xref: /openbmc/linux/drivers/virtio/virtio_ring.c (revision 53ddcc68)
1 /* Virtio ring implementation.
2  *
3  *  Copyright 2007 Rusty Russell IBM Corporation
4  *
5  *  This program is free software; you can redistribute it and/or modify
6  *  it under the terms of the GNU General Public License as published by
7  *  the Free Software Foundation; either version 2 of the License, or
8  *  (at your option) any later version.
9  *
10  *  This program is distributed in the hope that it will be useful,
11  *  but WITHOUT ANY WARRANTY; without even the implied warranty of
12  *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
13  *  GNU General Public License for more details.
14  *
15  *  You should have received a copy of the GNU General Public License
16  *  along with this program; if not, write to the Free Software
17  *  Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
18  */
19 #include <linux/virtio.h>
20 #include <linux/virtio_ring.h>
21 #include <linux/virtio_config.h>
22 #include <linux/device.h>
23 #include <linux/slab.h>
24 #include <linux/module.h>
25 #include <linux/hrtimer.h>
26 #include <linux/kmemleak.h>
27 #include <linux/dma-mapping.h>
28 #include <xen/xen.h>
29 
30 #ifdef DEBUG
31 /* For development, we want to crash whenever the ring is screwed. */
32 #define BAD_RING(_vq, fmt, args...)				\
33 	do {							\
34 		dev_err(&(_vq)->vq.vdev->dev,			\
35 			"%s:"fmt, (_vq)->vq.name, ##args);	\
36 		BUG();						\
37 	} while (0)
38 /* Caller is supposed to guarantee no reentry. */
39 #define START_USE(_vq)						\
40 	do {							\
41 		if ((_vq)->in_use)				\
42 			panic("%s:in_use = %i\n",		\
43 			      (_vq)->vq.name, (_vq)->in_use);	\
44 		(_vq)->in_use = __LINE__;			\
45 	} while (0)
46 #define END_USE(_vq) \
47 	do { BUG_ON(!(_vq)->in_use); (_vq)->in_use = 0; } while(0)
48 #else
49 #define BAD_RING(_vq, fmt, args...)				\
50 	do {							\
51 		dev_err(&_vq->vq.vdev->dev,			\
52 			"%s:"fmt, (_vq)->vq.name, ##args);	\
53 		(_vq)->broken = true;				\
54 	} while (0)
55 #define START_USE(vq)
56 #define END_USE(vq)
57 #endif
58 
59 struct vring_desc_state {
60 	void *data;			/* Data for callback. */
61 	struct vring_desc *indir_desc;	/* Indirect descriptor, if any. */
62 };
63 
64 struct vring_virtqueue {
65 	struct virtqueue vq;
66 
67 	/* Actual memory layout for this queue */
68 	struct vring vring;
69 
70 	/* Can we use weak barriers? */
71 	bool weak_barriers;
72 
73 	/* Other side has made a mess, don't try any more. */
74 	bool broken;
75 
76 	/* Host supports indirect buffers */
77 	bool indirect;
78 
79 	/* Host publishes avail event idx */
80 	bool event;
81 
82 	/* Head of free buffer list. */
83 	unsigned int free_head;
84 	/* Number we've added since last sync. */
85 	unsigned int num_added;
86 
87 	/* Last used index we've seen. */
88 	u16 last_used_idx;
89 
90 	/* Last written value to avail->flags */
91 	u16 avail_flags_shadow;
92 
93 	/* Last written value to avail->idx in guest byte order */
94 	u16 avail_idx_shadow;
95 
96 	/* How to notify other side. FIXME: commonalize hcalls! */
97 	bool (*notify)(struct virtqueue *vq);
98 
99 	/* DMA, allocation, and size information */
100 	bool we_own_ring;
101 	size_t queue_size_in_bytes;
102 	dma_addr_t queue_dma_addr;
103 
104 #ifdef DEBUG
105 	/* They're supposed to lock for us. */
106 	unsigned int in_use;
107 
108 	/* Figure out if their kicks are too delayed. */
109 	bool last_add_time_valid;
110 	ktime_t last_add_time;
111 #endif
112 
113 	/* Per-descriptor state. */
114 	struct vring_desc_state desc_state[];
115 };
116 
117 #define to_vvq(_vq) container_of(_vq, struct vring_virtqueue, vq)
118 
119 /*
120  * The interaction between virtio and a possible IOMMU is a mess.
121  *
122  * On most systems with virtio, physical addresses match bus addresses,
123  * and it doesn't particularly matter whether we use the DMA API.
124  *
125  * On some systems, including Xen and any system with a physical device
126  * that speaks virtio behind a physical IOMMU, we must use the DMA API
127  * for virtio DMA to work at all.
128  *
129  * On other systems, including SPARC and PPC64, virtio-pci devices are
130  * enumerated as though they are behind an IOMMU, but the virtio host
131  * ignores the IOMMU, so we must either pretend that the IOMMU isn't
132  * there or somehow map everything as the identity.
133  *
134  * For the time being, we preserve historic behavior and bypass the DMA
135  * API.
136  */
137 
138 static bool vring_use_dma_api(struct virtio_device *vdev)
139 {
140 	/*
141 	 * In theory, it's possible to have a buggy QEMU-supposed
142 	 * emulated Q35 IOMMU and Xen enabled at the same time.  On
143 	 * such a configuration, virtio has never worked and will
144 	 * not work without an even larger kludge.  Instead, enable
145 	 * the DMA API if we're a Xen guest, which at least allows
146 	 * all of the sensible Xen configurations to work correctly.
147 	 */
148 	if (xen_domain())
149 		return true;
150 
151 	return false;
152 }
153 
154 /*
155  * The DMA ops on various arches are rather gnarly right now, and
156  * making all of the arch DMA ops work on the vring device itself
157  * is a mess.  For now, we use the parent device for DMA ops.
158  */
159 struct device *vring_dma_dev(const struct vring_virtqueue *vq)
160 {
161 	return vq->vq.vdev->dev.parent;
162 }
163 
164 /* Map one sg entry. */
165 static dma_addr_t vring_map_one_sg(const struct vring_virtqueue *vq,
166 				   struct scatterlist *sg,
167 				   enum dma_data_direction direction)
168 {
169 	if (!vring_use_dma_api(vq->vq.vdev))
170 		return (dma_addr_t)sg_phys(sg);
171 
172 	/*
173 	 * We can't use dma_map_sg, because we don't use scatterlists in
174 	 * the way it expects (we don't guarantee that the scatterlist
175 	 * will exist for the lifetime of the mapping).
176 	 */
177 	return dma_map_page(vring_dma_dev(vq),
178 			    sg_page(sg), sg->offset, sg->length,
179 			    direction);
180 }
181 
182 static dma_addr_t vring_map_single(const struct vring_virtqueue *vq,
183 				   void *cpu_addr, size_t size,
184 				   enum dma_data_direction direction)
185 {
186 	if (!vring_use_dma_api(vq->vq.vdev))
187 		return (dma_addr_t)virt_to_phys(cpu_addr);
188 
189 	return dma_map_single(vring_dma_dev(vq),
190 			      cpu_addr, size, direction);
191 }
192 
193 static void vring_unmap_one(const struct vring_virtqueue *vq,
194 			    struct vring_desc *desc)
195 {
196 	u16 flags;
197 
198 	if (!vring_use_dma_api(vq->vq.vdev))
199 		return;
200 
201 	flags = virtio16_to_cpu(vq->vq.vdev, desc->flags);
202 
203 	if (flags & VRING_DESC_F_INDIRECT) {
204 		dma_unmap_single(vring_dma_dev(vq),
205 				 virtio64_to_cpu(vq->vq.vdev, desc->addr),
206 				 virtio32_to_cpu(vq->vq.vdev, desc->len),
207 				 (flags & VRING_DESC_F_WRITE) ?
208 				 DMA_FROM_DEVICE : DMA_TO_DEVICE);
209 	} else {
210 		dma_unmap_page(vring_dma_dev(vq),
211 			       virtio64_to_cpu(vq->vq.vdev, desc->addr),
212 			       virtio32_to_cpu(vq->vq.vdev, desc->len),
213 			       (flags & VRING_DESC_F_WRITE) ?
214 			       DMA_FROM_DEVICE : DMA_TO_DEVICE);
215 	}
216 }
217 
218 static int vring_mapping_error(const struct vring_virtqueue *vq,
219 			       dma_addr_t addr)
220 {
221 	if (!vring_use_dma_api(vq->vq.vdev))
222 		return 0;
223 
224 	return dma_mapping_error(vring_dma_dev(vq), addr);
225 }
226 
227 static struct vring_desc *alloc_indirect(struct virtqueue *_vq,
228 					 unsigned int total_sg, gfp_t gfp)
229 {
230 	struct vring_desc *desc;
231 	unsigned int i;
232 
233 	/*
234 	 * We require lowmem mappings for the descriptors because
235 	 * otherwise virt_to_phys will give us bogus addresses in the
236 	 * virtqueue.
237 	 */
238 	gfp &= ~__GFP_HIGHMEM;
239 
240 	desc = kmalloc(total_sg * sizeof(struct vring_desc), gfp);
241 	if (!desc)
242 		return NULL;
243 
244 	for (i = 0; i < total_sg; i++)
245 		desc[i].next = cpu_to_virtio16(_vq->vdev, i + 1);
246 	return desc;
247 }
248 
249 static inline int virtqueue_add(struct virtqueue *_vq,
250 				struct scatterlist *sgs[],
251 				unsigned int total_sg,
252 				unsigned int out_sgs,
253 				unsigned int in_sgs,
254 				void *data,
255 				gfp_t gfp)
256 {
257 	struct vring_virtqueue *vq = to_vvq(_vq);
258 	struct scatterlist *sg;
259 	struct vring_desc *desc;
260 	unsigned int i, n, avail, descs_used, uninitialized_var(prev), err_idx;
261 	int head;
262 	bool indirect;
263 
264 	START_USE(vq);
265 
266 	BUG_ON(data == NULL);
267 
268 	if (unlikely(vq->broken)) {
269 		END_USE(vq);
270 		return -EIO;
271 	}
272 
273 #ifdef DEBUG
274 	{
275 		ktime_t now = ktime_get();
276 
277 		/* No kick or get, with .1 second between?  Warn. */
278 		if (vq->last_add_time_valid)
279 			WARN_ON(ktime_to_ms(ktime_sub(now, vq->last_add_time))
280 					    > 100);
281 		vq->last_add_time = now;
282 		vq->last_add_time_valid = true;
283 	}
284 #endif
285 
286 	BUG_ON(total_sg > vq->vring.num);
287 	BUG_ON(total_sg == 0);
288 
289 	head = vq->free_head;
290 
291 	/* If the host supports indirect descriptor tables, and we have multiple
292 	 * buffers, then go indirect. FIXME: tune this threshold */
293 	if (vq->indirect && total_sg > 1 && vq->vq.num_free)
294 		desc = alloc_indirect(_vq, total_sg, gfp);
295 	else
296 		desc = NULL;
297 
298 	if (desc) {
299 		/* Use a single buffer which doesn't continue */
300 		indirect = true;
301 		/* Set up rest to use this indirect table. */
302 		i = 0;
303 		descs_used = 1;
304 	} else {
305 		indirect = false;
306 		desc = vq->vring.desc;
307 		i = head;
308 		descs_used = total_sg;
309 	}
310 
311 	if (vq->vq.num_free < descs_used) {
312 		pr_debug("Can't add buf len %i - avail = %i\n",
313 			 descs_used, vq->vq.num_free);
314 		/* FIXME: for historical reasons, we force a notify here if
315 		 * there are outgoing parts to the buffer.  Presumably the
316 		 * host should service the ring ASAP. */
317 		if (out_sgs)
318 			vq->notify(&vq->vq);
319 		END_USE(vq);
320 		return -ENOSPC;
321 	}
322 
323 	for (n = 0; n < out_sgs; n++) {
324 		for (sg = sgs[n]; sg; sg = sg_next(sg)) {
325 			dma_addr_t addr = vring_map_one_sg(vq, sg, DMA_TO_DEVICE);
326 			if (vring_mapping_error(vq, addr))
327 				goto unmap_release;
328 
329 			desc[i].flags = cpu_to_virtio16(_vq->vdev, VRING_DESC_F_NEXT);
330 			desc[i].addr = cpu_to_virtio64(_vq->vdev, addr);
331 			desc[i].len = cpu_to_virtio32(_vq->vdev, sg->length);
332 			prev = i;
333 			i = virtio16_to_cpu(_vq->vdev, desc[i].next);
334 		}
335 	}
336 	for (; n < (out_sgs + in_sgs); n++) {
337 		for (sg = sgs[n]; sg; sg = sg_next(sg)) {
338 			dma_addr_t addr = vring_map_one_sg(vq, sg, DMA_FROM_DEVICE);
339 			if (vring_mapping_error(vq, addr))
340 				goto unmap_release;
341 
342 			desc[i].flags = cpu_to_virtio16(_vq->vdev, VRING_DESC_F_NEXT | VRING_DESC_F_WRITE);
343 			desc[i].addr = cpu_to_virtio64(_vq->vdev, addr);
344 			desc[i].len = cpu_to_virtio32(_vq->vdev, sg->length);
345 			prev = i;
346 			i = virtio16_to_cpu(_vq->vdev, desc[i].next);
347 		}
348 	}
349 	/* Last one doesn't continue. */
350 	desc[prev].flags &= cpu_to_virtio16(_vq->vdev, ~VRING_DESC_F_NEXT);
351 
352 	if (indirect) {
353 		/* Now that the indirect table is filled in, map it. */
354 		dma_addr_t addr = vring_map_single(
355 			vq, desc, total_sg * sizeof(struct vring_desc),
356 			DMA_TO_DEVICE);
357 		if (vring_mapping_error(vq, addr))
358 			goto unmap_release;
359 
360 		vq->vring.desc[head].flags = cpu_to_virtio16(_vq->vdev, VRING_DESC_F_INDIRECT);
361 		vq->vring.desc[head].addr = cpu_to_virtio64(_vq->vdev, addr);
362 
363 		vq->vring.desc[head].len = cpu_to_virtio32(_vq->vdev, total_sg * sizeof(struct vring_desc));
364 	}
365 
366 	/* We're using some buffers from the free list. */
367 	vq->vq.num_free -= descs_used;
368 
369 	/* Update free pointer */
370 	if (indirect)
371 		vq->free_head = virtio16_to_cpu(_vq->vdev, vq->vring.desc[head].next);
372 	else
373 		vq->free_head = i;
374 
375 	/* Store token and indirect buffer state. */
376 	vq->desc_state[head].data = data;
377 	if (indirect)
378 		vq->desc_state[head].indir_desc = desc;
379 
380 	/* Put entry in available array (but don't update avail->idx until they
381 	 * do sync). */
382 	avail = vq->avail_idx_shadow & (vq->vring.num - 1);
383 	vq->vring.avail->ring[avail] = cpu_to_virtio16(_vq->vdev, head);
384 
385 	/* Descriptors and available array need to be set before we expose the
386 	 * new available array entries. */
387 	virtio_wmb(vq->weak_barriers);
388 	vq->avail_idx_shadow++;
389 	vq->vring.avail->idx = cpu_to_virtio16(_vq->vdev, vq->avail_idx_shadow);
390 	vq->num_added++;
391 
392 	pr_debug("Added buffer head %i to %p\n", head, vq);
393 	END_USE(vq);
394 
395 	/* This is very unlikely, but theoretically possible.  Kick
396 	 * just in case. */
397 	if (unlikely(vq->num_added == (1 << 16) - 1))
398 		virtqueue_kick(_vq);
399 
400 	return 0;
401 
402 unmap_release:
403 	err_idx = i;
404 	i = head;
405 
406 	for (n = 0; n < total_sg; n++) {
407 		if (i == err_idx)
408 			break;
409 		vring_unmap_one(vq, &desc[i]);
410 		i = vq->vring.desc[i].next;
411 	}
412 
413 	vq->vq.num_free += total_sg;
414 
415 	if (indirect)
416 		kfree(desc);
417 
418 	return -EIO;
419 }
420 
421 /**
422  * virtqueue_add_sgs - expose buffers to other end
423  * @vq: the struct virtqueue we're talking about.
424  * @sgs: array of terminated scatterlists.
425  * @out_num: the number of scatterlists readable by other side
426  * @in_num: the number of scatterlists which are writable (after readable ones)
427  * @data: the token identifying the buffer.
428  * @gfp: how to do memory allocations (if necessary).
429  *
430  * Caller must ensure we don't call this with other virtqueue operations
431  * at the same time (except where noted).
432  *
433  * Returns zero or a negative error (ie. ENOSPC, ENOMEM, EIO).
434  */
435 int virtqueue_add_sgs(struct virtqueue *_vq,
436 		      struct scatterlist *sgs[],
437 		      unsigned int out_sgs,
438 		      unsigned int in_sgs,
439 		      void *data,
440 		      gfp_t gfp)
441 {
442 	unsigned int i, total_sg = 0;
443 
444 	/* Count them first. */
445 	for (i = 0; i < out_sgs + in_sgs; i++) {
446 		struct scatterlist *sg;
447 		for (sg = sgs[i]; sg; sg = sg_next(sg))
448 			total_sg++;
449 	}
450 	return virtqueue_add(_vq, sgs, total_sg, out_sgs, in_sgs, data, gfp);
451 }
452 EXPORT_SYMBOL_GPL(virtqueue_add_sgs);
453 
454 /**
455  * virtqueue_add_outbuf - expose output buffers to other end
456  * @vq: the struct virtqueue we're talking about.
457  * @sg: scatterlist (must be well-formed and terminated!)
458  * @num: the number of entries in @sg readable by other side
459  * @data: the token identifying the buffer.
460  * @gfp: how to do memory allocations (if necessary).
461  *
462  * Caller must ensure we don't call this with other virtqueue operations
463  * at the same time (except where noted).
464  *
465  * Returns zero or a negative error (ie. ENOSPC, ENOMEM, EIO).
466  */
467 int virtqueue_add_outbuf(struct virtqueue *vq,
468 			 struct scatterlist *sg, unsigned int num,
469 			 void *data,
470 			 gfp_t gfp)
471 {
472 	return virtqueue_add(vq, &sg, num, 1, 0, data, gfp);
473 }
474 EXPORT_SYMBOL_GPL(virtqueue_add_outbuf);
475 
476 /**
477  * virtqueue_add_inbuf - expose input buffers to other end
478  * @vq: the struct virtqueue we're talking about.
479  * @sg: scatterlist (must be well-formed and terminated!)
480  * @num: the number of entries in @sg writable by other side
481  * @data: the token identifying the buffer.
482  * @gfp: how to do memory allocations (if necessary).
483  *
484  * Caller must ensure we don't call this with other virtqueue operations
485  * at the same time (except where noted).
486  *
487  * Returns zero or a negative error (ie. ENOSPC, ENOMEM, EIO).
488  */
489 int virtqueue_add_inbuf(struct virtqueue *vq,
490 			struct scatterlist *sg, unsigned int num,
491 			void *data,
492 			gfp_t gfp)
493 {
494 	return virtqueue_add(vq, &sg, num, 0, 1, data, gfp);
495 }
496 EXPORT_SYMBOL_GPL(virtqueue_add_inbuf);
497 
498 /**
499  * virtqueue_kick_prepare - first half of split virtqueue_kick call.
500  * @vq: the struct virtqueue
501  *
502  * Instead of virtqueue_kick(), you can do:
503  *	if (virtqueue_kick_prepare(vq))
504  *		virtqueue_notify(vq);
505  *
506  * This is sometimes useful because the virtqueue_kick_prepare() needs
507  * to be serialized, but the actual virtqueue_notify() call does not.
508  */
509 bool virtqueue_kick_prepare(struct virtqueue *_vq)
510 {
511 	struct vring_virtqueue *vq = to_vvq(_vq);
512 	u16 new, old;
513 	bool needs_kick;
514 
515 	START_USE(vq);
516 	/* We need to expose available array entries before checking avail
517 	 * event. */
518 	virtio_mb(vq->weak_barriers);
519 
520 	old = vq->avail_idx_shadow - vq->num_added;
521 	new = vq->avail_idx_shadow;
522 	vq->num_added = 0;
523 
524 #ifdef DEBUG
525 	if (vq->last_add_time_valid) {
526 		WARN_ON(ktime_to_ms(ktime_sub(ktime_get(),
527 					      vq->last_add_time)) > 100);
528 	}
529 	vq->last_add_time_valid = false;
530 #endif
531 
532 	if (vq->event) {
533 		needs_kick = vring_need_event(virtio16_to_cpu(_vq->vdev, vring_avail_event(&vq->vring)),
534 					      new, old);
535 	} else {
536 		needs_kick = !(vq->vring.used->flags & cpu_to_virtio16(_vq->vdev, VRING_USED_F_NO_NOTIFY));
537 	}
538 	END_USE(vq);
539 	return needs_kick;
540 }
541 EXPORT_SYMBOL_GPL(virtqueue_kick_prepare);
542 
543 /**
544  * virtqueue_notify - second half of split virtqueue_kick call.
545  * @vq: the struct virtqueue
546  *
547  * This does not need to be serialized.
548  *
549  * Returns false if host notify failed or queue is broken, otherwise true.
550  */
551 bool virtqueue_notify(struct virtqueue *_vq)
552 {
553 	struct vring_virtqueue *vq = to_vvq(_vq);
554 
555 	if (unlikely(vq->broken))
556 		return false;
557 
558 	/* Prod other side to tell it about changes. */
559 	if (!vq->notify(_vq)) {
560 		vq->broken = true;
561 		return false;
562 	}
563 	return true;
564 }
565 EXPORT_SYMBOL_GPL(virtqueue_notify);
566 
567 /**
568  * virtqueue_kick - update after add_buf
569  * @vq: the struct virtqueue
570  *
571  * After one or more virtqueue_add_* calls, invoke this to kick
572  * the other side.
573  *
574  * Caller must ensure we don't call this with other virtqueue
575  * operations at the same time (except where noted).
576  *
577  * Returns false if kick failed, otherwise true.
578  */
579 bool virtqueue_kick(struct virtqueue *vq)
580 {
581 	if (virtqueue_kick_prepare(vq))
582 		return virtqueue_notify(vq);
583 	return true;
584 }
585 EXPORT_SYMBOL_GPL(virtqueue_kick);
586 
587 static void detach_buf(struct vring_virtqueue *vq, unsigned int head)
588 {
589 	unsigned int i, j;
590 	u16 nextflag = cpu_to_virtio16(vq->vq.vdev, VRING_DESC_F_NEXT);
591 
592 	/* Clear data ptr. */
593 	vq->desc_state[head].data = NULL;
594 
595 	/* Put back on free list: unmap first-level descriptors and find end */
596 	i = head;
597 
598 	while (vq->vring.desc[i].flags & nextflag) {
599 		vring_unmap_one(vq, &vq->vring.desc[i]);
600 		i = virtio16_to_cpu(vq->vq.vdev, vq->vring.desc[i].next);
601 		vq->vq.num_free++;
602 	}
603 
604 	vring_unmap_one(vq, &vq->vring.desc[i]);
605 	vq->vring.desc[i].next = cpu_to_virtio16(vq->vq.vdev, vq->free_head);
606 	vq->free_head = head;
607 
608 	/* Plus final descriptor */
609 	vq->vq.num_free++;
610 
611 	/* Free the indirect table, if any, now that it's unmapped. */
612 	if (vq->desc_state[head].indir_desc) {
613 		struct vring_desc *indir_desc = vq->desc_state[head].indir_desc;
614 		u32 len = virtio32_to_cpu(vq->vq.vdev, vq->vring.desc[head].len);
615 
616 		BUG_ON(!(vq->vring.desc[head].flags &
617 			 cpu_to_virtio16(vq->vq.vdev, VRING_DESC_F_INDIRECT)));
618 		BUG_ON(len == 0 || len % sizeof(struct vring_desc));
619 
620 		for (j = 0; j < len / sizeof(struct vring_desc); j++)
621 			vring_unmap_one(vq, &indir_desc[j]);
622 
623 		kfree(vq->desc_state[head].indir_desc);
624 		vq->desc_state[head].indir_desc = NULL;
625 	}
626 }
627 
628 static inline bool more_used(const struct vring_virtqueue *vq)
629 {
630 	return vq->last_used_idx != virtio16_to_cpu(vq->vq.vdev, vq->vring.used->idx);
631 }
632 
633 /**
634  * virtqueue_get_buf - get the next used buffer
635  * @vq: the struct virtqueue we're talking about.
636  * @len: the length written into the buffer
637  *
638  * If the driver wrote data into the buffer, @len will be set to the
639  * amount written.  This means you don't need to clear the buffer
640  * beforehand to ensure there's no data leakage in the case of short
641  * writes.
642  *
643  * Caller must ensure we don't call this with other virtqueue
644  * operations at the same time (except where noted).
645  *
646  * Returns NULL if there are no used buffers, or the "data" token
647  * handed to virtqueue_add_*().
648  */
649 void *virtqueue_get_buf(struct virtqueue *_vq, unsigned int *len)
650 {
651 	struct vring_virtqueue *vq = to_vvq(_vq);
652 	void *ret;
653 	unsigned int i;
654 	u16 last_used;
655 
656 	START_USE(vq);
657 
658 	if (unlikely(vq->broken)) {
659 		END_USE(vq);
660 		return NULL;
661 	}
662 
663 	if (!more_used(vq)) {
664 		pr_debug("No more buffers in queue\n");
665 		END_USE(vq);
666 		return NULL;
667 	}
668 
669 	/* Only get used array entries after they have been exposed by host. */
670 	virtio_rmb(vq->weak_barriers);
671 
672 	last_used = (vq->last_used_idx & (vq->vring.num - 1));
673 	i = virtio32_to_cpu(_vq->vdev, vq->vring.used->ring[last_used].id);
674 	*len = virtio32_to_cpu(_vq->vdev, vq->vring.used->ring[last_used].len);
675 
676 	if (unlikely(i >= vq->vring.num)) {
677 		BAD_RING(vq, "id %u out of range\n", i);
678 		return NULL;
679 	}
680 	if (unlikely(!vq->desc_state[i].data)) {
681 		BAD_RING(vq, "id %u is not a head!\n", i);
682 		return NULL;
683 	}
684 
685 	/* detach_buf clears data, so grab it now. */
686 	ret = vq->desc_state[i].data;
687 	detach_buf(vq, i);
688 	vq->last_used_idx++;
689 	/* If we expect an interrupt for the next entry, tell host
690 	 * by writing event index and flush out the write before
691 	 * the read in the next get_buf call. */
692 	if (!(vq->avail_flags_shadow & VRING_AVAIL_F_NO_INTERRUPT))
693 		virtio_store_mb(vq->weak_barriers,
694 				&vring_used_event(&vq->vring),
695 				cpu_to_virtio16(_vq->vdev, vq->last_used_idx));
696 
697 #ifdef DEBUG
698 	vq->last_add_time_valid = false;
699 #endif
700 
701 	END_USE(vq);
702 	return ret;
703 }
704 EXPORT_SYMBOL_GPL(virtqueue_get_buf);
705 
706 /**
707  * virtqueue_disable_cb - disable callbacks
708  * @vq: the struct virtqueue we're talking about.
709  *
710  * Note that this is not necessarily synchronous, hence unreliable and only
711  * useful as an optimization.
712  *
713  * Unlike other operations, this need not be serialized.
714  */
715 void virtqueue_disable_cb(struct virtqueue *_vq)
716 {
717 	struct vring_virtqueue *vq = to_vvq(_vq);
718 
719 	if (!(vq->avail_flags_shadow & VRING_AVAIL_F_NO_INTERRUPT)) {
720 		vq->avail_flags_shadow |= VRING_AVAIL_F_NO_INTERRUPT;
721 		vq->vring.avail->flags = cpu_to_virtio16(_vq->vdev, vq->avail_flags_shadow);
722 	}
723 
724 }
725 EXPORT_SYMBOL_GPL(virtqueue_disable_cb);
726 
727 /**
728  * virtqueue_enable_cb_prepare - restart callbacks after disable_cb
729  * @vq: the struct virtqueue we're talking about.
730  *
731  * This re-enables callbacks; it returns current queue state
732  * in an opaque unsigned value. This value should be later tested by
733  * virtqueue_poll, to detect a possible race between the driver checking for
734  * more work, and enabling callbacks.
735  *
736  * Caller must ensure we don't call this with other virtqueue
737  * operations at the same time (except where noted).
738  */
739 unsigned virtqueue_enable_cb_prepare(struct virtqueue *_vq)
740 {
741 	struct vring_virtqueue *vq = to_vvq(_vq);
742 	u16 last_used_idx;
743 
744 	START_USE(vq);
745 
746 	/* We optimistically turn back on interrupts, then check if there was
747 	 * more to do. */
748 	/* Depending on the VIRTIO_RING_F_EVENT_IDX feature, we need to
749 	 * either clear the flags bit or point the event index at the next
750 	 * entry. Always do both to keep code simple. */
751 	if (vq->avail_flags_shadow & VRING_AVAIL_F_NO_INTERRUPT) {
752 		vq->avail_flags_shadow &= ~VRING_AVAIL_F_NO_INTERRUPT;
753 		vq->vring.avail->flags = cpu_to_virtio16(_vq->vdev, vq->avail_flags_shadow);
754 	}
755 	vring_used_event(&vq->vring) = cpu_to_virtio16(_vq->vdev, last_used_idx = vq->last_used_idx);
756 	END_USE(vq);
757 	return last_used_idx;
758 }
759 EXPORT_SYMBOL_GPL(virtqueue_enable_cb_prepare);
760 
761 /**
762  * virtqueue_poll - query pending used buffers
763  * @vq: the struct virtqueue we're talking about.
764  * @last_used_idx: virtqueue state (from call to virtqueue_enable_cb_prepare).
765  *
766  * Returns "true" if there are pending used buffers in the queue.
767  *
768  * This does not need to be serialized.
769  */
770 bool virtqueue_poll(struct virtqueue *_vq, unsigned last_used_idx)
771 {
772 	struct vring_virtqueue *vq = to_vvq(_vq);
773 
774 	virtio_mb(vq->weak_barriers);
775 	return (u16)last_used_idx != virtio16_to_cpu(_vq->vdev, vq->vring.used->idx);
776 }
777 EXPORT_SYMBOL_GPL(virtqueue_poll);
778 
779 /**
780  * virtqueue_enable_cb - restart callbacks after disable_cb.
781  * @vq: the struct virtqueue we're talking about.
782  *
783  * This re-enables callbacks; it returns "false" if there are pending
784  * buffers in the queue, to detect a possible race between the driver
785  * checking for more work, and enabling callbacks.
786  *
787  * Caller must ensure we don't call this with other virtqueue
788  * operations at the same time (except where noted).
789  */
790 bool virtqueue_enable_cb(struct virtqueue *_vq)
791 {
792 	unsigned last_used_idx = virtqueue_enable_cb_prepare(_vq);
793 	return !virtqueue_poll(_vq, last_used_idx);
794 }
795 EXPORT_SYMBOL_GPL(virtqueue_enable_cb);
796 
797 /**
798  * virtqueue_enable_cb_delayed - restart callbacks after disable_cb.
799  * @vq: the struct virtqueue we're talking about.
800  *
801  * This re-enables callbacks but hints to the other side to delay
802  * interrupts until most of the available buffers have been processed;
803  * it returns "false" if there are many pending buffers in the queue,
804  * to detect a possible race between the driver checking for more work,
805  * and enabling callbacks.
806  *
807  * Caller must ensure we don't call this with other virtqueue
808  * operations at the same time (except where noted).
809  */
810 bool virtqueue_enable_cb_delayed(struct virtqueue *_vq)
811 {
812 	struct vring_virtqueue *vq = to_vvq(_vq);
813 	u16 bufs;
814 
815 	START_USE(vq);
816 
817 	/* We optimistically turn back on interrupts, then check if there was
818 	 * more to do. */
819 	/* Depending on the VIRTIO_RING_F_USED_EVENT_IDX feature, we need to
820 	 * either clear the flags bit or point the event index at the next
821 	 * entry. Always do both to keep code simple. */
822 	if (vq->avail_flags_shadow & VRING_AVAIL_F_NO_INTERRUPT) {
823 		vq->avail_flags_shadow &= ~VRING_AVAIL_F_NO_INTERRUPT;
824 		vq->vring.avail->flags = cpu_to_virtio16(_vq->vdev, vq->avail_flags_shadow);
825 	}
826 	/* TODO: tune this threshold */
827 	bufs = (u16)(vq->avail_idx_shadow - vq->last_used_idx) * 3 / 4;
828 
829 	virtio_store_mb(vq->weak_barriers,
830 			&vring_used_event(&vq->vring),
831 			cpu_to_virtio16(_vq->vdev, vq->last_used_idx + bufs));
832 
833 	if (unlikely((u16)(virtio16_to_cpu(_vq->vdev, vq->vring.used->idx) - vq->last_used_idx) > bufs)) {
834 		END_USE(vq);
835 		return false;
836 	}
837 
838 	END_USE(vq);
839 	return true;
840 }
841 EXPORT_SYMBOL_GPL(virtqueue_enable_cb_delayed);
842 
843 /**
844  * virtqueue_detach_unused_buf - detach first unused buffer
845  * @vq: the struct virtqueue we're talking about.
846  *
847  * Returns NULL or the "data" token handed to virtqueue_add_*().
848  * This is not valid on an active queue; it is useful only for device
849  * shutdown.
850  */
851 void *virtqueue_detach_unused_buf(struct virtqueue *_vq)
852 {
853 	struct vring_virtqueue *vq = to_vvq(_vq);
854 	unsigned int i;
855 	void *buf;
856 
857 	START_USE(vq);
858 
859 	for (i = 0; i < vq->vring.num; i++) {
860 		if (!vq->desc_state[i].data)
861 			continue;
862 		/* detach_buf clears data, so grab it now. */
863 		buf = vq->desc_state[i].data;
864 		detach_buf(vq, i);
865 		vq->avail_idx_shadow--;
866 		vq->vring.avail->idx = cpu_to_virtio16(_vq->vdev, vq->avail_idx_shadow);
867 		END_USE(vq);
868 		return buf;
869 	}
870 	/* That should have freed everything. */
871 	BUG_ON(vq->vq.num_free != vq->vring.num);
872 
873 	END_USE(vq);
874 	return NULL;
875 }
876 EXPORT_SYMBOL_GPL(virtqueue_detach_unused_buf);
877 
878 irqreturn_t vring_interrupt(int irq, void *_vq)
879 {
880 	struct vring_virtqueue *vq = to_vvq(_vq);
881 
882 	if (!more_used(vq)) {
883 		pr_debug("virtqueue interrupt with no work for %p\n", vq);
884 		return IRQ_NONE;
885 	}
886 
887 	if (unlikely(vq->broken))
888 		return IRQ_HANDLED;
889 
890 	pr_debug("virtqueue callback for %p (%p)\n", vq, vq->vq.callback);
891 	if (vq->vq.callback)
892 		vq->vq.callback(&vq->vq);
893 
894 	return IRQ_HANDLED;
895 }
896 EXPORT_SYMBOL_GPL(vring_interrupt);
897 
898 struct virtqueue *__vring_new_virtqueue(unsigned int index,
899 					struct vring vring,
900 					struct virtio_device *vdev,
901 					bool weak_barriers,
902 					bool (*notify)(struct virtqueue *),
903 					void (*callback)(struct virtqueue *),
904 					const char *name)
905 {
906 	unsigned int i;
907 	struct vring_virtqueue *vq;
908 
909 	vq = kmalloc(sizeof(*vq) + vring.num * sizeof(struct vring_desc_state),
910 		     GFP_KERNEL);
911 	if (!vq)
912 		return NULL;
913 
914 	vq->vring = vring;
915 	vq->vq.callback = callback;
916 	vq->vq.vdev = vdev;
917 	vq->vq.name = name;
918 	vq->vq.num_free = vring.num;
919 	vq->vq.index = index;
920 	vq->we_own_ring = false;
921 	vq->queue_dma_addr = 0;
922 	vq->queue_size_in_bytes = 0;
923 	vq->notify = notify;
924 	vq->weak_barriers = weak_barriers;
925 	vq->broken = false;
926 	vq->last_used_idx = 0;
927 	vq->avail_flags_shadow = 0;
928 	vq->avail_idx_shadow = 0;
929 	vq->num_added = 0;
930 	list_add_tail(&vq->vq.list, &vdev->vqs);
931 #ifdef DEBUG
932 	vq->in_use = false;
933 	vq->last_add_time_valid = false;
934 #endif
935 
936 	vq->indirect = virtio_has_feature(vdev, VIRTIO_RING_F_INDIRECT_DESC);
937 	vq->event = virtio_has_feature(vdev, VIRTIO_RING_F_EVENT_IDX);
938 
939 	/* No callback?  Tell other side not to bother us. */
940 	if (!callback) {
941 		vq->avail_flags_shadow |= VRING_AVAIL_F_NO_INTERRUPT;
942 		vq->vring.avail->flags = cpu_to_virtio16(vdev, vq->avail_flags_shadow);
943 	}
944 
945 	/* Put everything in free lists. */
946 	vq->free_head = 0;
947 	for (i = 0; i < vring.num-1; i++)
948 		vq->vring.desc[i].next = cpu_to_virtio16(vdev, i + 1);
949 	memset(vq->desc_state, 0, vring.num * sizeof(struct vring_desc_state));
950 
951 	return &vq->vq;
952 }
953 EXPORT_SYMBOL_GPL(__vring_new_virtqueue);
954 
955 static void *vring_alloc_queue(struct virtio_device *vdev, size_t size,
956 			      dma_addr_t *dma_handle, gfp_t flag)
957 {
958 	if (vring_use_dma_api(vdev)) {
959 		return dma_alloc_coherent(vdev->dev.parent, size,
960 					  dma_handle, flag);
961 	} else {
962 		void *queue = alloc_pages_exact(PAGE_ALIGN(size), flag);
963 		if (queue) {
964 			phys_addr_t phys_addr = virt_to_phys(queue);
965 			*dma_handle = (dma_addr_t)phys_addr;
966 
967 			/*
968 			 * Sanity check: make sure we dind't truncate
969 			 * the address.  The only arches I can find that
970 			 * have 64-bit phys_addr_t but 32-bit dma_addr_t
971 			 * are certain non-highmem MIPS and x86
972 			 * configurations, but these configurations
973 			 * should never allocate physical pages above 32
974 			 * bits, so this is fine.  Just in case, throw a
975 			 * warning and abort if we end up with an
976 			 * unrepresentable address.
977 			 */
978 			if (WARN_ON_ONCE(*dma_handle != phys_addr)) {
979 				free_pages_exact(queue, PAGE_ALIGN(size));
980 				return NULL;
981 			}
982 		}
983 		return queue;
984 	}
985 }
986 
987 static void vring_free_queue(struct virtio_device *vdev, size_t size,
988 			     void *queue, dma_addr_t dma_handle)
989 {
990 	if (vring_use_dma_api(vdev)) {
991 		dma_free_coherent(vdev->dev.parent, size, queue, dma_handle);
992 	} else {
993 		free_pages_exact(queue, PAGE_ALIGN(size));
994 	}
995 }
996 
997 struct virtqueue *vring_create_virtqueue(
998 	unsigned int index,
999 	unsigned int num,
1000 	unsigned int vring_align,
1001 	struct virtio_device *vdev,
1002 	bool weak_barriers,
1003 	bool may_reduce_num,
1004 	bool (*notify)(struct virtqueue *),
1005 	void (*callback)(struct virtqueue *),
1006 	const char *name)
1007 {
1008 	struct virtqueue *vq;
1009 	void *queue = NULL;
1010 	dma_addr_t dma_addr;
1011 	size_t queue_size_in_bytes;
1012 	struct vring vring;
1013 
1014 	/* We assume num is a power of 2. */
1015 	if (num & (num - 1)) {
1016 		dev_warn(&vdev->dev, "Bad virtqueue length %u\n", num);
1017 		return NULL;
1018 	}
1019 
1020 	/* TODO: allocate each queue chunk individually */
1021 	for (; num && vring_size(num, vring_align) > PAGE_SIZE; num /= 2) {
1022 		queue = vring_alloc_queue(vdev, vring_size(num, vring_align),
1023 					  &dma_addr,
1024 					  GFP_KERNEL|__GFP_NOWARN|__GFP_ZERO);
1025 		if (queue)
1026 			break;
1027 	}
1028 
1029 	if (!num)
1030 		return NULL;
1031 
1032 	if (!queue) {
1033 		/* Try to get a single page. You are my only hope! */
1034 		queue = vring_alloc_queue(vdev, vring_size(num, vring_align),
1035 					  &dma_addr, GFP_KERNEL|__GFP_ZERO);
1036 	}
1037 	if (!queue)
1038 		return NULL;
1039 
1040 	queue_size_in_bytes = vring_size(num, vring_align);
1041 	vring_init(&vring, num, queue, vring_align);
1042 
1043 	vq = __vring_new_virtqueue(index, vring, vdev, weak_barriers,
1044 				   notify, callback, name);
1045 	if (!vq) {
1046 		vring_free_queue(vdev, queue_size_in_bytes, queue,
1047 				 dma_addr);
1048 		return NULL;
1049 	}
1050 
1051 	to_vvq(vq)->queue_dma_addr = dma_addr;
1052 	to_vvq(vq)->queue_size_in_bytes = queue_size_in_bytes;
1053 	to_vvq(vq)->we_own_ring = true;
1054 
1055 	return vq;
1056 }
1057 EXPORT_SYMBOL_GPL(vring_create_virtqueue);
1058 
1059 struct virtqueue *vring_new_virtqueue(unsigned int index,
1060 				      unsigned int num,
1061 				      unsigned int vring_align,
1062 				      struct virtio_device *vdev,
1063 				      bool weak_barriers,
1064 				      void *pages,
1065 				      bool (*notify)(struct virtqueue *vq),
1066 				      void (*callback)(struct virtqueue *vq),
1067 				      const char *name)
1068 {
1069 	struct vring vring;
1070 	vring_init(&vring, num, pages, vring_align);
1071 	return __vring_new_virtqueue(index, vring, vdev, weak_barriers,
1072 				     notify, callback, name);
1073 }
1074 EXPORT_SYMBOL_GPL(vring_new_virtqueue);
1075 
1076 void vring_del_virtqueue(struct virtqueue *_vq)
1077 {
1078 	struct vring_virtqueue *vq = to_vvq(_vq);
1079 
1080 	if (vq->we_own_ring) {
1081 		vring_free_queue(vq->vq.vdev, vq->queue_size_in_bytes,
1082 				 vq->vring.desc, vq->queue_dma_addr);
1083 	}
1084 	list_del(&_vq->list);
1085 	kfree(vq);
1086 }
1087 EXPORT_SYMBOL_GPL(vring_del_virtqueue);
1088 
1089 /* Manipulates transport-specific feature bits. */
1090 void vring_transport_features(struct virtio_device *vdev)
1091 {
1092 	unsigned int i;
1093 
1094 	for (i = VIRTIO_TRANSPORT_F_START; i < VIRTIO_TRANSPORT_F_END; i++) {
1095 		switch (i) {
1096 		case VIRTIO_RING_F_INDIRECT_DESC:
1097 			break;
1098 		case VIRTIO_RING_F_EVENT_IDX:
1099 			break;
1100 		case VIRTIO_F_VERSION_1:
1101 			break;
1102 		default:
1103 			/* We don't understand this bit. */
1104 			__virtio_clear_bit(vdev, i);
1105 		}
1106 	}
1107 }
1108 EXPORT_SYMBOL_GPL(vring_transport_features);
1109 
1110 /**
1111  * virtqueue_get_vring_size - return the size of the virtqueue's vring
1112  * @vq: the struct virtqueue containing the vring of interest.
1113  *
1114  * Returns the size of the vring.  This is mainly used for boasting to
1115  * userspace.  Unlike other operations, this need not be serialized.
1116  */
1117 unsigned int virtqueue_get_vring_size(struct virtqueue *_vq)
1118 {
1119 
1120 	struct vring_virtqueue *vq = to_vvq(_vq);
1121 
1122 	return vq->vring.num;
1123 }
1124 EXPORT_SYMBOL_GPL(virtqueue_get_vring_size);
1125 
1126 bool virtqueue_is_broken(struct virtqueue *_vq)
1127 {
1128 	struct vring_virtqueue *vq = to_vvq(_vq);
1129 
1130 	return vq->broken;
1131 }
1132 EXPORT_SYMBOL_GPL(virtqueue_is_broken);
1133 
1134 /*
1135  * This should prevent the device from being used, allowing drivers to
1136  * recover.  You may need to grab appropriate locks to flush.
1137  */
1138 void virtio_break_device(struct virtio_device *dev)
1139 {
1140 	struct virtqueue *_vq;
1141 
1142 	list_for_each_entry(_vq, &dev->vqs, list) {
1143 		struct vring_virtqueue *vq = to_vvq(_vq);
1144 		vq->broken = true;
1145 	}
1146 }
1147 EXPORT_SYMBOL_GPL(virtio_break_device);
1148 
1149 dma_addr_t virtqueue_get_desc_addr(struct virtqueue *_vq)
1150 {
1151 	struct vring_virtqueue *vq = to_vvq(_vq);
1152 
1153 	BUG_ON(!vq->we_own_ring);
1154 
1155 	return vq->queue_dma_addr;
1156 }
1157 EXPORT_SYMBOL_GPL(virtqueue_get_desc_addr);
1158 
1159 dma_addr_t virtqueue_get_avail_addr(struct virtqueue *_vq)
1160 {
1161 	struct vring_virtqueue *vq = to_vvq(_vq);
1162 
1163 	BUG_ON(!vq->we_own_ring);
1164 
1165 	return vq->queue_dma_addr +
1166 		((char *)vq->vring.avail - (char *)vq->vring.desc);
1167 }
1168 EXPORT_SYMBOL_GPL(virtqueue_get_avail_addr);
1169 
1170 dma_addr_t virtqueue_get_used_addr(struct virtqueue *_vq)
1171 {
1172 	struct vring_virtqueue *vq = to_vvq(_vq);
1173 
1174 	BUG_ON(!vq->we_own_ring);
1175 
1176 	return vq->queue_dma_addr +
1177 		((char *)vq->vring.used - (char *)vq->vring.desc);
1178 }
1179 EXPORT_SYMBOL_GPL(virtqueue_get_used_addr);
1180 
1181 const struct vring *virtqueue_get_vring(struct virtqueue *vq)
1182 {
1183 	return &to_vvq(vq)->vring;
1184 }
1185 EXPORT_SYMBOL_GPL(virtqueue_get_vring);
1186 
1187 MODULE_LICENSE("GPL");
1188