1 /* Virtio ring implementation. 2 * 3 * Copyright 2007 Rusty Russell IBM Corporation 4 * 5 * This program is free software; you can redistribute it and/or modify 6 * it under the terms of the GNU General Public License as published by 7 * the Free Software Foundation; either version 2 of the License, or 8 * (at your option) any later version. 9 * 10 * This program is distributed in the hope that it will be useful, 11 * but WITHOUT ANY WARRANTY; without even the implied warranty of 12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 13 * GNU General Public License for more details. 14 * 15 * You should have received a copy of the GNU General Public License 16 * along with this program; if not, write to the Free Software 17 * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA 18 */ 19 #include <linux/virtio.h> 20 #include <linux/virtio_ring.h> 21 #include <linux/virtio_config.h> 22 #include <linux/device.h> 23 #include <linux/slab.h> 24 #include <linux/module.h> 25 #include <linux/hrtimer.h> 26 #include <linux/dma-mapping.h> 27 #include <xen/xen.h> 28 29 #ifdef DEBUG 30 /* For development, we want to crash whenever the ring is screwed. */ 31 #define BAD_RING(_vq, fmt, args...) \ 32 do { \ 33 dev_err(&(_vq)->vq.vdev->dev, \ 34 "%s:"fmt, (_vq)->vq.name, ##args); \ 35 BUG(); \ 36 } while (0) 37 /* Caller is supposed to guarantee no reentry. */ 38 #define START_USE(_vq) \ 39 do { \ 40 if ((_vq)->in_use) \ 41 panic("%s:in_use = %i\n", \ 42 (_vq)->vq.name, (_vq)->in_use); \ 43 (_vq)->in_use = __LINE__; \ 44 } while (0) 45 #define END_USE(_vq) \ 46 do { BUG_ON(!(_vq)->in_use); (_vq)->in_use = 0; } while(0) 47 #else 48 #define BAD_RING(_vq, fmt, args...) \ 49 do { \ 50 dev_err(&_vq->vq.vdev->dev, \ 51 "%s:"fmt, (_vq)->vq.name, ##args); \ 52 (_vq)->broken = true; \ 53 } while (0) 54 #define START_USE(vq) 55 #define END_USE(vq) 56 #endif 57 58 struct vring_desc_state { 59 void *data; /* Data for callback. */ 60 struct vring_desc *indir_desc; /* Indirect descriptor, if any. */ 61 }; 62 63 struct vring_virtqueue { 64 struct virtqueue vq; 65 66 /* Actual memory layout for this queue */ 67 struct vring vring; 68 69 /* Can we use weak barriers? */ 70 bool weak_barriers; 71 72 /* Other side has made a mess, don't try any more. */ 73 bool broken; 74 75 /* Host supports indirect buffers */ 76 bool indirect; 77 78 /* Host publishes avail event idx */ 79 bool event; 80 81 /* Head of free buffer list. */ 82 unsigned int free_head; 83 /* Number we've added since last sync. */ 84 unsigned int num_added; 85 86 /* Last used index we've seen. */ 87 u16 last_used_idx; 88 89 /* Last written value to avail->flags */ 90 u16 avail_flags_shadow; 91 92 /* Last written value to avail->idx in guest byte order */ 93 u16 avail_idx_shadow; 94 95 /* How to notify other side. FIXME: commonalize hcalls! */ 96 bool (*notify)(struct virtqueue *vq); 97 98 /* DMA, allocation, and size information */ 99 bool we_own_ring; 100 size_t queue_size_in_bytes; 101 dma_addr_t queue_dma_addr; 102 103 #ifdef DEBUG 104 /* They're supposed to lock for us. */ 105 unsigned int in_use; 106 107 /* Figure out if their kicks are too delayed. */ 108 bool last_add_time_valid; 109 ktime_t last_add_time; 110 #endif 111 112 /* Per-descriptor state. */ 113 struct vring_desc_state desc_state[]; 114 }; 115 116 #define to_vvq(_vq) container_of(_vq, struct vring_virtqueue, vq) 117 118 /* 119 * Modern virtio devices have feature bits to specify whether they need a 120 * quirk and bypass the IOMMU. If not there, just use the DMA API. 121 * 122 * If there, the interaction between virtio and DMA API is messy. 123 * 124 * On most systems with virtio, physical addresses match bus addresses, 125 * and it doesn't particularly matter whether we use the DMA API. 126 * 127 * On some systems, including Xen and any system with a physical device 128 * that speaks virtio behind a physical IOMMU, we must use the DMA API 129 * for virtio DMA to work at all. 130 * 131 * On other systems, including SPARC and PPC64, virtio-pci devices are 132 * enumerated as though they are behind an IOMMU, but the virtio host 133 * ignores the IOMMU, so we must either pretend that the IOMMU isn't 134 * there or somehow map everything as the identity. 135 * 136 * For the time being, we preserve historic behavior and bypass the DMA 137 * API. 138 * 139 * TODO: install a per-device DMA ops structure that does the right thing 140 * taking into account all the above quirks, and use the DMA API 141 * unconditionally on data path. 142 */ 143 144 static bool vring_use_dma_api(struct virtio_device *vdev) 145 { 146 if (!virtio_has_iommu_quirk(vdev)) 147 return true; 148 149 /* Otherwise, we are left to guess. */ 150 /* 151 * In theory, it's possible to have a buggy QEMU-supposed 152 * emulated Q35 IOMMU and Xen enabled at the same time. On 153 * such a configuration, virtio has never worked and will 154 * not work without an even larger kludge. Instead, enable 155 * the DMA API if we're a Xen guest, which at least allows 156 * all of the sensible Xen configurations to work correctly. 157 */ 158 if (xen_domain()) 159 return true; 160 161 return false; 162 } 163 164 /* 165 * The DMA ops on various arches are rather gnarly right now, and 166 * making all of the arch DMA ops work on the vring device itself 167 * is a mess. For now, we use the parent device for DMA ops. 168 */ 169 static inline struct device *vring_dma_dev(const struct vring_virtqueue *vq) 170 { 171 return vq->vq.vdev->dev.parent; 172 } 173 174 /* Map one sg entry. */ 175 static dma_addr_t vring_map_one_sg(const struct vring_virtqueue *vq, 176 struct scatterlist *sg, 177 enum dma_data_direction direction) 178 { 179 if (!vring_use_dma_api(vq->vq.vdev)) 180 return (dma_addr_t)sg_phys(sg); 181 182 /* 183 * We can't use dma_map_sg, because we don't use scatterlists in 184 * the way it expects (we don't guarantee that the scatterlist 185 * will exist for the lifetime of the mapping). 186 */ 187 return dma_map_page(vring_dma_dev(vq), 188 sg_page(sg), sg->offset, sg->length, 189 direction); 190 } 191 192 static dma_addr_t vring_map_single(const struct vring_virtqueue *vq, 193 void *cpu_addr, size_t size, 194 enum dma_data_direction direction) 195 { 196 if (!vring_use_dma_api(vq->vq.vdev)) 197 return (dma_addr_t)virt_to_phys(cpu_addr); 198 199 return dma_map_single(vring_dma_dev(vq), 200 cpu_addr, size, direction); 201 } 202 203 static void vring_unmap_one(const struct vring_virtqueue *vq, 204 struct vring_desc *desc) 205 { 206 u16 flags; 207 208 if (!vring_use_dma_api(vq->vq.vdev)) 209 return; 210 211 flags = virtio16_to_cpu(vq->vq.vdev, desc->flags); 212 213 if (flags & VRING_DESC_F_INDIRECT) { 214 dma_unmap_single(vring_dma_dev(vq), 215 virtio64_to_cpu(vq->vq.vdev, desc->addr), 216 virtio32_to_cpu(vq->vq.vdev, desc->len), 217 (flags & VRING_DESC_F_WRITE) ? 218 DMA_FROM_DEVICE : DMA_TO_DEVICE); 219 } else { 220 dma_unmap_page(vring_dma_dev(vq), 221 virtio64_to_cpu(vq->vq.vdev, desc->addr), 222 virtio32_to_cpu(vq->vq.vdev, desc->len), 223 (flags & VRING_DESC_F_WRITE) ? 224 DMA_FROM_DEVICE : DMA_TO_DEVICE); 225 } 226 } 227 228 static int vring_mapping_error(const struct vring_virtqueue *vq, 229 dma_addr_t addr) 230 { 231 if (!vring_use_dma_api(vq->vq.vdev)) 232 return 0; 233 234 return dma_mapping_error(vring_dma_dev(vq), addr); 235 } 236 237 static struct vring_desc *alloc_indirect(struct virtqueue *_vq, 238 unsigned int total_sg, gfp_t gfp) 239 { 240 struct vring_desc *desc; 241 unsigned int i; 242 243 /* 244 * We require lowmem mappings for the descriptors because 245 * otherwise virt_to_phys will give us bogus addresses in the 246 * virtqueue. 247 */ 248 gfp &= ~__GFP_HIGHMEM; 249 250 desc = kmalloc(total_sg * sizeof(struct vring_desc), gfp); 251 if (!desc) 252 return NULL; 253 254 for (i = 0; i < total_sg; i++) 255 desc[i].next = cpu_to_virtio16(_vq->vdev, i + 1); 256 return desc; 257 } 258 259 static inline int virtqueue_add(struct virtqueue *_vq, 260 struct scatterlist *sgs[], 261 unsigned int total_sg, 262 unsigned int out_sgs, 263 unsigned int in_sgs, 264 void *data, 265 void *ctx, 266 gfp_t gfp) 267 { 268 struct vring_virtqueue *vq = to_vvq(_vq); 269 struct scatterlist *sg; 270 struct vring_desc *desc; 271 unsigned int i, n, avail, descs_used, uninitialized_var(prev), err_idx; 272 int head; 273 bool indirect; 274 275 START_USE(vq); 276 277 BUG_ON(data == NULL); 278 BUG_ON(ctx && vq->indirect); 279 280 if (unlikely(vq->broken)) { 281 END_USE(vq); 282 return -EIO; 283 } 284 285 #ifdef DEBUG 286 { 287 ktime_t now = ktime_get(); 288 289 /* No kick or get, with .1 second between? Warn. */ 290 if (vq->last_add_time_valid) 291 WARN_ON(ktime_to_ms(ktime_sub(now, vq->last_add_time)) 292 > 100); 293 vq->last_add_time = now; 294 vq->last_add_time_valid = true; 295 } 296 #endif 297 298 BUG_ON(total_sg == 0); 299 300 head = vq->free_head; 301 302 /* If the host supports indirect descriptor tables, and we have multiple 303 * buffers, then go indirect. FIXME: tune this threshold */ 304 if (vq->indirect && total_sg > 1 && vq->vq.num_free) 305 desc = alloc_indirect(_vq, total_sg, gfp); 306 else { 307 desc = NULL; 308 WARN_ON_ONCE(total_sg > vq->vring.num && !vq->indirect); 309 } 310 311 if (desc) { 312 /* Use a single buffer which doesn't continue */ 313 indirect = true; 314 /* Set up rest to use this indirect table. */ 315 i = 0; 316 descs_used = 1; 317 } else { 318 indirect = false; 319 desc = vq->vring.desc; 320 i = head; 321 descs_used = total_sg; 322 } 323 324 if (vq->vq.num_free < descs_used) { 325 pr_debug("Can't add buf len %i - avail = %i\n", 326 descs_used, vq->vq.num_free); 327 /* FIXME: for historical reasons, we force a notify here if 328 * there are outgoing parts to the buffer. Presumably the 329 * host should service the ring ASAP. */ 330 if (out_sgs) 331 vq->notify(&vq->vq); 332 if (indirect) 333 kfree(desc); 334 END_USE(vq); 335 return -ENOSPC; 336 } 337 338 for (n = 0; n < out_sgs; n++) { 339 for (sg = sgs[n]; sg; sg = sg_next(sg)) { 340 dma_addr_t addr = vring_map_one_sg(vq, sg, DMA_TO_DEVICE); 341 if (vring_mapping_error(vq, addr)) 342 goto unmap_release; 343 344 desc[i].flags = cpu_to_virtio16(_vq->vdev, VRING_DESC_F_NEXT); 345 desc[i].addr = cpu_to_virtio64(_vq->vdev, addr); 346 desc[i].len = cpu_to_virtio32(_vq->vdev, sg->length); 347 prev = i; 348 i = virtio16_to_cpu(_vq->vdev, desc[i].next); 349 } 350 } 351 for (; n < (out_sgs + in_sgs); n++) { 352 for (sg = sgs[n]; sg; sg = sg_next(sg)) { 353 dma_addr_t addr = vring_map_one_sg(vq, sg, DMA_FROM_DEVICE); 354 if (vring_mapping_error(vq, addr)) 355 goto unmap_release; 356 357 desc[i].flags = cpu_to_virtio16(_vq->vdev, VRING_DESC_F_NEXT | VRING_DESC_F_WRITE); 358 desc[i].addr = cpu_to_virtio64(_vq->vdev, addr); 359 desc[i].len = cpu_to_virtio32(_vq->vdev, sg->length); 360 prev = i; 361 i = virtio16_to_cpu(_vq->vdev, desc[i].next); 362 } 363 } 364 /* Last one doesn't continue. */ 365 desc[prev].flags &= cpu_to_virtio16(_vq->vdev, ~VRING_DESC_F_NEXT); 366 367 if (indirect) { 368 /* Now that the indirect table is filled in, map it. */ 369 dma_addr_t addr = vring_map_single( 370 vq, desc, total_sg * sizeof(struct vring_desc), 371 DMA_TO_DEVICE); 372 if (vring_mapping_error(vq, addr)) 373 goto unmap_release; 374 375 vq->vring.desc[head].flags = cpu_to_virtio16(_vq->vdev, VRING_DESC_F_INDIRECT); 376 vq->vring.desc[head].addr = cpu_to_virtio64(_vq->vdev, addr); 377 378 vq->vring.desc[head].len = cpu_to_virtio32(_vq->vdev, total_sg * sizeof(struct vring_desc)); 379 } 380 381 /* We're using some buffers from the free list. */ 382 vq->vq.num_free -= descs_used; 383 384 /* Update free pointer */ 385 if (indirect) 386 vq->free_head = virtio16_to_cpu(_vq->vdev, vq->vring.desc[head].next); 387 else 388 vq->free_head = i; 389 390 /* Store token and indirect buffer state. */ 391 vq->desc_state[head].data = data; 392 if (indirect) 393 vq->desc_state[head].indir_desc = desc; 394 else 395 vq->desc_state[head].indir_desc = ctx; 396 397 /* Put entry in available array (but don't update avail->idx until they 398 * do sync). */ 399 avail = vq->avail_idx_shadow & (vq->vring.num - 1); 400 vq->vring.avail->ring[avail] = cpu_to_virtio16(_vq->vdev, head); 401 402 /* Descriptors and available array need to be set before we expose the 403 * new available array entries. */ 404 virtio_wmb(vq->weak_barriers); 405 vq->avail_idx_shadow++; 406 vq->vring.avail->idx = cpu_to_virtio16(_vq->vdev, vq->avail_idx_shadow); 407 vq->num_added++; 408 409 pr_debug("Added buffer head %i to %p\n", head, vq); 410 END_USE(vq); 411 412 /* This is very unlikely, but theoretically possible. Kick 413 * just in case. */ 414 if (unlikely(vq->num_added == (1 << 16) - 1)) 415 virtqueue_kick(_vq); 416 417 return 0; 418 419 unmap_release: 420 err_idx = i; 421 i = head; 422 423 for (n = 0; n < total_sg; n++) { 424 if (i == err_idx) 425 break; 426 vring_unmap_one(vq, &desc[i]); 427 i = virtio16_to_cpu(_vq->vdev, vq->vring.desc[i].next); 428 } 429 430 if (indirect) 431 kfree(desc); 432 433 END_USE(vq); 434 return -EIO; 435 } 436 437 /** 438 * virtqueue_add_sgs - expose buffers to other end 439 * @vq: the struct virtqueue we're talking about. 440 * @sgs: array of terminated scatterlists. 441 * @out_num: the number of scatterlists readable by other side 442 * @in_num: the number of scatterlists which are writable (after readable ones) 443 * @data: the token identifying the buffer. 444 * @gfp: how to do memory allocations (if necessary). 445 * 446 * Caller must ensure we don't call this with other virtqueue operations 447 * at the same time (except where noted). 448 * 449 * Returns zero or a negative error (ie. ENOSPC, ENOMEM, EIO). 450 */ 451 int virtqueue_add_sgs(struct virtqueue *_vq, 452 struct scatterlist *sgs[], 453 unsigned int out_sgs, 454 unsigned int in_sgs, 455 void *data, 456 gfp_t gfp) 457 { 458 unsigned int i, total_sg = 0; 459 460 /* Count them first. */ 461 for (i = 0; i < out_sgs + in_sgs; i++) { 462 struct scatterlist *sg; 463 for (sg = sgs[i]; sg; sg = sg_next(sg)) 464 total_sg++; 465 } 466 return virtqueue_add(_vq, sgs, total_sg, out_sgs, in_sgs, 467 data, NULL, gfp); 468 } 469 EXPORT_SYMBOL_GPL(virtqueue_add_sgs); 470 471 /** 472 * virtqueue_add_outbuf - expose output buffers to other end 473 * @vq: the struct virtqueue we're talking about. 474 * @sg: scatterlist (must be well-formed and terminated!) 475 * @num: the number of entries in @sg readable by other side 476 * @data: the token identifying the buffer. 477 * @gfp: how to do memory allocations (if necessary). 478 * 479 * Caller must ensure we don't call this with other virtqueue operations 480 * at the same time (except where noted). 481 * 482 * Returns zero or a negative error (ie. ENOSPC, ENOMEM, EIO). 483 */ 484 int virtqueue_add_outbuf(struct virtqueue *vq, 485 struct scatterlist *sg, unsigned int num, 486 void *data, 487 gfp_t gfp) 488 { 489 return virtqueue_add(vq, &sg, num, 1, 0, data, NULL, gfp); 490 } 491 EXPORT_SYMBOL_GPL(virtqueue_add_outbuf); 492 493 /** 494 * virtqueue_add_inbuf - expose input buffers to other end 495 * @vq: the struct virtqueue we're talking about. 496 * @sg: scatterlist (must be well-formed and terminated!) 497 * @num: the number of entries in @sg writable by other side 498 * @data: the token identifying the buffer. 499 * @gfp: how to do memory allocations (if necessary). 500 * 501 * Caller must ensure we don't call this with other virtqueue operations 502 * at the same time (except where noted). 503 * 504 * Returns zero or a negative error (ie. ENOSPC, ENOMEM, EIO). 505 */ 506 int virtqueue_add_inbuf(struct virtqueue *vq, 507 struct scatterlist *sg, unsigned int num, 508 void *data, 509 gfp_t gfp) 510 { 511 return virtqueue_add(vq, &sg, num, 0, 1, data, NULL, gfp); 512 } 513 EXPORT_SYMBOL_GPL(virtqueue_add_inbuf); 514 515 /** 516 * virtqueue_add_inbuf_ctx - expose input buffers to other end 517 * @vq: the struct virtqueue we're talking about. 518 * @sg: scatterlist (must be well-formed and terminated!) 519 * @num: the number of entries in @sg writable by other side 520 * @data: the token identifying the buffer. 521 * @ctx: extra context for the token 522 * @gfp: how to do memory allocations (if necessary). 523 * 524 * Caller must ensure we don't call this with other virtqueue operations 525 * at the same time (except where noted). 526 * 527 * Returns zero or a negative error (ie. ENOSPC, ENOMEM, EIO). 528 */ 529 int virtqueue_add_inbuf_ctx(struct virtqueue *vq, 530 struct scatterlist *sg, unsigned int num, 531 void *data, 532 void *ctx, 533 gfp_t gfp) 534 { 535 return virtqueue_add(vq, &sg, num, 0, 1, data, ctx, gfp); 536 } 537 EXPORT_SYMBOL_GPL(virtqueue_add_inbuf_ctx); 538 539 /** 540 * virtqueue_kick_prepare - first half of split virtqueue_kick call. 541 * @vq: the struct virtqueue 542 * 543 * Instead of virtqueue_kick(), you can do: 544 * if (virtqueue_kick_prepare(vq)) 545 * virtqueue_notify(vq); 546 * 547 * This is sometimes useful because the virtqueue_kick_prepare() needs 548 * to be serialized, but the actual virtqueue_notify() call does not. 549 */ 550 bool virtqueue_kick_prepare(struct virtqueue *_vq) 551 { 552 struct vring_virtqueue *vq = to_vvq(_vq); 553 u16 new, old; 554 bool needs_kick; 555 556 START_USE(vq); 557 /* We need to expose available array entries before checking avail 558 * event. */ 559 virtio_mb(vq->weak_barriers); 560 561 old = vq->avail_idx_shadow - vq->num_added; 562 new = vq->avail_idx_shadow; 563 vq->num_added = 0; 564 565 #ifdef DEBUG 566 if (vq->last_add_time_valid) { 567 WARN_ON(ktime_to_ms(ktime_sub(ktime_get(), 568 vq->last_add_time)) > 100); 569 } 570 vq->last_add_time_valid = false; 571 #endif 572 573 if (vq->event) { 574 needs_kick = vring_need_event(virtio16_to_cpu(_vq->vdev, vring_avail_event(&vq->vring)), 575 new, old); 576 } else { 577 needs_kick = !(vq->vring.used->flags & cpu_to_virtio16(_vq->vdev, VRING_USED_F_NO_NOTIFY)); 578 } 579 END_USE(vq); 580 return needs_kick; 581 } 582 EXPORT_SYMBOL_GPL(virtqueue_kick_prepare); 583 584 /** 585 * virtqueue_notify - second half of split virtqueue_kick call. 586 * @vq: the struct virtqueue 587 * 588 * This does not need to be serialized. 589 * 590 * Returns false if host notify failed or queue is broken, otherwise true. 591 */ 592 bool virtqueue_notify(struct virtqueue *_vq) 593 { 594 struct vring_virtqueue *vq = to_vvq(_vq); 595 596 if (unlikely(vq->broken)) 597 return false; 598 599 /* Prod other side to tell it about changes. */ 600 if (!vq->notify(_vq)) { 601 vq->broken = true; 602 return false; 603 } 604 return true; 605 } 606 EXPORT_SYMBOL_GPL(virtqueue_notify); 607 608 /** 609 * virtqueue_kick - update after add_buf 610 * @vq: the struct virtqueue 611 * 612 * After one or more virtqueue_add_* calls, invoke this to kick 613 * the other side. 614 * 615 * Caller must ensure we don't call this with other virtqueue 616 * operations at the same time (except where noted). 617 * 618 * Returns false if kick failed, otherwise true. 619 */ 620 bool virtqueue_kick(struct virtqueue *vq) 621 { 622 if (virtqueue_kick_prepare(vq)) 623 return virtqueue_notify(vq); 624 return true; 625 } 626 EXPORT_SYMBOL_GPL(virtqueue_kick); 627 628 static void detach_buf(struct vring_virtqueue *vq, unsigned int head, 629 void **ctx) 630 { 631 unsigned int i, j; 632 __virtio16 nextflag = cpu_to_virtio16(vq->vq.vdev, VRING_DESC_F_NEXT); 633 634 /* Clear data ptr. */ 635 vq->desc_state[head].data = NULL; 636 637 /* Put back on free list: unmap first-level descriptors and find end */ 638 i = head; 639 640 while (vq->vring.desc[i].flags & nextflag) { 641 vring_unmap_one(vq, &vq->vring.desc[i]); 642 i = virtio16_to_cpu(vq->vq.vdev, vq->vring.desc[i].next); 643 vq->vq.num_free++; 644 } 645 646 vring_unmap_one(vq, &vq->vring.desc[i]); 647 vq->vring.desc[i].next = cpu_to_virtio16(vq->vq.vdev, vq->free_head); 648 vq->free_head = head; 649 650 /* Plus final descriptor */ 651 vq->vq.num_free++; 652 653 if (vq->indirect) { 654 struct vring_desc *indir_desc = vq->desc_state[head].indir_desc; 655 u32 len; 656 657 /* Free the indirect table, if any, now that it's unmapped. */ 658 if (!indir_desc) 659 return; 660 661 len = virtio32_to_cpu(vq->vq.vdev, vq->vring.desc[head].len); 662 663 BUG_ON(!(vq->vring.desc[head].flags & 664 cpu_to_virtio16(vq->vq.vdev, VRING_DESC_F_INDIRECT))); 665 BUG_ON(len == 0 || len % sizeof(struct vring_desc)); 666 667 for (j = 0; j < len / sizeof(struct vring_desc); j++) 668 vring_unmap_one(vq, &indir_desc[j]); 669 670 kfree(indir_desc); 671 vq->desc_state[head].indir_desc = NULL; 672 } else if (ctx) { 673 *ctx = vq->desc_state[head].indir_desc; 674 } 675 } 676 677 static inline bool more_used(const struct vring_virtqueue *vq) 678 { 679 return vq->last_used_idx != virtio16_to_cpu(vq->vq.vdev, vq->vring.used->idx); 680 } 681 682 /** 683 * virtqueue_get_buf - get the next used buffer 684 * @vq: the struct virtqueue we're talking about. 685 * @len: the length written into the buffer 686 * 687 * If the device wrote data into the buffer, @len will be set to the 688 * amount written. This means you don't need to clear the buffer 689 * beforehand to ensure there's no data leakage in the case of short 690 * writes. 691 * 692 * Caller must ensure we don't call this with other virtqueue 693 * operations at the same time (except where noted). 694 * 695 * Returns NULL if there are no used buffers, or the "data" token 696 * handed to virtqueue_add_*(). 697 */ 698 void *virtqueue_get_buf_ctx(struct virtqueue *_vq, unsigned int *len, 699 void **ctx) 700 { 701 struct vring_virtqueue *vq = to_vvq(_vq); 702 void *ret; 703 unsigned int i; 704 u16 last_used; 705 706 START_USE(vq); 707 708 if (unlikely(vq->broken)) { 709 END_USE(vq); 710 return NULL; 711 } 712 713 if (!more_used(vq)) { 714 pr_debug("No more buffers in queue\n"); 715 END_USE(vq); 716 return NULL; 717 } 718 719 /* Only get used array entries after they have been exposed by host. */ 720 virtio_rmb(vq->weak_barriers); 721 722 last_used = (vq->last_used_idx & (vq->vring.num - 1)); 723 i = virtio32_to_cpu(_vq->vdev, vq->vring.used->ring[last_used].id); 724 *len = virtio32_to_cpu(_vq->vdev, vq->vring.used->ring[last_used].len); 725 726 if (unlikely(i >= vq->vring.num)) { 727 BAD_RING(vq, "id %u out of range\n", i); 728 return NULL; 729 } 730 if (unlikely(!vq->desc_state[i].data)) { 731 BAD_RING(vq, "id %u is not a head!\n", i); 732 return NULL; 733 } 734 735 /* detach_buf clears data, so grab it now. */ 736 ret = vq->desc_state[i].data; 737 detach_buf(vq, i, ctx); 738 vq->last_used_idx++; 739 /* If we expect an interrupt for the next entry, tell host 740 * by writing event index and flush out the write before 741 * the read in the next get_buf call. */ 742 if (!(vq->avail_flags_shadow & VRING_AVAIL_F_NO_INTERRUPT)) 743 virtio_store_mb(vq->weak_barriers, 744 &vring_used_event(&vq->vring), 745 cpu_to_virtio16(_vq->vdev, vq->last_used_idx)); 746 747 #ifdef DEBUG 748 vq->last_add_time_valid = false; 749 #endif 750 751 END_USE(vq); 752 return ret; 753 } 754 EXPORT_SYMBOL_GPL(virtqueue_get_buf_ctx); 755 756 void *virtqueue_get_buf(struct virtqueue *_vq, unsigned int *len) 757 { 758 return virtqueue_get_buf_ctx(_vq, len, NULL); 759 } 760 EXPORT_SYMBOL_GPL(virtqueue_get_buf); 761 /** 762 * virtqueue_disable_cb - disable callbacks 763 * @vq: the struct virtqueue we're talking about. 764 * 765 * Note that this is not necessarily synchronous, hence unreliable and only 766 * useful as an optimization. 767 * 768 * Unlike other operations, this need not be serialized. 769 */ 770 void virtqueue_disable_cb(struct virtqueue *_vq) 771 { 772 struct vring_virtqueue *vq = to_vvq(_vq); 773 774 if (!(vq->avail_flags_shadow & VRING_AVAIL_F_NO_INTERRUPT)) { 775 vq->avail_flags_shadow |= VRING_AVAIL_F_NO_INTERRUPT; 776 if (!vq->event) 777 vq->vring.avail->flags = cpu_to_virtio16(_vq->vdev, vq->avail_flags_shadow); 778 } 779 780 } 781 EXPORT_SYMBOL_GPL(virtqueue_disable_cb); 782 783 /** 784 * virtqueue_enable_cb_prepare - restart callbacks after disable_cb 785 * @vq: the struct virtqueue we're talking about. 786 * 787 * This re-enables callbacks; it returns current queue state 788 * in an opaque unsigned value. This value should be later tested by 789 * virtqueue_poll, to detect a possible race between the driver checking for 790 * more work, and enabling callbacks. 791 * 792 * Caller must ensure we don't call this with other virtqueue 793 * operations at the same time (except where noted). 794 */ 795 unsigned virtqueue_enable_cb_prepare(struct virtqueue *_vq) 796 { 797 struct vring_virtqueue *vq = to_vvq(_vq); 798 u16 last_used_idx; 799 800 START_USE(vq); 801 802 /* We optimistically turn back on interrupts, then check if there was 803 * more to do. */ 804 /* Depending on the VIRTIO_RING_F_EVENT_IDX feature, we need to 805 * either clear the flags bit or point the event index at the next 806 * entry. Always do both to keep code simple. */ 807 if (vq->avail_flags_shadow & VRING_AVAIL_F_NO_INTERRUPT) { 808 vq->avail_flags_shadow &= ~VRING_AVAIL_F_NO_INTERRUPT; 809 if (!vq->event) 810 vq->vring.avail->flags = cpu_to_virtio16(_vq->vdev, vq->avail_flags_shadow); 811 } 812 vring_used_event(&vq->vring) = cpu_to_virtio16(_vq->vdev, last_used_idx = vq->last_used_idx); 813 END_USE(vq); 814 return last_used_idx; 815 } 816 EXPORT_SYMBOL_GPL(virtqueue_enable_cb_prepare); 817 818 /** 819 * virtqueue_poll - query pending used buffers 820 * @vq: the struct virtqueue we're talking about. 821 * @last_used_idx: virtqueue state (from call to virtqueue_enable_cb_prepare). 822 * 823 * Returns "true" if there are pending used buffers in the queue. 824 * 825 * This does not need to be serialized. 826 */ 827 bool virtqueue_poll(struct virtqueue *_vq, unsigned last_used_idx) 828 { 829 struct vring_virtqueue *vq = to_vvq(_vq); 830 831 virtio_mb(vq->weak_barriers); 832 return (u16)last_used_idx != virtio16_to_cpu(_vq->vdev, vq->vring.used->idx); 833 } 834 EXPORT_SYMBOL_GPL(virtqueue_poll); 835 836 /** 837 * virtqueue_enable_cb - restart callbacks after disable_cb. 838 * @vq: the struct virtqueue we're talking about. 839 * 840 * This re-enables callbacks; it returns "false" if there are pending 841 * buffers in the queue, to detect a possible race between the driver 842 * checking for more work, and enabling callbacks. 843 * 844 * Caller must ensure we don't call this with other virtqueue 845 * operations at the same time (except where noted). 846 */ 847 bool virtqueue_enable_cb(struct virtqueue *_vq) 848 { 849 unsigned last_used_idx = virtqueue_enable_cb_prepare(_vq); 850 return !virtqueue_poll(_vq, last_used_idx); 851 } 852 EXPORT_SYMBOL_GPL(virtqueue_enable_cb); 853 854 /** 855 * virtqueue_enable_cb_delayed - restart callbacks after disable_cb. 856 * @vq: the struct virtqueue we're talking about. 857 * 858 * This re-enables callbacks but hints to the other side to delay 859 * interrupts until most of the available buffers have been processed; 860 * it returns "false" if there are many pending buffers in the queue, 861 * to detect a possible race between the driver checking for more work, 862 * and enabling callbacks. 863 * 864 * Caller must ensure we don't call this with other virtqueue 865 * operations at the same time (except where noted). 866 */ 867 bool virtqueue_enable_cb_delayed(struct virtqueue *_vq) 868 { 869 struct vring_virtqueue *vq = to_vvq(_vq); 870 u16 bufs; 871 872 START_USE(vq); 873 874 /* We optimistically turn back on interrupts, then check if there was 875 * more to do. */ 876 /* Depending on the VIRTIO_RING_F_USED_EVENT_IDX feature, we need to 877 * either clear the flags bit or point the event index at the next 878 * entry. Always update the event index to keep code simple. */ 879 if (vq->avail_flags_shadow & VRING_AVAIL_F_NO_INTERRUPT) { 880 vq->avail_flags_shadow &= ~VRING_AVAIL_F_NO_INTERRUPT; 881 if (!vq->event) 882 vq->vring.avail->flags = cpu_to_virtio16(_vq->vdev, vq->avail_flags_shadow); 883 } 884 /* TODO: tune this threshold */ 885 bufs = (u16)(vq->avail_idx_shadow - vq->last_used_idx) * 3 / 4; 886 887 virtio_store_mb(vq->weak_barriers, 888 &vring_used_event(&vq->vring), 889 cpu_to_virtio16(_vq->vdev, vq->last_used_idx + bufs)); 890 891 if (unlikely((u16)(virtio16_to_cpu(_vq->vdev, vq->vring.used->idx) - vq->last_used_idx) > bufs)) { 892 END_USE(vq); 893 return false; 894 } 895 896 END_USE(vq); 897 return true; 898 } 899 EXPORT_SYMBOL_GPL(virtqueue_enable_cb_delayed); 900 901 /** 902 * virtqueue_detach_unused_buf - detach first unused buffer 903 * @vq: the struct virtqueue we're talking about. 904 * 905 * Returns NULL or the "data" token handed to virtqueue_add_*(). 906 * This is not valid on an active queue; it is useful only for device 907 * shutdown. 908 */ 909 void *virtqueue_detach_unused_buf(struct virtqueue *_vq) 910 { 911 struct vring_virtqueue *vq = to_vvq(_vq); 912 unsigned int i; 913 void *buf; 914 915 START_USE(vq); 916 917 for (i = 0; i < vq->vring.num; i++) { 918 if (!vq->desc_state[i].data) 919 continue; 920 /* detach_buf clears data, so grab it now. */ 921 buf = vq->desc_state[i].data; 922 detach_buf(vq, i, NULL); 923 vq->avail_idx_shadow--; 924 vq->vring.avail->idx = cpu_to_virtio16(_vq->vdev, vq->avail_idx_shadow); 925 END_USE(vq); 926 return buf; 927 } 928 /* That should have freed everything. */ 929 BUG_ON(vq->vq.num_free != vq->vring.num); 930 931 END_USE(vq); 932 return NULL; 933 } 934 EXPORT_SYMBOL_GPL(virtqueue_detach_unused_buf); 935 936 irqreturn_t vring_interrupt(int irq, void *_vq) 937 { 938 struct vring_virtqueue *vq = to_vvq(_vq); 939 940 if (!more_used(vq)) { 941 pr_debug("virtqueue interrupt with no work for %p\n", vq); 942 return IRQ_NONE; 943 } 944 945 if (unlikely(vq->broken)) 946 return IRQ_HANDLED; 947 948 pr_debug("virtqueue callback for %p (%p)\n", vq, vq->vq.callback); 949 if (vq->vq.callback) 950 vq->vq.callback(&vq->vq); 951 952 return IRQ_HANDLED; 953 } 954 EXPORT_SYMBOL_GPL(vring_interrupt); 955 956 struct virtqueue *__vring_new_virtqueue(unsigned int index, 957 struct vring vring, 958 struct virtio_device *vdev, 959 bool weak_barriers, 960 bool context, 961 bool (*notify)(struct virtqueue *), 962 void (*callback)(struct virtqueue *), 963 const char *name) 964 { 965 unsigned int i; 966 struct vring_virtqueue *vq; 967 968 vq = kmalloc(sizeof(*vq) + vring.num * sizeof(struct vring_desc_state), 969 GFP_KERNEL); 970 if (!vq) 971 return NULL; 972 973 vq->vring = vring; 974 vq->vq.callback = callback; 975 vq->vq.vdev = vdev; 976 vq->vq.name = name; 977 vq->vq.num_free = vring.num; 978 vq->vq.index = index; 979 vq->we_own_ring = false; 980 vq->queue_dma_addr = 0; 981 vq->queue_size_in_bytes = 0; 982 vq->notify = notify; 983 vq->weak_barriers = weak_barriers; 984 vq->broken = false; 985 vq->last_used_idx = 0; 986 vq->avail_flags_shadow = 0; 987 vq->avail_idx_shadow = 0; 988 vq->num_added = 0; 989 list_add_tail(&vq->vq.list, &vdev->vqs); 990 #ifdef DEBUG 991 vq->in_use = false; 992 vq->last_add_time_valid = false; 993 #endif 994 995 vq->indirect = virtio_has_feature(vdev, VIRTIO_RING_F_INDIRECT_DESC) && 996 !context; 997 vq->event = virtio_has_feature(vdev, VIRTIO_RING_F_EVENT_IDX); 998 999 /* No callback? Tell other side not to bother us. */ 1000 if (!callback) { 1001 vq->avail_flags_shadow |= VRING_AVAIL_F_NO_INTERRUPT; 1002 if (!vq->event) 1003 vq->vring.avail->flags = cpu_to_virtio16(vdev, vq->avail_flags_shadow); 1004 } 1005 1006 /* Put everything in free lists. */ 1007 vq->free_head = 0; 1008 for (i = 0; i < vring.num-1; i++) 1009 vq->vring.desc[i].next = cpu_to_virtio16(vdev, i + 1); 1010 memset(vq->desc_state, 0, vring.num * sizeof(struct vring_desc_state)); 1011 1012 return &vq->vq; 1013 } 1014 EXPORT_SYMBOL_GPL(__vring_new_virtqueue); 1015 1016 static void *vring_alloc_queue(struct virtio_device *vdev, size_t size, 1017 dma_addr_t *dma_handle, gfp_t flag) 1018 { 1019 if (vring_use_dma_api(vdev)) { 1020 return dma_alloc_coherent(vdev->dev.parent, size, 1021 dma_handle, flag); 1022 } else { 1023 void *queue = alloc_pages_exact(PAGE_ALIGN(size), flag); 1024 if (queue) { 1025 phys_addr_t phys_addr = virt_to_phys(queue); 1026 *dma_handle = (dma_addr_t)phys_addr; 1027 1028 /* 1029 * Sanity check: make sure we dind't truncate 1030 * the address. The only arches I can find that 1031 * have 64-bit phys_addr_t but 32-bit dma_addr_t 1032 * are certain non-highmem MIPS and x86 1033 * configurations, but these configurations 1034 * should never allocate physical pages above 32 1035 * bits, so this is fine. Just in case, throw a 1036 * warning and abort if we end up with an 1037 * unrepresentable address. 1038 */ 1039 if (WARN_ON_ONCE(*dma_handle != phys_addr)) { 1040 free_pages_exact(queue, PAGE_ALIGN(size)); 1041 return NULL; 1042 } 1043 } 1044 return queue; 1045 } 1046 } 1047 1048 static void vring_free_queue(struct virtio_device *vdev, size_t size, 1049 void *queue, dma_addr_t dma_handle) 1050 { 1051 if (vring_use_dma_api(vdev)) { 1052 dma_free_coherent(vdev->dev.parent, size, queue, dma_handle); 1053 } else { 1054 free_pages_exact(queue, PAGE_ALIGN(size)); 1055 } 1056 } 1057 1058 struct virtqueue *vring_create_virtqueue( 1059 unsigned int index, 1060 unsigned int num, 1061 unsigned int vring_align, 1062 struct virtio_device *vdev, 1063 bool weak_barriers, 1064 bool may_reduce_num, 1065 bool context, 1066 bool (*notify)(struct virtqueue *), 1067 void (*callback)(struct virtqueue *), 1068 const char *name) 1069 { 1070 struct virtqueue *vq; 1071 void *queue = NULL; 1072 dma_addr_t dma_addr; 1073 size_t queue_size_in_bytes; 1074 struct vring vring; 1075 1076 /* We assume num is a power of 2. */ 1077 if (num & (num - 1)) { 1078 dev_warn(&vdev->dev, "Bad virtqueue length %u\n", num); 1079 return NULL; 1080 } 1081 1082 /* TODO: allocate each queue chunk individually */ 1083 for (; num && vring_size(num, vring_align) > PAGE_SIZE; num /= 2) { 1084 queue = vring_alloc_queue(vdev, vring_size(num, vring_align), 1085 &dma_addr, 1086 GFP_KERNEL|__GFP_NOWARN|__GFP_ZERO); 1087 if (queue) 1088 break; 1089 } 1090 1091 if (!num) 1092 return NULL; 1093 1094 if (!queue) { 1095 /* Try to get a single page. You are my only hope! */ 1096 queue = vring_alloc_queue(vdev, vring_size(num, vring_align), 1097 &dma_addr, GFP_KERNEL|__GFP_ZERO); 1098 } 1099 if (!queue) 1100 return NULL; 1101 1102 queue_size_in_bytes = vring_size(num, vring_align); 1103 vring_init(&vring, num, queue, vring_align); 1104 1105 vq = __vring_new_virtqueue(index, vring, vdev, weak_barriers, context, 1106 notify, callback, name); 1107 if (!vq) { 1108 vring_free_queue(vdev, queue_size_in_bytes, queue, 1109 dma_addr); 1110 return NULL; 1111 } 1112 1113 to_vvq(vq)->queue_dma_addr = dma_addr; 1114 to_vvq(vq)->queue_size_in_bytes = queue_size_in_bytes; 1115 to_vvq(vq)->we_own_ring = true; 1116 1117 return vq; 1118 } 1119 EXPORT_SYMBOL_GPL(vring_create_virtqueue); 1120 1121 struct virtqueue *vring_new_virtqueue(unsigned int index, 1122 unsigned int num, 1123 unsigned int vring_align, 1124 struct virtio_device *vdev, 1125 bool weak_barriers, 1126 bool context, 1127 void *pages, 1128 bool (*notify)(struct virtqueue *vq), 1129 void (*callback)(struct virtqueue *vq), 1130 const char *name) 1131 { 1132 struct vring vring; 1133 vring_init(&vring, num, pages, vring_align); 1134 return __vring_new_virtqueue(index, vring, vdev, weak_barriers, context, 1135 notify, callback, name); 1136 } 1137 EXPORT_SYMBOL_GPL(vring_new_virtqueue); 1138 1139 void vring_del_virtqueue(struct virtqueue *_vq) 1140 { 1141 struct vring_virtqueue *vq = to_vvq(_vq); 1142 1143 if (vq->we_own_ring) { 1144 vring_free_queue(vq->vq.vdev, vq->queue_size_in_bytes, 1145 vq->vring.desc, vq->queue_dma_addr); 1146 } 1147 list_del(&_vq->list); 1148 kfree(vq); 1149 } 1150 EXPORT_SYMBOL_GPL(vring_del_virtqueue); 1151 1152 /* Manipulates transport-specific feature bits. */ 1153 void vring_transport_features(struct virtio_device *vdev) 1154 { 1155 unsigned int i; 1156 1157 for (i = VIRTIO_TRANSPORT_F_START; i < VIRTIO_TRANSPORT_F_END; i++) { 1158 switch (i) { 1159 case VIRTIO_RING_F_INDIRECT_DESC: 1160 break; 1161 case VIRTIO_RING_F_EVENT_IDX: 1162 break; 1163 case VIRTIO_F_VERSION_1: 1164 break; 1165 case VIRTIO_F_IOMMU_PLATFORM: 1166 break; 1167 default: 1168 /* We don't understand this bit. */ 1169 __virtio_clear_bit(vdev, i); 1170 } 1171 } 1172 } 1173 EXPORT_SYMBOL_GPL(vring_transport_features); 1174 1175 /** 1176 * virtqueue_get_vring_size - return the size of the virtqueue's vring 1177 * @vq: the struct virtqueue containing the vring of interest. 1178 * 1179 * Returns the size of the vring. This is mainly used for boasting to 1180 * userspace. Unlike other operations, this need not be serialized. 1181 */ 1182 unsigned int virtqueue_get_vring_size(struct virtqueue *_vq) 1183 { 1184 1185 struct vring_virtqueue *vq = to_vvq(_vq); 1186 1187 return vq->vring.num; 1188 } 1189 EXPORT_SYMBOL_GPL(virtqueue_get_vring_size); 1190 1191 bool virtqueue_is_broken(struct virtqueue *_vq) 1192 { 1193 struct vring_virtqueue *vq = to_vvq(_vq); 1194 1195 return vq->broken; 1196 } 1197 EXPORT_SYMBOL_GPL(virtqueue_is_broken); 1198 1199 /* 1200 * This should prevent the device from being used, allowing drivers to 1201 * recover. You may need to grab appropriate locks to flush. 1202 */ 1203 void virtio_break_device(struct virtio_device *dev) 1204 { 1205 struct virtqueue *_vq; 1206 1207 list_for_each_entry(_vq, &dev->vqs, list) { 1208 struct vring_virtqueue *vq = to_vvq(_vq); 1209 vq->broken = true; 1210 } 1211 } 1212 EXPORT_SYMBOL_GPL(virtio_break_device); 1213 1214 dma_addr_t virtqueue_get_desc_addr(struct virtqueue *_vq) 1215 { 1216 struct vring_virtqueue *vq = to_vvq(_vq); 1217 1218 BUG_ON(!vq->we_own_ring); 1219 1220 return vq->queue_dma_addr; 1221 } 1222 EXPORT_SYMBOL_GPL(virtqueue_get_desc_addr); 1223 1224 dma_addr_t virtqueue_get_avail_addr(struct virtqueue *_vq) 1225 { 1226 struct vring_virtqueue *vq = to_vvq(_vq); 1227 1228 BUG_ON(!vq->we_own_ring); 1229 1230 return vq->queue_dma_addr + 1231 ((char *)vq->vring.avail - (char *)vq->vring.desc); 1232 } 1233 EXPORT_SYMBOL_GPL(virtqueue_get_avail_addr); 1234 1235 dma_addr_t virtqueue_get_used_addr(struct virtqueue *_vq) 1236 { 1237 struct vring_virtqueue *vq = to_vvq(_vq); 1238 1239 BUG_ON(!vq->we_own_ring); 1240 1241 return vq->queue_dma_addr + 1242 ((char *)vq->vring.used - (char *)vq->vring.desc); 1243 } 1244 EXPORT_SYMBOL_GPL(virtqueue_get_used_addr); 1245 1246 const struct vring *virtqueue_get_vring(struct virtqueue *vq) 1247 { 1248 return &to_vvq(vq)->vring; 1249 } 1250 EXPORT_SYMBOL_GPL(virtqueue_get_vring); 1251 1252 MODULE_LICENSE("GPL"); 1253