split(struct virtqueue *_vq)
855 {
856 	struct vring_virtqueue *vq = to_vvq(_vq);
857 	u16 bufs;
858 
859 	START_USE(vq);
860 
861 	/* We optimistically turn back on interrupts, then check if there was
862 	 * more to do. */
863 	/* Depending on the VIRTIO_RING_F_USED_EVENT_IDX feature, we need to
864 	 * either clear the flags bit or point the event index at the next
865 	 * entry. Always update the event index to keep code simple. */
866 	if (vq->split.avail_flags_shadow & VRING_AVAIL_F_NO_INTERRUPT) {
867 		vq->split.avail_flags_shadow &= ~VRING_AVAIL_F_NO_INTERRUPT;
868 		if (!vq->event)
869 			vq->split.vring.avail->flags =
870 				cpu_to_virtio16(_vq->vdev,
871 						vq->split.avail_flags_shadow);
872 	}
873 	/* TODO: tune this threshold */
874 	bufs = (u16)(vq->split.avail_idx_shadow - vq->last_used_idx) * 3 / 4;
875 
876 	virtio_store_mb(vq->weak_barriers,
877 			&vring_used_event(&vq->split.vring),
878 			cpu_to_virtio16(_vq->vdev, vq->last_used_idx + bufs));
879 
880 	if (unlikely((u16)(virtio16_to_cpu(_vq->vdev, vq->split.vring.used->idx)
881 					- vq->last_used_idx) > bufs)) {
882 		END_USE(vq);
883 		return false;
884 	}
885 
886 	END_USE(vq);
887 	return true;
888 }
889 
890 static void *virtqueue_detach_unused_buf_split(struct virtqueue *_vq)
891 {
892 	struct vring_virtqueue *vq = to_vvq(_vq);
893 	unsigned int i;
894 	void *buf;
895 
896 	START_USE(vq);
897 
898 	for (i = 0; i < vq->split.vring.num; i++) {
899 		if (!vq->split.desc_state[i].data)
900 			continue;
901 		/* detach_buf_split clears data, so grab it now. */
902 		buf = vq->split.desc_state[i].data;
903 		detach_buf_split(vq, i, NULL);
904 		vq->split.avail_idx_shadow--;
905 		vq->split.vring.avail->idx = cpu_to_virtio16(_vq->vdev,
906 				vq->split.avail_idx_shadow);
907 		END_USE(vq);
908 		return buf;
909 	}
910 	/* That should have freed everything. */
911 	BUG_ON(vq->vq.num_free != vq->split.vring.num);
912 
913 	END_USE(vq);
914 	return NULL;
915 }
916 
917 static struct virtqueue *vring_create_virtqueue_split(
918 	unsigned int index,
919 	unsigned int num,
920 	unsigned int vring_align,
921 	struct virtio_device *vdev,
922 	bool weak_barriers,
923 	bool may_reduce_num,
924 	bool context,
925 	bool (*notify)(struct virtqueue *),
926 	void (*callback)(struct virtqueue *),
927 	const char *name)
928 {
929 	struct virtqueue *vq;
930 	void *queue = NULL;
931 	dma_addr_t dma_addr;
932 	size_t queue_size_in_bytes;
933 	struct vring vring;
934 
935 	/* We assume num is a power of 2. */
936 	if (num & (num - 1)) {
937 		dev_warn(&vdev->dev, "Bad virtqueue length %u\n", num);
938 		return NULL;
939 	}
940 
941 	/* TODO: allocate each queue chunk individually */
942 	for (; num && vring_size(num, vring_align) > PAGE_SIZE; num /= 2) {
943 		queue = vring_alloc_queue(vdev, vring_size(num, vring_align),
944 					  &dma_addr,
945 					  GFP_KERNEL|__GFP_NOWARN|__GFP_ZERO);
946 		if (queue)
947 			break;
948 		if (!may_reduce_num)
949 			return NULL;
950 	}
951 
952 	if (!num)
953 		return NULL;
954 
955 	if (!queue) {
956 		/* Try to get a single page. You are my only hope! */
957 		queue = vring_alloc_queue(vdev, vring_size(num, vring_align),
958 					  &dma_addr, GFP_KERNEL|__GFP_ZERO);
959 	}
960 	if (!queue)
961 		return NULL;
962 
963 	queue_size_in_bytes = vring_size(num, vring_align);
964 	vring_init(&vring, num, queue, vring_align);
965 
966 	vq = __vring_new_virtqueue(index, vring, vdev, weak_barriers, context,
967 				   notify, callback, name);
968 	if (!vq) {
969 		vring_free_queue(vdev, queue_size_in_bytes, queue,
970 				 dma_addr);
971 		return NULL;
972 	}
973 
974 	to_vvq(vq)->split.queue_dma_addr = dma_addr;
975 	to_vvq(vq)->split.queue_size_in_bytes = queue_size_in_bytes;
976 	to_vvq(vq)->we_own_ring = true;
977 
978 	return vq;
979 }
980 
981 
982 /*
983  * Packed ring specific functions - *_packed().
984  */
985 
986 static void vring_unmap_state_packed(const struct vring_virtqueue *vq,
987 				     struct vring_desc_extra *state)
988 {
989 	u16 flags;
990 
991 	if (!vq->use_dma_api)
992 		return;
993 
994 	flags = state->flags;
995 
996 	if (flags & VRING_DESC_F_INDIRECT) {
997 		dma_unmap_single(vring_dma_dev(vq),
998 				 state->addr, state->len,
999 				 (flags & VRING_DESC_F_WRITE) ?
1000 				 DMA_FROM_DEVICE : DMA_TO_DEVICE);
1001 	} else {
1002 		dma_unmap_page(vring_dma_dev(vq),
1003 			       state->addr, state->len,
1004 			       (flags & VRING_DESC_F_WRITE) ?
1005 			       DMA_FROM_DEVICE : DMA_TO_DEVICE);
1006 	}
1007 }
1008 
1009 static void vring_unmap_desc_packed(const struct vring_virtqueue *vq,
1010 				   struct vring_packed_desc *desc)
1011 {
1012 	u16 flags;
1013 
1014 	if (!vq->use_dma_api)
1015 		return;
1016 
1017 	flags = le16_to_cpu(desc->flags);
1018 
1019 	if (flags & VRING_DESC_F_INDIRECT) {
1020 		dma_unmap_single(vring_dma_dev(vq),
1021 				 le64_to_cpu(desc->addr),
1022 				 le32_to_cpu(desc->len),
1023 				 (flags & VRING_DESC_F_WRITE) ?
1024 				 DMA_FROM_DEVICE : DMA_TO_DEVICE);
1025 	} else {
1026 		dma_unmap_page(vring_dma_dev(vq),
1027 			       le64_to_cpu(desc->addr),
1028 			       le32_to_cpu(desc->len),
1029 			       (flags & VRING_DESC_F_WRITE) ?
1030 			       DMA_FROM_DEVICE : DMA_TO_DEVICE);
1031 	}
1032 }
1033 
1034 static struct vring_packed_desc *alloc_indirect_packed(unsigned int total_sg,
1035 						       gfp_t gfp)
1036 {
1037 	struct vring_packed_desc *desc;
1038 
1039 	/*
1040 	 * We require lowmem mappings for the descriptors because
1041 	 * otherwise virt_to_phys will give us bogus addresses in the
1042 	 * virtqueue.
1043 	 */
1044 	gfp &= ~__GFP_HIGHMEM;
1045 
1046 	desc = kmalloc_array(total_sg, sizeof(struct vring_packed_desc), gfp);
1047 
1048 	return desc;
1049 }
1050 
1051 static int virtqueue_add_indirect_packed(struct vring_virtqueue *vq,
1052 				       struct scatterlist *sgs[],
1053 				       unsigned int total_sg,
1054 				       unsigned int out_sgs,
1055 				       unsigned int in_sgs,
1056 				       void *data,
1057 				       gfp_t gfp)
1058 {
1059 	struct vring_packed_desc *desc;
1060 	struct scatterlist *sg;
1061 	unsigned int i, n, err_idx;
1062 	u16 head, id;
1063 	dma_addr_t addr;
1064 
1065 	head = vq->packed.next_avail_idx;
1066 	desc = alloc_indirect_packed(total_sg, gfp);
1067 
1068 	if (unlikely(vq->vq.num_free < 1)) {
1069 		pr_debug("Can't add buf len 1 - avail = 0\n");
1070 		kfree(desc);
1071 		END_USE(vq);
1072 		return -ENOSPC;
1073 	}
1074 
1075 	i = 0;
1076 	id = vq->free_head;
1077 	BUG_ON(id == vq->packed.vring.num);
1078 
1079 	for (n = 0; n < out_sgs + in_sgs; n++) {
1080 		for (sg = sgs[n]; sg; sg = sg_next(sg)) {
1081 			addr = vring_map_one_sg(vq, sg, n < out_sgs ?
1082 					DMA_TO_DEVICE : DMA_FROM_DEVICE);
1083 			if (vring_mapping_error(vq, addr))
1084 				goto unmap_release;
1085 
1086 			desc[i].flags = cpu_to_le16(n < out_sgs ?
1087 						0 : VRING_DESC_F_WRITE);
1088 			desc[i].addr = cpu_to_le64(addr);
1089 			desc[i].len = cpu_to_le32(sg->length);
1090 			i++;
1091 		}
1092 	}
1093 
1094 	/* Now that the indirect table is filled in, map it. */
1095 	addr = vring_map_single(vq, desc,
1096 			total_sg * sizeof(struct vring_packed_desc),
1097 			DMA_TO_DEVICE);
1098 	if (vring_mapping_error(vq, addr))
1099 		goto unmap_release;
1100 
1101 	vq->packed.vring.desc[head].addr = cpu_to_le64(addr);
1102 	vq->packed.vring.desc[head].len = cpu_to_le32(total_sg *
1103 				sizeof(struct vring_packed_desc));
1104 	vq->packed.vring.desc[head].id = cpu_to_le16(id);
1105 
1106 	if (vq->use_dma_api) {
1107 		vq->packed.desc_extra[id].addr = addr;
1108 		vq->packed.desc_extra[id].len = total_sg *
1109 				sizeof(struct vring_packed_desc);
1110 		vq->packed.desc_extra[id].flags = VRING_DESC_F_INDIRECT |
1111 						  vq->packed.avail_used_flags;
1112 	}
1113 
1114 	/*
1115 	 * A driver MUST NOT make the first descriptor in the list
1116 	 * available before all subsequent descriptors comprising
1117 	 * the list are made available.
1118 	 */
1119 	virtio_wmb(vq->weak_barriers);
1120 	vq->packed.vring.desc[head].flags = cpu_to_le16(VRING_DESC_F_INDIRECT |
1121 						vq->packed.avail_used_flags);
1122 
1123 	/* We're using some buffers from the free list. */
1124 	vq->vq.num_free -= 1;
1125 
1126 	/* Update free pointer */
1127 	n = head + 1;
1128 	if (n >= vq->packed.vring.num) {
1129 		n = 0;
1130 		vq->packed.avail_wrap_counter ^= 1;
1131 		vq->packed.avail_used_flags ^=
1132 				1 << VRING_PACKED_DESC_F_AVAIL |
1133 				1 << VRING_PACKED_DESC_F_USED;
1134 	}
1135 	vq->packed.next_avail_idx = n;
1136 	vq->free_head = vq->packed.desc_extra[id].next;
1137 
1138 	/* Store token and indirect buffer state. */
1139 	vq->packed.desc_state[id].num = 1;
1140 	vq->packed.desc_state[id].data = data;
1141 	vq->packed.desc_state[id].indir_desc = desc;
1142 	vq->packed.desc_state[id].last = id;
1143 
1144 	vq->num_added += 1;
1145 
1146 	pr_debug("Added buffer head %i to %p\n", head, vq);
1147 	END_USE(vq);
1148 
1149 	return 0;
1150 
1151 unmap_release:
1152 	err_idx = i;
1153 
1154 	for (i = 0; i < err_idx; i++)
1155 		vring_unmap_desc_packed(vq, &desc[i]);
1156 
1157 	kfree(desc);
1158 
1159 	END_USE(vq);
1160 	return -ENOMEM;
1161 }
1162 
1163 static inline int virtqueue_add_packed(struct virtqueue *_vq,
1164 				       struct scatterlist *sgs[],
1165 				       unsigned int total_sg,
1166 				       unsigned int out_sgs,
1167 				       unsigned int in_sgs,
1168 				       void *data,
1169 				       void *ctx,
1170 				       gfp_t gfp)
1171 {
1172 	struct vring_virtqueue *vq = to_vvq(_vq);
1173 	struct vring_packed_desc *desc;
1174 	struct scatterlist *sg;
1175 	unsigned int i, n, c, descs_used, err_idx;
1176 	__le16 head_flags, flags;
1177 	u16 head, id, prev, curr, avail_used_flags;
1178 
1179 	START_USE(vq);
1180 
1181 	BUG_ON(data == NULL);
1182 	BUG_ON(ctx && vq->indirect);
1183 
1184 	if (unlikely(vq->broken)) {
1185 		END_USE(vq);
1186 		return -EIO;
1187 	}
1188 
1189 	LAST_ADD_TIME_UPDATE(vq);
1190 
1191 	BUG_ON(total_sg == 0);
1192 
1193 	if (virtqueue_use_indirect(_vq, total_sg))
1194 		return virtqueue_add_indirect_packed(vq, sgs, total_sg,
1195 				out_sgs, in_sgs, data, gfp);
1196 
1197 	head = vq->packed.next_avail_idx;
1198 	avail_used_flags = vq->packed.avail_used_flags;
1199 
1200 	WARN_ON_ONCE(total_sg > vq->packed.vring.num && !vq->indirect);
1201 
1202 	desc = vq->packed.vring.desc;
1203 	i = head;
1204 	descs_used = total_sg;
1205 
1206 	if (unlikely(vq->vq.num_free < descs_used)) {
1207 		pr_debug("Can't add buf len %i - avail = %i\n",
1208 			 descs_used, vq->vq.num_free);
1209 		END_USE(vq);
1210 		return -ENOSPC;
1211 	}
1212 
1213 	id = vq->free_head;
1214 	BUG_ON(id == vq->packed.vring.num);
1215 
1216 	curr = id;
1217 	c = 0;
1218 	for (n = 0; n < out_sgs + in_sgs; n++) {
1219 		for (sg = sgs[n]; sg; sg = sg_next(sg)) {
1220 			dma_addr_t addr = vring_map_one_sg(vq, sg, n < out_sgs ?
1221 					DMA_TO_DEVICE : DMA_FROM_DEVICE);
1222 			if (vring_mapping_error(vq, addr))
1223 				goto unmap_release;
1224 
1225 			flags = cpu_to_le16(vq->packed.avail_used_flags |
1226 				    (++c == total_sg ? 0 : VRING_DESC_F_NEXT) |
1227 				    (n < out_sgs ? 0 : VRING_DESC_F_WRITE));
1228 			if (i == head)
1229 				head_flags = flags;
1230 			else
1231 				desc[i].flags = flags;
1232 
1233 			desc[i].addr = cpu_to_le64(addr);
1234 			desc[i].len = cpu_to_le32(sg->length);
1235 			desc[i].id = cpu_to_le16(id);
1236 
1237 			if (unlikely(vq->use_dma_api)) {
1238 				vq->packed.desc_extra[curr].addr = addr;
1239 				vq->packed.desc_extra[curr].len = sg->length;
1240 				vq->packed.desc_extra[curr].flags =
1241 					le16_to_cpu(flags);
1242 			}
1243 			prev = curr;
1244 			curr = vq->packed.desc_extra[curr].next;
1245 
1246 			if ((unlikely(++i >= vq->packed.vring.num))) {
1247 				i = 0;
1248 				vq->packed.avail_used_flags ^=
1249 					1 << VRING_PACKED_DESC_F_AVAIL |
1250 					1 << VRING_PACKED_DESC_F_USED;
1251 			}
1252 		}
1253 	}
1254 
1255 	if (i < head)
1256 		vq->packed.avail_wrap_counter ^= 1;
1257 
1258 	/* We're using some buffers from the free list. */
1259 	vq->vq.num_free -= descs_used;
1260 
1261 	/* Update free pointer */
1262 	vq->packed.next_avail_idx = i;
1263 	vq->free_head = curr;
1264 
1265 	/* Store token. */
1266 	vq->packed.desc_state[id].num = descs_used;
1267 	vq->packed.desc_state[id].data = data;
1268 	vq->packed.desc_state[id].indir_desc = ctx;
1269 	vq->packed.desc_state[id].last = prev;
1270 
1271 	/*
1272 	 * A driver MUST NOT make the first descriptor in the list
1273 	 * available before all subsequent descriptors comprising
1274 	 * the list are made available.
1275 	 */
1276 	virtio_wmb(vq->weak_barriers);
1277 	vq->packed.vring.desc[head].flags = head_flags;
1278 	vq->num_added += descs_used;
1279 
1280 	pr_debug("Added buffer head %i to %p\n", head, vq);
1281 	END_USE(vq);
1282 
1283 	return 0;
1284 
1285 unmap_release:
1286 	err_idx = i;
1287 	i = head;
1288 	curr = vq->free_head;
1289 
1290 	vq->packed.avail_used_flags = avail_used_flags;
1291 
1292 	for (n = 0; n < total_sg; n++) {
1293 		if (i == err_idx)
1294 			break;
1295 		vring_unmap_state_packed(vq,
1296 					 &vq->packed.desc_extra[curr]);
1297 		curr = vq->packed.desc_extra[curr].next;
1298 		i++;
1299 		if (i >= vq->packed.vring.num)
1300 			i = 0;
1301 	}
1302 
1303 	END_USE(vq);
1304 	return -EIO;
1305 }
1306 
1307 static bool virtqueue_kick_prepare_packed(struct virtqueue *_vq)
1308 {
1309 	struct vring_virtqueue *vq = to_vvq(_vq);
1310 	u16 new, old, off_wrap, flags, wrap_counter, event_idx;
1311 	bool needs_kick;
1312 	union {
1313 		struct {
1314 			__le16 off_wrap;
1315 			__le16 flags;
1316 		};
1317 		u32 u32;
1318 	} snapshot;
1319 
1320 	START_USE(vq);
1321 
1322 	/*
1323 	 * We need to expose the new flags value before checking notification
1324 	 * suppressions.
1325 	 */
1326 	virtio_mb(vq->weak_barriers);
1327 
1328 	old = vq->packed.next_avail_idx - vq->num_added;
1329 	new = vq->packed.next_avail_idx;
1330 	vq->num_added = 0;
1331 
1332 	snapshot.u32 = *(u32 *)vq->packed.vring.device;
1333 	flags = le16_to_cpu(snapshot.flags);
1334 
1335 	LAST_ADD_TIME_CHECK(vq);
1336 	LAST_ADD_TIME_INVALID(vq);
1337 
1338 	if (flags != VRING_PACKED_EVENT_FLAG_DESC) {
1339 		needs_kick = (flags != VRING_PACKED_EVENT_FLAG_DISABLE);
1340 		goto out;
1341 	}
1342 
1343 	off_wrap = le16_to_cpu(snapshot.off_wrap);
1344 
1345 	wrap_counter = off_wrap >> VRING_PACKED_EVENT_F_WRAP_CTR;
1346 	event_idx = off_wrap & ~(1 << VRING_PACKED_EVENT_F_WRAP_CTR);
1347 	if (wrap_counter != vq->packed.avail_wrap_counter)
1348 		event_idx -= vq->packed.vring.num;
1349 
1350 	needs_kick = vring_need_event(event_idx, new, old);
1351 out:
1352 	END_USE(vq);
1353 	return needs_kick;
1354 }
1355 
1356 static void detach_buf_packed(struct vring_virtqueue *vq,
1357 			      unsigned int id, void **ctx)
1358 {
1359 	struct vring_desc_state_packed *state = NULL;
1360 	struct vring_packed_desc *desc;
1361 	unsigned int i, curr;
1362 
1363 	state = &vq->packed.desc_state[id];
1364 
1365 	/* Clear data ptr. */
1366 	state->data = NULL;
1367 
1368 	vq->packed.desc_extra[state->last].next = vq->free_head;
1369 	vq->free_head = id;
1370 	vq->vq.num_free += state->num;
1371 
1372 	if (unlikely(vq->use_dma_api)) {
1373 		curr = id;
1374 		for (i = 0; i < state->num; i++) {
1375 			vring_unmap_state_packed(vq,
1376 				&vq->packed.desc_extra[curr]);
1377 			curr = vq->packed.desc_extra[curr].next;
1378 		}
1379 	}
1380 
1381 	if (vq->indirect) {
1382 		u32 len;
1383 
1384 		/* Free the indirect table, if any, now that it's unmapped. */
1385 		desc = state->indir_desc;
1386 		if (!desc)
1387 			return;
1388 
1389 		if (vq->use_dma_api) {
1390 			len = vq->packed.desc_extra[id].len;
1391 			for (i = 0; i < len / sizeof(struct vring_packed_desc);
1392 					i++)
1393 				vring_unmap_desc_packed(vq, &desc[i]);
1394 		}
1395 		kfree(desc);
1396 		state->indir_desc = NULL;
1397 	} else if (ctx) {
1398 		*ctx = state->indir_desc;
1399 	}
1400 }
1401 
1402 static inline bool is_used_desc_packed(const struct vring_virtqueue *vq,
1403 				       u16 idx, bool used_wrap_counter)
1404 {
1405 	bool avail, used;
1406 	u16 flags;
1407 
1408 	flags = le16_to_cpu(vq->packed.vring.desc[idx].flags);
1409 	avail = !!(flags & (1 << VRING_PACKED_DESC_F_AVAIL));
1410 	used = !!(flags & (1 << VRING_PACKED_DESC_F_USED));
1411 
1412 	return avail == used && used == used_wrap_counter;
1413 }
1414 
1415 static inline bool more_used_packed(const struct vring_virtqueue *vq)
1416 {
1417 	return is_used_desc_packed(vq, vq->last_used_idx,
1418 			vq->packed.used_wrap_counter);
1419 }
1420 
1421 static void *virtqueue_get_buf_ctx_packed(struct virtqueue *_vq,
1422 					  unsigned int *len,
1423 					  void **ctx)
1424 {
1425 	struct vring_virtqueue *vq = to_vvq(_vq);
1426 	u16 last_used, id;
1427 	void *ret;
1428 
1429 	START_USE(vq);
1430 
1431 	if (unlikely(vq->broken)) {
1432 		END_USE(vq);
1433 		return NULL;
1434 	}
1435 
1436 	if (!more_used_packed(vq)) {
1437 		pr_debug("No more buffers in queue\n");
1438 		END_USE(vq);
1439 		return NULL;
1440 	}
1441 
1442 	/* Only get used elements after they have been exposed by host. */
1443 	virtio_rmb(vq->weak_barriers);
1444 
1445 	last_used = vq->last_used_idx;
1446 	id = le16_to_cpu(vq->packed.vring.desc[last_used].id);
1447 	*len = le32_to_cpu(vq->packed.vring.desc[last_used].len);
1448 
1449 	if (unlikely(id >= vq->packed.vring.num)) {
1450 		BAD_RING(vq, "id %u out of range\n", id);
1451 		return NULL;
1452 	}
1453 	if (unlikely(!vq->packed.desc_state[id].data)) {
1454 		BAD_RING(vq, "id %u is not a head!\n", id);
1455 		return NULL;
1456 	}
1457 
1458 	/* detach_buf_packed clears data, so grab it now. */
1459 	ret = vq->packed.desc_state[id].data;
1460 	detach_buf_packed(vq, id, ctx);
1461 
1462 	vq->last_used_idx += vq->packed.desc_state[id].num;
1463 	if (unlikely(vq->last_used_idx >= vq->packed.vring.num)) {
1464 		vq->last_used_idx -= vq->packed.vring.num;
1465 		vq->packed.used_wrap_counter ^= 1;
1466 	}
1467 
1468 	/*
1469 	 * If we expect an interrupt for the next entry, tell host
1470 	 * by writing event index and flush out the write before
1471 	 * the read in the next get_buf call.
1472 	 */
1473 	if (vq->packed.event_flags_shadow == VRING_PACKED_EVENT_FLAG_DESC)
1474 		virtio_store_mb(vq->weak_barriers,
1475 				&vq->packed.vring.driver->off_wrap,
1476 				cpu_to_le16(vq->last_used_idx |
1477 					(vq->packed.used_wrap_counter <<
1478 					 VRING_PACKED_EVENT_F_WRAP_CTR)));
1479 
1480 	LAST_ADD_TIME_INVALID(vq);
1481 
1482 	END_USE(vq);
1483 	return ret;
1484 }
1485 
1486 static void virtqueue_disable_cb_packed(struct virtqueue *_vq)
1487 {
1488 	struct vring_virtqueue *vq = to_vvq(_vq);
1489 
1490 	if (vq->packed.event_flags_shadow != VRING_PACKED_EVENT_FLAG_DISABLE) {
1491 		vq->packed.event_flags_shadow = VRING_PACKED_EVENT_FLAG_DISABLE;
1492 		vq->packed.vring.driver->flags =
1493 			cpu_to_le16(vq->packed.event_flags_shadow);
1494 	}
1495 }
1496 
1497 static unsigned virtqueue_enable_cb_prepare_packed(struct virtqueue *_vq)
1498 {
1499 	struct vring_virtqueue *vq = to_vvq(_vq);
1500 
1501 	START_USE(vq);
1502 
1503 	/*
1504 	 * We optimistically turn back on interrupts, then check if there was
1505 	 * more to do.
1506 	 */
1507 
1508 	if (vq->event) {
1509 		vq->packed.vring.driver->off_wrap =
1510 			cpu_to_le16(vq->last_used_idx |
1511 				(vq->packed.used_wrap_counter <<
1512 				 VRING_PACKED_EVENT_F_WRAP_CTR));
1513 		/*
1514 		 * We need to update event offset and event wrap
1515 		 * counter first before updating event flags.
1516 		 */
1517 		virtio_wmb(vq->weak_barriers);
1518 	}
1519 
1520 	if (vq->packed.event_flags_shadow == VRING_PACKED_EVENT_FLAG_DISABLE) {
1521 		vq->packed.event_flags_shadow = vq->event ?
1522 				VRING_PACKED_EVENT_FLAG_DESC :
1523 				VRING_PACKED_EVENT_FLAG_ENABLE;
1524 		vq->packed.vring.driver->flags =
1525 				cpu_to_le16(vq->packed.event_flags_shadow);
1526 	}
1527 
1528 	END_USE(vq);
1529 	return vq->last_used_idx | ((u16)vq->packed.used_wrap_counter <<
1530 			VRING_PACKED_EVENT_F_WRAP_CTR);
1531 }
1532 
1533 static bool virtqueue_poll_packed(struct virtqueue *_vq, u16 off_wrap)
1534 {
1535 	struct vring_virtqueue *vq = to_vvq(_vq);
1536 	bool wrap_counter;
1537 	u16 used_idx;
1538 
1539 	wrap_counter = off_wrap >> VRING_PACKED_EVENT_F_WRAP_CTR;
1540 	used_idx = off_wrap & ~(1 << VRING_PACKED_EVENT_F_WRAP_CTR);
1541 
1542 	return is_used_desc_packed(vq, used_idx, wrap_counter);
1543 }
1544 
1545 static bool virtqueue_enable_cb_delayed_packed(struct virtqueue *_vq)
1546 {
1547 	struct vring_virtqueue *vq = to_vvq(_vq);
1548 	u16 used_idx, wrap_counter;
1549 	u16 bufs;
1550 
1551 	START_USE(vq);
1552 
1553 	/*
1554 	 * We optimistically turn back on interrupts, then check if there was
1555 	 * more to do.
1556 	 */
1557 
1558 	if (vq->event) {
1559 		/* TODO: tune this threshold */
1560 		bufs = (vq->packed.vring.num - vq->vq.num_free) * 3 / 4;
1561 		wrap_counter = vq->packed.used_wrap_counter;
1562 
1563 		used_idx = vq->last_used_idx + bufs;
1564 		if (used_idx >= vq->packed.vring.num) {
1565 			used_idx -= vq->packed.vring.num;
1566 			wrap_counter ^= 1;
1567 		}
1568 
1569 		vq->packed.vring.driver->off_wrap = cpu_to_le16(used_idx |
1570 			(wrap_counter << VRING_PACKED_EVENT_F_WRAP_CTR));
1571 
1572 		/*
1573 		 * We need to update event offset and event wrap
1574 		 * counter first before updating event flags.
1575 		 */
1576 		virtio_wmb(vq->weak_barriers);
1577 	}
1578 
1579 	if (vq->packed.event_flags_shadow == VRING_PACKED_EVENT_FLAG_DISABLE) {
1580 		vq->packed.event_flags_shadow = vq->event ?
1581 				VRING_PACKED_EVENT_FLAG_DESC :
1582 				VRING_PACKED_EVENT_FLAG_ENABLE;
1583 		vq->packed.vring.driver->flags =
1584 				cpu_to_le16(vq->packed.event_flags_shadow);
1585 	}
1586 
1587 	/*
1588 	 * We need to update event suppression structure first
1589 	 * before re-checking for more used buffers.
1590 	 */
1591 	virtio_mb(vq->weak_barriers);
1592 
1593 	if (is_used_desc_packed(vq,
1594 				vq->last_used_idx,
1595 				vq->packed.used_wrap_counter)) {
1596 		END_USE(vq);
1597 		return false;
1598 	}
1599 
1600 	END_USE(vq);
1601 	return true;
1602 }
1603 
1604 static void *virtqueue_detach_unused_buf_packed(struct virtqueue *_vq)
1605 {
1606 	struct vring_virtqueue *vq = to_vvq(_vq);
1607 	unsigned int i;
1608 	void *buf;
1609 
1610 	START_USE(vq);
1611 
1612 	for (i = 0; i < vq->packed.vring.num; i++) {
1613 		if (!vq->packed.desc_state[i].data)
1614 			continue;
1615 		/* detach_buf clears data, so grab it now. */
1616 		buf = vq->packed.desc_state[i].data;
1617 		detach_buf_packed(vq, i, NULL);
1618 		END_USE(vq);
1619 		return buf;
1620 	}
1621 	/* That should have freed everything. */
1622 	BUG_ON(vq->vq.num_free != vq->packed.vring.num);
1623 
1624 	END_USE(vq);
1625 	return NULL;
1626 }
1627 
1628 static struct vring_desc_extra *vring_alloc_desc_extra(struct vring_virtqueue *vq,
1629 						       unsigned int num)
1630 {
1631 	struct vring_desc_extra *desc_extra;
1632 	unsigned int i;
1633 
1634 	desc_extra = kmalloc_array(num, sizeof(struct vring_desc_extra),
1635 				   GFP_KERNEL);
1636 	if (!desc_extra)
1637 		return NULL;
1638 
1639 	memset(desc_extra, 0, num * sizeof(struct vring_desc_extra));
1640 
1641 	for (i = 0; i < num - 1; i++)
1642 		desc_extra[i].next = i + 1;
1643 
1644 	return desc_extra;
1645 }
1646 
1647 static struct virtqueue *vring_create_virtqueue_packed(
1648 	unsigned int index,
1649 	unsigned int num,
1650 	unsigned int vring_align,
1651 	struct virtio_device *vdev,
1652 	bool weak_barriers,
1653 	bool may_reduce_num,
1654 	bool context,
1655 	bool (*notify)(struct virtqueue *),
1656 	void (*callback)(struct virtqueue *),
1657 	const char *name)
1658 {
1659 	struct vring_virtqueue *vq;
1660 	struct vring_packed_desc *ring;
1661 	struct vring_packed_desc_event *driver, *device;
1662 	dma_addr_t ring_dma_addr, driver_event_dma_addr, device_event_dma_addr;
1663 	size_t ring_size_in_bytes, event_size_in_bytes;
1664 
1665 	ring_size_in_bytes = num * sizeof(struct vring_packed_desc);
1666 
1667 	ring = vring_alloc_queue(vdev, ring_size_in_bytes,
1668 				 &ring_dma_addr,
1669 				 GFP_KERNEL|__GFP_NOWARN|__GFP_ZERO);
1670 	if (!ring)
1671 		goto err_ring;
1672 
1673 	event_size_in_bytes = sizeof(struct vring_packed_desc_event);
1674 
1675 	driver = vring_alloc_queue(vdev, event_size_in_bytes,
1676 				   &driver_event_dma_addr,
1677 				   GFP_KERNEL|__GFP_NOWARN|__GFP_ZERO);
1678 	if (!driver)
1679 		goto err_driver;
1680 
1681 	device = vring_alloc_queue(vdev, event_size_in_bytes,
1682 				   &device_event_dma_addr,
1683 				   GFP_KERNEL|__GFP_NOWARN|__GFP_ZERO);
1684 	if (!device)
1685 		goto err_device;
1686 
1687 	vq = kmalloc(sizeof(*vq), GFP_KERNEL);
1688 	if (!vq)
1689 		goto err_vq;
1690 
1691 	vq->vq.callback = callback;
1692 	vq->vq.vdev = vdev;
1693 	vq->vq.name = name;
1694 	vq->vq.num_free = num;
1695 	vq->vq.index = index;
1696 	vq->we_own_ring = true;
1697 	vq->notify = notify;
1698 	vq->weak_barriers = weak_barriers;
1699 	vq->broken = false;
1700 	vq->last_used_idx = 0;
1701 	vq->event_triggered = false;
1702 	vq->num_added = 0;
1703 	vq->packed_ring = true;
1704 	vq->use_dma_api = vring_use_dma_api(vdev);
1705 #ifdef DEBUG
1706 	vq->in_use = false;
1707 	vq->last_add_time_valid = false;
1708 #endif
1709 
1710 	vq->indirect = virtio_has_feature(vdev, VIRTIO_RING_F_INDIRECT_DESC) &&
1711 		!context;
1712 	vq->event = virtio_has_feature(vdev, VIRTIO_RING_F_EVENT_IDX);
1713 
1714 	if (virtio_has_feature(vdev, VIRTIO_F_ORDER_PLATFORM))
1715 		vq->weak_barriers = false;
1716 
1717 	vq->packed.ring_dma_addr = ring_dma_addr;
1718 	vq->packed.driver_event_dma_addr = driver_event_dma_addr;
1719 	vq->packed.device_event_dma_addr = device_event_dma_addr;
1720 
1721 	vq->packed.ring_size_in_bytes = ring_size_in_bytes;
1722 	vq->packed.event_size_in_bytes = event_size_in_bytes;
1723 
1724 	vq->packed.vring.num = num;
1725 	vq->packed.vring.desc = ring;
1726 	vq->packed.vring.driver = driver;
1727 	vq->packed.vring.device = device;
1728 
1729 	vq->packed.next_avail_idx = 0;
1730 	vq->packed.avail_wrap_counter = 1;
1731 	vq->packed.used_wrap_counter = 1;
1732 	vq->packed.event_flags_shadow = 0;
1733 	vq->packed.avail_used_flags = 1 << VRING_PACKED_DESC_F_AVAIL;
1734 
1735 	vq->packed.desc_state = kmalloc_array(num,
1736 			sizeof(struct vring_desc_state_packed),
1737 			GFP_KERNEL);
1738 	if (!vq->packed.desc_state)
1739 		goto err_desc_state;
1740 
1741 	memset(vq->packed.desc_state, 0,
1742 		num * sizeof(struct vring_desc_state_packed));
1743 
1744 	/* Put everything in free lists. */
1745 	vq->free_head = 0;
1746 
1747 	vq->packed.desc_extra = vring_alloc_desc_extra(vq, num);
1748 	if (!vq->packed.desc_extra)
1749 		goto err_desc_extra;
1750 
1751 	/* No callback?  Tell other side not to bother us. */
1752 	if (!callback) {
1753 		vq->packed.event_flags_shadow = VRING_PACKED_EVENT_FLAG_DISABLE;
1754 		vq->packed.vring.driver->flags =
1755 			cpu_to_le16(vq->packed.event_flags_shadow);
1756 	}
1757 
1758 	list_add_tail(&vq->vq.list, &vdev->vqs);
1759 	return &vq->vq;
1760 
1761 err_desc_extra:
1762 	kfree(vq->packed.desc_state);
1763 err_desc_state:
1764 	kfree(vq);
1765 err_vq:
1766 	vring_free_queue(vdev, event_size_in_bytes, device, device_event_dma_addr);
1767 err_device:
1768 	vring_free_queue(vdev, event_size_in_bytes, driver, driver_event_dma_addr);
1769 err_driver:
1770 	vring_free_queue(vdev, ring_size_in_bytes, ring, ring_dma_addr);
1771 err_ring:
1772 	return NULL;
1773 }
1774 
1775 
1776 /*
1777  * Generic functions and exported symbols.
1778  */
1779 
1780 static inline int virtqueue_add(struct virtqueue *_vq,
1781 				struct scatterlist *sgs[],
1782 				unsigned int total_sg,
1783 				unsigned int out_sgs,
1784 				unsigned int in_sgs,
1785 				void *data,
1786 				void *ctx,
1787 				gfp_t gfp)
1788 {
1789 	struct vring_virtqueue *vq = to_vvq(_vq);
1790 
1791 	return vq->packed_ring ? virtqueue_add_packed(_vq, sgs, total_sg,
1792 					out_sgs, in_sgs, data, ctx, gfp) :
1793 				 virtqueue_add_split(_vq, sgs, total_sg,
1794 					out_sgs, in_sgs, data, ctx, gfp);
1795 }
1796 
1797 /**
1798  * virtqueue_add_sgs - expose buffers to other end
1799  * @_vq: the struct virtqueue we're talking about.
1800  * @sgs: array of terminated scatterlists.
1801  * @out_sgs: the number of scatterlists readable by other side
1802  * @in_sgs: the number of scatterlists which are writable (after readable ones)
1803  * @data: the token identifying the buffer.
1804  * @gfp: how to do memory allocations (if necessary).
1805  *
1806  * Caller must ensure we don't call this with other virtqueue operations
1807  * at the same time (except where noted).
1808  *
1809  * Returns zero or a negative error (ie. ENOSPC, ENOMEM, EIO).
1810  */
1811 int virtqueue_add_sgs(struct virtqueue *_vq,
1812 		      struct scatterlist *sgs[],
1813 		      unsigned int out_sgs,
1814 		      unsigned int in_sgs,
1815 		      void *data,
1816 		      gfp_t gfp)
1817 {
1818 	unsigned int i, total_sg = 0;
1819 
1820 	/* Count them first. */
1821 	for (i = 0; i < out_sgs + in_sgs; i++) {
1822 		struct scatterlist *sg;
1823 
1824 		for (sg = sgs[i]; sg; sg = sg_next(sg))
1825 			total_sg++;
1826 	}
1827 	return virtqueue_add(_vq, sgs, total_sg, out_sgs, in_sgs,
1828 			     data, NULL, gfp);
1829 }
1830 EXPORT_SYMBOL_GPL(virtqueue_add_sgs);
1831 
1832 /**
1833  * virtqueue_add_outbuf - expose output buffers to other end
1834  * @vq: the struct virtqueue we're talking about.
1835  * @sg: scatterlist (must be well-formed and terminated!)
1836  * @num: the number of entries in @sg readable by other side
1837  * @data: the token identifying the buffer.
1838  * @gfp: how to do memory allocations (if necessary).
1839  *
1840  * Caller must ensure we don't call this with other virtqueue operations
1841  * at the same time (except where noted).
1842  *
1843  * Returns zero or a negative error (ie. ENOSPC, ENOMEM, EIO).
1844  */
1845 int virtqueue_add_outbuf(struct virtqueue *vq,
1846 			 struct scatterlist *sg, unsigned int num,
1847 			 void *data,
1848 			 gfp_t gfp)
1849 {
1850 	return virtqueue_add(vq, &sg, num, 1, 0, data, NULL, gfp);
1851 }
1852 EXPORT_SYMBOL_GPL(virtqueue_add_outbuf);
1853 
1854 /**
1855  * virtqueue_add_inbuf - expose input buffers to other end
1856  * @vq: the struct virtqueue we're talking about.
1857  * @sg: scatterlist (must be well-formed and terminated!)
1858  * @num: the number of entries in @sg writable by other side
1859  * @data: the token identifying the buffer.
1860  * @gfp: how to do memory allocations (if necessary).
1861  *
1862  * Caller must ensure we don't call this with other virtqueue operations
1863  * at the same time (except where noted).
1864  *
1865  * Returns zero or a negative error (ie. ENOSPC, ENOMEM, EIO).
1866  */
1867 int virtqueue_add_inbuf(struct virtqueue *vq,
1868 			struct scatterlist *sg, unsigned int num,
1869 			void *data,
1870 			gfp_t gfp)
1871 {
1872 	return virtqueue_add(vq, &sg, num, 0, 1, data, NULL, gfp);
1873 }
1874 EXPORT_SYMBOL_GPL(virtqueue_add_inbuf);
1875 
1876 /**
1877  * virtqueue_add_inbuf_ctx - expose input buffers to other end
1878  * @vq: the struct virtqueue we're talking about.
1879  * @sg: scatterlist (must be well-formed and terminated!)
1880  * @num: the number of entries in @sg writable by other side
1881  * @data: the token identifying the buffer.
1882  * @ctx: extra context for the token
1883  * @gfp: how to do memory allocations (if necessary).
1884  *
1885  * Caller must ensure we don't call this with other virtqueue operations
1886  * at the same time (except where noted).
1887  *
1888  * Returns zero or a negative error (ie. ENOSPC, ENOMEM, EIO).
1889  */
1890 int virtqueue_add_inbuf_ctx(struct virtqueue *vq,
1891 			struct scatterlist *sg, unsigned int num,
1892 			void *data,
1893 			void *ctx,
1894 			gfp_t gfp)
1895 {
1896 	return virtqueue_add(vq, &sg, num, 0, 1, data, ctx, gfp);
1897 }
1898 EXPORT_SYMBOL_GPL(virtqueue_add_inbuf_ctx);
1899 
1900 /**
1901  * virtqueue_kick_prepare - first half of split virtqueue_kick call.
1902  * @_vq: the struct virtqueue
1903  *
1904  * Instead of virtqueue_kick(), you can do:
1905  *	if (virtqueue_kick_prepare(vq))
1906  *		virtqueue_notify(vq);
1907  *
1908  * This is sometimes useful because the virtqueue_kick_prepare() needs
1909  * to be serialized, but the actual virtqueue_notify() call does not.
1910  */
1911 bool virtqueue_kick_prepare(struct virtqueue *_vq)
1912 {
1913 	struct vring_virtqueue *vq = to_vvq(_vq);
1914 
1915 	return vq->packed_ring ? virtqueue_kick_prepare_packed(_vq) :
1916 				 virtqueue_kick_prepare_split(_vq);
1917 }
1918 EXPORT_SYMBOL_GPL(virtqueue_kick_prepare);
1919 
1920 /**
1921  * virtqueue_notify - second half of split virtqueue_kick call.
1922  * @_vq: the struct virtqueue
1923  *
1924  * This does not need to be serialized.
1925  *
1926  * Returns false if host notify failed or queue is broken, otherwise true.
1927  */
1928 bool virtqueue_notify(struct virtqueue *_vq)
1929 {
1930 	struct vring_virtqueue *vq = to_vvq(_vq);
1931 
1932 	if (unlikely(vq->broken))
1933 		return false;
1934 
1935 	/* Prod other side to tell it about changes. */
1936 	if (!vq->notify(_vq)) {
1937 		vq->broken = true;
1938 		return false;
1939 	}
1940 	return true;
1941 }
1942 EXPORT_SYMBOL_GPL(virtqueue_notify);
1943 
1944 /**
1945  * virtqueue_kick - update after add_buf
1946  * @vq: the struct virtqueue
1947  *
1948  * After one or more virtqueue_add_* calls, invoke this to kick
1949  * the other side.
1950  *
1951  * Caller must ensure we don't call this with other virtqueue
1952  * operations at the same time (except where noted).
1953  *
1954  * Returns false if kick failed, otherwise true.
1955  */
1956 bool virtqueue_kick(struct virtqueue *vq)
1957 {
1958 	if (virtqueue_kick_prepare(vq))
1959 		return virtqueue_notify(vq);
1960 	return true;
1961 }
1962 EXPORT_SYMBOL_GPL(virtqueue_kick);
1963 
1964 /**
1965  * virtqueue_get_buf_ctx - get the next used buffer
1966  * @_vq: the struct virtqueue we're talking about.
1967  * @len: the length written into the buffer
1968  * @ctx: extra context for the token
1969  *
1970  * If the device wrote data into the buffer, @len will be set to the
1971  * amount written.  This means you don't need to clear the buffer
1972  * beforehand to ensure there's no data leakage in the case of short
1973  * writes.
1974  *
1975  * Caller must ensure we don't call this with other virtqueue
1976  * operations at the same time (except where noted).
1977  *
1978  * Returns NULL if there are no used buffers, or the "data" token
1979  * handed to virtqueue_add_*().
1980  */
1981 void *virtqueue_get_buf_ctx(struct virtqueue *_vq, unsigned int *len,
1982 			    void **ctx)
1983 {
1984 	struct vring_virtqueue *vq = to_vvq(_vq);
1985 
1986 	return vq->packed_ring ? virtqueue_get_buf_ctx_packed(_vq, len, ctx) :
1987 				 virtqueue_get_buf_ctx_split(_vq, len, ctx);
1988 }
1989 EXPORT_SYMBOL_GPL(virtqueue_get_buf_ctx);
1990 
1991 void *virtqueue_get_buf(struct virtqueue *_vq, unsigned int *len)
1992 {
1993 	return virtqueue_get_buf_ctx(_vq, len, NULL);
1994 }
1995 EXPORT_SYMBOL_GPL(virtqueue_get_buf);
1996 /**
1997  * virtqueue_disable_cb - disable callbacks
1998  * @_vq: the struct virtqueue we're talking about.
1999  *
2000  * Note that this is not necessarily synchronous, hence unreliable and only
2001  * useful as an optimization.
2002  *
2003  * Unlike other operations, this need not be serialized.
2004  */
2005 void virtqueue_disable_cb(struct virtqueue *_vq)
2006 {
2007 	struct vring_virtqueue *vq = to_vvq(_vq);
2008 
2009 	/* If device triggered an event already it won't trigger one again:
2010 	 * no need to disable.
2011 	 */
2012 	if (vq->event_triggered)
2013 		return;
2014 
2015 	if (vq->packed_ring)
2016 		virtqueue_disable_cb_packed(_vq);
2017 	else
2018 		virtqueue_disable_cb_split(_vq);
2019 }
2020 EXPORT_SYMBOL_GPL(virtqueue_disable_cb);
2021 
2022 /**
2023  * virtqueue_enable_cb_prepare - restart callbacks after disable_cb
2024  * @_vq: the struct virtqueue we're talking about.
2025  *
2026  * This re-enables callbacks; it returns current queue state
2027  * in an opaque unsigned value. This value should be later tested by
2028  * virtqueue_poll, to detect a possible race between the driver checking for
2029  * more work, and enabling callbacks.
2030  *
2031  * Caller must ensure we don't call this with other virtqueue
2032  * operations at the same time (except where noted).
2033  */
2034 unsigned virtqueue_enable_cb_prepare(struct virtqueue *_vq)
2035 {
2036 	struct vring_virtqueue *vq = to_vvq(_vq);
2037 
2038 	if (vq->event_triggered)
2039 		vq->event_triggered = false;
2040 
2041 	return vq->packed_ring ? virtqueue_enable_cb_prepare_packed(_vq) :
2042 				 virtqueue_enable_cb_prepare_split(_vq);
2043 }
2044 EXPORT_SYMBOL_GPL(virtqueue_enable_cb_prepare);
2045 
2046 /**
2047  * virtqueue_poll - query pending used buffers
2048  * @_vq: the struct virtqueue we're talking about.
2049  * @last_used_idx: virtqueue state (from call to virtqueue_enable_cb_prepare).
2050  *
2051  * Returns "true" if there are pending used buffers in the queue.
2052  *
2053  * This does not need to be serialized.
2054  */
2055 bool virtqueue_poll(struct virtqueue *_vq, unsigned last_used_idx)
2056 {
2057 	struct vring_virtqueue *vq = to_vvq(_vq);
2058 
2059 	if (unlikely(vq->broken))
2060 		return false;
2061 
2062 	virtio_mb(vq->weak_barriers);
2063 	return vq->packed_ring ? virtqueue_poll_packed(_vq, last_used_idx) :
2064 				 virtqueue_poll_split(_vq, last_used_idx);
2065 }
2066 EXPORT_SYMBOL_GPL(virtqueue_poll);
2067 
2068 /**
2069  * virtqueue_enable_cb - restart callbacks after disable_cb.
2070  * @_vq: the struct virtqueue we're talking about.
2071  *
2072  * This re-enables callbacks; it returns "false" if there are pending
2073  * buffers in the queue, to detect a possible race between the driver
2074  * checking for more work, and enabling callbacks.
2075  *
2076  * Caller must ensure we don't call this with other virtqueue
2077  * operations at the same time (except where noted).
2078  */
2079 bool virtqueue_enable_cb(struct virtqueue *_vq)
2080 {
2081 	unsigned last_used_idx = virtqueue_enable_cb_prepare(_vq);
2082 
2083 	return !virtqueue_poll(_vq, last_used_idx);
2084 }
2085 EXPORT_SYMBOL_GPL(virtqueue_enable_cb);
2086 
2087 /**
2088  * virtqueue_enable_cb_delayed - restart callbacks after disable_cb.
2089  * @_vq: the struct virtqueue we're talking about.
2090  *
2091  * This re-enables callbacks but hints to the other side to delay
2092  * interrupts until most of the available buffers have been processed;
2093  * it returns "false" if there are many pending buffers in the queue,
2094  * to detect a possible race between the driver checking for more work,
2095  * and enabling callbacks.
2096  *
2097  * Caller must ensure we don't call this with other virtqueue
2098  * operations at the same time (except where noted).
2099  */
2100 bool virtqueue_enable_cb_delayed(struct virtqueue *_vq)
2101 {
2102 	struct vring_virtqueue *vq = to_vvq(_vq);
2103 
2104 	if (vq->event_triggered)
2105 		vq->event_triggered = false;
2106 
2107 	return vq->packed_ring ? virtqueue_enable_cb_delayed_packed(_vq) :
2108 				 virtqueue_enable_cb_delayed_split(_vq);
2109 }
2110 EXPORT_SYMBOL_GPL(virtqueue_enable_cb_delayed);
2111 
2112 /**
2113  * virtqueue_detach_unused_buf - detach first unused buffer
2114  * @_vq: the struct virtqueue we're talking about.
2115  *
2116  * Returns NULL or the "data" token handed to virtqueue_add_*().
2117  * This is not valid on an active queue; it is useful only for device
2118  * shutdown.
2119  */
2120 void *virtqueue_detach_unused_buf(struct virtqueue *_vq)
2121 {
2122 	struct vring_virtqueue *vq = to_vvq(_vq);
2123 
2124 	return vq->packed_ring ? virtqueue_detach_unused_buf_packed(_vq) :
2125 				 virtqueue_detach_unused_buf_split(_vq);
2126 }
2127 EXPORT_SYMBOL_GPL(virtqueue_detach_unused_buf);
2128 
2129 static inline bool more_used(const struct vring_virtqueue *vq)
2130 {
2131 	return vq->packed_ring ? more_used_packed(vq) : more_used_split(vq);
2132 }
2133 
2134 irqreturn_t vring_interrupt(int irq, void *_vq)
2135 {
2136 	struct vring_virtqueue *vq = to_vvq(_vq);
2137 
2138 	if (!more_used(vq)) {
2139 		pr_debug("virtqueue interrupt with no work for %p\n", vq);
2140 		return IRQ_NONE;
2141 	}
2142 
2143 	if (unlikely(vq->broken))
2144 		return IRQ_HANDLED;
2145 
2146 	/* Just a hint for performance: so it's ok that this can be racy! */
2147 	if (vq->event)
2148 		vq->event_triggered = true;
2149 
2150 	pr_debug("virtqueue callback for %p (%p)\n", vq, vq->vq.callback);
2151 	if (vq->vq.callback)
2152 		vq->vq.callback(&vq->vq);
2153 
2154 	return IRQ_HANDLED;
2155 }
2156 EXPORT_SYMBOL_GPL(vring_interrupt);
2157 
2158 /* Only available for split ring */
2159 struct virtqueue *__vring_new_virtqueue(unsigned int index,
2160 					struct vring vring,
2161 					struct virtio_device *vdev,
2162 					bool weak_barriers,
2163 					bool context,
2164 					bool (*notify)(struct virtqueue *),
2165 					void (*callback)(struct virtqueue *),
2166 					const char *name)
2167 {
2168 	struct vring_virtqueue *vq;
2169 
2170 	if (virtio_has_feature(vdev, VIRTIO_F_RING_PACKED))
2171 		return NULL;
2172 
2173 	vq = kmalloc(sizeof(*vq), GFP_KERNEL);
2174 	if (!vq)
2175 		return NULL;
2176 
2177 	vq->packed_ring = false;
2178 	vq->vq.callback = callback;
2179 	vq->vq.vdev = vdev;
2180 	vq->vq.name = name;
2181 	vq->vq.num_free = vring.num;
2182 	vq->vq.index = index;
2183 	vq->we_own_ring = false;
2184 	vq->notify = notify;
2185 	vq->weak_barriers = weak_barriers;
2186 	vq->broken = false;
2187 	vq->last_used_idx = 0;
2188 	vq->event_triggered = false;
2189 	vq->num_added = 0;
2190 	vq->use_dma_api = vring_use_dma_api(vdev);
2191 #ifdef DEBUG
2192 	vq->in_use = false;
2193 	vq->last_add_time_valid = false;
2194 #endif
2195 
2196 	vq->indirect = virtio_has_feature(vdev, VIRTIO_RING_F_INDIRECT_DESC) &&
2197 		!context;
2198 	vq->event = virtio_has_feature(vdev, VIRTIO_RING_F_EVENT_IDX);
2199 
2200 	if (virtio_has_feature(vdev, VIRTIO_F_ORDER_PLATFORM))
2201 		vq->weak_barriers = false;
2202 
2203 	vq->split.queue_dma_addr = 0;
2204 	vq->split.queue_size_in_bytes = 0;
2205 
2206 	vq->split.vring = vring;
2207 	vq->split.avail_flags_shadow = 0;
2208 	vq->split.avail_idx_shadow = 0;
2209 
2210 	/* No callback?  Tell other side not to bother us. */
2211 	if (!callback) {
2212 		vq->split.avail_flags_shadow |= VRING_AVAIL_F_NO_INTERRUPT;
2213 		if (!vq->event)
2214 			vq->split.vring.avail->flags = cpu_to_virtio16(vdev,
2215 					vq->split.avail_flags_shadow);
2216 	}
2217 
2218 	vq->split.desc_state = kmalloc_array(vring.num,
2219 			sizeof(struct vring_desc_state_split), GFP_KERNEL);
2220 	if (!vq->split.desc_state)
2221 		goto err_state;
2222 
2223 	vq->split.desc_extra = vring_alloc_desc_extra(vq, vring.num);
2224 	if (!vq->split.desc_extra)
2225 		goto err_extra;
2226 
2227 	/* Put everything in free lists. */
2228 	vq->free_head = 0;
2229 	memset(vq->split.desc_state, 0, vring.num *
2230 			sizeof(struct vring_desc_state_split));
2231 
2232 	list_add_tail(&vq->vq.list, &vdev->vqs);
2233 	return &vq->vq;
2234 
2235 err_extra:
2236 	kfree(vq->split.desc_state);
2237 err_state:
2238 	kfree(vq);
2239 	return NULL;
2240 }
2241 EXPORT_SYMBOL_GPL(__vring_new_virtqueue);
2242 
2243 struct virtqueue *vring_create_virtqueue(
2244 	unsigned int index,
2245 	unsigned int num,
2246 	unsigned int vring_align,
2247 	struct virtio_device *vdev,
2248 	bool weak_barriers,
2249 	bool may_reduce_num,
2250 	bool context,
2251 	bool (*notify)(struct virtqueue *),
2252 	void (*callback)(struct virtqueue *),
2253 	const char *name)
2254 {
2255 
2256 	if (virtio_has_feature(vdev, VIRTIO_F_RING_PACKED))
2257 		return vring_create_virtqueue_packed(index, num, vring_align,
2258 				vdev, weak_barriers, may_reduce_num,
2259 				context, notify, callback, name);
2260 
2261 	return vring_create_virtqueue_split(index, num, vring_align,
2262 			vdev, weak_barriers, may_reduce_num,
2263 			context, notify, callback, name);
2264 }
2265 EXPORT_SYMBOL_GPL(vring_create_virtqueue);
2266 
2267 /* Only available for split ring */
2268 struct virtqueue *vring_new_virtqueue(unsigned int index,
2269 				      unsigned int num,
2270 				      unsigned int vring_align,
2271 				      struct virtio_device *vdev,
2272 				      bool weak_barriers,
2273 				      bool context,
2274 				      void *pages,
2275 				      bool (*notify)(struct virtqueue *vq),
2276 				      void (*callback)(struct virtqueue *vq),
2277 				      const char *name)
2278 {
2279 	struct vring vring;
2280 
2281 	if (virtio_has_feature(vdev, VIRTIO_F_RING_PACKED))
2282 		return NULL;
2283 
2284 	vring_init(&vring, num, pages, vring_align);
2285 	return __vring_new_virtqueue(index, vring, vdev, weak_barriers, context,
2286 				     notify, callback, name);
2287 }
2288 EXPORT_SYMBOL_GPL(vring_new_virtqueue);
2289 
2290 void vring_del_virtqueue(struct virtqueue *_vq)
2291 {
2292 	struct vring_virtqueue *vq = to_vvq(_vq);
2293 
2294 	if (vq->we_own_ring) {
2295 		if (vq->packed_ring) {
2296 			vring_free_queue(vq->vq.vdev,
2297 					 vq->packed.ring_size_in_bytes,
2298 					 vq->packed.vring.desc,
2299 					 vq->packed.ring_dma_addr);
2300 
2301 			vring_free_queue(vq->vq.vdev,
2302 					 vq->packed.event_size_in_bytes,
2303 					 vq->packed.vring.driver,
2304 					 vq->packed.driver_event_dma_addr);
2305 
2306 			vring_free_queue(vq->vq.vdev,
2307 					 vq->packed.event_size_in_bytes,
2308 					 vq->packed.vring.device,
2309 					 vq->packed.device_event_dma_addr);
2310 
2311 			kfree(vq->packed.desc_state);
2312 			kfree(vq->packed.desc_extra);
2313 		} else {
2314 			vring_free_queue(vq->vq.vdev,
2315 					 vq->split.queue_size_in_bytes,
2316 					 vq->split.vring.desc,
2317 					 vq->split.queue_dma_addr);
2318 		}
2319 	}
2320 	if (!vq->packed_ring) {
2321 		kfree(vq->split.desc_state);
2322 		kfree(vq->split.desc_extra);
2323 	}
2324 	list_del(&_vq->list);
2325 	kfree(vq);
2326 }
2327 EXPORT_SYMBOL_GPL(vring_del_virtqueue);
2328 
2329 /* Manipulates transport-specific feature bits. */
2330 void vring_transport_features(struct virtio_device *vdev)
2331 {
2332 	unsigned int i;
2333 
2334 	for (i = VIRTIO_TRANSPORT_F_START; i < VIRTIO_TRANSPORT_F_END; i++) {
2335 		switch (i) {
2336 		case VIRTIO_RING_F_INDIRECT_DESC:
2337 			break;
2338 		case VIRTIO_RING_F_EVENT_IDX:
2339 			break;
2340 		case VIRTIO_F_VERSION_1:
2341 			break;
2342 		case VIRTIO_F_ACCESS_PLATFORM:
2343 			break;
2344 		case VIRTIO_F_RING_PACKED:
2345 			break;
2346 		case VIRTIO_F_ORDER_PLATFORM:
2347 			break;
2348 		default:
2349 			/* We don't understand this bit. */
2350 			__virtio_clear_bit(vdev, i);
2351 		}
2352 	}
2353 }
2354 EXPORT_SYMBOL_GPL(vring_transport_features);
2355 
2356 /**
2357  * virtqueue_get_vring_size - return the size of the virtqueue's vring
2358  * @_vq: the struct virtqueue containing the vring of interest.
2359  *
2360  * Returns the size of the vring.  This is mainly used for boasting to
2361  * userspace.  Unlike other operations, this need not be serialized.
2362  */
2363 unsigned int virtqueue_get_vring_size(struct virtqueue *_vq)
2364 {
2365 
2366 	struct vring_virtqueue *vq = to_vvq(_vq);
2367 
2368 	return vq->packed_ring ? vq->packed.vring.num : vq->split.vring.num;
2369 }
2370 EXPORT_SYMBOL_GPL(virtqueue_get_vring_size);
2371 
2372 bool virtqueue_is_broken(struct virtqueue *_vq)
2373 {
2374 	struct vring_virtqueue *vq = to_vvq(_vq);
2375 
2376 	return vq->broken;
2377 }
2378 EXPORT_SYMBOL_GPL(virtqueue_is_broken);
2379 
2380 /*
2381  * This should prevent the device from being used, allowing drivers to
2382  * recover.  You may need to grab appropriate locks to flush.
2383  */
2384 void virtio_break_device(struct virtio_device *dev)
2385 {
2386 	struct virtqueue *_vq;
2387 
2388 	list_for_each_entry(_vq, &dev->vqs, list) {
2389 		struct vring_virtqueue *vq = to_vvq(_vq);
2390 		vq->broken = true;
2391 	}
2392 }
2393 EXPORT_SYMBOL_GPL(virtio_break_device);
2394 
2395 dma_addr_t virtqueue_get_desc_addr(struct virtqueue *_vq)
2396 {
2397 	struct vring_virtqueue *vq = to_vvq(_vq);
2398 
2399 	BUG_ON(!vq->we_own_ring);
2400 
2401 	if (vq->packed_ring)
2402 		return vq->packed.ring_dma_addr;
2403 
2404 	return vq->split.queue_dma_addr;
2405 }
2406 EXPORT_SYMBOL_GPL(virtqueue_get_desc_addr);
2407 
2408 dma_addr_t virtqueue_get_avail_addr(struct virtqueue *_vq)
2409 {
2410 	struct vring_virtqueue *vq = to_vvq(_vq);
2411 
2412 	BUG_ON(!vq->we_own_ring);
2413 
2414 	if (vq->packed_ring)
2415 		return vq->packed.driver_event_dma_addr;
2416 
2417 	return vq->split.queue_dma_addr +
2418 		((char *)vq->split.vring.avail - (char *)vq->split.vring.desc);
2419 }
2420 EXPORT_SYMBOL_GPL(virtqueue_get_avail_addr);
2421 
2422 dma_addr_t virtqueue_get_used_addr(struct virtqueue *_vq)
2423 {
2424 	struct vring_virtqueue *vq = to_vvq(_vq);
2425 
2426 	BUG_ON(!vq->we_own_ring);
2427 
2428 	if (vq->packed_ring)
2429 		return vq->packed.device_event_dma_addr;
2430 
2431 	return vq->split.queue_dma_addr +
2432 		((char *)vq->split.vring.used - (char *)vq->split.vring.desc);
2433 }
2434 EXPORT_SYMBOL_GPL(virtqueue_get_used_addr);
2435 
2436 /* Only available for split ring */
2437 const struct vring *virtqueue_get_vring(struct virtqueue *vq)
2438 {
2439 	return &to_vvq(vq)->split.vring;
2440 }
2441 EXPORT_SYMBOL_GPL(virtqueue_get_vring);
2442 
2443 MODULE_LICENSE("GPL");
2444