xref: /openbmc/linux/drivers/virtio/virtio_ring.c (revision 36acd5e2)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /* Virtio ring implementation.
3  *
4  *  Copyright 2007 Rusty Russell IBM Corporation
5  */
6 #include <linux/virtio.h>
7 #include <linux/virtio_ring.h>
8 #include <linux/virtio_config.h>
9 #include <linux/device.h>
10 #include <linux/slab.h>
11 #include <linux/module.h>
12 #include <linux/hrtimer.h>
13 #include <linux/dma-mapping.h>
14 #include <xen/xen.h>
15 
16 #ifdef DEBUG
17 /* For development, we want to crash whenever the ring is screwed. */
18 #define BAD_RING(_vq, fmt, args...)				\
19 	do {							\
20 		dev_err(&(_vq)->vq.vdev->dev,			\
21 			"%s:"fmt, (_vq)->vq.name, ##args);	\
22 		BUG();						\
23 	} while (0)
24 /* Caller is supposed to guarantee no reentry. */
25 #define START_USE(_vq)						\
26 	do {							\
27 		if ((_vq)->in_use)				\
28 			panic("%s:in_use = %i\n",		\
29 			      (_vq)->vq.name, (_vq)->in_use);	\
30 		(_vq)->in_use = __LINE__;			\
31 	} while (0)
32 #define END_USE(_vq) \
33 	do { BUG_ON(!(_vq)->in_use); (_vq)->in_use = 0; } while(0)
34 #define LAST_ADD_TIME_UPDATE(_vq)				\
35 	do {							\
36 		ktime_t now = ktime_get();			\
37 								\
38 		/* No kick or get, with .1 second between?  Warn. */ \
39 		if ((_vq)->last_add_time_valid)			\
40 			WARN_ON(ktime_to_ms(ktime_sub(now,	\
41 				(_vq)->last_add_time)) > 100);	\
42 		(_vq)->last_add_time = now;			\
43 		(_vq)->last_add_time_valid = true;		\
44 	} while (0)
45 #define LAST_ADD_TIME_CHECK(_vq)				\
46 	do {							\
47 		if ((_vq)->last_add_time_valid) {		\
48 			WARN_ON(ktime_to_ms(ktime_sub(ktime_get(), \
49 				      (_vq)->last_add_time)) > 100); \
50 		}						\
51 	} while (0)
52 #define LAST_ADD_TIME_INVALID(_vq)				\
53 	((_vq)->last_add_time_valid = false)
54 #else
55 #define BAD_RING(_vq, fmt, args...)				\
56 	do {							\
57 		dev_err(&_vq->vq.vdev->dev,			\
58 			"%s:"fmt, (_vq)->vq.name, ##args);	\
59 		(_vq)->broken = true;				\
60 	} while (0)
61 #define START_USE(vq)
62 #define END_USE(vq)
63 #define LAST_ADD_TIME_UPDATE(vq)
64 #define LAST_ADD_TIME_CHECK(vq)
65 #define LAST_ADD_TIME_INVALID(vq)
66 #endif
67 
68 struct vring_desc_state_split {
69 	void *data;			/* Data for callback. */
70 	struct vring_desc *indir_desc;	/* Indirect descriptor, if any. */
71 };
72 
73 struct vring_desc_state_packed {
74 	void *data;			/* Data for callback. */
75 	struct vring_packed_desc *indir_desc; /* Indirect descriptor, if any. */
76 	u16 num;			/* Descriptor list length. */
77 	u16 next;			/* The next desc state in a list. */
78 	u16 last;			/* The last desc state in a list. */
79 };
80 
81 struct vring_desc_extra_packed {
82 	dma_addr_t addr;		/* Buffer DMA addr. */
83 	u32 len;			/* Buffer length. */
84 	u16 flags;			/* Descriptor flags. */
85 };
86 
87 struct vring_virtqueue {
88 	struct virtqueue vq;
89 
90 	/* Is this a packed ring? */
91 	bool packed_ring;
92 
93 	/* Is DMA API used? */
94 	bool use_dma_api;
95 
96 	/* Can we use weak barriers? */
97 	bool weak_barriers;
98 
99 	/* Other side has made a mess, don't try any more. */
100 	bool broken;
101 
102 	/* Host supports indirect buffers */
103 	bool indirect;
104 
105 	/* Host publishes avail event idx */
106 	bool event;
107 
108 	/* Head of free buffer list. */
109 	unsigned int free_head;
110 	/* Number we've added since last sync. */
111 	unsigned int num_added;
112 
113 	/* Last used index we've seen. */
114 	u16 last_used_idx;
115 
116 	union {
117 		/* Available for split ring */
118 		struct {
119 			/* Actual memory layout for this queue. */
120 			struct vring vring;
121 
122 			/* Last written value to avail->flags */
123 			u16 avail_flags_shadow;
124 
125 			/*
126 			 * Last written value to avail->idx in
127 			 * guest byte order.
128 			 */
129 			u16 avail_idx_shadow;
130 
131 			/* Per-descriptor state. */
132 			struct vring_desc_state_split *desc_state;
133 
134 			/* DMA address and size information */
135 			dma_addr_t queue_dma_addr;
136 			size_t queue_size_in_bytes;
137 		} split;
138 
139 		/* Available for packed ring */
140 		struct {
141 			/* Actual memory layout for this queue. */
142 			struct {
143 				unsigned int num;
144 				struct vring_packed_desc *desc;
145 				struct vring_packed_desc_event *driver;
146 				struct vring_packed_desc_event *device;
147 			} vring;
148 
149 			/* Driver ring wrap counter. */
150 			bool avail_wrap_counter;
151 
152 			/* Device ring wrap counter. */
153 			bool used_wrap_counter;
154 
155 			/* Avail used flags. */
156 			u16 avail_used_flags;
157 
158 			/* Index of the next avail descriptor. */
159 			u16 next_avail_idx;
160 
161 			/*
162 			 * Last written value to driver->flags in
163 			 * guest byte order.
164 			 */
165 			u16 event_flags_shadow;
166 
167 			/* Per-descriptor state. */
168 			struct vring_desc_state_packed *desc_state;
169 			struct vring_desc_extra_packed *desc_extra;
170 
171 			/* DMA address and size information */
172 			dma_addr_t ring_dma_addr;
173 			dma_addr_t driver_event_dma_addr;
174 			dma_addr_t device_event_dma_addr;
175 			size_t ring_size_in_bytes;
176 			size_t event_size_in_bytes;
177 		} packed;
178 	};
179 
180 	/* How to notify other side. FIXME: commonalize hcalls! */
181 	bool (*notify)(struct virtqueue *vq);
182 
183 	/* DMA, allocation, and size information */
184 	bool we_own_ring;
185 
186 #ifdef DEBUG
187 	/* They're supposed to lock for us. */
188 	unsigned int in_use;
189 
190 	/* Figure out if their kicks are too delayed. */
191 	bool last_add_time_valid;
192 	ktime_t last_add_time;
193 #endif
194 };
195 
196 
197 /*
198  * Helpers.
199  */
200 
201 #define to_vvq(_vq) container_of(_vq, struct vring_virtqueue, vq)
202 
203 static inline bool virtqueue_use_indirect(struct virtqueue *_vq,
204 					  unsigned int total_sg)
205 {
206 	struct vring_virtqueue *vq = to_vvq(_vq);
207 
208 	/*
209 	 * If the host supports indirect descriptor tables, and we have multiple
210 	 * buffers, then go indirect. FIXME: tune this threshold
211 	 */
212 	return (vq->indirect && total_sg > 1 && vq->vq.num_free);
213 }
214 
215 /*
216  * Modern virtio devices have feature bits to specify whether they need a
217  * quirk and bypass the IOMMU. If not there, just use the DMA API.
218  *
219  * If there, the interaction between virtio and DMA API is messy.
220  *
221  * On most systems with virtio, physical addresses match bus addresses,
222  * and it doesn't particularly matter whether we use the DMA API.
223  *
224  * On some systems, including Xen and any system with a physical device
225  * that speaks virtio behind a physical IOMMU, we must use the DMA API
226  * for virtio DMA to work at all.
227  *
228  * On other systems, including SPARC and PPC64, virtio-pci devices are
229  * enumerated as though they are behind an IOMMU, but the virtio host
230  * ignores the IOMMU, so we must either pretend that the IOMMU isn't
231  * there or somehow map everything as the identity.
232  *
233  * For the time being, we preserve historic behavior and bypass the DMA
234  * API.
235  *
236  * TODO: install a per-device DMA ops structure that does the right thing
237  * taking into account all the above quirks, and use the DMA API
238  * unconditionally on data path.
239  */
240 
241 static bool vring_use_dma_api(struct virtio_device *vdev)
242 {
243 	if (!virtio_has_dma_quirk(vdev))
244 		return true;
245 
246 	/* Otherwise, we are left to guess. */
247 	/*
248 	 * In theory, it's possible to have a buggy QEMU-supposed
249 	 * emulated Q35 IOMMU and Xen enabled at the same time.  On
250 	 * such a configuration, virtio has never worked and will
251 	 * not work without an even larger kludge.  Instead, enable
252 	 * the DMA API if we're a Xen guest, which at least allows
253 	 * all of the sensible Xen configurations to work correctly.
254 	 */
255 	if (xen_domain())
256 		return true;
257 
258 	return false;
259 }
260 
261 size_t virtio_max_dma_size(struct virtio_device *vdev)
262 {
263 	size_t max_segment_size = SIZE_MAX;
264 
265 	if (vring_use_dma_api(vdev))
266 		max_segment_size = dma_max_mapping_size(&vdev->dev);
267 
268 	return max_segment_size;
269 }
270 EXPORT_SYMBOL_GPL(virtio_max_dma_size);
271 
272 static void *vring_alloc_queue(struct virtio_device *vdev, size_t size,
273 			      dma_addr_t *dma_handle, gfp_t flag)
274 {
275 	if (vring_use_dma_api(vdev)) {
276 		return dma_alloc_coherent(vdev->dev.parent, size,
277 					  dma_handle, flag);
278 	} else {
279 		void *queue = alloc_pages_exact(PAGE_ALIGN(size), flag);
280 
281 		if (queue) {
282 			phys_addr_t phys_addr = virt_to_phys(queue);
283 			*dma_handle = (dma_addr_t)phys_addr;
284 
285 			/*
286 			 * Sanity check: make sure we dind't truncate
287 			 * the address.  The only arches I can find that
288 			 * have 64-bit phys_addr_t but 32-bit dma_addr_t
289 			 * are certain non-highmem MIPS and x86
290 			 * configurations, but these configurations
291 			 * should never allocate physical pages above 32
292 			 * bits, so this is fine.  Just in case, throw a
293 			 * warning and abort if we end up with an
294 			 * unrepresentable address.
295 			 */
296 			if (WARN_ON_ONCE(*dma_handle != phys_addr)) {
297 				free_pages_exact(queue, PAGE_ALIGN(size));
298 				return NULL;
299 			}
300 		}
301 		return queue;
302 	}
303 }
304 
305 static void vring_free_queue(struct virtio_device *vdev, size_t size,
306 			     void *queue, dma_addr_t dma_handle)
307 {
308 	if (vring_use_dma_api(vdev))
309 		dma_free_coherent(vdev->dev.parent, size, queue, dma_handle);
310 	else
311 		free_pages_exact(queue, PAGE_ALIGN(size));
312 }
313 
314 /*
315  * The DMA ops on various arches are rather gnarly right now, and
316  * making all of the arch DMA ops work on the vring device itself
317  * is a mess.  For now, we use the parent device for DMA ops.
318  */
319 static inline struct device *vring_dma_dev(const struct vring_virtqueue *vq)
320 {
321 	return vq->vq.vdev->dev.parent;
322 }
323 
324 /* Map one sg entry. */
325 static dma_addr_t vring_map_one_sg(const struct vring_virtqueue *vq,
326 				   struct scatterlist *sg,
327 				   enum dma_data_direction direction)
328 {
329 	if (!vq->use_dma_api)
330 		return (dma_addr_t)sg_phys(sg);
331 
332 	/*
333 	 * We can't use dma_map_sg, because we don't use scatterlists in
334 	 * the way it expects (we don't guarantee that the scatterlist
335 	 * will exist for the lifetime of the mapping).
336 	 */
337 	return dma_map_page(vring_dma_dev(vq),
338 			    sg_page(sg), sg->offset, sg->length,
339 			    direction);
340 }
341 
342 static dma_addr_t vring_map_single(const struct vring_virtqueue *vq,
343 				   void *cpu_addr, size_t size,
344 				   enum dma_data_direction direction)
345 {
346 	if (!vq->use_dma_api)
347 		return (dma_addr_t)virt_to_phys(cpu_addr);
348 
349 	return dma_map_single(vring_dma_dev(vq),
350 			      cpu_addr, size, direction);
351 }
352 
353 static int vring_mapping_error(const struct vring_virtqueue *vq,
354 			       dma_addr_t addr)
355 {
356 	if (!vq->use_dma_api)
357 		return 0;
358 
359 	return dma_mapping_error(vring_dma_dev(vq), addr);
360 }
361 
362 
363 /*
364  * Split ring specific functions - *_split().
365  */
366 
367 static void vring_unmap_one_split(const struct vring_virtqueue *vq,
368 				  struct vring_desc *desc)
369 {
370 	u16 flags;
371 
372 	if (!vq->use_dma_api)
373 		return;
374 
375 	flags = virtio16_to_cpu(vq->vq.vdev, desc->flags);
376 
377 	if (flags & VRING_DESC_F_INDIRECT) {
378 		dma_unmap_single(vring_dma_dev(vq),
379 				 virtio64_to_cpu(vq->vq.vdev, desc->addr),
380 				 virtio32_to_cpu(vq->vq.vdev, desc->len),
381 				 (flags & VRING_DESC_F_WRITE) ?
382 				 DMA_FROM_DEVICE : DMA_TO_DEVICE);
383 	} else {
384 		dma_unmap_page(vring_dma_dev(vq),
385 			       virtio64_to_cpu(vq->vq.vdev, desc->addr),
386 			       virtio32_to_cpu(vq->vq.vdev, desc->len),
387 			       (flags & VRING_DESC_F_WRITE) ?
388 			       DMA_FROM_DEVICE : DMA_TO_DEVICE);
389 	}
390 }
391 
392 static struct vring_desc *alloc_indirect_split(struct virtqueue *_vq,
393 					       unsigned int total_sg,
394 					       gfp_t gfp)
395 {
396 	struct vring_desc *desc;
397 	unsigned int i;
398 
399 	/*
400 	 * We require lowmem mappings for the descriptors because
401 	 * otherwise virt_to_phys will give us bogus addresses in the
402 	 * virtqueue.
403 	 */
404 	gfp &= ~__GFP_HIGHMEM;
405 
406 	desc = kmalloc_array(total_sg, sizeof(struct vring_desc), gfp);
407 	if (!desc)
408 		return NULL;
409 
410 	for (i = 0; i < total_sg; i++)
411 		desc[i].next = cpu_to_virtio16(_vq->vdev, i + 1);
412 	return desc;
413 }
414 
415 static inline int virtqueue_add_split(struct virtqueue *_vq,
416 				      struct scatterlist *sgs[],
417 				      unsigned int total_sg,
418 				      unsigned int out_sgs,
419 				      unsigned int in_sgs,
420 				      void *data,
421 				      void *ctx,
422 				      gfp_t gfp)
423 {
424 	struct vring_virtqueue *vq = to_vvq(_vq);
425 	struct scatterlist *sg;
426 	struct vring_desc *desc;
427 	unsigned int i, n, avail, descs_used, prev, err_idx;
428 	int head;
429 	bool indirect;
430 
431 	START_USE(vq);
432 
433 	BUG_ON(data == NULL);
434 	BUG_ON(ctx && vq->indirect);
435 
436 	if (unlikely(vq->broken)) {
437 		END_USE(vq);
438 		return -EIO;
439 	}
440 
441 	LAST_ADD_TIME_UPDATE(vq);
442 
443 	BUG_ON(total_sg == 0);
444 
445 	head = vq->free_head;
446 
447 	if (virtqueue_use_indirect(_vq, total_sg))
448 		desc = alloc_indirect_split(_vq, total_sg, gfp);
449 	else {
450 		desc = NULL;
451 		WARN_ON_ONCE(total_sg > vq->split.vring.num && !vq->indirect);
452 	}
453 
454 	if (desc) {
455 		/* Use a single buffer which doesn't continue */
456 		indirect = true;
457 		/* Set up rest to use this indirect table. */
458 		i = 0;
459 		descs_used = 1;
460 	} else {
461 		indirect = false;
462 		desc = vq->split.vring.desc;
463 		i = head;
464 		descs_used = total_sg;
465 	}
466 
467 	if (vq->vq.num_free < descs_used) {
468 		pr_debug("Can't add buf len %i - avail = %i\n",
469 			 descs_used, vq->vq.num_free);
470 		/* FIXME: for historical reasons, we force a notify here if
471 		 * there are outgoing parts to the buffer.  Presumably the
472 		 * host should service the ring ASAP. */
473 		if (out_sgs)
474 			vq->notify(&vq->vq);
475 		if (indirect)
476 			kfree(desc);
477 		END_USE(vq);
478 		return -ENOSPC;
479 	}
480 
481 	for (n = 0; n < out_sgs; n++) {
482 		for (sg = sgs[n]; sg; sg = sg_next(sg)) {
483 			dma_addr_t addr = vring_map_one_sg(vq, sg, DMA_TO_DEVICE);
484 			if (vring_mapping_error(vq, addr))
485 				goto unmap_release;
486 
487 			desc[i].flags = cpu_to_virtio16(_vq->vdev, VRING_DESC_F_NEXT);
488 			desc[i].addr = cpu_to_virtio64(_vq->vdev, addr);
489 			desc[i].len = cpu_to_virtio32(_vq->vdev, sg->length);
490 			prev = i;
491 			i = virtio16_to_cpu(_vq->vdev, desc[i].next);
492 		}
493 	}
494 	for (; n < (out_sgs + in_sgs); n++) {
495 		for (sg = sgs[n]; sg; sg = sg_next(sg)) {
496 			dma_addr_t addr = vring_map_one_sg(vq, sg, DMA_FROM_DEVICE);
497 			if (vring_mapping_error(vq, addr))
498 				goto unmap_release;
499 
500 			desc[i].flags = cpu_to_virtio16(_vq->vdev, VRING_DESC_F_NEXT | VRING_DESC_F_WRITE);
501 			desc[i].addr = cpu_to_virtio64(_vq->vdev, addr);
502 			desc[i].len = cpu_to_virtio32(_vq->vdev, sg->length);
503 			prev = i;
504 			i = virtio16_to_cpu(_vq->vdev, desc[i].next);
505 		}
506 	}
507 	/* Last one doesn't continue. */
508 	desc[prev].flags &= cpu_to_virtio16(_vq->vdev, ~VRING_DESC_F_NEXT);
509 
510 	if (indirect) {
511 		/* Now that the indirect table is filled in, map it. */
512 		dma_addr_t addr = vring_map_single(
513 			vq, desc, total_sg * sizeof(struct vring_desc),
514 			DMA_TO_DEVICE);
515 		if (vring_mapping_error(vq, addr))
516 			goto unmap_release;
517 
518 		vq->split.vring.desc[head].flags = cpu_to_virtio16(_vq->vdev,
519 				VRING_DESC_F_INDIRECT);
520 		vq->split.vring.desc[head].addr = cpu_to_virtio64(_vq->vdev,
521 				addr);
522 
523 		vq->split.vring.desc[head].len = cpu_to_virtio32(_vq->vdev,
524 				total_sg * sizeof(struct vring_desc));
525 	}
526 
527 	/* We're using some buffers from the free list. */
528 	vq->vq.num_free -= descs_used;
529 
530 	/* Update free pointer */
531 	if (indirect)
532 		vq->free_head = virtio16_to_cpu(_vq->vdev,
533 					vq->split.vring.desc[head].next);
534 	else
535 		vq->free_head = i;
536 
537 	/* Store token and indirect buffer state. */
538 	vq->split.desc_state[head].data = data;
539 	if (indirect)
540 		vq->split.desc_state[head].indir_desc = desc;
541 	else
542 		vq->split.desc_state[head].indir_desc = ctx;
543 
544 	/* Put entry in available array (but don't update avail->idx until they
545 	 * do sync). */
546 	avail = vq->split.avail_idx_shadow & (vq->split.vring.num - 1);
547 	vq->split.vring.avail->ring[avail] = cpu_to_virtio16(_vq->vdev, head);
548 
549 	/* Descriptors and available array need to be set before we expose the
550 	 * new available array entries. */
551 	virtio_wmb(vq->weak_barriers);
552 	vq->split.avail_idx_shadow++;
553 	vq->split.vring.avail->idx = cpu_to_virtio16(_vq->vdev,
554 						vq->split.avail_idx_shadow);
555 	vq->num_added++;
556 
557 	pr_debug("Added buffer head %i to %p\n", head, vq);
558 	END_USE(vq);
559 
560 	/* This is very unlikely, but theoretically possible.  Kick
561 	 * just in case. */
562 	if (unlikely(vq->num_added == (1 << 16) - 1))
563 		virtqueue_kick(_vq);
564 
565 	return 0;
566 
567 unmap_release:
568 	err_idx = i;
569 
570 	if (indirect)
571 		i = 0;
572 	else
573 		i = head;
574 
575 	for (n = 0; n < total_sg; n++) {
576 		if (i == err_idx)
577 			break;
578 		vring_unmap_one_split(vq, &desc[i]);
579 		i = virtio16_to_cpu(_vq->vdev, desc[i].next);
580 	}
581 
582 	if (indirect)
583 		kfree(desc);
584 
585 	END_USE(vq);
586 	return -ENOMEM;
587 }
588 
589 static bool virtqueue_kick_prepare_split(struct virtqueue *_vq)
590 {
591 	struct vring_virtqueue *vq = to_vvq(_vq);
592 	u16 new, old;
593 	bool needs_kick;
594 
595 	START_USE(vq);
596 	/* We need to expose available array entries before checking avail
597 	 * event. */
598 	virtio_mb(vq->weak_barriers);
599 
600 	old = vq->split.avail_idx_shadow - vq->num_added;
601 	new = vq->split.avail_idx_shadow;
602 	vq->num_added = 0;
603 
604 	LAST_ADD_TIME_CHECK(vq);
605 	LAST_ADD_TIME_INVALID(vq);
606 
607 	if (vq->event) {
608 		needs_kick = vring_need_event(virtio16_to_cpu(_vq->vdev,
609 					vring_avail_event(&vq->split.vring)),
610 					      new, old);
611 	} else {
612 		needs_kick = !(vq->split.vring.used->flags &
613 					cpu_to_virtio16(_vq->vdev,
614 						VRING_USED_F_NO_NOTIFY));
615 	}
616 	END_USE(vq);
617 	return needs_kick;
618 }
619 
620 static void detach_buf_split(struct vring_virtqueue *vq, unsigned int head,
621 			     void **ctx)
622 {
623 	unsigned int i, j;
624 	__virtio16 nextflag = cpu_to_virtio16(vq->vq.vdev, VRING_DESC_F_NEXT);
625 
626 	/* Clear data ptr. */
627 	vq->split.desc_state[head].data = NULL;
628 
629 	/* Put back on free list: unmap first-level descriptors and find end */
630 	i = head;
631 
632 	while (vq->split.vring.desc[i].flags & nextflag) {
633 		vring_unmap_one_split(vq, &vq->split.vring.desc[i]);
634 		i = virtio16_to_cpu(vq->vq.vdev, vq->split.vring.desc[i].next);
635 		vq->vq.num_free++;
636 	}
637 
638 	vring_unmap_one_split(vq, &vq->split.vring.desc[i]);
639 	vq->split.vring.desc[i].next = cpu_to_virtio16(vq->vq.vdev,
640 						vq->free_head);
641 	vq->free_head = head;
642 
643 	/* Plus final descriptor */
644 	vq->vq.num_free++;
645 
646 	if (vq->indirect) {
647 		struct vring_desc *indir_desc =
648 				vq->split.desc_state[head].indir_desc;
649 		u32 len;
650 
651 		/* Free the indirect table, if any, now that it's unmapped. */
652 		if (!indir_desc)
653 			return;
654 
655 		len = virtio32_to_cpu(vq->vq.vdev,
656 				vq->split.vring.desc[head].len);
657 
658 		BUG_ON(!(vq->split.vring.desc[head].flags &
659 			 cpu_to_virtio16(vq->vq.vdev, VRING_DESC_F_INDIRECT)));
660 		BUG_ON(len == 0 || len % sizeof(struct vring_desc));
661 
662 		for (j = 0; j < len / sizeof(struct vring_desc); j++)
663 			vring_unmap_one_split(vq, &indir_desc[j]);
664 
665 		kfree(indir_desc);
666 		vq->split.desc_state[head].indir_desc = NULL;
667 	} else if (ctx) {
668 		*ctx = vq->split.desc_state[head].indir_desc;
669 	}
670 }
671 
672 static inline bool more_used_split(const struct vring_virtqueue *vq)
673 {
674 	return vq->last_used_idx != virtio16_to_cpu(vq->vq.vdev,
675 			vq->split.vring.used->idx);
676 }
677 
678 static void *virtqueue_get_buf_ctx_split(struct virtqueue *_vq,
679 					 unsigned int *len,
680 					 void **ctx)
681 {
682 	struct vring_virtqueue *vq = to_vvq(_vq);
683 	void *ret;
684 	unsigned int i;
685 	u16 last_used;
686 
687 	START_USE(vq);
688 
689 	if (unlikely(vq->broken)) {
690 		END_USE(vq);
691 		return NULL;
692 	}
693 
694 	if (!more_used_split(vq)) {
695 		pr_debug("No more buffers in queue\n");
696 		END_USE(vq);
697 		return NULL;
698 	}
699 
700 	/* Only get used array entries after they have been exposed by host. */
701 	virtio_rmb(vq->weak_barriers);
702 
703 	last_used = (vq->last_used_idx & (vq->split.vring.num - 1));
704 	i = virtio32_to_cpu(_vq->vdev,
705 			vq->split.vring.used->ring[last_used].id);
706 	*len = virtio32_to_cpu(_vq->vdev,
707 			vq->split.vring.used->ring[last_used].len);
708 
709 	if (unlikely(i >= vq->split.vring.num)) {
710 		BAD_RING(vq, "id %u out of range\n", i);
711 		return NULL;
712 	}
713 	if (unlikely(!vq->split.desc_state[i].data)) {
714 		BAD_RING(vq, "id %u is not a head!\n", i);
715 		return NULL;
716 	}
717 
718 	/* detach_buf_split clears data, so grab it now. */
719 	ret = vq->split.desc_state[i].data;
720 	detach_buf_split(vq, i, ctx);
721 	vq->last_used_idx++;
722 	/* If we expect an interrupt for the next entry, tell host
723 	 * by writing event index and flush out the write before
724 	 * the read in the next get_buf call. */
725 	if (!(vq->split.avail_flags_shadow & VRING_AVAIL_F_NO_INTERRUPT))
726 		virtio_store_mb(vq->weak_barriers,
727 				&vring_used_event(&vq->split.vring),
728 				cpu_to_virtio16(_vq->vdev, vq->last_used_idx));
729 
730 	LAST_ADD_TIME_INVALID(vq);
731 
732 	END_USE(vq);
733 	return ret;
734 }
735 
736 static void virtqueue_disable_cb_split(struct virtqueue *_vq)
737 {
738 	struct vring_virtqueue *vq = to_vvq(_vq);
739 
740 	if (!(vq->split.avail_flags_shadow & VRING_AVAIL_F_NO_INTERRUPT)) {
741 		vq->split.avail_flags_shadow |= VRING_AVAIL_F_NO_INTERRUPT;
742 		if (!vq->event)
743 			vq->split.vring.avail->flags =
744 				cpu_to_virtio16(_vq->vdev,
745 						vq->split.avail_flags_shadow);
746 	}
747 }
748 
749 static unsigned virtqueue_enable_cb_prepare_split(struct virtqueue *_vq)
750 {
751 	struct vring_virtqueue *vq = to_vvq(_vq);
752 	u16 last_used_idx;
753 
754 	START_USE(vq);
755 
756 	/* We optimistically turn back on interrupts, then check if there was
757 	 * more to do. */
758 	/* Depending on the VIRTIO_RING_F_EVENT_IDX feature, we need to
759 	 * either clear the flags bit or point the event index at the next
760 	 * entry. Always do both to keep code simple. */
761 	if (vq->split.avail_flags_shadow & VRING_AVAIL_F_NO_INTERRUPT) {
762 		vq->split.avail_flags_shadow &= ~VRING_AVAIL_F_NO_INTERRUPT;
763 		if (!vq->event)
764 			vq->split.vring.avail->flags =
765 				cpu_to_virtio16(_vq->vdev,
766 						vq->split.avail_flags_shadow);
767 	}
768 	vring_used_event(&vq->split.vring) = cpu_to_virtio16(_vq->vdev,
769 			last_used_idx = vq->last_used_idx);
770 	END_USE(vq);
771 	return last_used_idx;
772 }
773 
774 static bool virtqueue_poll_split(struct virtqueue *_vq, unsigned last_used_idx)
775 {
776 	struct vring_virtqueue *vq = to_vvq(_vq);
777 
778 	return (u16)last_used_idx != virtio16_to_cpu(_vq->vdev,
779 			vq->split.vring.used->idx);
780 }
781 
782 static bool virtqueue_enable_cb_delayed_split(struct virtqueue *_vq)
783 {
784 	struct vring_virtqueue *vq = to_vvq(_vq);
785 	u16 bufs;
786 
787 	START_USE(vq);
788 
789 	/* We optimistically turn back on interrupts, then check if there was
790 	 * more to do. */
791 	/* Depending on the VIRTIO_RING_F_USED_EVENT_IDX feature, we need to
792 	 * either clear the flags bit or point the event index at the next
793 	 * entry. Always update the event index to keep code simple. */
794 	if (vq->split.avail_flags_shadow & VRING_AVAIL_F_NO_INTERRUPT) {
795 		vq->split.avail_flags_shadow &= ~VRING_AVAIL_F_NO_INTERRUPT;
796 		if (!vq->event)
797 			vq->split.vring.avail->flags =
798 				cpu_to_virtio16(_vq->vdev,
799 						vq->split.avail_flags_shadow);
800 	}
801 	/* TODO: tune this threshold */
802 	bufs = (u16)(vq->split.avail_idx_shadow - vq->last_used_idx) * 3 / 4;
803 
804 	virtio_store_mb(vq->weak_barriers,
805 			&vring_used_event(&vq->split.vring),
806 			cpu_to_virtio16(_vq->vdev, vq->last_used_idx + bufs));
807 
808 	if (unlikely((u16)(virtio16_to_cpu(_vq->vdev, vq->split.vring.used->idx)
809 					- vq->last_used_idx) > bufs)) {
810 		END_USE(vq);
811 		return false;
812 	}
813 
814 	END_USE(vq);
815 	return true;
816 }
817 
818 static void *virtqueue_detach_unused_buf_split(struct virtqueue *_vq)
819 {
820 	struct vring_virtqueue *vq = to_vvq(_vq);
821 	unsigned int i;
822 	void *buf;
823 
824 	START_USE(vq);
825 
826 	for (i = 0; i < vq->split.vring.num; i++) {
827 		if (!vq->split.desc_state[i].data)
828 			continue;
829 		/* detach_buf_split clears data, so grab it now. */
830 		buf = vq->split.desc_state[i].data;
831 		detach_buf_split(vq, i, NULL);
832 		vq->split.avail_idx_shadow--;
833 		vq->split.vring.avail->idx = cpu_to_virtio16(_vq->vdev,
834 				vq->split.avail_idx_shadow);
835 		END_USE(vq);
836 		return buf;
837 	}
838 	/* That should have freed everything. */
839 	BUG_ON(vq->vq.num_free != vq->split.vring.num);
840 
841 	END_USE(vq);
842 	return NULL;
843 }
844 
845 static struct virtqueue *vring_create_virtqueue_split(
846 	unsigned int index,
847 	unsigned int num,
848 	unsigned int vring_align,
849 	struct virtio_device *vdev,
850 	bool weak_barriers,
851 	bool may_reduce_num,
852 	bool context,
853 	bool (*notify)(struct virtqueue *),
854 	void (*callback)(struct virtqueue *),
855 	const char *name)
856 {
857 	struct virtqueue *vq;
858 	void *queue = NULL;
859 	dma_addr_t dma_addr;
860 	size_t queue_size_in_bytes;
861 	struct vring vring;
862 
863 	/* We assume num is a power of 2. */
864 	if (num & (num - 1)) {
865 		dev_warn(&vdev->dev, "Bad virtqueue length %u\n", num);
866 		return NULL;
867 	}
868 
869 	/* TODO: allocate each queue chunk individually */
870 	for (; num && vring_size(num, vring_align) > PAGE_SIZE; num /= 2) {
871 		queue = vring_alloc_queue(vdev, vring_size(num, vring_align),
872 					  &dma_addr,
873 					  GFP_KERNEL|__GFP_NOWARN|__GFP_ZERO);
874 		if (queue)
875 			break;
876 		if (!may_reduce_num)
877 			return NULL;
878 	}
879 
880 	if (!num)
881 		return NULL;
882 
883 	if (!queue) {
884 		/* Try to get a single page. You are my only hope! */
885 		queue = vring_alloc_queue(vdev, vring_size(num, vring_align),
886 					  &dma_addr, GFP_KERNEL|__GFP_ZERO);
887 	}
888 	if (!queue)
889 		return NULL;
890 
891 	queue_size_in_bytes = vring_size(num, vring_align);
892 	vring_init(&vring, num, queue, vring_align);
893 
894 	vq = __vring_new_virtqueue(index, vring, vdev, weak_barriers, context,
895 				   notify, callback, name);
896 	if (!vq) {
897 		vring_free_queue(vdev, queue_size_in_bytes, queue,
898 				 dma_addr);
899 		return NULL;
900 	}
901 
902 	to_vvq(vq)->split.queue_dma_addr = dma_addr;
903 	to_vvq(vq)->split.queue_size_in_bytes = queue_size_in_bytes;
904 	to_vvq(vq)->we_own_ring = true;
905 
906 	return vq;
907 }
908 
909 
910 /*
911  * Packed ring specific functions - *_packed().
912  */
913 
914 static void vring_unmap_state_packed(const struct vring_virtqueue *vq,
915 				     struct vring_desc_extra_packed *state)
916 {
917 	u16 flags;
918 
919 	if (!vq->use_dma_api)
920 		return;
921 
922 	flags = state->flags;
923 
924 	if (flags & VRING_DESC_F_INDIRECT) {
925 		dma_unmap_single(vring_dma_dev(vq),
926 				 state->addr, state->len,
927 				 (flags & VRING_DESC_F_WRITE) ?
928 				 DMA_FROM_DEVICE : DMA_TO_DEVICE);
929 	} else {
930 		dma_unmap_page(vring_dma_dev(vq),
931 			       state->addr, state->len,
932 			       (flags & VRING_DESC_F_WRITE) ?
933 			       DMA_FROM_DEVICE : DMA_TO_DEVICE);
934 	}
935 }
936 
937 static void vring_unmap_desc_packed(const struct vring_virtqueue *vq,
938 				   struct vring_packed_desc *desc)
939 {
940 	u16 flags;
941 
942 	if (!vq->use_dma_api)
943 		return;
944 
945 	flags = le16_to_cpu(desc->flags);
946 
947 	if (flags & VRING_DESC_F_INDIRECT) {
948 		dma_unmap_single(vring_dma_dev(vq),
949 				 le64_to_cpu(desc->addr),
950 				 le32_to_cpu(desc->len),
951 				 (flags & VRING_DESC_F_WRITE) ?
952 				 DMA_FROM_DEVICE : DMA_TO_DEVICE);
953 	} else {
954 		dma_unmap_page(vring_dma_dev(vq),
955 			       le64_to_cpu(desc->addr),
956 			       le32_to_cpu(desc->len),
957 			       (flags & VRING_DESC_F_WRITE) ?
958 			       DMA_FROM_DEVICE : DMA_TO_DEVICE);
959 	}
960 }
961 
962 static struct vring_packed_desc *alloc_indirect_packed(unsigned int total_sg,
963 						       gfp_t gfp)
964 {
965 	struct vring_packed_desc *desc;
966 
967 	/*
968 	 * We require lowmem mappings for the descriptors because
969 	 * otherwise virt_to_phys will give us bogus addresses in the
970 	 * virtqueue.
971 	 */
972 	gfp &= ~__GFP_HIGHMEM;
973 
974 	desc = kmalloc_array(total_sg, sizeof(struct vring_packed_desc), gfp);
975 
976 	return desc;
977 }
978 
979 static int virtqueue_add_indirect_packed(struct vring_virtqueue *vq,
980 				       struct scatterlist *sgs[],
981 				       unsigned int total_sg,
982 				       unsigned int out_sgs,
983 				       unsigned int in_sgs,
984 				       void *data,
985 				       gfp_t gfp)
986 {
987 	struct vring_packed_desc *desc;
988 	struct scatterlist *sg;
989 	unsigned int i, n, err_idx;
990 	u16 head, id;
991 	dma_addr_t addr;
992 
993 	head = vq->packed.next_avail_idx;
994 	desc = alloc_indirect_packed(total_sg, gfp);
995 
996 	if (unlikely(vq->vq.num_free < 1)) {
997 		pr_debug("Can't add buf len 1 - avail = 0\n");
998 		kfree(desc);
999 		END_USE(vq);
1000 		return -ENOSPC;
1001 	}
1002 
1003 	i = 0;
1004 	id = vq->free_head;
1005 	BUG_ON(id == vq->packed.vring.num);
1006 
1007 	for (n = 0; n < out_sgs + in_sgs; n++) {
1008 		for (sg = sgs[n]; sg; sg = sg_next(sg)) {
1009 			addr = vring_map_one_sg(vq, sg, n < out_sgs ?
1010 					DMA_TO_DEVICE : DMA_FROM_DEVICE);
1011 			if (vring_mapping_error(vq, addr))
1012 				goto unmap_release;
1013 
1014 			desc[i].flags = cpu_to_le16(n < out_sgs ?
1015 						0 : VRING_DESC_F_WRITE);
1016 			desc[i].addr = cpu_to_le64(addr);
1017 			desc[i].len = cpu_to_le32(sg->length);
1018 			i++;
1019 		}
1020 	}
1021 
1022 	/* Now that the indirect table is filled in, map it. */
1023 	addr = vring_map_single(vq, desc,
1024 			total_sg * sizeof(struct vring_packed_desc),
1025 			DMA_TO_DEVICE);
1026 	if (vring_mapping_error(vq, addr))
1027 		goto unmap_release;
1028 
1029 	vq->packed.vring.desc[head].addr = cpu_to_le64(addr);
1030 	vq->packed.vring.desc[head].len = cpu_to_le32(total_sg *
1031 				sizeof(struct vring_packed_desc));
1032 	vq->packed.vring.desc[head].id = cpu_to_le16(id);
1033 
1034 	if (vq->use_dma_api) {
1035 		vq->packed.desc_extra[id].addr = addr;
1036 		vq->packed.desc_extra[id].len = total_sg *
1037 				sizeof(struct vring_packed_desc);
1038 		vq->packed.desc_extra[id].flags = VRING_DESC_F_INDIRECT |
1039 						  vq->packed.avail_used_flags;
1040 	}
1041 
1042 	/*
1043 	 * A driver MUST NOT make the first descriptor in the list
1044 	 * available before all subsequent descriptors comprising
1045 	 * the list are made available.
1046 	 */
1047 	virtio_wmb(vq->weak_barriers);
1048 	vq->packed.vring.desc[head].flags = cpu_to_le16(VRING_DESC_F_INDIRECT |
1049 						vq->packed.avail_used_flags);
1050 
1051 	/* We're using some buffers from the free list. */
1052 	vq->vq.num_free -= 1;
1053 
1054 	/* Update free pointer */
1055 	n = head + 1;
1056 	if (n >= vq->packed.vring.num) {
1057 		n = 0;
1058 		vq->packed.avail_wrap_counter ^= 1;
1059 		vq->packed.avail_used_flags ^=
1060 				1 << VRING_PACKED_DESC_F_AVAIL |
1061 				1 << VRING_PACKED_DESC_F_USED;
1062 	}
1063 	vq->packed.next_avail_idx = n;
1064 	vq->free_head = vq->packed.desc_state[id].next;
1065 
1066 	/* Store token and indirect buffer state. */
1067 	vq->packed.desc_state[id].num = 1;
1068 	vq->packed.desc_state[id].data = data;
1069 	vq->packed.desc_state[id].indir_desc = desc;
1070 	vq->packed.desc_state[id].last = id;
1071 
1072 	vq->num_added += 1;
1073 
1074 	pr_debug("Added buffer head %i to %p\n", head, vq);
1075 	END_USE(vq);
1076 
1077 	return 0;
1078 
1079 unmap_release:
1080 	err_idx = i;
1081 
1082 	for (i = 0; i < err_idx; i++)
1083 		vring_unmap_desc_packed(vq, &desc[i]);
1084 
1085 	kfree(desc);
1086 
1087 	END_USE(vq);
1088 	return -ENOMEM;
1089 }
1090 
1091 static inline int virtqueue_add_packed(struct virtqueue *_vq,
1092 				       struct scatterlist *sgs[],
1093 				       unsigned int total_sg,
1094 				       unsigned int out_sgs,
1095 				       unsigned int in_sgs,
1096 				       void *data,
1097 				       void *ctx,
1098 				       gfp_t gfp)
1099 {
1100 	struct vring_virtqueue *vq = to_vvq(_vq);
1101 	struct vring_packed_desc *desc;
1102 	struct scatterlist *sg;
1103 	unsigned int i, n, c, descs_used, err_idx;
1104 	__le16 head_flags, flags;
1105 	u16 head, id, prev, curr, avail_used_flags;
1106 
1107 	START_USE(vq);
1108 
1109 	BUG_ON(data == NULL);
1110 	BUG_ON(ctx && vq->indirect);
1111 
1112 	if (unlikely(vq->broken)) {
1113 		END_USE(vq);
1114 		return -EIO;
1115 	}
1116 
1117 	LAST_ADD_TIME_UPDATE(vq);
1118 
1119 	BUG_ON(total_sg == 0);
1120 
1121 	if (virtqueue_use_indirect(_vq, total_sg))
1122 		return virtqueue_add_indirect_packed(vq, sgs, total_sg,
1123 				out_sgs, in_sgs, data, gfp);
1124 
1125 	head = vq->packed.next_avail_idx;
1126 	avail_used_flags = vq->packed.avail_used_flags;
1127 
1128 	WARN_ON_ONCE(total_sg > vq->packed.vring.num && !vq->indirect);
1129 
1130 	desc = vq->packed.vring.desc;
1131 	i = head;
1132 	descs_used = total_sg;
1133 
1134 	if (unlikely(vq->vq.num_free < descs_used)) {
1135 		pr_debug("Can't add buf len %i - avail = %i\n",
1136 			 descs_used, vq->vq.num_free);
1137 		END_USE(vq);
1138 		return -ENOSPC;
1139 	}
1140 
1141 	id = vq->free_head;
1142 	BUG_ON(id == vq->packed.vring.num);
1143 
1144 	curr = id;
1145 	c = 0;
1146 	for (n = 0; n < out_sgs + in_sgs; n++) {
1147 		for (sg = sgs[n]; sg; sg = sg_next(sg)) {
1148 			dma_addr_t addr = vring_map_one_sg(vq, sg, n < out_sgs ?
1149 					DMA_TO_DEVICE : DMA_FROM_DEVICE);
1150 			if (vring_mapping_error(vq, addr))
1151 				goto unmap_release;
1152 
1153 			flags = cpu_to_le16(vq->packed.avail_used_flags |
1154 				    (++c == total_sg ? 0 : VRING_DESC_F_NEXT) |
1155 				    (n < out_sgs ? 0 : VRING_DESC_F_WRITE));
1156 			if (i == head)
1157 				head_flags = flags;
1158 			else
1159 				desc[i].flags = flags;
1160 
1161 			desc[i].addr = cpu_to_le64(addr);
1162 			desc[i].len = cpu_to_le32(sg->length);
1163 			desc[i].id = cpu_to_le16(id);
1164 
1165 			if (unlikely(vq->use_dma_api)) {
1166 				vq->packed.desc_extra[curr].addr = addr;
1167 				vq->packed.desc_extra[curr].len = sg->length;
1168 				vq->packed.desc_extra[curr].flags =
1169 					le16_to_cpu(flags);
1170 			}
1171 			prev = curr;
1172 			curr = vq->packed.desc_state[curr].next;
1173 
1174 			if ((unlikely(++i >= vq->packed.vring.num))) {
1175 				i = 0;
1176 				vq->packed.avail_used_flags ^=
1177 					1 << VRING_PACKED_DESC_F_AVAIL |
1178 					1 << VRING_PACKED_DESC_F_USED;
1179 			}
1180 		}
1181 	}
1182 
1183 	if (i < head)
1184 		vq->packed.avail_wrap_counter ^= 1;
1185 
1186 	/* We're using some buffers from the free list. */
1187 	vq->vq.num_free -= descs_used;
1188 
1189 	/* Update free pointer */
1190 	vq->packed.next_avail_idx = i;
1191 	vq->free_head = curr;
1192 
1193 	/* Store token. */
1194 	vq->packed.desc_state[id].num = descs_used;
1195 	vq->packed.desc_state[id].data = data;
1196 	vq->packed.desc_state[id].indir_desc = ctx;
1197 	vq->packed.desc_state[id].last = prev;
1198 
1199 	/*
1200 	 * A driver MUST NOT make the first descriptor in the list
1201 	 * available before all subsequent descriptors comprising
1202 	 * the list are made available.
1203 	 */
1204 	virtio_wmb(vq->weak_barriers);
1205 	vq->packed.vring.desc[head].flags = head_flags;
1206 	vq->num_added += descs_used;
1207 
1208 	pr_debug("Added buffer head %i to %p\n", head, vq);
1209 	END_USE(vq);
1210 
1211 	return 0;
1212 
1213 unmap_release:
1214 	err_idx = i;
1215 	i = head;
1216 
1217 	vq->packed.avail_used_flags = avail_used_flags;
1218 
1219 	for (n = 0; n < total_sg; n++) {
1220 		if (i == err_idx)
1221 			break;
1222 		vring_unmap_desc_packed(vq, &desc[i]);
1223 		i++;
1224 		if (i >= vq->packed.vring.num)
1225 			i = 0;
1226 	}
1227 
1228 	END_USE(vq);
1229 	return -EIO;
1230 }
1231 
1232 static bool virtqueue_kick_prepare_packed(struct virtqueue *_vq)
1233 {
1234 	struct vring_virtqueue *vq = to_vvq(_vq);
1235 	u16 new, old, off_wrap, flags, wrap_counter, event_idx;
1236 	bool needs_kick;
1237 	union {
1238 		struct {
1239 			__le16 off_wrap;
1240 			__le16 flags;
1241 		};
1242 		u32 u32;
1243 	} snapshot;
1244 
1245 	START_USE(vq);
1246 
1247 	/*
1248 	 * We need to expose the new flags value before checking notification
1249 	 * suppressions.
1250 	 */
1251 	virtio_mb(vq->weak_barriers);
1252 
1253 	old = vq->packed.next_avail_idx - vq->num_added;
1254 	new = vq->packed.next_avail_idx;
1255 	vq->num_added = 0;
1256 
1257 	snapshot.u32 = *(u32 *)vq->packed.vring.device;
1258 	flags = le16_to_cpu(snapshot.flags);
1259 
1260 	LAST_ADD_TIME_CHECK(vq);
1261 	LAST_ADD_TIME_INVALID(vq);
1262 
1263 	if (flags != VRING_PACKED_EVENT_FLAG_DESC) {
1264 		needs_kick = (flags != VRING_PACKED_EVENT_FLAG_DISABLE);
1265 		goto out;
1266 	}
1267 
1268 	off_wrap = le16_to_cpu(snapshot.off_wrap);
1269 
1270 	wrap_counter = off_wrap >> VRING_PACKED_EVENT_F_WRAP_CTR;
1271 	event_idx = off_wrap & ~(1 << VRING_PACKED_EVENT_F_WRAP_CTR);
1272 	if (wrap_counter != vq->packed.avail_wrap_counter)
1273 		event_idx -= vq->packed.vring.num;
1274 
1275 	needs_kick = vring_need_event(event_idx, new, old);
1276 out:
1277 	END_USE(vq);
1278 	return needs_kick;
1279 }
1280 
1281 static void detach_buf_packed(struct vring_virtqueue *vq,
1282 			      unsigned int id, void **ctx)
1283 {
1284 	struct vring_desc_state_packed *state = NULL;
1285 	struct vring_packed_desc *desc;
1286 	unsigned int i, curr;
1287 
1288 	state = &vq->packed.desc_state[id];
1289 
1290 	/* Clear data ptr. */
1291 	state->data = NULL;
1292 
1293 	vq->packed.desc_state[state->last].next = vq->free_head;
1294 	vq->free_head = id;
1295 	vq->vq.num_free += state->num;
1296 
1297 	if (unlikely(vq->use_dma_api)) {
1298 		curr = id;
1299 		for (i = 0; i < state->num; i++) {
1300 			vring_unmap_state_packed(vq,
1301 				&vq->packed.desc_extra[curr]);
1302 			curr = vq->packed.desc_state[curr].next;
1303 		}
1304 	}
1305 
1306 	if (vq->indirect) {
1307 		u32 len;
1308 
1309 		/* Free the indirect table, if any, now that it's unmapped. */
1310 		desc = state->indir_desc;
1311 		if (!desc)
1312 			return;
1313 
1314 		if (vq->use_dma_api) {
1315 			len = vq->packed.desc_extra[id].len;
1316 			for (i = 0; i < len / sizeof(struct vring_packed_desc);
1317 					i++)
1318 				vring_unmap_desc_packed(vq, &desc[i]);
1319 		}
1320 		kfree(desc);
1321 		state->indir_desc = NULL;
1322 	} else if (ctx) {
1323 		*ctx = state->indir_desc;
1324 	}
1325 }
1326 
1327 static inline bool is_used_desc_packed(const struct vring_virtqueue *vq,
1328 				       u16 idx, bool used_wrap_counter)
1329 {
1330 	bool avail, used;
1331 	u16 flags;
1332 
1333 	flags = le16_to_cpu(vq->packed.vring.desc[idx].flags);
1334 	avail = !!(flags & (1 << VRING_PACKED_DESC_F_AVAIL));
1335 	used = !!(flags & (1 << VRING_PACKED_DESC_F_USED));
1336 
1337 	return avail == used && used == used_wrap_counter;
1338 }
1339 
1340 static inline bool more_used_packed(const struct vring_virtqueue *vq)
1341 {
1342 	return is_used_desc_packed(vq, vq->last_used_idx,
1343 			vq->packed.used_wrap_counter);
1344 }
1345 
1346 static void *virtqueue_get_buf_ctx_packed(struct virtqueue *_vq,
1347 					  unsigned int *len,
1348 					  void **ctx)
1349 {
1350 	struct vring_virtqueue *vq = to_vvq(_vq);
1351 	u16 last_used, id;
1352 	void *ret;
1353 
1354 	START_USE(vq);
1355 
1356 	if (unlikely(vq->broken)) {
1357 		END_USE(vq);
1358 		return NULL;
1359 	}
1360 
1361 	if (!more_used_packed(vq)) {
1362 		pr_debug("No more buffers in queue\n");
1363 		END_USE(vq);
1364 		return NULL;
1365 	}
1366 
1367 	/* Only get used elements after they have been exposed by host. */
1368 	virtio_rmb(vq->weak_barriers);
1369 
1370 	last_used = vq->last_used_idx;
1371 	id = le16_to_cpu(vq->packed.vring.desc[last_used].id);
1372 	*len = le32_to_cpu(vq->packed.vring.desc[last_used].len);
1373 
1374 	if (unlikely(id >= vq->packed.vring.num)) {
1375 		BAD_RING(vq, "id %u out of range\n", id);
1376 		return NULL;
1377 	}
1378 	if (unlikely(!vq->packed.desc_state[id].data)) {
1379 		BAD_RING(vq, "id %u is not a head!\n", id);
1380 		return NULL;
1381 	}
1382 
1383 	/* detach_buf_packed clears data, so grab it now. */
1384 	ret = vq->packed.desc_state[id].data;
1385 	detach_buf_packed(vq, id, ctx);
1386 
1387 	vq->last_used_idx += vq->packed.desc_state[id].num;
1388 	if (unlikely(vq->last_used_idx >= vq->packed.vring.num)) {
1389 		vq->last_used_idx -= vq->packed.vring.num;
1390 		vq->packed.used_wrap_counter ^= 1;
1391 	}
1392 
1393 	/*
1394 	 * If we expect an interrupt for the next entry, tell host
1395 	 * by writing event index and flush out the write before
1396 	 * the read in the next get_buf call.
1397 	 */
1398 	if (vq->packed.event_flags_shadow == VRING_PACKED_EVENT_FLAG_DESC)
1399 		virtio_store_mb(vq->weak_barriers,
1400 				&vq->packed.vring.driver->off_wrap,
1401 				cpu_to_le16(vq->last_used_idx |
1402 					(vq->packed.used_wrap_counter <<
1403 					 VRING_PACKED_EVENT_F_WRAP_CTR)));
1404 
1405 	LAST_ADD_TIME_INVALID(vq);
1406 
1407 	END_USE(vq);
1408 	return ret;
1409 }
1410 
1411 static void virtqueue_disable_cb_packed(struct virtqueue *_vq)
1412 {
1413 	struct vring_virtqueue *vq = to_vvq(_vq);
1414 
1415 	if (vq->packed.event_flags_shadow != VRING_PACKED_EVENT_FLAG_DISABLE) {
1416 		vq->packed.event_flags_shadow = VRING_PACKED_EVENT_FLAG_DISABLE;
1417 		vq->packed.vring.driver->flags =
1418 			cpu_to_le16(vq->packed.event_flags_shadow);
1419 	}
1420 }
1421 
1422 static unsigned virtqueue_enable_cb_prepare_packed(struct virtqueue *_vq)
1423 {
1424 	struct vring_virtqueue *vq = to_vvq(_vq);
1425 
1426 	START_USE(vq);
1427 
1428 	/*
1429 	 * We optimistically turn back on interrupts, then check if there was
1430 	 * more to do.
1431 	 */
1432 
1433 	if (vq->event) {
1434 		vq->packed.vring.driver->off_wrap =
1435 			cpu_to_le16(vq->last_used_idx |
1436 				(vq->packed.used_wrap_counter <<
1437 				 VRING_PACKED_EVENT_F_WRAP_CTR));
1438 		/*
1439 		 * We need to update event offset and event wrap
1440 		 * counter first before updating event flags.
1441 		 */
1442 		virtio_wmb(vq->weak_barriers);
1443 	}
1444 
1445 	if (vq->packed.event_flags_shadow == VRING_PACKED_EVENT_FLAG_DISABLE) {
1446 		vq->packed.event_flags_shadow = vq->event ?
1447 				VRING_PACKED_EVENT_FLAG_DESC :
1448 				VRING_PACKED_EVENT_FLAG_ENABLE;
1449 		vq->packed.vring.driver->flags =
1450 				cpu_to_le16(vq->packed.event_flags_shadow);
1451 	}
1452 
1453 	END_USE(vq);
1454 	return vq->last_used_idx | ((u16)vq->packed.used_wrap_counter <<
1455 			VRING_PACKED_EVENT_F_WRAP_CTR);
1456 }
1457 
1458 static bool virtqueue_poll_packed(struct virtqueue *_vq, u16 off_wrap)
1459 {
1460 	struct vring_virtqueue *vq = to_vvq(_vq);
1461 	bool wrap_counter;
1462 	u16 used_idx;
1463 
1464 	wrap_counter = off_wrap >> VRING_PACKED_EVENT_F_WRAP_CTR;
1465 	used_idx = off_wrap & ~(1 << VRING_PACKED_EVENT_F_WRAP_CTR);
1466 
1467 	return is_used_desc_packed(vq, used_idx, wrap_counter);
1468 }
1469 
1470 static bool virtqueue_enable_cb_delayed_packed(struct virtqueue *_vq)
1471 {
1472 	struct vring_virtqueue *vq = to_vvq(_vq);
1473 	u16 used_idx, wrap_counter;
1474 	u16 bufs;
1475 
1476 	START_USE(vq);
1477 
1478 	/*
1479 	 * We optimistically turn back on interrupts, then check if there was
1480 	 * more to do.
1481 	 */
1482 
1483 	if (vq->event) {
1484 		/* TODO: tune this threshold */
1485 		bufs = (vq->packed.vring.num - vq->vq.num_free) * 3 / 4;
1486 		wrap_counter = vq->packed.used_wrap_counter;
1487 
1488 		used_idx = vq->last_used_idx + bufs;
1489 		if (used_idx >= vq->packed.vring.num) {
1490 			used_idx -= vq->packed.vring.num;
1491 			wrap_counter ^= 1;
1492 		}
1493 
1494 		vq->packed.vring.driver->off_wrap = cpu_to_le16(used_idx |
1495 			(wrap_counter << VRING_PACKED_EVENT_F_WRAP_CTR));
1496 
1497 		/*
1498 		 * We need to update event offset and event wrap
1499 		 * counter first before updating event flags.
1500 		 */
1501 		virtio_wmb(vq->weak_barriers);
1502 	}
1503 
1504 	if (vq->packed.event_flags_shadow == VRING_PACKED_EVENT_FLAG_DISABLE) {
1505 		vq->packed.event_flags_shadow = vq->event ?
1506 				VRING_PACKED_EVENT_FLAG_DESC :
1507 				VRING_PACKED_EVENT_FLAG_ENABLE;
1508 		vq->packed.vring.driver->flags =
1509 				cpu_to_le16(vq->packed.event_flags_shadow);
1510 	}
1511 
1512 	/*
1513 	 * We need to update event suppression structure first
1514 	 * before re-checking for more used buffers.
1515 	 */
1516 	virtio_mb(vq->weak_barriers);
1517 
1518 	if (is_used_desc_packed(vq,
1519 				vq->last_used_idx,
1520 				vq->packed.used_wrap_counter)) {
1521 		END_USE(vq);
1522 		return false;
1523 	}
1524 
1525 	END_USE(vq);
1526 	return true;
1527 }
1528 
1529 static void *virtqueue_detach_unused_buf_packed(struct virtqueue *_vq)
1530 {
1531 	struct vring_virtqueue *vq = to_vvq(_vq);
1532 	unsigned int i;
1533 	void *buf;
1534 
1535 	START_USE(vq);
1536 
1537 	for (i = 0; i < vq->packed.vring.num; i++) {
1538 		if (!vq->packed.desc_state[i].data)
1539 			continue;
1540 		/* detach_buf clears data, so grab it now. */
1541 		buf = vq->packed.desc_state[i].data;
1542 		detach_buf_packed(vq, i, NULL);
1543 		END_USE(vq);
1544 		return buf;
1545 	}
1546 	/* That should have freed everything. */
1547 	BUG_ON(vq->vq.num_free != vq->packed.vring.num);
1548 
1549 	END_USE(vq);
1550 	return NULL;
1551 }
1552 
1553 static struct virtqueue *vring_create_virtqueue_packed(
1554 	unsigned int index,
1555 	unsigned int num,
1556 	unsigned int vring_align,
1557 	struct virtio_device *vdev,
1558 	bool weak_barriers,
1559 	bool may_reduce_num,
1560 	bool context,
1561 	bool (*notify)(struct virtqueue *),
1562 	void (*callback)(struct virtqueue *),
1563 	const char *name)
1564 {
1565 	struct vring_virtqueue *vq;
1566 	struct vring_packed_desc *ring;
1567 	struct vring_packed_desc_event *driver, *device;
1568 	dma_addr_t ring_dma_addr, driver_event_dma_addr, device_event_dma_addr;
1569 	size_t ring_size_in_bytes, event_size_in_bytes;
1570 	unsigned int i;
1571 
1572 	ring_size_in_bytes = num * sizeof(struct vring_packed_desc);
1573 
1574 	ring = vring_alloc_queue(vdev, ring_size_in_bytes,
1575 				 &ring_dma_addr,
1576 				 GFP_KERNEL|__GFP_NOWARN|__GFP_ZERO);
1577 	if (!ring)
1578 		goto err_ring;
1579 
1580 	event_size_in_bytes = sizeof(struct vring_packed_desc_event);
1581 
1582 	driver = vring_alloc_queue(vdev, event_size_in_bytes,
1583 				   &driver_event_dma_addr,
1584 				   GFP_KERNEL|__GFP_NOWARN|__GFP_ZERO);
1585 	if (!driver)
1586 		goto err_driver;
1587 
1588 	device = vring_alloc_queue(vdev, event_size_in_bytes,
1589 				   &device_event_dma_addr,
1590 				   GFP_KERNEL|__GFP_NOWARN|__GFP_ZERO);
1591 	if (!device)
1592 		goto err_device;
1593 
1594 	vq = kmalloc(sizeof(*vq), GFP_KERNEL);
1595 	if (!vq)
1596 		goto err_vq;
1597 
1598 	vq->vq.callback = callback;
1599 	vq->vq.vdev = vdev;
1600 	vq->vq.name = name;
1601 	vq->vq.num_free = num;
1602 	vq->vq.index = index;
1603 	vq->we_own_ring = true;
1604 	vq->notify = notify;
1605 	vq->weak_barriers = weak_barriers;
1606 	vq->broken = false;
1607 	vq->last_used_idx = 0;
1608 	vq->num_added = 0;
1609 	vq->packed_ring = true;
1610 	vq->use_dma_api = vring_use_dma_api(vdev);
1611 #ifdef DEBUG
1612 	vq->in_use = false;
1613 	vq->last_add_time_valid = false;
1614 #endif
1615 
1616 	vq->indirect = virtio_has_feature(vdev, VIRTIO_RING_F_INDIRECT_DESC) &&
1617 		!context;
1618 	vq->event = virtio_has_feature(vdev, VIRTIO_RING_F_EVENT_IDX);
1619 
1620 	if (virtio_has_feature(vdev, VIRTIO_F_ORDER_PLATFORM))
1621 		vq->weak_barriers = false;
1622 
1623 	vq->packed.ring_dma_addr = ring_dma_addr;
1624 	vq->packed.driver_event_dma_addr = driver_event_dma_addr;
1625 	vq->packed.device_event_dma_addr = device_event_dma_addr;
1626 
1627 	vq->packed.ring_size_in_bytes = ring_size_in_bytes;
1628 	vq->packed.event_size_in_bytes = event_size_in_bytes;
1629 
1630 	vq->packed.vring.num = num;
1631 	vq->packed.vring.desc = ring;
1632 	vq->packed.vring.driver = driver;
1633 	vq->packed.vring.device = device;
1634 
1635 	vq->packed.next_avail_idx = 0;
1636 	vq->packed.avail_wrap_counter = 1;
1637 	vq->packed.used_wrap_counter = 1;
1638 	vq->packed.event_flags_shadow = 0;
1639 	vq->packed.avail_used_flags = 1 << VRING_PACKED_DESC_F_AVAIL;
1640 
1641 	vq->packed.desc_state = kmalloc_array(num,
1642 			sizeof(struct vring_desc_state_packed),
1643 			GFP_KERNEL);
1644 	if (!vq->packed.desc_state)
1645 		goto err_desc_state;
1646 
1647 	memset(vq->packed.desc_state, 0,
1648 		num * sizeof(struct vring_desc_state_packed));
1649 
1650 	/* Put everything in free lists. */
1651 	vq->free_head = 0;
1652 	for (i = 0; i < num-1; i++)
1653 		vq->packed.desc_state[i].next = i + 1;
1654 
1655 	vq->packed.desc_extra = kmalloc_array(num,
1656 			sizeof(struct vring_desc_extra_packed),
1657 			GFP_KERNEL);
1658 	if (!vq->packed.desc_extra)
1659 		goto err_desc_extra;
1660 
1661 	memset(vq->packed.desc_extra, 0,
1662 		num * sizeof(struct vring_desc_extra_packed));
1663 
1664 	/* No callback?  Tell other side not to bother us. */
1665 	if (!callback) {
1666 		vq->packed.event_flags_shadow = VRING_PACKED_EVENT_FLAG_DISABLE;
1667 		vq->packed.vring.driver->flags =
1668 			cpu_to_le16(vq->packed.event_flags_shadow);
1669 	}
1670 
1671 	list_add_tail(&vq->vq.list, &vdev->vqs);
1672 	return &vq->vq;
1673 
1674 err_desc_extra:
1675 	kfree(vq->packed.desc_state);
1676 err_desc_state:
1677 	kfree(vq);
1678 err_vq:
1679 	vring_free_queue(vdev, event_size_in_bytes, device, device_event_dma_addr);
1680 err_device:
1681 	vring_free_queue(vdev, event_size_in_bytes, driver, driver_event_dma_addr);
1682 err_driver:
1683 	vring_free_queue(vdev, ring_size_in_bytes, ring, ring_dma_addr);
1684 err_ring:
1685 	return NULL;
1686 }
1687 
1688 
1689 /*
1690  * Generic functions and exported symbols.
1691  */
1692 
1693 static inline int virtqueue_add(struct virtqueue *_vq,
1694 				struct scatterlist *sgs[],
1695 				unsigned int total_sg,
1696 				unsigned int out_sgs,
1697 				unsigned int in_sgs,
1698 				void *data,
1699 				void *ctx,
1700 				gfp_t gfp)
1701 {
1702 	struct vring_virtqueue *vq = to_vvq(_vq);
1703 
1704 	return vq->packed_ring ? virtqueue_add_packed(_vq, sgs, total_sg,
1705 					out_sgs, in_sgs, data, ctx, gfp) :
1706 				 virtqueue_add_split(_vq, sgs, total_sg,
1707 					out_sgs, in_sgs, data, ctx, gfp);
1708 }
1709 
1710 /**
1711  * virtqueue_add_sgs - expose buffers to other end
1712  * @_vq: the struct virtqueue we're talking about.
1713  * @sgs: array of terminated scatterlists.
1714  * @out_sgs: the number of scatterlists readable by other side
1715  * @in_sgs: the number of scatterlists which are writable (after readable ones)
1716  * @data: the token identifying the buffer.
1717  * @gfp: how to do memory allocations (if necessary).
1718  *
1719  * Caller must ensure we don't call this with other virtqueue operations
1720  * at the same time (except where noted).
1721  *
1722  * Returns zero or a negative error (ie. ENOSPC, ENOMEM, EIO).
1723  */
1724 int virtqueue_add_sgs(struct virtqueue *_vq,
1725 		      struct scatterlist *sgs[],
1726 		      unsigned int out_sgs,
1727 		      unsigned int in_sgs,
1728 		      void *data,
1729 		      gfp_t gfp)
1730 {
1731 	unsigned int i, total_sg = 0;
1732 
1733 	/* Count them first. */
1734 	for (i = 0; i < out_sgs + in_sgs; i++) {
1735 		struct scatterlist *sg;
1736 
1737 		for (sg = sgs[i]; sg; sg = sg_next(sg))
1738 			total_sg++;
1739 	}
1740 	return virtqueue_add(_vq, sgs, total_sg, out_sgs, in_sgs,
1741 			     data, NULL, gfp);
1742 }
1743 EXPORT_SYMBOL_GPL(virtqueue_add_sgs);
1744 
1745 /**
1746  * virtqueue_add_outbuf - expose output buffers to other end
1747  * @vq: the struct virtqueue we're talking about.
1748  * @sg: scatterlist (must be well-formed and terminated!)
1749  * @num: the number of entries in @sg readable by other side
1750  * @data: the token identifying the buffer.
1751  * @gfp: how to do memory allocations (if necessary).
1752  *
1753  * Caller must ensure we don't call this with other virtqueue operations
1754  * at the same time (except where noted).
1755  *
1756  * Returns zero or a negative error (ie. ENOSPC, ENOMEM, EIO).
1757  */
1758 int virtqueue_add_outbuf(struct virtqueue *vq,
1759 			 struct scatterlist *sg, unsigned int num,
1760 			 void *data,
1761 			 gfp_t gfp)
1762 {
1763 	return virtqueue_add(vq, &sg, num, 1, 0, data, NULL, gfp);
1764 }
1765 EXPORT_SYMBOL_GPL(virtqueue_add_outbuf);
1766 
1767 /**
1768  * virtqueue_add_inbuf - expose input buffers to other end
1769  * @vq: the struct virtqueue we're talking about.
1770  * @sg: scatterlist (must be well-formed and terminated!)
1771  * @num: the number of entries in @sg writable by other side
1772  * @data: the token identifying the buffer.
1773  * @gfp: how to do memory allocations (if necessary).
1774  *
1775  * Caller must ensure we don't call this with other virtqueue operations
1776  * at the same time (except where noted).
1777  *
1778  * Returns zero or a negative error (ie. ENOSPC, ENOMEM, EIO).
1779  */
1780 int virtqueue_add_inbuf(struct virtqueue *vq,
1781 			struct scatterlist *sg, unsigned int num,
1782 			void *data,
1783 			gfp_t gfp)
1784 {
1785 	return virtqueue_add(vq, &sg, num, 0, 1, data, NULL, gfp);
1786 }
1787 EXPORT_SYMBOL_GPL(virtqueue_add_inbuf);
1788 
1789 /**
1790  * virtqueue_add_inbuf_ctx - expose input buffers to other end
1791  * @vq: the struct virtqueue we're talking about.
1792  * @sg: scatterlist (must be well-formed and terminated!)
1793  * @num: the number of entries in @sg writable by other side
1794  * @data: the token identifying the buffer.
1795  * @ctx: extra context for the token
1796  * @gfp: how to do memory allocations (if necessary).
1797  *
1798  * Caller must ensure we don't call this with other virtqueue operations
1799  * at the same time (except where noted).
1800  *
1801  * Returns zero or a negative error (ie. ENOSPC, ENOMEM, EIO).
1802  */
1803 int virtqueue_add_inbuf_ctx(struct virtqueue *vq,
1804 			struct scatterlist *sg, unsigned int num,
1805 			void *data,
1806 			void *ctx,
1807 			gfp_t gfp)
1808 {
1809 	return virtqueue_add(vq, &sg, num, 0, 1, data, ctx, gfp);
1810 }
1811 EXPORT_SYMBOL_GPL(virtqueue_add_inbuf_ctx);
1812 
1813 /**
1814  * virtqueue_kick_prepare - first half of split virtqueue_kick call.
1815  * @_vq: the struct virtqueue
1816  *
1817  * Instead of virtqueue_kick(), you can do:
1818  *	if (virtqueue_kick_prepare(vq))
1819  *		virtqueue_notify(vq);
1820  *
1821  * This is sometimes useful because the virtqueue_kick_prepare() needs
1822  * to be serialized, but the actual virtqueue_notify() call does not.
1823  */
1824 bool virtqueue_kick_prepare(struct virtqueue *_vq)
1825 {
1826 	struct vring_virtqueue *vq = to_vvq(_vq);
1827 
1828 	return vq->packed_ring ? virtqueue_kick_prepare_packed(_vq) :
1829 				 virtqueue_kick_prepare_split(_vq);
1830 }
1831 EXPORT_SYMBOL_GPL(virtqueue_kick_prepare);
1832 
1833 /**
1834  * virtqueue_notify - second half of split virtqueue_kick call.
1835  * @_vq: the struct virtqueue
1836  *
1837  * This does not need to be serialized.
1838  *
1839  * Returns false if host notify failed or queue is broken, otherwise true.
1840  */
1841 bool virtqueue_notify(struct virtqueue *_vq)
1842 {
1843 	struct vring_virtqueue *vq = to_vvq(_vq);
1844 
1845 	if (unlikely(vq->broken))
1846 		return false;
1847 
1848 	/* Prod other side to tell it about changes. */
1849 	if (!vq->notify(_vq)) {
1850 		vq->broken = true;
1851 		return false;
1852 	}
1853 	return true;
1854 }
1855 EXPORT_SYMBOL_GPL(virtqueue_notify);
1856 
1857 /**
1858  * virtqueue_kick - update after add_buf
1859  * @vq: the struct virtqueue
1860  *
1861  * After one or more virtqueue_add_* calls, invoke this to kick
1862  * the other side.
1863  *
1864  * Caller must ensure we don't call this with other virtqueue
1865  * operations at the same time (except where noted).
1866  *
1867  * Returns false if kick failed, otherwise true.
1868  */
1869 bool virtqueue_kick(struct virtqueue *vq)
1870 {
1871 	if (virtqueue_kick_prepare(vq))
1872 		return virtqueue_notify(vq);
1873 	return true;
1874 }
1875 EXPORT_SYMBOL_GPL(virtqueue_kick);
1876 
1877 /**
1878  * virtqueue_get_buf - get the next used buffer
1879  * @_vq: the struct virtqueue we're talking about.
1880  * @len: the length written into the buffer
1881  * @ctx: extra context for the token
1882  *
1883  * If the device wrote data into the buffer, @len will be set to the
1884  * amount written.  This means you don't need to clear the buffer
1885  * beforehand to ensure there's no data leakage in the case of short
1886  * writes.
1887  *
1888  * Caller must ensure we don't call this with other virtqueue
1889  * operations at the same time (except where noted).
1890  *
1891  * Returns NULL if there are no used buffers, or the "data" token
1892  * handed to virtqueue_add_*().
1893  */
1894 void *virtqueue_get_buf_ctx(struct virtqueue *_vq, unsigned int *len,
1895 			    void **ctx)
1896 {
1897 	struct vring_virtqueue *vq = to_vvq(_vq);
1898 
1899 	return vq->packed_ring ? virtqueue_get_buf_ctx_packed(_vq, len, ctx) :
1900 				 virtqueue_get_buf_ctx_split(_vq, len, ctx);
1901 }
1902 EXPORT_SYMBOL_GPL(virtqueue_get_buf_ctx);
1903 
1904 void *virtqueue_get_buf(struct virtqueue *_vq, unsigned int *len)
1905 {
1906 	return virtqueue_get_buf_ctx(_vq, len, NULL);
1907 }
1908 EXPORT_SYMBOL_GPL(virtqueue_get_buf);
1909 /**
1910  * virtqueue_disable_cb - disable callbacks
1911  * @_vq: the struct virtqueue we're talking about.
1912  *
1913  * Note that this is not necessarily synchronous, hence unreliable and only
1914  * useful as an optimization.
1915  *
1916  * Unlike other operations, this need not be serialized.
1917  */
1918 void virtqueue_disable_cb(struct virtqueue *_vq)
1919 {
1920 	struct vring_virtqueue *vq = to_vvq(_vq);
1921 
1922 	if (vq->packed_ring)
1923 		virtqueue_disable_cb_packed(_vq);
1924 	else
1925 		virtqueue_disable_cb_split(_vq);
1926 }
1927 EXPORT_SYMBOL_GPL(virtqueue_disable_cb);
1928 
1929 /**
1930  * virtqueue_enable_cb_prepare - restart callbacks after disable_cb
1931  * @_vq: the struct virtqueue we're talking about.
1932  *
1933  * This re-enables callbacks; it returns current queue state
1934  * in an opaque unsigned value. This value should be later tested by
1935  * virtqueue_poll, to detect a possible race between the driver checking for
1936  * more work, and enabling callbacks.
1937  *
1938  * Caller must ensure we don't call this with other virtqueue
1939  * operations at the same time (except where noted).
1940  */
1941 unsigned virtqueue_enable_cb_prepare(struct virtqueue *_vq)
1942 {
1943 	struct vring_virtqueue *vq = to_vvq(_vq);
1944 
1945 	return vq->packed_ring ? virtqueue_enable_cb_prepare_packed(_vq) :
1946 				 virtqueue_enable_cb_prepare_split(_vq);
1947 }
1948 EXPORT_SYMBOL_GPL(virtqueue_enable_cb_prepare);
1949 
1950 /**
1951  * virtqueue_poll - query pending used buffers
1952  * @_vq: the struct virtqueue we're talking about.
1953  * @last_used_idx: virtqueue state (from call to virtqueue_enable_cb_prepare).
1954  *
1955  * Returns "true" if there are pending used buffers in the queue.
1956  *
1957  * This does not need to be serialized.
1958  */
1959 bool virtqueue_poll(struct virtqueue *_vq, unsigned last_used_idx)
1960 {
1961 	struct vring_virtqueue *vq = to_vvq(_vq);
1962 
1963 	if (unlikely(vq->broken))
1964 		return false;
1965 
1966 	virtio_mb(vq->weak_barriers);
1967 	return vq->packed_ring ? virtqueue_poll_packed(_vq, last_used_idx) :
1968 				 virtqueue_poll_split(_vq, last_used_idx);
1969 }
1970 EXPORT_SYMBOL_GPL(virtqueue_poll);
1971 
1972 /**
1973  * virtqueue_enable_cb - restart callbacks after disable_cb.
1974  * @_vq: the struct virtqueue we're talking about.
1975  *
1976  * This re-enables callbacks; it returns "false" if there are pending
1977  * buffers in the queue, to detect a possible race between the driver
1978  * checking for more work, and enabling callbacks.
1979  *
1980  * Caller must ensure we don't call this with other virtqueue
1981  * operations at the same time (except where noted).
1982  */
1983 bool virtqueue_enable_cb(struct virtqueue *_vq)
1984 {
1985 	unsigned last_used_idx = virtqueue_enable_cb_prepare(_vq);
1986 
1987 	return !virtqueue_poll(_vq, last_used_idx);
1988 }
1989 EXPORT_SYMBOL_GPL(virtqueue_enable_cb);
1990 
1991 /**
1992  * virtqueue_enable_cb_delayed - restart callbacks after disable_cb.
1993  * @_vq: the struct virtqueue we're talking about.
1994  *
1995  * This re-enables callbacks but hints to the other side to delay
1996  * interrupts until most of the available buffers have been processed;
1997  * it returns "false" if there are many pending buffers in the queue,
1998  * to detect a possible race between the driver checking for more work,
1999  * and enabling callbacks.
2000  *
2001  * Caller must ensure we don't call this with other virtqueue
2002  * operations at the same time (except where noted).
2003  */
2004 bool virtqueue_enable_cb_delayed(struct virtqueue *_vq)
2005 {
2006 	struct vring_virtqueue *vq = to_vvq(_vq);
2007 
2008 	return vq->packed_ring ? virtqueue_enable_cb_delayed_packed(_vq) :
2009 				 virtqueue_enable_cb_delayed_split(_vq);
2010 }
2011 EXPORT_SYMBOL_GPL(virtqueue_enable_cb_delayed);
2012 
2013 /**
2014  * virtqueue_detach_unused_buf - detach first unused buffer
2015  * @_vq: the struct virtqueue we're talking about.
2016  *
2017  * Returns NULL or the "data" token handed to virtqueue_add_*().
2018  * This is not valid on an active queue; it is useful only for device
2019  * shutdown.
2020  */
2021 void *virtqueue_detach_unused_buf(struct virtqueue *_vq)
2022 {
2023 	struct vring_virtqueue *vq = to_vvq(_vq);
2024 
2025 	return vq->packed_ring ? virtqueue_detach_unused_buf_packed(_vq) :
2026 				 virtqueue_detach_unused_buf_split(_vq);
2027 }
2028 EXPORT_SYMBOL_GPL(virtqueue_detach_unused_buf);
2029 
2030 static inline bool more_used(const struct vring_virtqueue *vq)
2031 {
2032 	return vq->packed_ring ? more_used_packed(vq) : more_used_split(vq);
2033 }
2034 
2035 irqreturn_t vring_interrupt(int irq, void *_vq)
2036 {
2037 	struct vring_virtqueue *vq = to_vvq(_vq);
2038 
2039 	if (!more_used(vq)) {
2040 		pr_debug("virtqueue interrupt with no work for %p\n", vq);
2041 		return IRQ_NONE;
2042 	}
2043 
2044 	if (unlikely(vq->broken))
2045 		return IRQ_HANDLED;
2046 
2047 	pr_debug("virtqueue callback for %p (%p)\n", vq, vq->vq.callback);
2048 	if (vq->vq.callback)
2049 		vq->vq.callback(&vq->vq);
2050 
2051 	return IRQ_HANDLED;
2052 }
2053 EXPORT_SYMBOL_GPL(vring_interrupt);
2054 
2055 /* Only available for split ring */
2056 struct virtqueue *__vring_new_virtqueue(unsigned int index,
2057 					struct vring vring,
2058 					struct virtio_device *vdev,
2059 					bool weak_barriers,
2060 					bool context,
2061 					bool (*notify)(struct virtqueue *),
2062 					void (*callback)(struct virtqueue *),
2063 					const char *name)
2064 {
2065 	unsigned int i;
2066 	struct vring_virtqueue *vq;
2067 
2068 	if (virtio_has_feature(vdev, VIRTIO_F_RING_PACKED))
2069 		return NULL;
2070 
2071 	vq = kmalloc(sizeof(*vq), GFP_KERNEL);
2072 	if (!vq)
2073 		return NULL;
2074 
2075 	vq->packed_ring = false;
2076 	vq->vq.callback = callback;
2077 	vq->vq.vdev = vdev;
2078 	vq->vq.name = name;
2079 	vq->vq.num_free = vring.num;
2080 	vq->vq.index = index;
2081 	vq->we_own_ring = false;
2082 	vq->notify = notify;
2083 	vq->weak_barriers = weak_barriers;
2084 	vq->broken = false;
2085 	vq->last_used_idx = 0;
2086 	vq->num_added = 0;
2087 	vq->use_dma_api = vring_use_dma_api(vdev);
2088 #ifdef DEBUG
2089 	vq->in_use = false;
2090 	vq->last_add_time_valid = false;
2091 #endif
2092 
2093 	vq->indirect = virtio_has_feature(vdev, VIRTIO_RING_F_INDIRECT_DESC) &&
2094 		!context;
2095 	vq->event = virtio_has_feature(vdev, VIRTIO_RING_F_EVENT_IDX);
2096 
2097 	if (virtio_has_feature(vdev, VIRTIO_F_ORDER_PLATFORM))
2098 		vq->weak_barriers = false;
2099 
2100 	vq->split.queue_dma_addr = 0;
2101 	vq->split.queue_size_in_bytes = 0;
2102 
2103 	vq->split.vring = vring;
2104 	vq->split.avail_flags_shadow = 0;
2105 	vq->split.avail_idx_shadow = 0;
2106 
2107 	/* No callback?  Tell other side not to bother us. */
2108 	if (!callback) {
2109 		vq->split.avail_flags_shadow |= VRING_AVAIL_F_NO_INTERRUPT;
2110 		if (!vq->event)
2111 			vq->split.vring.avail->flags = cpu_to_virtio16(vdev,
2112 					vq->split.avail_flags_shadow);
2113 	}
2114 
2115 	vq->split.desc_state = kmalloc_array(vring.num,
2116 			sizeof(struct vring_desc_state_split), GFP_KERNEL);
2117 	if (!vq->split.desc_state) {
2118 		kfree(vq);
2119 		return NULL;
2120 	}
2121 
2122 	/* Put everything in free lists. */
2123 	vq->free_head = 0;
2124 	for (i = 0; i < vring.num-1; i++)
2125 		vq->split.vring.desc[i].next = cpu_to_virtio16(vdev, i + 1);
2126 	memset(vq->split.desc_state, 0, vring.num *
2127 			sizeof(struct vring_desc_state_split));
2128 
2129 	list_add_tail(&vq->vq.list, &vdev->vqs);
2130 	return &vq->vq;
2131 }
2132 EXPORT_SYMBOL_GPL(__vring_new_virtqueue);
2133 
2134 struct virtqueue *vring_create_virtqueue(
2135 	unsigned int index,
2136 	unsigned int num,
2137 	unsigned int vring_align,
2138 	struct virtio_device *vdev,
2139 	bool weak_barriers,
2140 	bool may_reduce_num,
2141 	bool context,
2142 	bool (*notify)(struct virtqueue *),
2143 	void (*callback)(struct virtqueue *),
2144 	const char *name)
2145 {
2146 
2147 	if (virtio_has_feature(vdev, VIRTIO_F_RING_PACKED))
2148 		return vring_create_virtqueue_packed(index, num, vring_align,
2149 				vdev, weak_barriers, may_reduce_num,
2150 				context, notify, callback, name);
2151 
2152 	return vring_create_virtqueue_split(index, num, vring_align,
2153 			vdev, weak_barriers, may_reduce_num,
2154 			context, notify, callback, name);
2155 }
2156 EXPORT_SYMBOL_GPL(vring_create_virtqueue);
2157 
2158 /* Only available for split ring */
2159 struct virtqueue *vring_new_virtqueue(unsigned int index,
2160 				      unsigned int num,
2161 				      unsigned int vring_align,
2162 				      struct virtio_device *vdev,
2163 				      bool weak_barriers,
2164 				      bool context,
2165 				      void *pages,
2166 				      bool (*notify)(struct virtqueue *vq),
2167 				      void (*callback)(struct virtqueue *vq),
2168 				      const char *name)
2169 {
2170 	struct vring vring;
2171 
2172 	if (virtio_has_feature(vdev, VIRTIO_F_RING_PACKED))
2173 		return NULL;
2174 
2175 	vring_init(&vring, num, pages, vring_align);
2176 	return __vring_new_virtqueue(index, vring, vdev, weak_barriers, context,
2177 				     notify, callback, name);
2178 }
2179 EXPORT_SYMBOL_GPL(vring_new_virtqueue);
2180 
2181 void vring_del_virtqueue(struct virtqueue *_vq)
2182 {
2183 	struct vring_virtqueue *vq = to_vvq(_vq);
2184 
2185 	if (vq->we_own_ring) {
2186 		if (vq->packed_ring) {
2187 			vring_free_queue(vq->vq.vdev,
2188 					 vq->packed.ring_size_in_bytes,
2189 					 vq->packed.vring.desc,
2190 					 vq->packed.ring_dma_addr);
2191 
2192 			vring_free_queue(vq->vq.vdev,
2193 					 vq->packed.event_size_in_bytes,
2194 					 vq->packed.vring.driver,
2195 					 vq->packed.driver_event_dma_addr);
2196 
2197 			vring_free_queue(vq->vq.vdev,
2198 					 vq->packed.event_size_in_bytes,
2199 					 vq->packed.vring.device,
2200 					 vq->packed.device_event_dma_addr);
2201 
2202 			kfree(vq->packed.desc_state);
2203 			kfree(vq->packed.desc_extra);
2204 		} else {
2205 			vring_free_queue(vq->vq.vdev,
2206 					 vq->split.queue_size_in_bytes,
2207 					 vq->split.vring.desc,
2208 					 vq->split.queue_dma_addr);
2209 		}
2210 	}
2211 	if (!vq->packed_ring)
2212 		kfree(vq->split.desc_state);
2213 	list_del(&_vq->list);
2214 	kfree(vq);
2215 }
2216 EXPORT_SYMBOL_GPL(vring_del_virtqueue);
2217 
2218 /* Manipulates transport-specific feature bits. */
2219 void vring_transport_features(struct virtio_device *vdev)
2220 {
2221 	unsigned int i;
2222 
2223 	for (i = VIRTIO_TRANSPORT_F_START; i < VIRTIO_TRANSPORT_F_END; i++) {
2224 		switch (i) {
2225 		case VIRTIO_RING_F_INDIRECT_DESC:
2226 			break;
2227 		case VIRTIO_RING_F_EVENT_IDX:
2228 			break;
2229 		case VIRTIO_F_VERSION_1:
2230 			break;
2231 		case VIRTIO_F_ACCESS_PLATFORM:
2232 			break;
2233 		case VIRTIO_F_RING_PACKED:
2234 			break;
2235 		case VIRTIO_F_ORDER_PLATFORM:
2236 			break;
2237 		default:
2238 			/* We don't understand this bit. */
2239 			__virtio_clear_bit(vdev, i);
2240 		}
2241 	}
2242 }
2243 EXPORT_SYMBOL_GPL(vring_transport_features);
2244 
2245 /**
2246  * virtqueue_get_vring_size - return the size of the virtqueue's vring
2247  * @_vq: the struct virtqueue containing the vring of interest.
2248  *
2249  * Returns the size of the vring.  This is mainly used for boasting to
2250  * userspace.  Unlike other operations, this need not be serialized.
2251  */
2252 unsigned int virtqueue_get_vring_size(struct virtqueue *_vq)
2253 {
2254 
2255 	struct vring_virtqueue *vq = to_vvq(_vq);
2256 
2257 	return vq->packed_ring ? vq->packed.vring.num : vq->split.vring.num;
2258 }
2259 EXPORT_SYMBOL_GPL(virtqueue_get_vring_size);
2260 
2261 bool virtqueue_is_broken(struct virtqueue *_vq)
2262 {
2263 	struct vring_virtqueue *vq = to_vvq(_vq);
2264 
2265 	return vq->broken;
2266 }
2267 EXPORT_SYMBOL_GPL(virtqueue_is_broken);
2268 
2269 /*
2270  * This should prevent the device from being used, allowing drivers to
2271  * recover.  You may need to grab appropriate locks to flush.
2272  */
2273 void virtio_break_device(struct virtio_device *dev)
2274 {
2275 	struct virtqueue *_vq;
2276 
2277 	list_for_each_entry(_vq, &dev->vqs, list) {
2278 		struct vring_virtqueue *vq = to_vvq(_vq);
2279 		vq->broken = true;
2280 	}
2281 }
2282 EXPORT_SYMBOL_GPL(virtio_break_device);
2283 
2284 dma_addr_t virtqueue_get_desc_addr(struct virtqueue *_vq)
2285 {
2286 	struct vring_virtqueue *vq = to_vvq(_vq);
2287 
2288 	BUG_ON(!vq->we_own_ring);
2289 
2290 	if (vq->packed_ring)
2291 		return vq->packed.ring_dma_addr;
2292 
2293 	return vq->split.queue_dma_addr;
2294 }
2295 EXPORT_SYMBOL_GPL(virtqueue_get_desc_addr);
2296 
2297 dma_addr_t virtqueue_get_avail_addr(struct virtqueue *_vq)
2298 {
2299 	struct vring_virtqueue *vq = to_vvq(_vq);
2300 
2301 	BUG_ON(!vq->we_own_ring);
2302 
2303 	if (vq->packed_ring)
2304 		return vq->packed.driver_event_dma_addr;
2305 
2306 	return vq->split.queue_dma_addr +
2307 		((char *)vq->split.vring.avail - (char *)vq->split.vring.desc);
2308 }
2309 EXPORT_SYMBOL_GPL(virtqueue_get_avail_addr);
2310 
2311 dma_addr_t virtqueue_get_used_addr(struct virtqueue *_vq)
2312 {
2313 	struct vring_virtqueue *vq = to_vvq(_vq);
2314 
2315 	BUG_ON(!vq->we_own_ring);
2316 
2317 	if (vq->packed_ring)
2318 		return vq->packed.device_event_dma_addr;
2319 
2320 	return vq->split.queue_dma_addr +
2321 		((char *)vq->split.vring.used - (char *)vq->split.vring.desc);
2322 }
2323 EXPORT_SYMBOL_GPL(virtqueue_get_used_addr);
2324 
2325 /* Only available for split ring */
2326 const struct vring *virtqueue_get_vring(struct virtqueue *vq)
2327 {
2328 	return &to_vvq(vq)->split.vring;
2329 }
2330 EXPORT_SYMBOL_GPL(virtqueue_get_vring);
2331 
2332 MODULE_LICENSE("GPL");
2333