1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* Virtio ring implementation. 3 * 4 * Copyright 2007 Rusty Russell IBM Corporation 5 */ 6 #include <linux/virtio.h> 7 #include <linux/virtio_ring.h> 8 #include <linux/virtio_config.h> 9 #include <linux/device.h> 10 #include <linux/slab.h> 11 #include <linux/module.h> 12 #include <linux/hrtimer.h> 13 #include <linux/dma-mapping.h> 14 #include <linux/kmsan.h> 15 #include <linux/spinlock.h> 16 #include <xen/xen.h> 17 18 #ifdef DEBUG 19 /* For development, we want to crash whenever the ring is screwed. */ 20 #define BAD_RING(_vq, fmt, args...) \ 21 do { \ 22 dev_err(&(_vq)->vq.vdev->dev, \ 23 "%s:"fmt, (_vq)->vq.name, ##args); \ 24 BUG(); \ 25 } while (0) 26 /* Caller is supposed to guarantee no reentry. */ 27 #define START_USE(_vq) \ 28 do { \ 29 if ((_vq)->in_use) \ 30 panic("%s:in_use = %i\n", \ 31 (_vq)->vq.name, (_vq)->in_use); \ 32 (_vq)->in_use = __LINE__; \ 33 } while (0) 34 #define END_USE(_vq) \ 35 do { BUG_ON(!(_vq)->in_use); (_vq)->in_use = 0; } while(0) 36 #define LAST_ADD_TIME_UPDATE(_vq) \ 37 do { \ 38 ktime_t now = ktime_get(); \ 39 \ 40 /* No kick or get, with .1 second between? Warn. */ \ 41 if ((_vq)->last_add_time_valid) \ 42 WARN_ON(ktime_to_ms(ktime_sub(now, \ 43 (_vq)->last_add_time)) > 100); \ 44 (_vq)->last_add_time = now; \ 45 (_vq)->last_add_time_valid = true; \ 46 } while (0) 47 #define LAST_ADD_TIME_CHECK(_vq) \ 48 do { \ 49 if ((_vq)->last_add_time_valid) { \ 50 WARN_ON(ktime_to_ms(ktime_sub(ktime_get(), \ 51 (_vq)->last_add_time)) > 100); \ 52 } \ 53 } while (0) 54 #define LAST_ADD_TIME_INVALID(_vq) \ 55 ((_vq)->last_add_time_valid = false) 56 #else 57 #define BAD_RING(_vq, fmt, args...) \ 58 do { \ 59 dev_err(&_vq->vq.vdev->dev, \ 60 "%s:"fmt, (_vq)->vq.name, ##args); \ 61 (_vq)->broken = true; \ 62 } while (0) 63 #define START_USE(vq) 64 #define END_USE(vq) 65 #define LAST_ADD_TIME_UPDATE(vq) 66 #define LAST_ADD_TIME_CHECK(vq) 67 #define LAST_ADD_TIME_INVALID(vq) 68 #endif 69 70 struct vring_desc_state_split { 71 void *data; /* Data for callback. */ 72 struct vring_desc *indir_desc; /* Indirect descriptor, if any. */ 73 }; 74 75 struct vring_desc_state_packed { 76 void *data; /* Data for callback. */ 77 struct vring_packed_desc *indir_desc; /* Indirect descriptor, if any. */ 78 u16 num; /* Descriptor list length. */ 79 u16 last; /* The last desc state in a list. */ 80 }; 81 82 struct vring_desc_extra { 83 dma_addr_t addr; /* Descriptor DMA addr. */ 84 u32 len; /* Descriptor length. */ 85 u16 flags; /* Descriptor flags. */ 86 u16 next; /* The next desc state in a list. */ 87 }; 88 89 struct vring_virtqueue_split { 90 /* Actual memory layout for this queue. */ 91 struct vring vring; 92 93 /* Last written value to avail->flags */ 94 u16 avail_flags_shadow; 95 96 /* 97 * Last written value to avail->idx in 98 * guest byte order. 99 */ 100 u16 avail_idx_shadow; 101 102 /* Per-descriptor state. */ 103 struct vring_desc_state_split *desc_state; 104 struct vring_desc_extra *desc_extra; 105 106 /* DMA address and size information */ 107 dma_addr_t queue_dma_addr; 108 size_t queue_size_in_bytes; 109 110 /* 111 * The parameters for creating vrings are reserved for creating new 112 * vring. 113 */ 114 u32 vring_align; 115 bool may_reduce_num; 116 }; 117 118 struct vring_virtqueue_packed { 119 /* Actual memory layout for this queue. */ 120 struct { 121 unsigned int num; 122 struct vring_packed_desc *desc; 123 struct vring_packed_desc_event *driver; 124 struct vring_packed_desc_event *device; 125 } vring; 126 127 /* Driver ring wrap counter. */ 128 bool avail_wrap_counter; 129 130 /* Avail used flags. */ 131 u16 avail_used_flags; 132 133 /* Index of the next avail descriptor. */ 134 u16 next_avail_idx; 135 136 /* 137 * Last written value to driver->flags in 138 * guest byte order. 139 */ 140 u16 event_flags_shadow; 141 142 /* Per-descriptor state. */ 143 struct vring_desc_state_packed *desc_state; 144 struct vring_desc_extra *desc_extra; 145 146 /* DMA address and size information */ 147 dma_addr_t ring_dma_addr; 148 dma_addr_t driver_event_dma_addr; 149 dma_addr_t device_event_dma_addr; 150 size_t ring_size_in_bytes; 151 size_t event_size_in_bytes; 152 }; 153 154 struct vring_virtqueue { 155 struct virtqueue vq; 156 157 /* Is this a packed ring? */ 158 bool packed_ring; 159 160 /* Is DMA API used? */ 161 bool use_dma_api; 162 163 /* Can we use weak barriers? */ 164 bool weak_barriers; 165 166 /* Other side has made a mess, don't try any more. */ 167 bool broken; 168 169 /* Host supports indirect buffers */ 170 bool indirect; 171 172 /* Host publishes avail event idx */ 173 bool event; 174 175 /* Head of free buffer list. */ 176 unsigned int free_head; 177 /* Number we've added since last sync. */ 178 unsigned int num_added; 179 180 /* Last used index we've seen. 181 * for split ring, it just contains last used index 182 * for packed ring: 183 * bits up to VRING_PACKED_EVENT_F_WRAP_CTR include the last used index. 184 * bits from VRING_PACKED_EVENT_F_WRAP_CTR include the used wrap counter. 185 */ 186 u16 last_used_idx; 187 188 /* Hint for event idx: already triggered no need to disable. */ 189 bool event_triggered; 190 191 union { 192 /* Available for split ring */ 193 struct vring_virtqueue_split split; 194 195 /* Available for packed ring */ 196 struct vring_virtqueue_packed packed; 197 }; 198 199 /* How to notify other side. FIXME: commonalize hcalls! */ 200 bool (*notify)(struct virtqueue *vq); 201 202 /* DMA, allocation, and size information */ 203 bool we_own_ring; 204 205 #ifdef DEBUG 206 /* They're supposed to lock for us. */ 207 unsigned int in_use; 208 209 /* Figure out if their kicks are too delayed. */ 210 bool last_add_time_valid; 211 ktime_t last_add_time; 212 #endif 213 }; 214 215 static struct virtqueue *__vring_new_virtqueue(unsigned int index, 216 struct vring_virtqueue_split *vring_split, 217 struct virtio_device *vdev, 218 bool weak_barriers, 219 bool context, 220 bool (*notify)(struct virtqueue *), 221 void (*callback)(struct virtqueue *), 222 const char *name); 223 static struct vring_desc_extra *vring_alloc_desc_extra(unsigned int num); 224 static void vring_free(struct virtqueue *_vq); 225 226 /* 227 * Helpers. 228 */ 229 230 #define to_vvq(_vq) container_of(_vq, struct vring_virtqueue, vq) 231 232 static inline bool virtqueue_use_indirect(struct vring_virtqueue *vq, 233 unsigned int total_sg) 234 { 235 /* 236 * If the host supports indirect descriptor tables, and we have multiple 237 * buffers, then go indirect. FIXME: tune this threshold 238 */ 239 return (vq->indirect && total_sg > 1 && vq->vq.num_free); 240 } 241 242 /* 243 * Modern virtio devices have feature bits to specify whether they need a 244 * quirk and bypass the IOMMU. If not there, just use the DMA API. 245 * 246 * If there, the interaction between virtio and DMA API is messy. 247 * 248 * On most systems with virtio, physical addresses match bus addresses, 249 * and it doesn't particularly matter whether we use the DMA API. 250 * 251 * On some systems, including Xen and any system with a physical device 252 * that speaks virtio behind a physical IOMMU, we must use the DMA API 253 * for virtio DMA to work at all. 254 * 255 * On other systems, including SPARC and PPC64, virtio-pci devices are 256 * enumerated as though they are behind an IOMMU, but the virtio host 257 * ignores the IOMMU, so we must either pretend that the IOMMU isn't 258 * there or somehow map everything as the identity. 259 * 260 * For the time being, we preserve historic behavior and bypass the DMA 261 * API. 262 * 263 * TODO: install a per-device DMA ops structure that does the right thing 264 * taking into account all the above quirks, and use the DMA API 265 * unconditionally on data path. 266 */ 267 268 static bool vring_use_dma_api(struct virtio_device *vdev) 269 { 270 if (!virtio_has_dma_quirk(vdev)) 271 return true; 272 273 /* Otherwise, we are left to guess. */ 274 /* 275 * In theory, it's possible to have a buggy QEMU-supposed 276 * emulated Q35 IOMMU and Xen enabled at the same time. On 277 * such a configuration, virtio has never worked and will 278 * not work without an even larger kludge. Instead, enable 279 * the DMA API if we're a Xen guest, which at least allows 280 * all of the sensible Xen configurations to work correctly. 281 */ 282 if (xen_domain()) 283 return true; 284 285 return false; 286 } 287 288 size_t virtio_max_dma_size(struct virtio_device *vdev) 289 { 290 size_t max_segment_size = SIZE_MAX; 291 292 if (vring_use_dma_api(vdev)) 293 max_segment_size = dma_max_mapping_size(vdev->dev.parent); 294 295 return max_segment_size; 296 } 297 EXPORT_SYMBOL_GPL(virtio_max_dma_size); 298 299 static void *vring_alloc_queue(struct virtio_device *vdev, size_t size, 300 dma_addr_t *dma_handle, gfp_t flag) 301 { 302 if (vring_use_dma_api(vdev)) { 303 return dma_alloc_coherent(vdev->dev.parent, size, 304 dma_handle, flag); 305 } else { 306 void *queue = alloc_pages_exact(PAGE_ALIGN(size), flag); 307 308 if (queue) { 309 phys_addr_t phys_addr = virt_to_phys(queue); 310 *dma_handle = (dma_addr_t)phys_addr; 311 312 /* 313 * Sanity check: make sure we dind't truncate 314 * the address. The only arches I can find that 315 * have 64-bit phys_addr_t but 32-bit dma_addr_t 316 * are certain non-highmem MIPS and x86 317 * configurations, but these configurations 318 * should never allocate physical pages above 32 319 * bits, so this is fine. Just in case, throw a 320 * warning and abort if we end up with an 321 * unrepresentable address. 322 */ 323 if (WARN_ON_ONCE(*dma_handle != phys_addr)) { 324 free_pages_exact(queue, PAGE_ALIGN(size)); 325 return NULL; 326 } 327 } 328 return queue; 329 } 330 } 331 332 static void vring_free_queue(struct virtio_device *vdev, size_t size, 333 void *queue, dma_addr_t dma_handle) 334 { 335 if (vring_use_dma_api(vdev)) 336 dma_free_coherent(vdev->dev.parent, size, queue, dma_handle); 337 else 338 free_pages_exact(queue, PAGE_ALIGN(size)); 339 } 340 341 /* 342 * The DMA ops on various arches are rather gnarly right now, and 343 * making all of the arch DMA ops work on the vring device itself 344 * is a mess. For now, we use the parent device for DMA ops. 345 */ 346 static inline struct device *vring_dma_dev(const struct vring_virtqueue *vq) 347 { 348 return vq->vq.vdev->dev.parent; 349 } 350 351 /* Map one sg entry. */ 352 static dma_addr_t vring_map_one_sg(const struct vring_virtqueue *vq, 353 struct scatterlist *sg, 354 enum dma_data_direction direction) 355 { 356 if (!vq->use_dma_api) { 357 /* 358 * If DMA is not used, KMSAN doesn't know that the scatterlist 359 * is initialized by the hardware. Explicitly check/unpoison it 360 * depending on the direction. 361 */ 362 kmsan_handle_dma(sg_page(sg), sg->offset, sg->length, direction); 363 return (dma_addr_t)sg_phys(sg); 364 } 365 366 /* 367 * We can't use dma_map_sg, because we don't use scatterlists in 368 * the way it expects (we don't guarantee that the scatterlist 369 * will exist for the lifetime of the mapping). 370 */ 371 return dma_map_page(vring_dma_dev(vq), 372 sg_page(sg), sg->offset, sg->length, 373 direction); 374 } 375 376 static dma_addr_t vring_map_single(const struct vring_virtqueue *vq, 377 void *cpu_addr, size_t size, 378 enum dma_data_direction direction) 379 { 380 if (!vq->use_dma_api) 381 return (dma_addr_t)virt_to_phys(cpu_addr); 382 383 return dma_map_single(vring_dma_dev(vq), 384 cpu_addr, size, direction); 385 } 386 387 static int vring_mapping_error(const struct vring_virtqueue *vq, 388 dma_addr_t addr) 389 { 390 if (!vq->use_dma_api) 391 return 0; 392 393 return dma_mapping_error(vring_dma_dev(vq), addr); 394 } 395 396 static void virtqueue_init(struct vring_virtqueue *vq, u32 num) 397 { 398 vq->vq.num_free = num; 399 400 if (vq->packed_ring) 401 vq->last_used_idx = 0 | (1 << VRING_PACKED_EVENT_F_WRAP_CTR); 402 else 403 vq->last_used_idx = 0; 404 405 vq->event_triggered = false; 406 vq->num_added = 0; 407 408 #ifdef DEBUG 409 vq->in_use = false; 410 vq->last_add_time_valid = false; 411 #endif 412 } 413 414 415 /* 416 * Split ring specific functions - *_split(). 417 */ 418 419 static void vring_unmap_one_split_indirect(const struct vring_virtqueue *vq, 420 struct vring_desc *desc) 421 { 422 u16 flags; 423 424 if (!vq->use_dma_api) 425 return; 426 427 flags = virtio16_to_cpu(vq->vq.vdev, desc->flags); 428 429 dma_unmap_page(vring_dma_dev(vq), 430 virtio64_to_cpu(vq->vq.vdev, desc->addr), 431 virtio32_to_cpu(vq->vq.vdev, desc->len), 432 (flags & VRING_DESC_F_WRITE) ? 433 DMA_FROM_DEVICE : DMA_TO_DEVICE); 434 } 435 436 static unsigned int vring_unmap_one_split(const struct vring_virtqueue *vq, 437 unsigned int i) 438 { 439 struct vring_desc_extra *extra = vq->split.desc_extra; 440 u16 flags; 441 442 if (!vq->use_dma_api) 443 goto out; 444 445 flags = extra[i].flags; 446 447 if (flags & VRING_DESC_F_INDIRECT) { 448 dma_unmap_single(vring_dma_dev(vq), 449 extra[i].addr, 450 extra[i].len, 451 (flags & VRING_DESC_F_WRITE) ? 452 DMA_FROM_DEVICE : DMA_TO_DEVICE); 453 } else { 454 dma_unmap_page(vring_dma_dev(vq), 455 extra[i].addr, 456 extra[i].len, 457 (flags & VRING_DESC_F_WRITE) ? 458 DMA_FROM_DEVICE : DMA_TO_DEVICE); 459 } 460 461 out: 462 return extra[i].next; 463 } 464 465 static struct vring_desc *alloc_indirect_split(struct virtqueue *_vq, 466 unsigned int total_sg, 467 gfp_t gfp) 468 { 469 struct vring_desc *desc; 470 unsigned int i; 471 472 /* 473 * We require lowmem mappings for the descriptors because 474 * otherwise virt_to_phys will give us bogus addresses in the 475 * virtqueue. 476 */ 477 gfp &= ~__GFP_HIGHMEM; 478 479 desc = kmalloc_array(total_sg, sizeof(struct vring_desc), gfp); 480 if (!desc) 481 return NULL; 482 483 for (i = 0; i < total_sg; i++) 484 desc[i].next = cpu_to_virtio16(_vq->vdev, i + 1); 485 return desc; 486 } 487 488 static inline unsigned int virtqueue_add_desc_split(struct virtqueue *vq, 489 struct vring_desc *desc, 490 unsigned int i, 491 dma_addr_t addr, 492 unsigned int len, 493 u16 flags, 494 bool indirect) 495 { 496 struct vring_virtqueue *vring = to_vvq(vq); 497 struct vring_desc_extra *extra = vring->split.desc_extra; 498 u16 next; 499 500 desc[i].flags = cpu_to_virtio16(vq->vdev, flags); 501 desc[i].addr = cpu_to_virtio64(vq->vdev, addr); 502 desc[i].len = cpu_to_virtio32(vq->vdev, len); 503 504 if (!indirect) { 505 next = extra[i].next; 506 desc[i].next = cpu_to_virtio16(vq->vdev, next); 507 508 extra[i].addr = addr; 509 extra[i].len = len; 510 extra[i].flags = flags; 511 } else 512 next = virtio16_to_cpu(vq->vdev, desc[i].next); 513 514 return next; 515 } 516 517 static inline int virtqueue_add_split(struct virtqueue *_vq, 518 struct scatterlist *sgs[], 519 unsigned int total_sg, 520 unsigned int out_sgs, 521 unsigned int in_sgs, 522 void *data, 523 void *ctx, 524 gfp_t gfp) 525 { 526 struct vring_virtqueue *vq = to_vvq(_vq); 527 struct scatterlist *sg; 528 struct vring_desc *desc; 529 unsigned int i, n, avail, descs_used, prev, err_idx; 530 int head; 531 bool indirect; 532 533 START_USE(vq); 534 535 BUG_ON(data == NULL); 536 BUG_ON(ctx && vq->indirect); 537 538 if (unlikely(vq->broken)) { 539 END_USE(vq); 540 return -EIO; 541 } 542 543 LAST_ADD_TIME_UPDATE(vq); 544 545 BUG_ON(total_sg == 0); 546 547 head = vq->free_head; 548 549 if (virtqueue_use_indirect(vq, total_sg)) 550 desc = alloc_indirect_split(_vq, total_sg, gfp); 551 else { 552 desc = NULL; 553 WARN_ON_ONCE(total_sg > vq->split.vring.num && !vq->indirect); 554 } 555 556 if (desc) { 557 /* Use a single buffer which doesn't continue */ 558 indirect = true; 559 /* Set up rest to use this indirect table. */ 560 i = 0; 561 descs_used = 1; 562 } else { 563 indirect = false; 564 desc = vq->split.vring.desc; 565 i = head; 566 descs_used = total_sg; 567 } 568 569 if (unlikely(vq->vq.num_free < descs_used)) { 570 pr_debug("Can't add buf len %i - avail = %i\n", 571 descs_used, vq->vq.num_free); 572 /* FIXME: for historical reasons, we force a notify here if 573 * there are outgoing parts to the buffer. Presumably the 574 * host should service the ring ASAP. */ 575 if (out_sgs) 576 vq->notify(&vq->vq); 577 if (indirect) 578 kfree(desc); 579 END_USE(vq); 580 return -ENOSPC; 581 } 582 583 for (n = 0; n < out_sgs; n++) { 584 for (sg = sgs[n]; sg; sg = sg_next(sg)) { 585 dma_addr_t addr = vring_map_one_sg(vq, sg, DMA_TO_DEVICE); 586 if (vring_mapping_error(vq, addr)) 587 goto unmap_release; 588 589 prev = i; 590 /* Note that we trust indirect descriptor 591 * table since it use stream DMA mapping. 592 */ 593 i = virtqueue_add_desc_split(_vq, desc, i, addr, sg->length, 594 VRING_DESC_F_NEXT, 595 indirect); 596 } 597 } 598 for (; n < (out_sgs + in_sgs); n++) { 599 for (sg = sgs[n]; sg; sg = sg_next(sg)) { 600 dma_addr_t addr = vring_map_one_sg(vq, sg, DMA_FROM_DEVICE); 601 if (vring_mapping_error(vq, addr)) 602 goto unmap_release; 603 604 prev = i; 605 /* Note that we trust indirect descriptor 606 * table since it use stream DMA mapping. 607 */ 608 i = virtqueue_add_desc_split(_vq, desc, i, addr, 609 sg->length, 610 VRING_DESC_F_NEXT | 611 VRING_DESC_F_WRITE, 612 indirect); 613 } 614 } 615 /* Last one doesn't continue. */ 616 desc[prev].flags &= cpu_to_virtio16(_vq->vdev, ~VRING_DESC_F_NEXT); 617 if (!indirect && vq->use_dma_api) 618 vq->split.desc_extra[prev & (vq->split.vring.num - 1)].flags &= 619 ~VRING_DESC_F_NEXT; 620 621 if (indirect) { 622 /* Now that the indirect table is filled in, map it. */ 623 dma_addr_t addr = vring_map_single( 624 vq, desc, total_sg * sizeof(struct vring_desc), 625 DMA_TO_DEVICE); 626 if (vring_mapping_error(vq, addr)) 627 goto unmap_release; 628 629 virtqueue_add_desc_split(_vq, vq->split.vring.desc, 630 head, addr, 631 total_sg * sizeof(struct vring_desc), 632 VRING_DESC_F_INDIRECT, 633 false); 634 } 635 636 /* We're using some buffers from the free list. */ 637 vq->vq.num_free -= descs_used; 638 639 /* Update free pointer */ 640 if (indirect) 641 vq->free_head = vq->split.desc_extra[head].next; 642 else 643 vq->free_head = i; 644 645 /* Store token and indirect buffer state. */ 646 vq->split.desc_state[head].data = data; 647 if (indirect) 648 vq->split.desc_state[head].indir_desc = desc; 649 else 650 vq->split.desc_state[head].indir_desc = ctx; 651 652 /* Put entry in available array (but don't update avail->idx until they 653 * do sync). */ 654 avail = vq->split.avail_idx_shadow & (vq->split.vring.num - 1); 655 vq->split.vring.avail->ring[avail] = cpu_to_virtio16(_vq->vdev, head); 656 657 /* Descriptors and available array need to be set before we expose the 658 * new available array entries. */ 659 virtio_wmb(vq->weak_barriers); 660 vq->split.avail_idx_shadow++; 661 vq->split.vring.avail->idx = cpu_to_virtio16(_vq->vdev, 662 vq->split.avail_idx_shadow); 663 vq->num_added++; 664 665 pr_debug("Added buffer head %i to %p\n", head, vq); 666 END_USE(vq); 667 668 /* This is very unlikely, but theoretically possible. Kick 669 * just in case. */ 670 if (unlikely(vq->num_added == (1 << 16) - 1)) 671 virtqueue_kick(_vq); 672 673 return 0; 674 675 unmap_release: 676 err_idx = i; 677 678 if (indirect) 679 i = 0; 680 else 681 i = head; 682 683 for (n = 0; n < total_sg; n++) { 684 if (i == err_idx) 685 break; 686 if (indirect) { 687 vring_unmap_one_split_indirect(vq, &desc[i]); 688 i = virtio16_to_cpu(_vq->vdev, desc[i].next); 689 } else 690 i = vring_unmap_one_split(vq, i); 691 } 692 693 if (indirect) 694 kfree(desc); 695 696 END_USE(vq); 697 return -ENOMEM; 698 } 699 700 static bool virtqueue_kick_prepare_split(struct virtqueue *_vq) 701 { 702 struct vring_virtqueue *vq = to_vvq(_vq); 703 u16 new, old; 704 bool needs_kick; 705 706 START_USE(vq); 707 /* We need to expose available array entries before checking avail 708 * event. */ 709 virtio_mb(vq->weak_barriers); 710 711 old = vq->split.avail_idx_shadow - vq->num_added; 712 new = vq->split.avail_idx_shadow; 713 vq->num_added = 0; 714 715 LAST_ADD_TIME_CHECK(vq); 716 LAST_ADD_TIME_INVALID(vq); 717 718 if (vq->event) { 719 needs_kick = vring_need_event(virtio16_to_cpu(_vq->vdev, 720 vring_avail_event(&vq->split.vring)), 721 new, old); 722 } else { 723 needs_kick = !(vq->split.vring.used->flags & 724 cpu_to_virtio16(_vq->vdev, 725 VRING_USED_F_NO_NOTIFY)); 726 } 727 END_USE(vq); 728 return needs_kick; 729 } 730 731 static void detach_buf_split(struct vring_virtqueue *vq, unsigned int head, 732 void **ctx) 733 { 734 unsigned int i, j; 735 __virtio16 nextflag = cpu_to_virtio16(vq->vq.vdev, VRING_DESC_F_NEXT); 736 737 /* Clear data ptr. */ 738 vq->split.desc_state[head].data = NULL; 739 740 /* Put back on free list: unmap first-level descriptors and find end */ 741 i = head; 742 743 while (vq->split.vring.desc[i].flags & nextflag) { 744 vring_unmap_one_split(vq, i); 745 i = vq->split.desc_extra[i].next; 746 vq->vq.num_free++; 747 } 748 749 vring_unmap_one_split(vq, i); 750 vq->split.desc_extra[i].next = vq->free_head; 751 vq->free_head = head; 752 753 /* Plus final descriptor */ 754 vq->vq.num_free++; 755 756 if (vq->indirect) { 757 struct vring_desc *indir_desc = 758 vq->split.desc_state[head].indir_desc; 759 u32 len; 760 761 /* Free the indirect table, if any, now that it's unmapped. */ 762 if (!indir_desc) 763 return; 764 765 len = vq->split.desc_extra[head].len; 766 767 BUG_ON(!(vq->split.desc_extra[head].flags & 768 VRING_DESC_F_INDIRECT)); 769 BUG_ON(len == 0 || len % sizeof(struct vring_desc)); 770 771 for (j = 0; j < len / sizeof(struct vring_desc); j++) 772 vring_unmap_one_split_indirect(vq, &indir_desc[j]); 773 774 kfree(indir_desc); 775 vq->split.desc_state[head].indir_desc = NULL; 776 } else if (ctx) { 777 *ctx = vq->split.desc_state[head].indir_desc; 778 } 779 } 780 781 static inline bool more_used_split(const struct vring_virtqueue *vq) 782 { 783 return vq->last_used_idx != virtio16_to_cpu(vq->vq.vdev, 784 vq->split.vring.used->idx); 785 } 786 787 static void *virtqueue_get_buf_ctx_split(struct virtqueue *_vq, 788 unsigned int *len, 789 void **ctx) 790 { 791 struct vring_virtqueue *vq = to_vvq(_vq); 792 void *ret; 793 unsigned int i; 794 u16 last_used; 795 796 START_USE(vq); 797 798 if (unlikely(vq->broken)) { 799 END_USE(vq); 800 return NULL; 801 } 802 803 if (!more_used_split(vq)) { 804 pr_debug("No more buffers in queue\n"); 805 END_USE(vq); 806 return NULL; 807 } 808 809 /* Only get used array entries after they have been exposed by host. */ 810 virtio_rmb(vq->weak_barriers); 811 812 last_used = (vq->last_used_idx & (vq->split.vring.num - 1)); 813 i = virtio32_to_cpu(_vq->vdev, 814 vq->split.vring.used->ring[last_used].id); 815 *len = virtio32_to_cpu(_vq->vdev, 816 vq->split.vring.used->ring[last_used].len); 817 818 if (unlikely(i >= vq->split.vring.num)) { 819 BAD_RING(vq, "id %u out of range\n", i); 820 return NULL; 821 } 822 if (unlikely(!vq->split.desc_state[i].data)) { 823 BAD_RING(vq, "id %u is not a head!\n", i); 824 return NULL; 825 } 826 827 /* detach_buf_split clears data, so grab it now. */ 828 ret = vq->split.desc_state[i].data; 829 detach_buf_split(vq, i, ctx); 830 vq->last_used_idx++; 831 /* If we expect an interrupt for the next entry, tell host 832 * by writing event index and flush out the write before 833 * the read in the next get_buf call. */ 834 if (!(vq->split.avail_flags_shadow & VRING_AVAIL_F_NO_INTERRUPT)) 835 virtio_store_mb(vq->weak_barriers, 836 &vring_used_event(&vq->split.vring), 837 cpu_to_virtio16(_vq->vdev, vq->last_used_idx)); 838 839 LAST_ADD_TIME_INVALID(vq); 840 841 END_USE(vq); 842 return ret; 843 } 844 845 static void virtqueue_disable_cb_split(struct virtqueue *_vq) 846 { 847 struct vring_virtqueue *vq = to_vvq(_vq); 848 849 if (!(vq->split.avail_flags_shadow & VRING_AVAIL_F_NO_INTERRUPT)) { 850 vq->split.avail_flags_shadow |= VRING_AVAIL_F_NO_INTERRUPT; 851 if (vq->event) 852 /* TODO: this is a hack. Figure out a cleaner value to write. */ 853 vring_used_event(&vq->split.vring) = 0x0; 854 else 855 vq->split.vring.avail->flags = 856 cpu_to_virtio16(_vq->vdev, 857 vq->split.avail_flags_shadow); 858 } 859 } 860 861 static unsigned int virtqueue_enable_cb_prepare_split(struct virtqueue *_vq) 862 { 863 struct vring_virtqueue *vq = to_vvq(_vq); 864 u16 last_used_idx; 865 866 START_USE(vq); 867 868 /* We optimistically turn back on interrupts, then check if there was 869 * more to do. */ 870 /* Depending on the VIRTIO_RING_F_EVENT_IDX feature, we need to 871 * either clear the flags bit or point the event index at the next 872 * entry. Always do both to keep code simple. */ 873 if (vq->split.avail_flags_shadow & VRING_AVAIL_F_NO_INTERRUPT) { 874 vq->split.avail_flags_shadow &= ~VRING_AVAIL_F_NO_INTERRUPT; 875 if (!vq->event) 876 vq->split.vring.avail->flags = 877 cpu_to_virtio16(_vq->vdev, 878 vq->split.avail_flags_shadow); 879 } 880 vring_used_event(&vq->split.vring) = cpu_to_virtio16(_vq->vdev, 881 last_used_idx = vq->last_used_idx); 882 END_USE(vq); 883 return last_used_idx; 884 } 885 886 static bool virtqueue_poll_split(struct virtqueue *_vq, unsigned int last_used_idx) 887 { 888 struct vring_virtqueue *vq = to_vvq(_vq); 889 890 return (u16)last_used_idx != virtio16_to_cpu(_vq->vdev, 891 vq->split.vring.used->idx); 892 } 893 894 static bool virtqueue_enable_cb_delayed_split(struct virtqueue *_vq) 895 { 896 struct vring_virtqueue *vq = to_vvq(_vq); 897 u16 bufs; 898 899 START_USE(vq); 900 901 /* We optimistically turn back on interrupts, then check if there was 902 * more to do. */ 903 /* Depending on the VIRTIO_RING_F_USED_EVENT_IDX feature, we need to 904 * either clear the flags bit or point the event index at the next 905 * entry. Always update the event index to keep code simple. */ 906 if (vq->split.avail_flags_shadow & VRING_AVAIL_F_NO_INTERRUPT) { 907 vq->split.avail_flags_shadow &= ~VRING_AVAIL_F_NO_INTERRUPT; 908 if (!vq->event) 909 vq->split.vring.avail->flags = 910 cpu_to_virtio16(_vq->vdev, 911 vq->split.avail_flags_shadow); 912 } 913 /* TODO: tune this threshold */ 914 bufs = (u16)(vq->split.avail_idx_shadow - vq->last_used_idx) * 3 / 4; 915 916 virtio_store_mb(vq->weak_barriers, 917 &vring_used_event(&vq->split.vring), 918 cpu_to_virtio16(_vq->vdev, vq->last_used_idx + bufs)); 919 920 if (unlikely((u16)(virtio16_to_cpu(_vq->vdev, vq->split.vring.used->idx) 921 - vq->last_used_idx) > bufs)) { 922 END_USE(vq); 923 return false; 924 } 925 926 END_USE(vq); 927 return true; 928 } 929 930 static void *virtqueue_detach_unused_buf_split(struct virtqueue *_vq) 931 { 932 struct vring_virtqueue *vq = to_vvq(_vq); 933 unsigned int i; 934 void *buf; 935 936 START_USE(vq); 937 938 for (i = 0; i < vq->split.vring.num; i++) { 939 if (!vq->split.desc_state[i].data) 940 continue; 941 /* detach_buf_split clears data, so grab it now. */ 942 buf = vq->split.desc_state[i].data; 943 detach_buf_split(vq, i, NULL); 944 vq->split.avail_idx_shadow--; 945 vq->split.vring.avail->idx = cpu_to_virtio16(_vq->vdev, 946 vq->split.avail_idx_shadow); 947 END_USE(vq); 948 return buf; 949 } 950 /* That should have freed everything. */ 951 BUG_ON(vq->vq.num_free != vq->split.vring.num); 952 953 END_USE(vq); 954 return NULL; 955 } 956 957 static void virtqueue_vring_init_split(struct vring_virtqueue_split *vring_split, 958 struct vring_virtqueue *vq) 959 { 960 struct virtio_device *vdev; 961 962 vdev = vq->vq.vdev; 963 964 vring_split->avail_flags_shadow = 0; 965 vring_split->avail_idx_shadow = 0; 966 967 /* No callback? Tell other side not to bother us. */ 968 if (!vq->vq.callback) { 969 vring_split->avail_flags_shadow |= VRING_AVAIL_F_NO_INTERRUPT; 970 if (!vq->event) 971 vring_split->vring.avail->flags = cpu_to_virtio16(vdev, 972 vring_split->avail_flags_shadow); 973 } 974 } 975 976 static void virtqueue_reinit_split(struct vring_virtqueue *vq) 977 { 978 int num; 979 980 num = vq->split.vring.num; 981 982 vq->split.vring.avail->flags = 0; 983 vq->split.vring.avail->idx = 0; 984 985 /* reset avail event */ 986 vq->split.vring.avail->ring[num] = 0; 987 988 vq->split.vring.used->flags = 0; 989 vq->split.vring.used->idx = 0; 990 991 /* reset used event */ 992 *(__virtio16 *)&(vq->split.vring.used->ring[num]) = 0; 993 994 virtqueue_init(vq, num); 995 996 virtqueue_vring_init_split(&vq->split, vq); 997 } 998 999 static void virtqueue_vring_attach_split(struct vring_virtqueue *vq, 1000 struct vring_virtqueue_split *vring_split) 1001 { 1002 vq->split = *vring_split; 1003 1004 /* Put everything in free lists. */ 1005 vq->free_head = 0; 1006 } 1007 1008 static int vring_alloc_state_extra_split(struct vring_virtqueue_split *vring_split) 1009 { 1010 struct vring_desc_state_split *state; 1011 struct vring_desc_extra *extra; 1012 u32 num = vring_split->vring.num; 1013 1014 state = kmalloc_array(num, sizeof(struct vring_desc_state_split), GFP_KERNEL); 1015 if (!state) 1016 goto err_state; 1017 1018 extra = vring_alloc_desc_extra(num); 1019 if (!extra) 1020 goto err_extra; 1021 1022 memset(state, 0, num * sizeof(struct vring_desc_state_split)); 1023 1024 vring_split->desc_state = state; 1025 vring_split->desc_extra = extra; 1026 return 0; 1027 1028 err_extra: 1029 kfree(state); 1030 err_state: 1031 return -ENOMEM; 1032 } 1033 1034 static void vring_free_split(struct vring_virtqueue_split *vring_split, 1035 struct virtio_device *vdev) 1036 { 1037 vring_free_queue(vdev, vring_split->queue_size_in_bytes, 1038 vring_split->vring.desc, 1039 vring_split->queue_dma_addr); 1040 1041 kfree(vring_split->desc_state); 1042 kfree(vring_split->desc_extra); 1043 } 1044 1045 static int vring_alloc_queue_split(struct vring_virtqueue_split *vring_split, 1046 struct virtio_device *vdev, 1047 u32 num, 1048 unsigned int vring_align, 1049 bool may_reduce_num) 1050 { 1051 void *queue = NULL; 1052 dma_addr_t dma_addr; 1053 1054 /* We assume num is a power of 2. */ 1055 if (!is_power_of_2(num)) { 1056 dev_warn(&vdev->dev, "Bad virtqueue length %u\n", num); 1057 return -EINVAL; 1058 } 1059 1060 /* TODO: allocate each queue chunk individually */ 1061 for (; num && vring_size(num, vring_align) > PAGE_SIZE; num /= 2) { 1062 queue = vring_alloc_queue(vdev, vring_size(num, vring_align), 1063 &dma_addr, 1064 GFP_KERNEL | __GFP_NOWARN | __GFP_ZERO); 1065 if (queue) 1066 break; 1067 if (!may_reduce_num) 1068 return -ENOMEM; 1069 } 1070 1071 if (!num) 1072 return -ENOMEM; 1073 1074 if (!queue) { 1075 /* Try to get a single page. You are my only hope! */ 1076 queue = vring_alloc_queue(vdev, vring_size(num, vring_align), 1077 &dma_addr, GFP_KERNEL | __GFP_ZERO); 1078 } 1079 if (!queue) 1080 return -ENOMEM; 1081 1082 vring_init(&vring_split->vring, num, queue, vring_align); 1083 1084 vring_split->queue_dma_addr = dma_addr; 1085 vring_split->queue_size_in_bytes = vring_size(num, vring_align); 1086 1087 vring_split->vring_align = vring_align; 1088 vring_split->may_reduce_num = may_reduce_num; 1089 1090 return 0; 1091 } 1092 1093 static struct virtqueue *vring_create_virtqueue_split( 1094 unsigned int index, 1095 unsigned int num, 1096 unsigned int vring_align, 1097 struct virtio_device *vdev, 1098 bool weak_barriers, 1099 bool may_reduce_num, 1100 bool context, 1101 bool (*notify)(struct virtqueue *), 1102 void (*callback)(struct virtqueue *), 1103 const char *name) 1104 { 1105 struct vring_virtqueue_split vring_split = {}; 1106 struct virtqueue *vq; 1107 int err; 1108 1109 err = vring_alloc_queue_split(&vring_split, vdev, num, vring_align, 1110 may_reduce_num); 1111 if (err) 1112 return NULL; 1113 1114 vq = __vring_new_virtqueue(index, &vring_split, vdev, weak_barriers, 1115 context, notify, callback, name); 1116 if (!vq) { 1117 vring_free_split(&vring_split, vdev); 1118 return NULL; 1119 } 1120 1121 to_vvq(vq)->we_own_ring = true; 1122 1123 return vq; 1124 } 1125 1126 static int virtqueue_resize_split(struct virtqueue *_vq, u32 num) 1127 { 1128 struct vring_virtqueue_split vring_split = {}; 1129 struct vring_virtqueue *vq = to_vvq(_vq); 1130 struct virtio_device *vdev = _vq->vdev; 1131 int err; 1132 1133 err = vring_alloc_queue_split(&vring_split, vdev, num, 1134 vq->split.vring_align, 1135 vq->split.may_reduce_num); 1136 if (err) 1137 goto err; 1138 1139 err = vring_alloc_state_extra_split(&vring_split); 1140 if (err) 1141 goto err_state_extra; 1142 1143 vring_free(&vq->vq); 1144 1145 virtqueue_vring_init_split(&vring_split, vq); 1146 1147 virtqueue_init(vq, vring_split.vring.num); 1148 virtqueue_vring_attach_split(vq, &vring_split); 1149 1150 return 0; 1151 1152 err_state_extra: 1153 vring_free_split(&vring_split, vdev); 1154 err: 1155 virtqueue_reinit_split(vq); 1156 return -ENOMEM; 1157 } 1158 1159 1160 /* 1161 * Packed ring specific functions - *_packed(). 1162 */ 1163 static inline bool packed_used_wrap_counter(u16 last_used_idx) 1164 { 1165 return !!(last_used_idx & (1 << VRING_PACKED_EVENT_F_WRAP_CTR)); 1166 } 1167 1168 static inline u16 packed_last_used(u16 last_used_idx) 1169 { 1170 return last_used_idx & ~(-(1 << VRING_PACKED_EVENT_F_WRAP_CTR)); 1171 } 1172 1173 static void vring_unmap_extra_packed(const struct vring_virtqueue *vq, 1174 struct vring_desc_extra *extra) 1175 { 1176 u16 flags; 1177 1178 if (!vq->use_dma_api) 1179 return; 1180 1181 flags = extra->flags; 1182 1183 if (flags & VRING_DESC_F_INDIRECT) { 1184 dma_unmap_single(vring_dma_dev(vq), 1185 extra->addr, extra->len, 1186 (flags & VRING_DESC_F_WRITE) ? 1187 DMA_FROM_DEVICE : DMA_TO_DEVICE); 1188 } else { 1189 dma_unmap_page(vring_dma_dev(vq), 1190 extra->addr, extra->len, 1191 (flags & VRING_DESC_F_WRITE) ? 1192 DMA_FROM_DEVICE : DMA_TO_DEVICE); 1193 } 1194 } 1195 1196 static void vring_unmap_desc_packed(const struct vring_virtqueue *vq, 1197 struct vring_packed_desc *desc) 1198 { 1199 u16 flags; 1200 1201 if (!vq->use_dma_api) 1202 return; 1203 1204 flags = le16_to_cpu(desc->flags); 1205 1206 dma_unmap_page(vring_dma_dev(vq), 1207 le64_to_cpu(desc->addr), 1208 le32_to_cpu(desc->len), 1209 (flags & VRING_DESC_F_WRITE) ? 1210 DMA_FROM_DEVICE : DMA_TO_DEVICE); 1211 } 1212 1213 static struct vring_packed_desc *alloc_indirect_packed(unsigned int total_sg, 1214 gfp_t gfp) 1215 { 1216 struct vring_packed_desc *desc; 1217 1218 /* 1219 * We require lowmem mappings for the descriptors because 1220 * otherwise virt_to_phys will give us bogus addresses in the 1221 * virtqueue. 1222 */ 1223 gfp &= ~__GFP_HIGHMEM; 1224 1225 desc = kmalloc_array(total_sg, sizeof(struct vring_packed_desc), gfp); 1226 1227 return desc; 1228 } 1229 1230 static int virtqueue_add_indirect_packed(struct vring_virtqueue *vq, 1231 struct scatterlist *sgs[], 1232 unsigned int total_sg, 1233 unsigned int out_sgs, 1234 unsigned int in_sgs, 1235 void *data, 1236 gfp_t gfp) 1237 { 1238 struct vring_packed_desc *desc; 1239 struct scatterlist *sg; 1240 unsigned int i, n, err_idx; 1241 u16 head, id; 1242 dma_addr_t addr; 1243 1244 head = vq->packed.next_avail_idx; 1245 desc = alloc_indirect_packed(total_sg, gfp); 1246 if (!desc) 1247 return -ENOMEM; 1248 1249 if (unlikely(vq->vq.num_free < 1)) { 1250 pr_debug("Can't add buf len 1 - avail = 0\n"); 1251 kfree(desc); 1252 END_USE(vq); 1253 return -ENOSPC; 1254 } 1255 1256 i = 0; 1257 id = vq->free_head; 1258 BUG_ON(id == vq->packed.vring.num); 1259 1260 for (n = 0; n < out_sgs + in_sgs; n++) { 1261 for (sg = sgs[n]; sg; sg = sg_next(sg)) { 1262 addr = vring_map_one_sg(vq, sg, n < out_sgs ? 1263 DMA_TO_DEVICE : DMA_FROM_DEVICE); 1264 if (vring_mapping_error(vq, addr)) 1265 goto unmap_release; 1266 1267 desc[i].flags = cpu_to_le16(n < out_sgs ? 1268 0 : VRING_DESC_F_WRITE); 1269 desc[i].addr = cpu_to_le64(addr); 1270 desc[i].len = cpu_to_le32(sg->length); 1271 i++; 1272 } 1273 } 1274 1275 /* Now that the indirect table is filled in, map it. */ 1276 addr = vring_map_single(vq, desc, 1277 total_sg * sizeof(struct vring_packed_desc), 1278 DMA_TO_DEVICE); 1279 if (vring_mapping_error(vq, addr)) 1280 goto unmap_release; 1281 1282 vq->packed.vring.desc[head].addr = cpu_to_le64(addr); 1283 vq->packed.vring.desc[head].len = cpu_to_le32(total_sg * 1284 sizeof(struct vring_packed_desc)); 1285 vq->packed.vring.desc[head].id = cpu_to_le16(id); 1286 1287 if (vq->use_dma_api) { 1288 vq->packed.desc_extra[id].addr = addr; 1289 vq->packed.desc_extra[id].len = total_sg * 1290 sizeof(struct vring_packed_desc); 1291 vq->packed.desc_extra[id].flags = VRING_DESC_F_INDIRECT | 1292 vq->packed.avail_used_flags; 1293 } 1294 1295 /* 1296 * A driver MUST NOT make the first descriptor in the list 1297 * available before all subsequent descriptors comprising 1298 * the list are made available. 1299 */ 1300 virtio_wmb(vq->weak_barriers); 1301 vq->packed.vring.desc[head].flags = cpu_to_le16(VRING_DESC_F_INDIRECT | 1302 vq->packed.avail_used_flags); 1303 1304 /* We're using some buffers from the free list. */ 1305 vq->vq.num_free -= 1; 1306 1307 /* Update free pointer */ 1308 n = head + 1; 1309 if (n >= vq->packed.vring.num) { 1310 n = 0; 1311 vq->packed.avail_wrap_counter ^= 1; 1312 vq->packed.avail_used_flags ^= 1313 1 << VRING_PACKED_DESC_F_AVAIL | 1314 1 << VRING_PACKED_DESC_F_USED; 1315 } 1316 vq->packed.next_avail_idx = n; 1317 vq->free_head = vq->packed.desc_extra[id].next; 1318 1319 /* Store token and indirect buffer state. */ 1320 vq->packed.desc_state[id].num = 1; 1321 vq->packed.desc_state[id].data = data; 1322 vq->packed.desc_state[id].indir_desc = desc; 1323 vq->packed.desc_state[id].last = id; 1324 1325 vq->num_added += 1; 1326 1327 pr_debug("Added buffer head %i to %p\n", head, vq); 1328 END_USE(vq); 1329 1330 return 0; 1331 1332 unmap_release: 1333 err_idx = i; 1334 1335 for (i = 0; i < err_idx; i++) 1336 vring_unmap_desc_packed(vq, &desc[i]); 1337 1338 kfree(desc); 1339 1340 END_USE(vq); 1341 return -ENOMEM; 1342 } 1343 1344 static inline int virtqueue_add_packed(struct virtqueue *_vq, 1345 struct scatterlist *sgs[], 1346 unsigned int total_sg, 1347 unsigned int out_sgs, 1348 unsigned int in_sgs, 1349 void *data, 1350 void *ctx, 1351 gfp_t gfp) 1352 { 1353 struct vring_virtqueue *vq = to_vvq(_vq); 1354 struct vring_packed_desc *desc; 1355 struct scatterlist *sg; 1356 unsigned int i, n, c, descs_used, err_idx; 1357 __le16 head_flags, flags; 1358 u16 head, id, prev, curr, avail_used_flags; 1359 int err; 1360 1361 START_USE(vq); 1362 1363 BUG_ON(data == NULL); 1364 BUG_ON(ctx && vq->indirect); 1365 1366 if (unlikely(vq->broken)) { 1367 END_USE(vq); 1368 return -EIO; 1369 } 1370 1371 LAST_ADD_TIME_UPDATE(vq); 1372 1373 BUG_ON(total_sg == 0); 1374 1375 if (virtqueue_use_indirect(vq, total_sg)) { 1376 err = virtqueue_add_indirect_packed(vq, sgs, total_sg, out_sgs, 1377 in_sgs, data, gfp); 1378 if (err != -ENOMEM) { 1379 END_USE(vq); 1380 return err; 1381 } 1382 1383 /* fall back on direct */ 1384 } 1385 1386 head = vq->packed.next_avail_idx; 1387 avail_used_flags = vq->packed.avail_used_flags; 1388 1389 WARN_ON_ONCE(total_sg > vq->packed.vring.num && !vq->indirect); 1390 1391 desc = vq->packed.vring.desc; 1392 i = head; 1393 descs_used = total_sg; 1394 1395 if (unlikely(vq->vq.num_free < descs_used)) { 1396 pr_debug("Can't add buf len %i - avail = %i\n", 1397 descs_used, vq->vq.num_free); 1398 END_USE(vq); 1399 return -ENOSPC; 1400 } 1401 1402 id = vq->free_head; 1403 BUG_ON(id == vq->packed.vring.num); 1404 1405 curr = id; 1406 c = 0; 1407 for (n = 0; n < out_sgs + in_sgs; n++) { 1408 for (sg = sgs[n]; sg; sg = sg_next(sg)) { 1409 dma_addr_t addr = vring_map_one_sg(vq, sg, n < out_sgs ? 1410 DMA_TO_DEVICE : DMA_FROM_DEVICE); 1411 if (vring_mapping_error(vq, addr)) 1412 goto unmap_release; 1413 1414 flags = cpu_to_le16(vq->packed.avail_used_flags | 1415 (++c == total_sg ? 0 : VRING_DESC_F_NEXT) | 1416 (n < out_sgs ? 0 : VRING_DESC_F_WRITE)); 1417 if (i == head) 1418 head_flags = flags; 1419 else 1420 desc[i].flags = flags; 1421 1422 desc[i].addr = cpu_to_le64(addr); 1423 desc[i].len = cpu_to_le32(sg->length); 1424 desc[i].id = cpu_to_le16(id); 1425 1426 if (unlikely(vq->use_dma_api)) { 1427 vq->packed.desc_extra[curr].addr = addr; 1428 vq->packed.desc_extra[curr].len = sg->length; 1429 vq->packed.desc_extra[curr].flags = 1430 le16_to_cpu(flags); 1431 } 1432 prev = curr; 1433 curr = vq->packed.desc_extra[curr].next; 1434 1435 if ((unlikely(++i >= vq->packed.vring.num))) { 1436 i = 0; 1437 vq->packed.avail_used_flags ^= 1438 1 << VRING_PACKED_DESC_F_AVAIL | 1439 1 << VRING_PACKED_DESC_F_USED; 1440 } 1441 } 1442 } 1443 1444 if (i < head) 1445 vq->packed.avail_wrap_counter ^= 1; 1446 1447 /* We're using some buffers from the free list. */ 1448 vq->vq.num_free -= descs_used; 1449 1450 /* Update free pointer */ 1451 vq->packed.next_avail_idx = i; 1452 vq->free_head = curr; 1453 1454 /* Store token. */ 1455 vq->packed.desc_state[id].num = descs_used; 1456 vq->packed.desc_state[id].data = data; 1457 vq->packed.desc_state[id].indir_desc = ctx; 1458 vq->packed.desc_state[id].last = prev; 1459 1460 /* 1461 * A driver MUST NOT make the first descriptor in the list 1462 * available before all subsequent descriptors comprising 1463 * the list are made available. 1464 */ 1465 virtio_wmb(vq->weak_barriers); 1466 vq->packed.vring.desc[head].flags = head_flags; 1467 vq->num_added += descs_used; 1468 1469 pr_debug("Added buffer head %i to %p\n", head, vq); 1470 END_USE(vq); 1471 1472 return 0; 1473 1474 unmap_release: 1475 err_idx = i; 1476 i = head; 1477 curr = vq->free_head; 1478 1479 vq->packed.avail_used_flags = avail_used_flags; 1480 1481 for (n = 0; n < total_sg; n++) { 1482 if (i == err_idx) 1483 break; 1484 vring_unmap_extra_packed(vq, &vq->packed.desc_extra[curr]); 1485 curr = vq->packed.desc_extra[curr].next; 1486 i++; 1487 if (i >= vq->packed.vring.num) 1488 i = 0; 1489 } 1490 1491 END_USE(vq); 1492 return -EIO; 1493 } 1494 1495 static bool virtqueue_kick_prepare_packed(struct virtqueue *_vq) 1496 { 1497 struct vring_virtqueue *vq = to_vvq(_vq); 1498 u16 new, old, off_wrap, flags, wrap_counter, event_idx; 1499 bool needs_kick; 1500 union { 1501 struct { 1502 __le16 off_wrap; 1503 __le16 flags; 1504 }; 1505 u32 u32; 1506 } snapshot; 1507 1508 START_USE(vq); 1509 1510 /* 1511 * We need to expose the new flags value before checking notification 1512 * suppressions. 1513 */ 1514 virtio_mb(vq->weak_barriers); 1515 1516 old = vq->packed.next_avail_idx - vq->num_added; 1517 new = vq->packed.next_avail_idx; 1518 vq->num_added = 0; 1519 1520 snapshot.u32 = *(u32 *)vq->packed.vring.device; 1521 flags = le16_to_cpu(snapshot.flags); 1522 1523 LAST_ADD_TIME_CHECK(vq); 1524 LAST_ADD_TIME_INVALID(vq); 1525 1526 if (flags != VRING_PACKED_EVENT_FLAG_DESC) { 1527 needs_kick = (flags != VRING_PACKED_EVENT_FLAG_DISABLE); 1528 goto out; 1529 } 1530 1531 off_wrap = le16_to_cpu(snapshot.off_wrap); 1532 1533 wrap_counter = off_wrap >> VRING_PACKED_EVENT_F_WRAP_CTR; 1534 event_idx = off_wrap & ~(1 << VRING_PACKED_EVENT_F_WRAP_CTR); 1535 if (wrap_counter != vq->packed.avail_wrap_counter) 1536 event_idx -= vq->packed.vring.num; 1537 1538 needs_kick = vring_need_event(event_idx, new, old); 1539 out: 1540 END_USE(vq); 1541 return needs_kick; 1542 } 1543 1544 static void detach_buf_packed(struct vring_virtqueue *vq, 1545 unsigned int id, void **ctx) 1546 { 1547 struct vring_desc_state_packed *state = NULL; 1548 struct vring_packed_desc *desc; 1549 unsigned int i, curr; 1550 1551 state = &vq->packed.desc_state[id]; 1552 1553 /* Clear data ptr. */ 1554 state->data = NULL; 1555 1556 vq->packed.desc_extra[state->last].next = vq->free_head; 1557 vq->free_head = id; 1558 vq->vq.num_free += state->num; 1559 1560 if (unlikely(vq->use_dma_api)) { 1561 curr = id; 1562 for (i = 0; i < state->num; i++) { 1563 vring_unmap_extra_packed(vq, 1564 &vq->packed.desc_extra[curr]); 1565 curr = vq->packed.desc_extra[curr].next; 1566 } 1567 } 1568 1569 if (vq->indirect) { 1570 u32 len; 1571 1572 /* Free the indirect table, if any, now that it's unmapped. */ 1573 desc = state->indir_desc; 1574 if (!desc) 1575 return; 1576 1577 if (vq->use_dma_api) { 1578 len = vq->packed.desc_extra[id].len; 1579 for (i = 0; i < len / sizeof(struct vring_packed_desc); 1580 i++) 1581 vring_unmap_desc_packed(vq, &desc[i]); 1582 } 1583 kfree(desc); 1584 state->indir_desc = NULL; 1585 } else if (ctx) { 1586 *ctx = state->indir_desc; 1587 } 1588 } 1589 1590 static inline bool is_used_desc_packed(const struct vring_virtqueue *vq, 1591 u16 idx, bool used_wrap_counter) 1592 { 1593 bool avail, used; 1594 u16 flags; 1595 1596 flags = le16_to_cpu(vq->packed.vring.desc[idx].flags); 1597 avail = !!(flags & (1 << VRING_PACKED_DESC_F_AVAIL)); 1598 used = !!(flags & (1 << VRING_PACKED_DESC_F_USED)); 1599 1600 return avail == used && used == used_wrap_counter; 1601 } 1602 1603 static inline bool more_used_packed(const struct vring_virtqueue *vq) 1604 { 1605 u16 last_used; 1606 u16 last_used_idx; 1607 bool used_wrap_counter; 1608 1609 last_used_idx = READ_ONCE(vq->last_used_idx); 1610 last_used = packed_last_used(last_used_idx); 1611 used_wrap_counter = packed_used_wrap_counter(last_used_idx); 1612 return is_used_desc_packed(vq, last_used, used_wrap_counter); 1613 } 1614 1615 static void *virtqueue_get_buf_ctx_packed(struct virtqueue *_vq, 1616 unsigned int *len, 1617 void **ctx) 1618 { 1619 struct vring_virtqueue *vq = to_vvq(_vq); 1620 u16 last_used, id, last_used_idx; 1621 bool used_wrap_counter; 1622 void *ret; 1623 1624 START_USE(vq); 1625 1626 if (unlikely(vq->broken)) { 1627 END_USE(vq); 1628 return NULL; 1629 } 1630 1631 if (!more_used_packed(vq)) { 1632 pr_debug("No more buffers in queue\n"); 1633 END_USE(vq); 1634 return NULL; 1635 } 1636 1637 /* Only get used elements after they have been exposed by host. */ 1638 virtio_rmb(vq->weak_barriers); 1639 1640 last_used_idx = READ_ONCE(vq->last_used_idx); 1641 used_wrap_counter = packed_used_wrap_counter(last_used_idx); 1642 last_used = packed_last_used(last_used_idx); 1643 id = le16_to_cpu(vq->packed.vring.desc[last_used].id); 1644 *len = le32_to_cpu(vq->packed.vring.desc[last_used].len); 1645 1646 if (unlikely(id >= vq->packed.vring.num)) { 1647 BAD_RING(vq, "id %u out of range\n", id); 1648 return NULL; 1649 } 1650 if (unlikely(!vq->packed.desc_state[id].data)) { 1651 BAD_RING(vq, "id %u is not a head!\n", id); 1652 return NULL; 1653 } 1654 1655 /* detach_buf_packed clears data, so grab it now. */ 1656 ret = vq->packed.desc_state[id].data; 1657 detach_buf_packed(vq, id, ctx); 1658 1659 last_used += vq->packed.desc_state[id].num; 1660 if (unlikely(last_used >= vq->packed.vring.num)) { 1661 last_used -= vq->packed.vring.num; 1662 used_wrap_counter ^= 1; 1663 } 1664 1665 last_used = (last_used | (used_wrap_counter << VRING_PACKED_EVENT_F_WRAP_CTR)); 1666 WRITE_ONCE(vq->last_used_idx, last_used); 1667 1668 /* 1669 * If we expect an interrupt for the next entry, tell host 1670 * by writing event index and flush out the write before 1671 * the read in the next get_buf call. 1672 */ 1673 if (vq->packed.event_flags_shadow == VRING_PACKED_EVENT_FLAG_DESC) 1674 virtio_store_mb(vq->weak_barriers, 1675 &vq->packed.vring.driver->off_wrap, 1676 cpu_to_le16(vq->last_used_idx)); 1677 1678 LAST_ADD_TIME_INVALID(vq); 1679 1680 END_USE(vq); 1681 return ret; 1682 } 1683 1684 static void virtqueue_disable_cb_packed(struct virtqueue *_vq) 1685 { 1686 struct vring_virtqueue *vq = to_vvq(_vq); 1687 1688 if (vq->packed.event_flags_shadow != VRING_PACKED_EVENT_FLAG_DISABLE) { 1689 vq->packed.event_flags_shadow = VRING_PACKED_EVENT_FLAG_DISABLE; 1690 vq->packed.vring.driver->flags = 1691 cpu_to_le16(vq->packed.event_flags_shadow); 1692 } 1693 } 1694 1695 static unsigned int virtqueue_enable_cb_prepare_packed(struct virtqueue *_vq) 1696 { 1697 struct vring_virtqueue *vq = to_vvq(_vq); 1698 1699 START_USE(vq); 1700 1701 /* 1702 * We optimistically turn back on interrupts, then check if there was 1703 * more to do. 1704 */ 1705 1706 if (vq->event) { 1707 vq->packed.vring.driver->off_wrap = 1708 cpu_to_le16(vq->last_used_idx); 1709 /* 1710 * We need to update event offset and event wrap 1711 * counter first before updating event flags. 1712 */ 1713 virtio_wmb(vq->weak_barriers); 1714 } 1715 1716 if (vq->packed.event_flags_shadow == VRING_PACKED_EVENT_FLAG_DISABLE) { 1717 vq->packed.event_flags_shadow = vq->event ? 1718 VRING_PACKED_EVENT_FLAG_DESC : 1719 VRING_PACKED_EVENT_FLAG_ENABLE; 1720 vq->packed.vring.driver->flags = 1721 cpu_to_le16(vq->packed.event_flags_shadow); 1722 } 1723 1724 END_USE(vq); 1725 return vq->last_used_idx; 1726 } 1727 1728 static bool virtqueue_poll_packed(struct virtqueue *_vq, u16 off_wrap) 1729 { 1730 struct vring_virtqueue *vq = to_vvq(_vq); 1731 bool wrap_counter; 1732 u16 used_idx; 1733 1734 wrap_counter = off_wrap >> VRING_PACKED_EVENT_F_WRAP_CTR; 1735 used_idx = off_wrap & ~(1 << VRING_PACKED_EVENT_F_WRAP_CTR); 1736 1737 return is_used_desc_packed(vq, used_idx, wrap_counter); 1738 } 1739 1740 static bool virtqueue_enable_cb_delayed_packed(struct virtqueue *_vq) 1741 { 1742 struct vring_virtqueue *vq = to_vvq(_vq); 1743 u16 used_idx, wrap_counter, last_used_idx; 1744 u16 bufs; 1745 1746 START_USE(vq); 1747 1748 /* 1749 * We optimistically turn back on interrupts, then check if there was 1750 * more to do. 1751 */ 1752 1753 if (vq->event) { 1754 /* TODO: tune this threshold */ 1755 bufs = (vq->packed.vring.num - vq->vq.num_free) * 3 / 4; 1756 last_used_idx = READ_ONCE(vq->last_used_idx); 1757 wrap_counter = packed_used_wrap_counter(last_used_idx); 1758 1759 used_idx = packed_last_used(last_used_idx) + bufs; 1760 if (used_idx >= vq->packed.vring.num) { 1761 used_idx -= vq->packed.vring.num; 1762 wrap_counter ^= 1; 1763 } 1764 1765 vq->packed.vring.driver->off_wrap = cpu_to_le16(used_idx | 1766 (wrap_counter << VRING_PACKED_EVENT_F_WRAP_CTR)); 1767 1768 /* 1769 * We need to update event offset and event wrap 1770 * counter first before updating event flags. 1771 */ 1772 virtio_wmb(vq->weak_barriers); 1773 } 1774 1775 if (vq->packed.event_flags_shadow == VRING_PACKED_EVENT_FLAG_DISABLE) { 1776 vq->packed.event_flags_shadow = vq->event ? 1777 VRING_PACKED_EVENT_FLAG_DESC : 1778 VRING_PACKED_EVENT_FLAG_ENABLE; 1779 vq->packed.vring.driver->flags = 1780 cpu_to_le16(vq->packed.event_flags_shadow); 1781 } 1782 1783 /* 1784 * We need to update event suppression structure first 1785 * before re-checking for more used buffers. 1786 */ 1787 virtio_mb(vq->weak_barriers); 1788 1789 last_used_idx = READ_ONCE(vq->last_used_idx); 1790 wrap_counter = packed_used_wrap_counter(last_used_idx); 1791 used_idx = packed_last_used(last_used_idx); 1792 if (is_used_desc_packed(vq, used_idx, wrap_counter)) { 1793 END_USE(vq); 1794 return false; 1795 } 1796 1797 END_USE(vq); 1798 return true; 1799 } 1800 1801 static void *virtqueue_detach_unused_buf_packed(struct virtqueue *_vq) 1802 { 1803 struct vring_virtqueue *vq = to_vvq(_vq); 1804 unsigned int i; 1805 void *buf; 1806 1807 START_USE(vq); 1808 1809 for (i = 0; i < vq->packed.vring.num; i++) { 1810 if (!vq->packed.desc_state[i].data) 1811 continue; 1812 /* detach_buf clears data, so grab it now. */ 1813 buf = vq->packed.desc_state[i].data; 1814 detach_buf_packed(vq, i, NULL); 1815 END_USE(vq); 1816 return buf; 1817 } 1818 /* That should have freed everything. */ 1819 BUG_ON(vq->vq.num_free != vq->packed.vring.num); 1820 1821 END_USE(vq); 1822 return NULL; 1823 } 1824 1825 static struct vring_desc_extra *vring_alloc_desc_extra(unsigned int num) 1826 { 1827 struct vring_desc_extra *desc_extra; 1828 unsigned int i; 1829 1830 desc_extra = kmalloc_array(num, sizeof(struct vring_desc_extra), 1831 GFP_KERNEL); 1832 if (!desc_extra) 1833 return NULL; 1834 1835 memset(desc_extra, 0, num * sizeof(struct vring_desc_extra)); 1836 1837 for (i = 0; i < num - 1; i++) 1838 desc_extra[i].next = i + 1; 1839 1840 return desc_extra; 1841 } 1842 1843 static void vring_free_packed(struct vring_virtqueue_packed *vring_packed, 1844 struct virtio_device *vdev) 1845 { 1846 if (vring_packed->vring.desc) 1847 vring_free_queue(vdev, vring_packed->ring_size_in_bytes, 1848 vring_packed->vring.desc, 1849 vring_packed->ring_dma_addr); 1850 1851 if (vring_packed->vring.driver) 1852 vring_free_queue(vdev, vring_packed->event_size_in_bytes, 1853 vring_packed->vring.driver, 1854 vring_packed->driver_event_dma_addr); 1855 1856 if (vring_packed->vring.device) 1857 vring_free_queue(vdev, vring_packed->event_size_in_bytes, 1858 vring_packed->vring.device, 1859 vring_packed->device_event_dma_addr); 1860 1861 kfree(vring_packed->desc_state); 1862 kfree(vring_packed->desc_extra); 1863 } 1864 1865 static int vring_alloc_queue_packed(struct vring_virtqueue_packed *vring_packed, 1866 struct virtio_device *vdev, 1867 u32 num) 1868 { 1869 struct vring_packed_desc *ring; 1870 struct vring_packed_desc_event *driver, *device; 1871 dma_addr_t ring_dma_addr, driver_event_dma_addr, device_event_dma_addr; 1872 size_t ring_size_in_bytes, event_size_in_bytes; 1873 1874 ring_size_in_bytes = num * sizeof(struct vring_packed_desc); 1875 1876 ring = vring_alloc_queue(vdev, ring_size_in_bytes, 1877 &ring_dma_addr, 1878 GFP_KERNEL | __GFP_NOWARN | __GFP_ZERO); 1879 if (!ring) 1880 goto err; 1881 1882 vring_packed->vring.desc = ring; 1883 vring_packed->ring_dma_addr = ring_dma_addr; 1884 vring_packed->ring_size_in_bytes = ring_size_in_bytes; 1885 1886 event_size_in_bytes = sizeof(struct vring_packed_desc_event); 1887 1888 driver = vring_alloc_queue(vdev, event_size_in_bytes, 1889 &driver_event_dma_addr, 1890 GFP_KERNEL | __GFP_NOWARN | __GFP_ZERO); 1891 if (!driver) 1892 goto err; 1893 1894 vring_packed->vring.driver = driver; 1895 vring_packed->event_size_in_bytes = event_size_in_bytes; 1896 vring_packed->driver_event_dma_addr = driver_event_dma_addr; 1897 1898 device = vring_alloc_queue(vdev, event_size_in_bytes, 1899 &device_event_dma_addr, 1900 GFP_KERNEL | __GFP_NOWARN | __GFP_ZERO); 1901 if (!device) 1902 goto err; 1903 1904 vring_packed->vring.device = device; 1905 vring_packed->device_event_dma_addr = device_event_dma_addr; 1906 1907 vring_packed->vring.num = num; 1908 1909 return 0; 1910 1911 err: 1912 vring_free_packed(vring_packed, vdev); 1913 return -ENOMEM; 1914 } 1915 1916 static int vring_alloc_state_extra_packed(struct vring_virtqueue_packed *vring_packed) 1917 { 1918 struct vring_desc_state_packed *state; 1919 struct vring_desc_extra *extra; 1920 u32 num = vring_packed->vring.num; 1921 1922 state = kmalloc_array(num, sizeof(struct vring_desc_state_packed), GFP_KERNEL); 1923 if (!state) 1924 goto err_desc_state; 1925 1926 memset(state, 0, num * sizeof(struct vring_desc_state_packed)); 1927 1928 extra = vring_alloc_desc_extra(num); 1929 if (!extra) 1930 goto err_desc_extra; 1931 1932 vring_packed->desc_state = state; 1933 vring_packed->desc_extra = extra; 1934 1935 return 0; 1936 1937 err_desc_extra: 1938 kfree(state); 1939 err_desc_state: 1940 return -ENOMEM; 1941 } 1942 1943 static void virtqueue_vring_init_packed(struct vring_virtqueue_packed *vring_packed, 1944 bool callback) 1945 { 1946 vring_packed->next_avail_idx = 0; 1947 vring_packed->avail_wrap_counter = 1; 1948 vring_packed->event_flags_shadow = 0; 1949 vring_packed->avail_used_flags = 1 << VRING_PACKED_DESC_F_AVAIL; 1950 1951 /* No callback? Tell other side not to bother us. */ 1952 if (!callback) { 1953 vring_packed->event_flags_shadow = VRING_PACKED_EVENT_FLAG_DISABLE; 1954 vring_packed->vring.driver->flags = 1955 cpu_to_le16(vring_packed->event_flags_shadow); 1956 } 1957 } 1958 1959 static void virtqueue_vring_attach_packed(struct vring_virtqueue *vq, 1960 struct vring_virtqueue_packed *vring_packed) 1961 { 1962 vq->packed = *vring_packed; 1963 1964 /* Put everything in free lists. */ 1965 vq->free_head = 0; 1966 } 1967 1968 static void virtqueue_reinit_packed(struct vring_virtqueue *vq) 1969 { 1970 memset(vq->packed.vring.device, 0, vq->packed.event_size_in_bytes); 1971 memset(vq->packed.vring.driver, 0, vq->packed.event_size_in_bytes); 1972 1973 /* we need to reset the desc.flags. For more, see is_used_desc_packed() */ 1974 memset(vq->packed.vring.desc, 0, vq->packed.ring_size_in_bytes); 1975 1976 virtqueue_init(vq, vq->packed.vring.num); 1977 virtqueue_vring_init_packed(&vq->packed, !!vq->vq.callback); 1978 } 1979 1980 static struct virtqueue *vring_create_virtqueue_packed( 1981 unsigned int index, 1982 unsigned int num, 1983 unsigned int vring_align, 1984 struct virtio_device *vdev, 1985 bool weak_barriers, 1986 bool may_reduce_num, 1987 bool context, 1988 bool (*notify)(struct virtqueue *), 1989 void (*callback)(struct virtqueue *), 1990 const char *name) 1991 { 1992 struct vring_virtqueue_packed vring_packed = {}; 1993 struct vring_virtqueue *vq; 1994 int err; 1995 1996 if (vring_alloc_queue_packed(&vring_packed, vdev, num)) 1997 goto err_ring; 1998 1999 vq = kmalloc(sizeof(*vq), GFP_KERNEL); 2000 if (!vq) 2001 goto err_vq; 2002 2003 vq->vq.callback = callback; 2004 vq->vq.vdev = vdev; 2005 vq->vq.name = name; 2006 vq->vq.index = index; 2007 vq->vq.reset = false; 2008 vq->we_own_ring = true; 2009 vq->notify = notify; 2010 vq->weak_barriers = weak_barriers; 2011 #ifdef CONFIG_VIRTIO_HARDEN_NOTIFICATION 2012 vq->broken = true; 2013 #else 2014 vq->broken = false; 2015 #endif 2016 vq->packed_ring = true; 2017 vq->use_dma_api = vring_use_dma_api(vdev); 2018 2019 vq->indirect = virtio_has_feature(vdev, VIRTIO_RING_F_INDIRECT_DESC) && 2020 !context; 2021 vq->event = virtio_has_feature(vdev, VIRTIO_RING_F_EVENT_IDX); 2022 2023 if (virtio_has_feature(vdev, VIRTIO_F_ORDER_PLATFORM)) 2024 vq->weak_barriers = false; 2025 2026 err = vring_alloc_state_extra_packed(&vring_packed); 2027 if (err) 2028 goto err_state_extra; 2029 2030 virtqueue_vring_init_packed(&vring_packed, !!callback); 2031 2032 virtqueue_init(vq, num); 2033 virtqueue_vring_attach_packed(vq, &vring_packed); 2034 2035 spin_lock(&vdev->vqs_list_lock); 2036 list_add_tail(&vq->vq.list, &vdev->vqs); 2037 spin_unlock(&vdev->vqs_list_lock); 2038 return &vq->vq; 2039 2040 err_state_extra: 2041 kfree(vq); 2042 err_vq: 2043 vring_free_packed(&vring_packed, vdev); 2044 err_ring: 2045 return NULL; 2046 } 2047 2048 static int virtqueue_resize_packed(struct virtqueue *_vq, u32 num) 2049 { 2050 struct vring_virtqueue_packed vring_packed = {}; 2051 struct vring_virtqueue *vq = to_vvq(_vq); 2052 struct virtio_device *vdev = _vq->vdev; 2053 int err; 2054 2055 if (vring_alloc_queue_packed(&vring_packed, vdev, num)) 2056 goto err_ring; 2057 2058 err = vring_alloc_state_extra_packed(&vring_packed); 2059 if (err) 2060 goto err_state_extra; 2061 2062 vring_free(&vq->vq); 2063 2064 virtqueue_vring_init_packed(&vring_packed, !!vq->vq.callback); 2065 2066 virtqueue_init(vq, vring_packed.vring.num); 2067 virtqueue_vring_attach_packed(vq, &vring_packed); 2068 2069 return 0; 2070 2071 err_state_extra: 2072 vring_free_packed(&vring_packed, vdev); 2073 err_ring: 2074 virtqueue_reinit_packed(vq); 2075 return -ENOMEM; 2076 } 2077 2078 2079 /* 2080 * Generic functions and exported symbols. 2081 */ 2082 2083 static inline int virtqueue_add(struct virtqueue *_vq, 2084 struct scatterlist *sgs[], 2085 unsigned int total_sg, 2086 unsigned int out_sgs, 2087 unsigned int in_sgs, 2088 void *data, 2089 void *ctx, 2090 gfp_t gfp) 2091 { 2092 struct vring_virtqueue *vq = to_vvq(_vq); 2093 2094 return vq->packed_ring ? virtqueue_add_packed(_vq, sgs, total_sg, 2095 out_sgs, in_sgs, data, ctx, gfp) : 2096 virtqueue_add_split(_vq, sgs, total_sg, 2097 out_sgs, in_sgs, data, ctx, gfp); 2098 } 2099 2100 /** 2101 * virtqueue_add_sgs - expose buffers to other end 2102 * @_vq: the struct virtqueue we're talking about. 2103 * @sgs: array of terminated scatterlists. 2104 * @out_sgs: the number of scatterlists readable by other side 2105 * @in_sgs: the number of scatterlists which are writable (after readable ones) 2106 * @data: the token identifying the buffer. 2107 * @gfp: how to do memory allocations (if necessary). 2108 * 2109 * Caller must ensure we don't call this with other virtqueue operations 2110 * at the same time (except where noted). 2111 * 2112 * Returns zero or a negative error (ie. ENOSPC, ENOMEM, EIO). 2113 */ 2114 int virtqueue_add_sgs(struct virtqueue *_vq, 2115 struct scatterlist *sgs[], 2116 unsigned int out_sgs, 2117 unsigned int in_sgs, 2118 void *data, 2119 gfp_t gfp) 2120 { 2121 unsigned int i, total_sg = 0; 2122 2123 /* Count them first. */ 2124 for (i = 0; i < out_sgs + in_sgs; i++) { 2125 struct scatterlist *sg; 2126 2127 for (sg = sgs[i]; sg; sg = sg_next(sg)) 2128 total_sg++; 2129 } 2130 return virtqueue_add(_vq, sgs, total_sg, out_sgs, in_sgs, 2131 data, NULL, gfp); 2132 } 2133 EXPORT_SYMBOL_GPL(virtqueue_add_sgs); 2134 2135 /** 2136 * virtqueue_add_outbuf - expose output buffers to other end 2137 * @vq: the struct virtqueue we're talking about. 2138 * @sg: scatterlist (must be well-formed and terminated!) 2139 * @num: the number of entries in @sg readable by other side 2140 * @data: the token identifying the buffer. 2141 * @gfp: how to do memory allocations (if necessary). 2142 * 2143 * Caller must ensure we don't call this with other virtqueue operations 2144 * at the same time (except where noted). 2145 * 2146 * Returns zero or a negative error (ie. ENOSPC, ENOMEM, EIO). 2147 */ 2148 int virtqueue_add_outbuf(struct virtqueue *vq, 2149 struct scatterlist *sg, unsigned int num, 2150 void *data, 2151 gfp_t gfp) 2152 { 2153 return virtqueue_add(vq, &sg, num, 1, 0, data, NULL, gfp); 2154 } 2155 EXPORT_SYMBOL_GPL(virtqueue_add_outbuf); 2156 2157 /** 2158 * virtqueue_add_inbuf - expose input buffers to other end 2159 * @vq: the struct virtqueue we're talking about. 2160 * @sg: scatterlist (must be well-formed and terminated!) 2161 * @num: the number of entries in @sg writable by other side 2162 * @data: the token identifying the buffer. 2163 * @gfp: how to do memory allocations (if necessary). 2164 * 2165 * Caller must ensure we don't call this with other virtqueue operations 2166 * at the same time (except where noted). 2167 * 2168 * Returns zero or a negative error (ie. ENOSPC, ENOMEM, EIO). 2169 */ 2170 int virtqueue_add_inbuf(struct virtqueue *vq, 2171 struct scatterlist *sg, unsigned int num, 2172 void *data, 2173 gfp_t gfp) 2174 { 2175 return virtqueue_add(vq, &sg, num, 0, 1, data, NULL, gfp); 2176 } 2177 EXPORT_SYMBOL_GPL(virtqueue_add_inbuf); 2178 2179 /** 2180 * virtqueue_add_inbuf_ctx - expose input buffers to other end 2181 * @vq: the struct virtqueue we're talking about. 2182 * @sg: scatterlist (must be well-formed and terminated!) 2183 * @num: the number of entries in @sg writable by other side 2184 * @data: the token identifying the buffer. 2185 * @ctx: extra context for the token 2186 * @gfp: how to do memory allocations (if necessary). 2187 * 2188 * Caller must ensure we don't call this with other virtqueue operations 2189 * at the same time (except where noted). 2190 * 2191 * Returns zero or a negative error (ie. ENOSPC, ENOMEM, EIO). 2192 */ 2193 int virtqueue_add_inbuf_ctx(struct virtqueue *vq, 2194 struct scatterlist *sg, unsigned int num, 2195 void *data, 2196 void *ctx, 2197 gfp_t gfp) 2198 { 2199 return virtqueue_add(vq, &sg, num, 0, 1, data, ctx, gfp); 2200 } 2201 EXPORT_SYMBOL_GPL(virtqueue_add_inbuf_ctx); 2202 2203 /** 2204 * virtqueue_kick_prepare - first half of split virtqueue_kick call. 2205 * @_vq: the struct virtqueue 2206 * 2207 * Instead of virtqueue_kick(), you can do: 2208 * if (virtqueue_kick_prepare(vq)) 2209 * virtqueue_notify(vq); 2210 * 2211 * This is sometimes useful because the virtqueue_kick_prepare() needs 2212 * to be serialized, but the actual virtqueue_notify() call does not. 2213 */ 2214 bool virtqueue_kick_prepare(struct virtqueue *_vq) 2215 { 2216 struct vring_virtqueue *vq = to_vvq(_vq); 2217 2218 return vq->packed_ring ? virtqueue_kick_prepare_packed(_vq) : 2219 virtqueue_kick_prepare_split(_vq); 2220 } 2221 EXPORT_SYMBOL_GPL(virtqueue_kick_prepare); 2222 2223 /** 2224 * virtqueue_notify - second half of split virtqueue_kick call. 2225 * @_vq: the struct virtqueue 2226 * 2227 * This does not need to be serialized. 2228 * 2229 * Returns false if host notify failed or queue is broken, otherwise true. 2230 */ 2231 bool virtqueue_notify(struct virtqueue *_vq) 2232 { 2233 struct vring_virtqueue *vq = to_vvq(_vq); 2234 2235 if (unlikely(vq->broken)) 2236 return false; 2237 2238 /* Prod other side to tell it about changes. */ 2239 if (!vq->notify(_vq)) { 2240 vq->broken = true; 2241 return false; 2242 } 2243 return true; 2244 } 2245 EXPORT_SYMBOL_GPL(virtqueue_notify); 2246 2247 /** 2248 * virtqueue_kick - update after add_buf 2249 * @vq: the struct virtqueue 2250 * 2251 * After one or more virtqueue_add_* calls, invoke this to kick 2252 * the other side. 2253 * 2254 * Caller must ensure we don't call this with other virtqueue 2255 * operations at the same time (except where noted). 2256 * 2257 * Returns false if kick failed, otherwise true. 2258 */ 2259 bool virtqueue_kick(struct virtqueue *vq) 2260 { 2261 if (virtqueue_kick_prepare(vq)) 2262 return virtqueue_notify(vq); 2263 return true; 2264 } 2265 EXPORT_SYMBOL_GPL(virtqueue_kick); 2266 2267 /** 2268 * virtqueue_get_buf_ctx - get the next used buffer 2269 * @_vq: the struct virtqueue we're talking about. 2270 * @len: the length written into the buffer 2271 * @ctx: extra context for the token 2272 * 2273 * If the device wrote data into the buffer, @len will be set to the 2274 * amount written. This means you don't need to clear the buffer 2275 * beforehand to ensure there's no data leakage in the case of short 2276 * writes. 2277 * 2278 * Caller must ensure we don't call this with other virtqueue 2279 * operations at the same time (except where noted). 2280 * 2281 * Returns NULL if there are no used buffers, or the "data" token 2282 * handed to virtqueue_add_*(). 2283 */ 2284 void *virtqueue_get_buf_ctx(struct virtqueue *_vq, unsigned int *len, 2285 void **ctx) 2286 { 2287 struct vring_virtqueue *vq = to_vvq(_vq); 2288 2289 return vq->packed_ring ? virtqueue_get_buf_ctx_packed(_vq, len, ctx) : 2290 virtqueue_get_buf_ctx_split(_vq, len, ctx); 2291 } 2292 EXPORT_SYMBOL_GPL(virtqueue_get_buf_ctx); 2293 2294 void *virtqueue_get_buf(struct virtqueue *_vq, unsigned int *len) 2295 { 2296 return virtqueue_get_buf_ctx(_vq, len, NULL); 2297 } 2298 EXPORT_SYMBOL_GPL(virtqueue_get_buf); 2299 /** 2300 * virtqueue_disable_cb - disable callbacks 2301 * @_vq: the struct virtqueue we're talking about. 2302 * 2303 * Note that this is not necessarily synchronous, hence unreliable and only 2304 * useful as an optimization. 2305 * 2306 * Unlike other operations, this need not be serialized. 2307 */ 2308 void virtqueue_disable_cb(struct virtqueue *_vq) 2309 { 2310 struct vring_virtqueue *vq = to_vvq(_vq); 2311 2312 /* If device triggered an event already it won't trigger one again: 2313 * no need to disable. 2314 */ 2315 if (vq->event_triggered) 2316 return; 2317 2318 if (vq->packed_ring) 2319 virtqueue_disable_cb_packed(_vq); 2320 else 2321 virtqueue_disable_cb_split(_vq); 2322 } 2323 EXPORT_SYMBOL_GPL(virtqueue_disable_cb); 2324 2325 /** 2326 * virtqueue_enable_cb_prepare - restart callbacks after disable_cb 2327 * @_vq: the struct virtqueue we're talking about. 2328 * 2329 * This re-enables callbacks; it returns current queue state 2330 * in an opaque unsigned value. This value should be later tested by 2331 * virtqueue_poll, to detect a possible race between the driver checking for 2332 * more work, and enabling callbacks. 2333 * 2334 * Caller must ensure we don't call this with other virtqueue 2335 * operations at the same time (except where noted). 2336 */ 2337 unsigned int virtqueue_enable_cb_prepare(struct virtqueue *_vq) 2338 { 2339 struct vring_virtqueue *vq = to_vvq(_vq); 2340 2341 if (vq->event_triggered) 2342 vq->event_triggered = false; 2343 2344 return vq->packed_ring ? virtqueue_enable_cb_prepare_packed(_vq) : 2345 virtqueue_enable_cb_prepare_split(_vq); 2346 } 2347 EXPORT_SYMBOL_GPL(virtqueue_enable_cb_prepare); 2348 2349 /** 2350 * virtqueue_poll - query pending used buffers 2351 * @_vq: the struct virtqueue we're talking about. 2352 * @last_used_idx: virtqueue state (from call to virtqueue_enable_cb_prepare). 2353 * 2354 * Returns "true" if there are pending used buffers in the queue. 2355 * 2356 * This does not need to be serialized. 2357 */ 2358 bool virtqueue_poll(struct virtqueue *_vq, unsigned int last_used_idx) 2359 { 2360 struct vring_virtqueue *vq = to_vvq(_vq); 2361 2362 if (unlikely(vq->broken)) 2363 return false; 2364 2365 virtio_mb(vq->weak_barriers); 2366 return vq->packed_ring ? virtqueue_poll_packed(_vq, last_used_idx) : 2367 virtqueue_poll_split(_vq, last_used_idx); 2368 } 2369 EXPORT_SYMBOL_GPL(virtqueue_poll); 2370 2371 /** 2372 * virtqueue_enable_cb - restart callbacks after disable_cb. 2373 * @_vq: the struct virtqueue we're talking about. 2374 * 2375 * This re-enables callbacks; it returns "false" if there are pending 2376 * buffers in the queue, to detect a possible race between the driver 2377 * checking for more work, and enabling callbacks. 2378 * 2379 * Caller must ensure we don't call this with other virtqueue 2380 * operations at the same time (except where noted). 2381 */ 2382 bool virtqueue_enable_cb(struct virtqueue *_vq) 2383 { 2384 unsigned int last_used_idx = virtqueue_enable_cb_prepare(_vq); 2385 2386 return !virtqueue_poll(_vq, last_used_idx); 2387 } 2388 EXPORT_SYMBOL_GPL(virtqueue_enable_cb); 2389 2390 /** 2391 * virtqueue_enable_cb_delayed - restart callbacks after disable_cb. 2392 * @_vq: the struct virtqueue we're talking about. 2393 * 2394 * This re-enables callbacks but hints to the other side to delay 2395 * interrupts until most of the available buffers have been processed; 2396 * it returns "false" if there are many pending buffers in the queue, 2397 * to detect a possible race between the driver checking for more work, 2398 * and enabling callbacks. 2399 * 2400 * Caller must ensure we don't call this with other virtqueue 2401 * operations at the same time (except where noted). 2402 */ 2403 bool virtqueue_enable_cb_delayed(struct virtqueue *_vq) 2404 { 2405 struct vring_virtqueue *vq = to_vvq(_vq); 2406 2407 if (vq->event_triggered) 2408 vq->event_triggered = false; 2409 2410 return vq->packed_ring ? virtqueue_enable_cb_delayed_packed(_vq) : 2411 virtqueue_enable_cb_delayed_split(_vq); 2412 } 2413 EXPORT_SYMBOL_GPL(virtqueue_enable_cb_delayed); 2414 2415 /** 2416 * virtqueue_detach_unused_buf - detach first unused buffer 2417 * @_vq: the struct virtqueue we're talking about. 2418 * 2419 * Returns NULL or the "data" token handed to virtqueue_add_*(). 2420 * This is not valid on an active queue; it is useful for device 2421 * shutdown or the reset queue. 2422 */ 2423 void *virtqueue_detach_unused_buf(struct virtqueue *_vq) 2424 { 2425 struct vring_virtqueue *vq = to_vvq(_vq); 2426 2427 return vq->packed_ring ? virtqueue_detach_unused_buf_packed(_vq) : 2428 virtqueue_detach_unused_buf_split(_vq); 2429 } 2430 EXPORT_SYMBOL_GPL(virtqueue_detach_unused_buf); 2431 2432 static inline bool more_used(const struct vring_virtqueue *vq) 2433 { 2434 return vq->packed_ring ? more_used_packed(vq) : more_used_split(vq); 2435 } 2436 2437 /** 2438 * vring_interrupt - notify a virtqueue on an interrupt 2439 * @irq: the IRQ number (ignored) 2440 * @_vq: the struct virtqueue to notify 2441 * 2442 * Calls the callback function of @_vq to process the virtqueue 2443 * notification. 2444 */ 2445 irqreturn_t vring_interrupt(int irq, void *_vq) 2446 { 2447 struct vring_virtqueue *vq = to_vvq(_vq); 2448 2449 if (!more_used(vq)) { 2450 pr_debug("virtqueue interrupt with no work for %p\n", vq); 2451 return IRQ_NONE; 2452 } 2453 2454 if (unlikely(vq->broken)) { 2455 #ifdef CONFIG_VIRTIO_HARDEN_NOTIFICATION 2456 dev_warn_once(&vq->vq.vdev->dev, 2457 "virtio vring IRQ raised before DRIVER_OK"); 2458 return IRQ_NONE; 2459 #else 2460 return IRQ_HANDLED; 2461 #endif 2462 } 2463 2464 /* Just a hint for performance: so it's ok that this can be racy! */ 2465 if (vq->event) 2466 vq->event_triggered = true; 2467 2468 pr_debug("virtqueue callback for %p (%p)\n", vq, vq->vq.callback); 2469 if (vq->vq.callback) 2470 vq->vq.callback(&vq->vq); 2471 2472 return IRQ_HANDLED; 2473 } 2474 EXPORT_SYMBOL_GPL(vring_interrupt); 2475 2476 /* Only available for split ring */ 2477 static struct virtqueue *__vring_new_virtqueue(unsigned int index, 2478 struct vring_virtqueue_split *vring_split, 2479 struct virtio_device *vdev, 2480 bool weak_barriers, 2481 bool context, 2482 bool (*notify)(struct virtqueue *), 2483 void (*callback)(struct virtqueue *), 2484 const char *name) 2485 { 2486 struct vring_virtqueue *vq; 2487 int err; 2488 2489 if (virtio_has_feature(vdev, VIRTIO_F_RING_PACKED)) 2490 return NULL; 2491 2492 vq = kmalloc(sizeof(*vq), GFP_KERNEL); 2493 if (!vq) 2494 return NULL; 2495 2496 vq->packed_ring = false; 2497 vq->vq.callback = callback; 2498 vq->vq.vdev = vdev; 2499 vq->vq.name = name; 2500 vq->vq.index = index; 2501 vq->vq.reset = false; 2502 vq->we_own_ring = false; 2503 vq->notify = notify; 2504 vq->weak_barriers = weak_barriers; 2505 #ifdef CONFIG_VIRTIO_HARDEN_NOTIFICATION 2506 vq->broken = true; 2507 #else 2508 vq->broken = false; 2509 #endif 2510 vq->use_dma_api = vring_use_dma_api(vdev); 2511 2512 vq->indirect = virtio_has_feature(vdev, VIRTIO_RING_F_INDIRECT_DESC) && 2513 !context; 2514 vq->event = virtio_has_feature(vdev, VIRTIO_RING_F_EVENT_IDX); 2515 2516 if (virtio_has_feature(vdev, VIRTIO_F_ORDER_PLATFORM)) 2517 vq->weak_barriers = false; 2518 2519 err = vring_alloc_state_extra_split(vring_split); 2520 if (err) { 2521 kfree(vq); 2522 return NULL; 2523 } 2524 2525 virtqueue_vring_init_split(vring_split, vq); 2526 2527 virtqueue_init(vq, vring_split->vring.num); 2528 virtqueue_vring_attach_split(vq, vring_split); 2529 2530 spin_lock(&vdev->vqs_list_lock); 2531 list_add_tail(&vq->vq.list, &vdev->vqs); 2532 spin_unlock(&vdev->vqs_list_lock); 2533 return &vq->vq; 2534 } 2535 2536 struct virtqueue *vring_create_virtqueue( 2537 unsigned int index, 2538 unsigned int num, 2539 unsigned int vring_align, 2540 struct virtio_device *vdev, 2541 bool weak_barriers, 2542 bool may_reduce_num, 2543 bool context, 2544 bool (*notify)(struct virtqueue *), 2545 void (*callback)(struct virtqueue *), 2546 const char *name) 2547 { 2548 2549 if (virtio_has_feature(vdev, VIRTIO_F_RING_PACKED)) 2550 return vring_create_virtqueue_packed(index, num, vring_align, 2551 vdev, weak_barriers, may_reduce_num, 2552 context, notify, callback, name); 2553 2554 return vring_create_virtqueue_split(index, num, vring_align, 2555 vdev, weak_barriers, may_reduce_num, 2556 context, notify, callback, name); 2557 } 2558 EXPORT_SYMBOL_GPL(vring_create_virtqueue); 2559 2560 /** 2561 * virtqueue_resize - resize the vring of vq 2562 * @_vq: the struct virtqueue we're talking about. 2563 * @num: new ring num 2564 * @recycle: callback for recycle the useless buffer 2565 * 2566 * When it is really necessary to create a new vring, it will set the current vq 2567 * into the reset state. Then call the passed callback to recycle the buffer 2568 * that is no longer used. Only after the new vring is successfully created, the 2569 * old vring will be released. 2570 * 2571 * Caller must ensure we don't call this with other virtqueue operations 2572 * at the same time (except where noted). 2573 * 2574 * Returns zero or a negative error. 2575 * 0: success. 2576 * -ENOMEM: Failed to allocate a new ring, fall back to the original ring size. 2577 * vq can still work normally 2578 * -EBUSY: Failed to sync with device, vq may not work properly 2579 * -ENOENT: Transport or device not supported 2580 * -E2BIG/-EINVAL: num error 2581 * -EPERM: Operation not permitted 2582 * 2583 */ 2584 int virtqueue_resize(struct virtqueue *_vq, u32 num, 2585 void (*recycle)(struct virtqueue *vq, void *buf)) 2586 { 2587 struct vring_virtqueue *vq = to_vvq(_vq); 2588 struct virtio_device *vdev = vq->vq.vdev; 2589 void *buf; 2590 int err; 2591 2592 if (!vq->we_own_ring) 2593 return -EPERM; 2594 2595 if (num > vq->vq.num_max) 2596 return -E2BIG; 2597 2598 if (!num) 2599 return -EINVAL; 2600 2601 if ((vq->packed_ring ? vq->packed.vring.num : vq->split.vring.num) == num) 2602 return 0; 2603 2604 if (!vdev->config->disable_vq_and_reset) 2605 return -ENOENT; 2606 2607 if (!vdev->config->enable_vq_after_reset) 2608 return -ENOENT; 2609 2610 err = vdev->config->disable_vq_and_reset(_vq); 2611 if (err) 2612 return err; 2613 2614 while ((buf = virtqueue_detach_unused_buf(_vq)) != NULL) 2615 recycle(_vq, buf); 2616 2617 if (vq->packed_ring) 2618 err = virtqueue_resize_packed(_vq, num); 2619 else 2620 err = virtqueue_resize_split(_vq, num); 2621 2622 if (vdev->config->enable_vq_after_reset(_vq)) 2623 return -EBUSY; 2624 2625 return err; 2626 } 2627 EXPORT_SYMBOL_GPL(virtqueue_resize); 2628 2629 /* Only available for split ring */ 2630 struct virtqueue *vring_new_virtqueue(unsigned int index, 2631 unsigned int num, 2632 unsigned int vring_align, 2633 struct virtio_device *vdev, 2634 bool weak_barriers, 2635 bool context, 2636 void *pages, 2637 bool (*notify)(struct virtqueue *vq), 2638 void (*callback)(struct virtqueue *vq), 2639 const char *name) 2640 { 2641 struct vring_virtqueue_split vring_split = {}; 2642 2643 if (virtio_has_feature(vdev, VIRTIO_F_RING_PACKED)) 2644 return NULL; 2645 2646 vring_init(&vring_split.vring, num, pages, vring_align); 2647 return __vring_new_virtqueue(index, &vring_split, vdev, weak_barriers, 2648 context, notify, callback, name); 2649 } 2650 EXPORT_SYMBOL_GPL(vring_new_virtqueue); 2651 2652 static void vring_free(struct virtqueue *_vq) 2653 { 2654 struct vring_virtqueue *vq = to_vvq(_vq); 2655 2656 if (vq->we_own_ring) { 2657 if (vq->packed_ring) { 2658 vring_free_queue(vq->vq.vdev, 2659 vq->packed.ring_size_in_bytes, 2660 vq->packed.vring.desc, 2661 vq->packed.ring_dma_addr); 2662 2663 vring_free_queue(vq->vq.vdev, 2664 vq->packed.event_size_in_bytes, 2665 vq->packed.vring.driver, 2666 vq->packed.driver_event_dma_addr); 2667 2668 vring_free_queue(vq->vq.vdev, 2669 vq->packed.event_size_in_bytes, 2670 vq->packed.vring.device, 2671 vq->packed.device_event_dma_addr); 2672 2673 kfree(vq->packed.desc_state); 2674 kfree(vq->packed.desc_extra); 2675 } else { 2676 vring_free_queue(vq->vq.vdev, 2677 vq->split.queue_size_in_bytes, 2678 vq->split.vring.desc, 2679 vq->split.queue_dma_addr); 2680 } 2681 } 2682 if (!vq->packed_ring) { 2683 kfree(vq->split.desc_state); 2684 kfree(vq->split.desc_extra); 2685 } 2686 } 2687 2688 void vring_del_virtqueue(struct virtqueue *_vq) 2689 { 2690 struct vring_virtqueue *vq = to_vvq(_vq); 2691 2692 spin_lock(&vq->vq.vdev->vqs_list_lock); 2693 list_del(&_vq->list); 2694 spin_unlock(&vq->vq.vdev->vqs_list_lock); 2695 2696 vring_free(_vq); 2697 2698 kfree(vq); 2699 } 2700 EXPORT_SYMBOL_GPL(vring_del_virtqueue); 2701 2702 /* Manipulates transport-specific feature bits. */ 2703 void vring_transport_features(struct virtio_device *vdev) 2704 { 2705 unsigned int i; 2706 2707 for (i = VIRTIO_TRANSPORT_F_START; i < VIRTIO_TRANSPORT_F_END; i++) { 2708 switch (i) { 2709 case VIRTIO_RING_F_INDIRECT_DESC: 2710 break; 2711 case VIRTIO_RING_F_EVENT_IDX: 2712 break; 2713 case VIRTIO_F_VERSION_1: 2714 break; 2715 case VIRTIO_F_ACCESS_PLATFORM: 2716 break; 2717 case VIRTIO_F_RING_PACKED: 2718 break; 2719 case VIRTIO_F_ORDER_PLATFORM: 2720 break; 2721 default: 2722 /* We don't understand this bit. */ 2723 __virtio_clear_bit(vdev, i); 2724 } 2725 } 2726 } 2727 EXPORT_SYMBOL_GPL(vring_transport_features); 2728 2729 /** 2730 * virtqueue_get_vring_size - return the size of the virtqueue's vring 2731 * @_vq: the struct virtqueue containing the vring of interest. 2732 * 2733 * Returns the size of the vring. This is mainly used for boasting to 2734 * userspace. Unlike other operations, this need not be serialized. 2735 */ 2736 unsigned int virtqueue_get_vring_size(struct virtqueue *_vq) 2737 { 2738 2739 struct vring_virtqueue *vq = to_vvq(_vq); 2740 2741 return vq->packed_ring ? vq->packed.vring.num : vq->split.vring.num; 2742 } 2743 EXPORT_SYMBOL_GPL(virtqueue_get_vring_size); 2744 2745 /* 2746 * This function should only be called by the core, not directly by the driver. 2747 */ 2748 void __virtqueue_break(struct virtqueue *_vq) 2749 { 2750 struct vring_virtqueue *vq = to_vvq(_vq); 2751 2752 /* Pairs with READ_ONCE() in virtqueue_is_broken(). */ 2753 WRITE_ONCE(vq->broken, true); 2754 } 2755 EXPORT_SYMBOL_GPL(__virtqueue_break); 2756 2757 /* 2758 * This function should only be called by the core, not directly by the driver. 2759 */ 2760 void __virtqueue_unbreak(struct virtqueue *_vq) 2761 { 2762 struct vring_virtqueue *vq = to_vvq(_vq); 2763 2764 /* Pairs with READ_ONCE() in virtqueue_is_broken(). */ 2765 WRITE_ONCE(vq->broken, false); 2766 } 2767 EXPORT_SYMBOL_GPL(__virtqueue_unbreak); 2768 2769 bool virtqueue_is_broken(struct virtqueue *_vq) 2770 { 2771 struct vring_virtqueue *vq = to_vvq(_vq); 2772 2773 return READ_ONCE(vq->broken); 2774 } 2775 EXPORT_SYMBOL_GPL(virtqueue_is_broken); 2776 2777 /* 2778 * This should prevent the device from being used, allowing drivers to 2779 * recover. You may need to grab appropriate locks to flush. 2780 */ 2781 void virtio_break_device(struct virtio_device *dev) 2782 { 2783 struct virtqueue *_vq; 2784 2785 spin_lock(&dev->vqs_list_lock); 2786 list_for_each_entry(_vq, &dev->vqs, list) { 2787 struct vring_virtqueue *vq = to_vvq(_vq); 2788 2789 /* Pairs with READ_ONCE() in virtqueue_is_broken(). */ 2790 WRITE_ONCE(vq->broken, true); 2791 } 2792 spin_unlock(&dev->vqs_list_lock); 2793 } 2794 EXPORT_SYMBOL_GPL(virtio_break_device); 2795 2796 /* 2797 * This should allow the device to be used by the driver. You may 2798 * need to grab appropriate locks to flush the write to 2799 * vq->broken. This should only be used in some specific case e.g 2800 * (probing and restoring). This function should only be called by the 2801 * core, not directly by the driver. 2802 */ 2803 void __virtio_unbreak_device(struct virtio_device *dev) 2804 { 2805 struct virtqueue *_vq; 2806 2807 spin_lock(&dev->vqs_list_lock); 2808 list_for_each_entry(_vq, &dev->vqs, list) { 2809 struct vring_virtqueue *vq = to_vvq(_vq); 2810 2811 /* Pairs with READ_ONCE() in virtqueue_is_broken(). */ 2812 WRITE_ONCE(vq->broken, false); 2813 } 2814 spin_unlock(&dev->vqs_list_lock); 2815 } 2816 EXPORT_SYMBOL_GPL(__virtio_unbreak_device); 2817 2818 dma_addr_t virtqueue_get_desc_addr(struct virtqueue *_vq) 2819 { 2820 struct vring_virtqueue *vq = to_vvq(_vq); 2821 2822 BUG_ON(!vq->we_own_ring); 2823 2824 if (vq->packed_ring) 2825 return vq->packed.ring_dma_addr; 2826 2827 return vq->split.queue_dma_addr; 2828 } 2829 EXPORT_SYMBOL_GPL(virtqueue_get_desc_addr); 2830 2831 dma_addr_t virtqueue_get_avail_addr(struct virtqueue *_vq) 2832 { 2833 struct vring_virtqueue *vq = to_vvq(_vq); 2834 2835 BUG_ON(!vq->we_own_ring); 2836 2837 if (vq->packed_ring) 2838 return vq->packed.driver_event_dma_addr; 2839 2840 return vq->split.queue_dma_addr + 2841 ((char *)vq->split.vring.avail - (char *)vq->split.vring.desc); 2842 } 2843 EXPORT_SYMBOL_GPL(virtqueue_get_avail_addr); 2844 2845 dma_addr_t virtqueue_get_used_addr(struct virtqueue *_vq) 2846 { 2847 struct vring_virtqueue *vq = to_vvq(_vq); 2848 2849 BUG_ON(!vq->we_own_ring); 2850 2851 if (vq->packed_ring) 2852 return vq->packed.device_event_dma_addr; 2853 2854 return vq->split.queue_dma_addr + 2855 ((char *)vq->split.vring.used - (char *)vq->split.vring.desc); 2856 } 2857 EXPORT_SYMBOL_GPL(virtqueue_get_used_addr); 2858 2859 /* Only available for split ring */ 2860 const struct vring *virtqueue_get_vring(struct virtqueue *vq) 2861 { 2862 return &to_vvq(vq)->split.vring; 2863 } 2864 EXPORT_SYMBOL_GPL(virtqueue_get_vring); 2865 2866 MODULE_LICENSE("GPL"); 2867