xref: /openbmc/linux/drivers/virtio/virtio_ring.c (revision 20e8ef5c)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /* Virtio ring implementation.
3  *
4  *  Copyright 2007 Rusty Russell IBM Corporation
5  */
6 #include <linux/virtio.h>
7 #include <linux/virtio_ring.h>
8 #include <linux/virtio_config.h>
9 #include <linux/device.h>
10 #include <linux/slab.h>
11 #include <linux/module.h>
12 #include <linux/hrtimer.h>
13 #include <linux/dma-mapping.h>
14 #include <linux/spinlock.h>
15 #include <xen/xen.h>
16 
17 #ifdef DEBUG
18 /* For development, we want to crash whenever the ring is screwed. */
19 #define BAD_RING(_vq, fmt, args...)				\
20 	do {							\
21 		dev_err(&(_vq)->vq.vdev->dev,			\
22 			"%s:"fmt, (_vq)->vq.name, ##args);	\
23 		BUG();						\
24 	} while (0)
25 /* Caller is supposed to guarantee no reentry. */
26 #define START_USE(_vq)						\
27 	do {							\
28 		if ((_vq)->in_use)				\
29 			panic("%s:in_use = %i\n",		\
30 			      (_vq)->vq.name, (_vq)->in_use);	\
31 		(_vq)->in_use = __LINE__;			\
32 	} while (0)
33 #define END_USE(_vq) \
34 	do { BUG_ON(!(_vq)->in_use); (_vq)->in_use = 0; } while(0)
35 #define LAST_ADD_TIME_UPDATE(_vq)				\
36 	do {							\
37 		ktime_t now = ktime_get();			\
38 								\
39 		/* No kick or get, with .1 second between?  Warn. */ \
40 		if ((_vq)->last_add_time_valid)			\
41 			WARN_ON(ktime_to_ms(ktime_sub(now,	\
42 				(_vq)->last_add_time)) > 100);	\
43 		(_vq)->last_add_time = now;			\
44 		(_vq)->last_add_time_valid = true;		\
45 	} while (0)
46 #define LAST_ADD_TIME_CHECK(_vq)				\
47 	do {							\
48 		if ((_vq)->last_add_time_valid) {		\
49 			WARN_ON(ktime_to_ms(ktime_sub(ktime_get(), \
50 				      (_vq)->last_add_time)) > 100); \
51 		}						\
52 	} while (0)
53 #define LAST_ADD_TIME_INVALID(_vq)				\
54 	((_vq)->last_add_time_valid = false)
55 #else
56 #define BAD_RING(_vq, fmt, args...)				\
57 	do {							\
58 		dev_err(&_vq->vq.vdev->dev,			\
59 			"%s:"fmt, (_vq)->vq.name, ##args);	\
60 		(_vq)->broken = true;				\
61 	} while (0)
62 #define START_USE(vq)
63 #define END_USE(vq)
64 #define LAST_ADD_TIME_UPDATE(vq)
65 #define LAST_ADD_TIME_CHECK(vq)
66 #define LAST_ADD_TIME_INVALID(vq)
67 #endif
68 
69 struct vring_desc_state_split {
70 	void *data;			/* Data for callback. */
71 	struct vring_desc *indir_desc;	/* Indirect descriptor, if any. */
72 };
73 
74 struct vring_desc_state_packed {
75 	void *data;			/* Data for callback. */
76 	struct vring_packed_desc *indir_desc; /* Indirect descriptor, if any. */
77 	u16 num;			/* Descriptor list length. */
78 	u16 last;			/* The last desc state in a list. */
79 };
80 
81 struct vring_desc_extra {
82 	dma_addr_t addr;		/* Descriptor DMA addr. */
83 	u32 len;			/* Descriptor length. */
84 	u16 flags;			/* Descriptor flags. */
85 	u16 next;			/* The next desc state in a list. */
86 };
87 
88 struct vring_virtqueue {
89 	struct virtqueue vq;
90 
91 	/* Is this a packed ring? */
92 	bool packed_ring;
93 
94 	/* Is DMA API used? */
95 	bool use_dma_api;
96 
97 	/* Can we use weak barriers? */
98 	bool weak_barriers;
99 
100 	/* Other side has made a mess, don't try any more. */
101 	bool broken;
102 
103 	/* Host supports indirect buffers */
104 	bool indirect;
105 
106 	/* Host publishes avail event idx */
107 	bool event;
108 
109 	/* Head of free buffer list. */
110 	unsigned int free_head;
111 	/* Number we've added since last sync. */
112 	unsigned int num_added;
113 
114 	/* Last used index we've seen. */
115 	u16 last_used_idx;
116 
117 	/* Hint for event idx: already triggered no need to disable. */
118 	bool event_triggered;
119 
120 	union {
121 		/* Available for split ring */
122 		struct {
123 			/* Actual memory layout for this queue. */
124 			struct vring vring;
125 
126 			/* Last written value to avail->flags */
127 			u16 avail_flags_shadow;
128 
129 			/*
130 			 * Last written value to avail->idx in
131 			 * guest byte order.
132 			 */
133 			u16 avail_idx_shadow;
134 
135 			/* Per-descriptor state. */
136 			struct vring_desc_state_split *desc_state;
137 			struct vring_desc_extra *desc_extra;
138 
139 			/* DMA address and size information */
140 			dma_addr_t queue_dma_addr;
141 			size_t queue_size_in_bytes;
142 		} split;
143 
144 		/* Available for packed ring */
145 		struct {
146 			/* Actual memory layout for this queue. */
147 			struct {
148 				unsigned int num;
149 				struct vring_packed_desc *desc;
150 				struct vring_packed_desc_event *driver;
151 				struct vring_packed_desc_event *device;
152 			} vring;
153 
154 			/* Driver ring wrap counter. */
155 			bool avail_wrap_counter;
156 
157 			/* Device ring wrap counter. */
158 			bool used_wrap_counter;
159 
160 			/* Avail used flags. */
161 			u16 avail_used_flags;
162 
163 			/* Index of the next avail descriptor. */
164 			u16 next_avail_idx;
165 
166 			/*
167 			 * Last written value to driver->flags in
168 			 * guest byte order.
169 			 */
170 			u16 event_flags_shadow;
171 
172 			/* Per-descriptor state. */
173 			struct vring_desc_state_packed *desc_state;
174 			struct vring_desc_extra *desc_extra;
175 
176 			/* DMA address and size information */
177 			dma_addr_t ring_dma_addr;
178 			dma_addr_t driver_event_dma_addr;
179 			dma_addr_t device_event_dma_addr;
180 			size_t ring_size_in_bytes;
181 			size_t event_size_in_bytes;
182 		} packed;
183 	};
184 
185 	/* How to notify other side. FIXME: commonalize hcalls! */
186 	bool (*notify)(struct virtqueue *vq);
187 
188 	/* DMA, allocation, and size information */
189 	bool we_own_ring;
190 
191 #ifdef DEBUG
192 	/* They're supposed to lock for us. */
193 	unsigned int in_use;
194 
195 	/* Figure out if their kicks are too delayed. */
196 	bool last_add_time_valid;
197 	ktime_t last_add_time;
198 #endif
199 };
200 
201 
202 /*
203  * Helpers.
204  */
205 
206 #define to_vvq(_vq) container_of(_vq, struct vring_virtqueue, vq)
207 
208 static inline bool virtqueue_use_indirect(struct virtqueue *_vq,
209 					  unsigned int total_sg)
210 {
211 	struct vring_virtqueue *vq = to_vvq(_vq);
212 
213 	/*
214 	 * If the host supports indirect descriptor tables, and we have multiple
215 	 * buffers, then go indirect. FIXME: tune this threshold
216 	 */
217 	return (vq->indirect && total_sg > 1 && vq->vq.num_free);
218 }
219 
220 /*
221  * Modern virtio devices have feature bits to specify whether they need a
222  * quirk and bypass the IOMMU. If not there, just use the DMA API.
223  *
224  * If there, the interaction between virtio and DMA API is messy.
225  *
226  * On most systems with virtio, physical addresses match bus addresses,
227  * and it doesn't particularly matter whether we use the DMA API.
228  *
229  * On some systems, including Xen and any system with a physical device
230  * that speaks virtio behind a physical IOMMU, we must use the DMA API
231  * for virtio DMA to work at all.
232  *
233  * On other systems, including SPARC and PPC64, virtio-pci devices are
234  * enumerated as though they are behind an IOMMU, but the virtio host
235  * ignores the IOMMU, so we must either pretend that the IOMMU isn't
236  * there or somehow map everything as the identity.
237  *
238  * For the time being, we preserve historic behavior and bypass the DMA
239  * API.
240  *
241  * TODO: install a per-device DMA ops structure that does the right thing
242  * taking into account all the above quirks, and use the DMA API
243  * unconditionally on data path.
244  */
245 
246 static bool vring_use_dma_api(struct virtio_device *vdev)
247 {
248 	if (!virtio_has_dma_quirk(vdev))
249 		return true;
250 
251 	/* Otherwise, we are left to guess. */
252 	/*
253 	 * In theory, it's possible to have a buggy QEMU-supposed
254 	 * emulated Q35 IOMMU and Xen enabled at the same time.  On
255 	 * such a configuration, virtio has never worked and will
256 	 * not work without an even larger kludge.  Instead, enable
257 	 * the DMA API if we're a Xen guest, which at least allows
258 	 * all of the sensible Xen configurations to work correctly.
259 	 */
260 	if (xen_domain())
261 		return true;
262 
263 	return false;
264 }
265 
266 size_t virtio_max_dma_size(struct virtio_device *vdev)
267 {
268 	size_t max_segment_size = SIZE_MAX;
269 
270 	if (vring_use_dma_api(vdev))
271 		max_segment_size = dma_max_mapping_size(vdev->dev.parent);
272 
273 	return max_segment_size;
274 }
275 EXPORT_SYMBOL_GPL(virtio_max_dma_size);
276 
277 static void *vring_alloc_queue(struct virtio_device *vdev, size_t size,
278 			      dma_addr_t *dma_handle, gfp_t flag)
279 {
280 	if (vring_use_dma_api(vdev)) {
281 		return dma_alloc_coherent(vdev->dev.parent, size,
282 					  dma_handle, flag);
283 	} else {
284 		void *queue = alloc_pages_exact(PAGE_ALIGN(size), flag);
285 
286 		if (queue) {
287 			phys_addr_t phys_addr = virt_to_phys(queue);
288 			*dma_handle = (dma_addr_t)phys_addr;
289 
290 			/*
291 			 * Sanity check: make sure we dind't truncate
292 			 * the address.  The only arches I can find that
293 			 * have 64-bit phys_addr_t but 32-bit dma_addr_t
294 			 * are certain non-highmem MIPS and x86
295 			 * configurations, but these configurations
296 			 * should never allocate physical pages above 32
297 			 * bits, so this is fine.  Just in case, throw a
298 			 * warning and abort if we end up with an
299 			 * unrepresentable address.
300 			 */
301 			if (WARN_ON_ONCE(*dma_handle != phys_addr)) {
302 				free_pages_exact(queue, PAGE_ALIGN(size));
303 				return NULL;
304 			}
305 		}
306 		return queue;
307 	}
308 }
309 
310 static void vring_free_queue(struct virtio_device *vdev, size_t size,
311 			     void *queue, dma_addr_t dma_handle)
312 {
313 	if (vring_use_dma_api(vdev))
314 		dma_free_coherent(vdev->dev.parent, size, queue, dma_handle);
315 	else
316 		free_pages_exact(queue, PAGE_ALIGN(size));
317 }
318 
319 /*
320  * The DMA ops on various arches are rather gnarly right now, and
321  * making all of the arch DMA ops work on the vring device itself
322  * is a mess.  For now, we use the parent device for DMA ops.
323  */
324 static inline struct device *vring_dma_dev(const struct vring_virtqueue *vq)
325 {
326 	return vq->vq.vdev->dev.parent;
327 }
328 
329 /* Map one sg entry. */
330 static dma_addr_t vring_map_one_sg(const struct vring_virtqueue *vq,
331 				   struct scatterlist *sg,
332 				   enum dma_data_direction direction)
333 {
334 	if (!vq->use_dma_api)
335 		return (dma_addr_t)sg_phys(sg);
336 
337 	/*
338 	 * We can't use dma_map_sg, because we don't use scatterlists in
339 	 * the way it expects (we don't guarantee that the scatterlist
340 	 * will exist for the lifetime of the mapping).
341 	 */
342 	return dma_map_page(vring_dma_dev(vq),
343 			    sg_page(sg), sg->offset, sg->length,
344 			    direction);
345 }
346 
347 static dma_addr_t vring_map_single(const struct vring_virtqueue *vq,
348 				   void *cpu_addr, size_t size,
349 				   enum dma_data_direction direction)
350 {
351 	if (!vq->use_dma_api)
352 		return (dma_addr_t)virt_to_phys(cpu_addr);
353 
354 	return dma_map_single(vring_dma_dev(vq),
355 			      cpu_addr, size, direction);
356 }
357 
358 static int vring_mapping_error(const struct vring_virtqueue *vq,
359 			       dma_addr_t addr)
360 {
361 	if (!vq->use_dma_api)
362 		return 0;
363 
364 	return dma_mapping_error(vring_dma_dev(vq), addr);
365 }
366 
367 
368 /*
369  * Split ring specific functions - *_split().
370  */
371 
372 static void vring_unmap_one_split_indirect(const struct vring_virtqueue *vq,
373 					   struct vring_desc *desc)
374 {
375 	u16 flags;
376 
377 	if (!vq->use_dma_api)
378 		return;
379 
380 	flags = virtio16_to_cpu(vq->vq.vdev, desc->flags);
381 
382 	if (flags & VRING_DESC_F_INDIRECT) {
383 		dma_unmap_single(vring_dma_dev(vq),
384 				 virtio64_to_cpu(vq->vq.vdev, desc->addr),
385 				 virtio32_to_cpu(vq->vq.vdev, desc->len),
386 				 (flags & VRING_DESC_F_WRITE) ?
387 				 DMA_FROM_DEVICE : DMA_TO_DEVICE);
388 	} else {
389 		dma_unmap_page(vring_dma_dev(vq),
390 			       virtio64_to_cpu(vq->vq.vdev, desc->addr),
391 			       virtio32_to_cpu(vq->vq.vdev, desc->len),
392 			       (flags & VRING_DESC_F_WRITE) ?
393 			       DMA_FROM_DEVICE : DMA_TO_DEVICE);
394 	}
395 }
396 
397 static unsigned int vring_unmap_one_split(const struct vring_virtqueue *vq,
398 					  unsigned int i)
399 {
400 	struct vring_desc_extra *extra = vq->split.desc_extra;
401 	u16 flags;
402 
403 	if (!vq->use_dma_api)
404 		goto out;
405 
406 	flags = extra[i].flags;
407 
408 	if (flags & VRING_DESC_F_INDIRECT) {
409 		dma_unmap_single(vring_dma_dev(vq),
410 				 extra[i].addr,
411 				 extra[i].len,
412 				 (flags & VRING_DESC_F_WRITE) ?
413 				 DMA_FROM_DEVICE : DMA_TO_DEVICE);
414 	} else {
415 		dma_unmap_page(vring_dma_dev(vq),
416 			       extra[i].addr,
417 			       extra[i].len,
418 			       (flags & VRING_DESC_F_WRITE) ?
419 			       DMA_FROM_DEVICE : DMA_TO_DEVICE);
420 	}
421 
422 out:
423 	return extra[i].next;
424 }
425 
426 static struct vring_desc *alloc_indirect_split(struct virtqueue *_vq,
427 					       unsigned int total_sg,
428 					       gfp_t gfp)
429 {
430 	struct vring_desc *desc;
431 	unsigned int i;
432 
433 	/*
434 	 * We require lowmem mappings for the descriptors because
435 	 * otherwise virt_to_phys will give us bogus addresses in the
436 	 * virtqueue.
437 	 */
438 	gfp &= ~__GFP_HIGHMEM;
439 
440 	desc = kmalloc_array(total_sg, sizeof(struct vring_desc), gfp);
441 	if (!desc)
442 		return NULL;
443 
444 	for (i = 0; i < total_sg; i++)
445 		desc[i].next = cpu_to_virtio16(_vq->vdev, i + 1);
446 	return desc;
447 }
448 
449 static inline unsigned int virtqueue_add_desc_split(struct virtqueue *vq,
450 						    struct vring_desc *desc,
451 						    unsigned int i,
452 						    dma_addr_t addr,
453 						    unsigned int len,
454 						    u16 flags,
455 						    bool indirect)
456 {
457 	struct vring_virtqueue *vring = to_vvq(vq);
458 	struct vring_desc_extra *extra = vring->split.desc_extra;
459 	u16 next;
460 
461 	desc[i].flags = cpu_to_virtio16(vq->vdev, flags);
462 	desc[i].addr = cpu_to_virtio64(vq->vdev, addr);
463 	desc[i].len = cpu_to_virtio32(vq->vdev, len);
464 
465 	if (!indirect) {
466 		next = extra[i].next;
467 		desc[i].next = cpu_to_virtio16(vq->vdev, next);
468 
469 		extra[i].addr = addr;
470 		extra[i].len = len;
471 		extra[i].flags = flags;
472 	} else
473 		next = virtio16_to_cpu(vq->vdev, desc[i].next);
474 
475 	return next;
476 }
477 
478 static inline int virtqueue_add_split(struct virtqueue *_vq,
479 				      struct scatterlist *sgs[],
480 				      unsigned int total_sg,
481 				      unsigned int out_sgs,
482 				      unsigned int in_sgs,
483 				      void *data,
484 				      void *ctx,
485 				      gfp_t gfp)
486 {
487 	struct vring_virtqueue *vq = to_vvq(_vq);
488 	struct scatterlist *sg;
489 	struct vring_desc *desc;
490 	unsigned int i, n, avail, descs_used, prev, err_idx;
491 	int head;
492 	bool indirect;
493 
494 	START_USE(vq);
495 
496 	BUG_ON(data == NULL);
497 	BUG_ON(ctx && vq->indirect);
498 
499 	if (unlikely(vq->broken)) {
500 		END_USE(vq);
501 		return -EIO;
502 	}
503 
504 	LAST_ADD_TIME_UPDATE(vq);
505 
506 	BUG_ON(total_sg == 0);
507 
508 	head = vq->free_head;
509 
510 	if (virtqueue_use_indirect(_vq, total_sg))
511 		desc = alloc_indirect_split(_vq, total_sg, gfp);
512 	else {
513 		desc = NULL;
514 		WARN_ON_ONCE(total_sg > vq->split.vring.num && !vq->indirect);
515 	}
516 
517 	if (desc) {
518 		/* Use a single buffer which doesn't continue */
519 		indirect = true;
520 		/* Set up rest to use this indirect table. */
521 		i = 0;
522 		descs_used = 1;
523 	} else {
524 		indirect = false;
525 		desc = vq->split.vring.desc;
526 		i = head;
527 		descs_used = total_sg;
528 	}
529 
530 	if (vq->vq.num_free < descs_used) {
531 		pr_debug("Can't add buf len %i - avail = %i\n",
532 			 descs_used, vq->vq.num_free);
533 		/* FIXME: for historical reasons, we force a notify here if
534 		 * there are outgoing parts to the buffer.  Presumably the
535 		 * host should service the ring ASAP. */
536 		if (out_sgs)
537 			vq->notify(&vq->vq);
538 		if (indirect)
539 			kfree(desc);
540 		END_USE(vq);
541 		return -ENOSPC;
542 	}
543 
544 	for (n = 0; n < out_sgs; n++) {
545 		for (sg = sgs[n]; sg; sg = sg_next(sg)) {
546 			dma_addr_t addr = vring_map_one_sg(vq, sg, DMA_TO_DEVICE);
547 			if (vring_mapping_error(vq, addr))
548 				goto unmap_release;
549 
550 			prev = i;
551 			/* Note that we trust indirect descriptor
552 			 * table since it use stream DMA mapping.
553 			 */
554 			i = virtqueue_add_desc_split(_vq, desc, i, addr, sg->length,
555 						     VRING_DESC_F_NEXT,
556 						     indirect);
557 		}
558 	}
559 	for (; n < (out_sgs + in_sgs); n++) {
560 		for (sg = sgs[n]; sg; sg = sg_next(sg)) {
561 			dma_addr_t addr = vring_map_one_sg(vq, sg, DMA_FROM_DEVICE);
562 			if (vring_mapping_error(vq, addr))
563 				goto unmap_release;
564 
565 			prev = i;
566 			/* Note that we trust indirect descriptor
567 			 * table since it use stream DMA mapping.
568 			 */
569 			i = virtqueue_add_desc_split(_vq, desc, i, addr,
570 						     sg->length,
571 						     VRING_DESC_F_NEXT |
572 						     VRING_DESC_F_WRITE,
573 						     indirect);
574 		}
575 	}
576 	/* Last one doesn't continue. */
577 	desc[prev].flags &= cpu_to_virtio16(_vq->vdev, ~VRING_DESC_F_NEXT);
578 	if (!indirect && vq->use_dma_api)
579 		vq->split.desc_extra[prev & (vq->split.vring.num - 1)].flags &=
580 			~VRING_DESC_F_NEXT;
581 
582 	if (indirect) {
583 		/* Now that the indirect table is filled in, map it. */
584 		dma_addr_t addr = vring_map_single(
585 			vq, desc, total_sg * sizeof(struct vring_desc),
586 			DMA_TO_DEVICE);
587 		if (vring_mapping_error(vq, addr))
588 			goto unmap_release;
589 
590 		virtqueue_add_desc_split(_vq, vq->split.vring.desc,
591 					 head, addr,
592 					 total_sg * sizeof(struct vring_desc),
593 					 VRING_DESC_F_INDIRECT,
594 					 false);
595 	}
596 
597 	/* We're using some buffers from the free list. */
598 	vq->vq.num_free -= descs_used;
599 
600 	/* Update free pointer */
601 	if (indirect)
602 		vq->free_head = vq->split.desc_extra[head].next;
603 	else
604 		vq->free_head = i;
605 
606 	/* Store token and indirect buffer state. */
607 	vq->split.desc_state[head].data = data;
608 	if (indirect)
609 		vq->split.desc_state[head].indir_desc = desc;
610 	else
611 		vq->split.desc_state[head].indir_desc = ctx;
612 
613 	/* Put entry in available array (but don't update avail->idx until they
614 	 * do sync). */
615 	avail = vq->split.avail_idx_shadow & (vq->split.vring.num - 1);
616 	vq->split.vring.avail->ring[avail] = cpu_to_virtio16(_vq->vdev, head);
617 
618 	/* Descriptors and available array need to be set before we expose the
619 	 * new available array entries. */
620 	virtio_wmb(vq->weak_barriers);
621 	vq->split.avail_idx_shadow++;
622 	vq->split.vring.avail->idx = cpu_to_virtio16(_vq->vdev,
623 						vq->split.avail_idx_shadow);
624 	vq->num_added++;
625 
626 	pr_debug("Added buffer head %i to %p\n", head, vq);
627 	END_USE(vq);
628 
629 	/* This is very unlikely, but theoretically possible.  Kick
630 	 * just in case. */
631 	if (unlikely(vq->num_added == (1 << 16) - 1))
632 		virtqueue_kick(_vq);
633 
634 	return 0;
635 
636 unmap_release:
637 	err_idx = i;
638 
639 	if (indirect)
640 		i = 0;
641 	else
642 		i = head;
643 
644 	for (n = 0; n < total_sg; n++) {
645 		if (i == err_idx)
646 			break;
647 		if (indirect) {
648 			vring_unmap_one_split_indirect(vq, &desc[i]);
649 			i = virtio16_to_cpu(_vq->vdev, desc[i].next);
650 		} else
651 			i = vring_unmap_one_split(vq, i);
652 	}
653 
654 	if (indirect)
655 		kfree(desc);
656 
657 	END_USE(vq);
658 	return -ENOMEM;
659 }
660 
661 static bool virtqueue_kick_prepare_split(struct virtqueue *_vq)
662 {
663 	struct vring_virtqueue *vq = to_vvq(_vq);
664 	u16 new, old;
665 	bool needs_kick;
666 
667 	START_USE(vq);
668 	/* We need to expose available array entries before checking avail
669 	 * event. */
670 	virtio_mb(vq->weak_barriers);
671 
672 	old = vq->split.avail_idx_shadow - vq->num_added;
673 	new = vq->split.avail_idx_shadow;
674 	vq->num_added = 0;
675 
676 	LAST_ADD_TIME_CHECK(vq);
677 	LAST_ADD_TIME_INVALID(vq);
678 
679 	if (vq->event) {
680 		needs_kick = vring_need_event(virtio16_to_cpu(_vq->vdev,
681 					vring_avail_event(&vq->split.vring)),
682 					      new, old);
683 	} else {
684 		needs_kick = !(vq->split.vring.used->flags &
685 					cpu_to_virtio16(_vq->vdev,
686 						VRING_USED_F_NO_NOTIFY));
687 	}
688 	END_USE(vq);
689 	return needs_kick;
690 }
691 
692 static void detach_buf_split(struct vring_virtqueue *vq, unsigned int head,
693 			     void **ctx)
694 {
695 	unsigned int i, j;
696 	__virtio16 nextflag = cpu_to_virtio16(vq->vq.vdev, VRING_DESC_F_NEXT);
697 
698 	/* Clear data ptr. */
699 	vq->split.desc_state[head].data = NULL;
700 
701 	/* Put back on free list: unmap first-level descriptors and find end */
702 	i = head;
703 
704 	while (vq->split.vring.desc[i].flags & nextflag) {
705 		vring_unmap_one_split(vq, i);
706 		i = vq->split.desc_extra[i].next;
707 		vq->vq.num_free++;
708 	}
709 
710 	vring_unmap_one_split(vq, i);
711 	vq->split.desc_extra[i].next = vq->free_head;
712 	vq->free_head = head;
713 
714 	/* Plus final descriptor */
715 	vq->vq.num_free++;
716 
717 	if (vq->indirect) {
718 		struct vring_desc *indir_desc =
719 				vq->split.desc_state[head].indir_desc;
720 		u32 len;
721 
722 		/* Free the indirect table, if any, now that it's unmapped. */
723 		if (!indir_desc)
724 			return;
725 
726 		len = vq->split.desc_extra[head].len;
727 
728 		BUG_ON(!(vq->split.desc_extra[head].flags &
729 				VRING_DESC_F_INDIRECT));
730 		BUG_ON(len == 0 || len % sizeof(struct vring_desc));
731 
732 		for (j = 0; j < len / sizeof(struct vring_desc); j++)
733 			vring_unmap_one_split_indirect(vq, &indir_desc[j]);
734 
735 		kfree(indir_desc);
736 		vq->split.desc_state[head].indir_desc = NULL;
737 	} else if (ctx) {
738 		*ctx = vq->split.desc_state[head].indir_desc;
739 	}
740 }
741 
742 static inline bool more_used_split(const struct vring_virtqueue *vq)
743 {
744 	return vq->last_used_idx != virtio16_to_cpu(vq->vq.vdev,
745 			vq->split.vring.used->idx);
746 }
747 
748 static void *virtqueue_get_buf_ctx_split(struct virtqueue *_vq,
749 					 unsigned int *len,
750 					 void **ctx)
751 {
752 	struct vring_virtqueue *vq = to_vvq(_vq);
753 	void *ret;
754 	unsigned int i;
755 	u16 last_used;
756 
757 	START_USE(vq);
758 
759 	if (unlikely(vq->broken)) {
760 		END_USE(vq);
761 		return NULL;
762 	}
763 
764 	if (!more_used_split(vq)) {
765 		pr_debug("No more buffers in queue\n");
766 		END_USE(vq);
767 		return NULL;
768 	}
769 
770 	/* Only get used array entries after they have been exposed by host. */
771 	virtio_rmb(vq->weak_barriers);
772 
773 	last_used = (vq->last_used_idx & (vq->split.vring.num - 1));
774 	i = virtio32_to_cpu(_vq->vdev,
775 			vq->split.vring.used->ring[last_used].id);
776 	*len = virtio32_to_cpu(_vq->vdev,
777 			vq->split.vring.used->ring[last_used].len);
778 
779 	if (unlikely(i >= vq->split.vring.num)) {
780 		BAD_RING(vq, "id %u out of range\n", i);
781 		return NULL;
782 	}
783 	if (unlikely(!vq->split.desc_state[i].data)) {
784 		BAD_RING(vq, "id %u is not a head!\n", i);
785 		return NULL;
786 	}
787 
788 	/* detach_buf_split clears data, so grab it now. */
789 	ret = vq->split.desc_state[i].data;
790 	detach_buf_split(vq, i, ctx);
791 	vq->last_used_idx++;
792 	/* If we expect an interrupt for the next entry, tell host
793 	 * by writing event index and flush out the write before
794 	 * the read in the next get_buf call. */
795 	if (!(vq->split.avail_flags_shadow & VRING_AVAIL_F_NO_INTERRUPT))
796 		virtio_store_mb(vq->weak_barriers,
797 				&vring_used_event(&vq->split.vring),
798 				cpu_to_virtio16(_vq->vdev, vq->last_used_idx));
799 
800 	LAST_ADD_TIME_INVALID(vq);
801 
802 	END_USE(vq);
803 	return ret;
804 }
805 
806 static void virtqueue_disable_cb_split(struct virtqueue *_vq)
807 {
808 	struct vring_virtqueue *vq = to_vvq(_vq);
809 
810 	if (!(vq->split.avail_flags_shadow & VRING_AVAIL_F_NO_INTERRUPT)) {
811 		vq->split.avail_flags_shadow |= VRING_AVAIL_F_NO_INTERRUPT;
812 		if (vq->event)
813 			/* TODO: this is a hack. Figure out a cleaner value to write. */
814 			vring_used_event(&vq->split.vring) = 0x0;
815 		else
816 			vq->split.vring.avail->flags =
817 				cpu_to_virtio16(_vq->vdev,
818 						vq->split.avail_flags_shadow);
819 	}
820 }
821 
822 static unsigned virtqueue_enable_cb_prepare_split(struct virtqueue *_vq)
823 {
824 	struct vring_virtqueue *vq = to_vvq(_vq);
825 	u16 last_used_idx;
826 
827 	START_USE(vq);
828 
829 	/* We optimistically turn back on interrupts, then check if there was
830 	 * more to do. */
831 	/* Depending on the VIRTIO_RING_F_EVENT_IDX feature, we need to
832 	 * either clear the flags bit or point the event index at the next
833 	 * entry. Always do both to keep code simple. */
834 	if (vq->split.avail_flags_shadow & VRING_AVAIL_F_NO_INTERRUPT) {
835 		vq->split.avail_flags_shadow &= ~VRING_AVAIL_F_NO_INTERRUPT;
836 		if (!vq->event)
837 			vq->split.vring.avail->flags =
838 				cpu_to_virtio16(_vq->vdev,
839 						vq->split.avail_flags_shadow);
840 	}
841 	vring_used_event(&vq->split.vring) = cpu_to_virtio16(_vq->vdev,
842 			last_used_idx = vq->last_used_idx);
843 	END_USE(vq);
844 	return last_used_idx;
845 }
846 
847 static bool virtqueue_poll_split(struct virtqueue *_vq, unsigned last_used_idx)
848 {
849 	struct vring_virtqueue *vq = to_vvq(_vq);
850 
851 	return (u16)last_used_idx != virtio16_to_cpu(_vq->vdev,
852 			vq->split.vring.used->idx);
853 }
854 
855 static bool virtqueue_enable_cb_delayed_split(struct virtqueue *_vq)
856 {
857 	struct vring_virtqueue *vq = to_vvq(_vq);
858 	u16 bufs;
859 
860 	START_USE(vq);
861 
862 	/* We optimistically turn back on interrupts, then check if there was
863 	 * more to do. */
864 	/* Depending on the VIRTIO_RING_F_USED_EVENT_IDX feature, we need to
865 	 * either clear the flags bit or point the event index at the next
866 	 * entry. Always update the event index to keep code simple. */
867 	if (vq->split.avail_flags_shadow & VRING_AVAIL_F_NO_INTERRUPT) {
868 		vq->split.avail_flags_shadow &= ~VRING_AVAIL_F_NO_INTERRUPT;
869 		if (!vq->event)
870 			vq->split.vring.avail->flags =
871 				cpu_to_virtio16(_vq->vdev,
872 						vq->split.avail_flags_shadow);
873 	}
874 	/* TODO: tune this threshold */
875 	bufs = (u16)(vq->split.avail_idx_shadow - vq->last_used_idx) * 3 / 4;
876 
877 	virtio_store_mb(vq->weak_barriers,
878 			&vring_used_event(&vq->split.vring),
879 			cpu_to_virtio16(_vq->vdev, vq->last_used_idx + bufs));
880 
881 	if (unlikely((u16)(virtio16_to_cpu(_vq->vdev, vq->split.vring.used->idx)
882 					- vq->last_used_idx) > bufs)) {
883 		END_USE(vq);
884 		return false;
885 	}
886 
887 	END_USE(vq);
888 	return true;
889 }
890 
891 static void *virtqueue_detach_unused_buf_split(struct virtqueue *_vq)
892 {
893 	struct vring_virtqueue *vq = to_vvq(_vq);
894 	unsigned int i;
895 	void *buf;
896 
897 	START_USE(vq);
898 
899 	for (i = 0; i < vq->split.vring.num; i++) {
900 		if (!vq->split.desc_state[i].data)
901 			continue;
902 		/* detach_buf_split clears data, so grab it now. */
903 		buf = vq->split.desc_state[i].data;
904 		detach_buf_split(vq, i, NULL);
905 		vq->split.avail_idx_shadow--;
906 		vq->split.vring.avail->idx = cpu_to_virtio16(_vq->vdev,
907 				vq->split.avail_idx_shadow);
908 		END_USE(vq);
909 		return buf;
910 	}
911 	/* That should have freed everything. */
912 	BUG_ON(vq->vq.num_free != vq->split.vring.num);
913 
914 	END_USE(vq);
915 	return NULL;
916 }
917 
918 static struct virtqueue *vring_create_virtqueue_split(
919 	unsigned int index,
920 	unsigned int num,
921 	unsigned int vring_align,
922 	struct virtio_device *vdev,
923 	bool weak_barriers,
924 	bool may_reduce_num,
925 	bool context,
926 	bool (*notify)(struct virtqueue *),
927 	void (*callback)(struct virtqueue *),
928 	const char *name)
929 {
930 	struct virtqueue *vq;
931 	void *queue = NULL;
932 	dma_addr_t dma_addr;
933 	size_t queue_size_in_bytes;
934 	struct vring vring;
935 
936 	/* We assume num is a power of 2. */
937 	if (num & (num - 1)) {
938 		dev_warn(&vdev->dev, "Bad virtqueue length %u\n", num);
939 		return NULL;
940 	}
941 
942 	/* TODO: allocate each queue chunk individually */
943 	for (; num && vring_size(num, vring_align) > PAGE_SIZE; num /= 2) {
944 		queue = vring_alloc_queue(vdev, vring_size(num, vring_align),
945 					  &dma_addr,
946 					  GFP_KERNEL|__GFP_NOWARN|__GFP_ZERO);
947 		if (queue)
948 			break;
949 		if (!may_reduce_num)
950 			return NULL;
951 	}
952 
953 	if (!num)
954 		return NULL;
955 
956 	if (!queue) {
957 		/* Try to get a single page. You are my only hope! */
958 		queue = vring_alloc_queue(vdev, vring_size(num, vring_align),
959 					  &dma_addr, GFP_KERNEL|__GFP_ZERO);
960 	}
961 	if (!queue)
962 		return NULL;
963 
964 	queue_size_in_bytes = vring_size(num, vring_align);
965 	vring_init(&vring, num, queue, vring_align);
966 
967 	vq = __vring_new_virtqueue(index, vring, vdev, weak_barriers, context,
968 				   notify, callback, name);
969 	if (!vq) {
970 		vring_free_queue(vdev, queue_size_in_bytes, queue,
971 				 dma_addr);
972 		return NULL;
973 	}
974 
975 	to_vvq(vq)->split.queue_dma_addr = dma_addr;
976 	to_vvq(vq)->split.queue_size_in_bytes = queue_size_in_bytes;
977 	to_vvq(vq)->we_own_ring = true;
978 
979 	return vq;
980 }
981 
982 
983 /*
984  * Packed ring specific functions - *_packed().
985  */
986 
987 static void vring_unmap_state_packed(const struct vring_virtqueue *vq,
988 				     struct vring_desc_extra *state)
989 {
990 	u16 flags;
991 
992 	if (!vq->use_dma_api)
993 		return;
994 
995 	flags = state->flags;
996 
997 	if (flags & VRING_DESC_F_INDIRECT) {
998 		dma_unmap_single(vring_dma_dev(vq),
999 				 state->addr, state->len,
1000 				 (flags & VRING_DESC_F_WRITE) ?
1001 				 DMA_FROM_DEVICE : DMA_TO_DEVICE);
1002 	} else {
1003 		dma_unmap_page(vring_dma_dev(vq),
1004 			       state->addr, state->len,
1005 			       (flags & VRING_DESC_F_WRITE) ?
1006 			       DMA_FROM_DEVICE : DMA_TO_DEVICE);
1007 	}
1008 }
1009 
1010 static void vring_unmap_desc_packed(const struct vring_virtqueue *vq,
1011 				   struct vring_packed_desc *desc)
1012 {
1013 	u16 flags;
1014 
1015 	if (!vq->use_dma_api)
1016 		return;
1017 
1018 	flags = le16_to_cpu(desc->flags);
1019 
1020 	if (flags & VRING_DESC_F_INDIRECT) {
1021 		dma_unmap_single(vring_dma_dev(vq),
1022 				 le64_to_cpu(desc->addr),
1023 				 le32_to_cpu(desc->len),
1024 				 (flags & VRING_DESC_F_WRITE) ?
1025 				 DMA_FROM_DEVICE : DMA_TO_DEVICE);
1026 	} else {
1027 		dma_unmap_page(vring_dma_dev(vq),
1028 			       le64_to_cpu(desc->addr),
1029 			       le32_to_cpu(desc->len),
1030 			       (flags & VRING_DESC_F_WRITE) ?
1031 			       DMA_FROM_DEVICE : DMA_TO_DEVICE);
1032 	}
1033 }
1034 
1035 static struct vring_packed_desc *alloc_indirect_packed(unsigned int total_sg,
1036 						       gfp_t gfp)
1037 {
1038 	struct vring_packed_desc *desc;
1039 
1040 	/*
1041 	 * We require lowmem mappings for the descriptors because
1042 	 * otherwise virt_to_phys will give us bogus addresses in the
1043 	 * virtqueue.
1044 	 */
1045 	gfp &= ~__GFP_HIGHMEM;
1046 
1047 	desc = kmalloc_array(total_sg, sizeof(struct vring_packed_desc), gfp);
1048 
1049 	return desc;
1050 }
1051 
1052 static int virtqueue_add_indirect_packed(struct vring_virtqueue *vq,
1053 					 struct scatterlist *sgs[],
1054 					 unsigned int total_sg,
1055 					 unsigned int out_sgs,
1056 					 unsigned int in_sgs,
1057 					 void *data,
1058 					 gfp_t gfp)
1059 {
1060 	struct vring_packed_desc *desc;
1061 	struct scatterlist *sg;
1062 	unsigned int i, n, err_idx;
1063 	u16 head, id;
1064 	dma_addr_t addr;
1065 
1066 	head = vq->packed.next_avail_idx;
1067 	desc = alloc_indirect_packed(total_sg, gfp);
1068 	if (!desc)
1069 		return -ENOMEM;
1070 
1071 	if (unlikely(vq->vq.num_free < 1)) {
1072 		pr_debug("Can't add buf len 1 - avail = 0\n");
1073 		kfree(desc);
1074 		END_USE(vq);
1075 		return -ENOSPC;
1076 	}
1077 
1078 	i = 0;
1079 	id = vq->free_head;
1080 	BUG_ON(id == vq->packed.vring.num);
1081 
1082 	for (n = 0; n < out_sgs + in_sgs; n++) {
1083 		for (sg = sgs[n]; sg; sg = sg_next(sg)) {
1084 			addr = vring_map_one_sg(vq, sg, n < out_sgs ?
1085 					DMA_TO_DEVICE : DMA_FROM_DEVICE);
1086 			if (vring_mapping_error(vq, addr))
1087 				goto unmap_release;
1088 
1089 			desc[i].flags = cpu_to_le16(n < out_sgs ?
1090 						0 : VRING_DESC_F_WRITE);
1091 			desc[i].addr = cpu_to_le64(addr);
1092 			desc[i].len = cpu_to_le32(sg->length);
1093 			i++;
1094 		}
1095 	}
1096 
1097 	/* Now that the indirect table is filled in, map it. */
1098 	addr = vring_map_single(vq, desc,
1099 			total_sg * sizeof(struct vring_packed_desc),
1100 			DMA_TO_DEVICE);
1101 	if (vring_mapping_error(vq, addr))
1102 		goto unmap_release;
1103 
1104 	vq->packed.vring.desc[head].addr = cpu_to_le64(addr);
1105 	vq->packed.vring.desc[head].len = cpu_to_le32(total_sg *
1106 				sizeof(struct vring_packed_desc));
1107 	vq->packed.vring.desc[head].id = cpu_to_le16(id);
1108 
1109 	if (vq->use_dma_api) {
1110 		vq->packed.desc_extra[id].addr = addr;
1111 		vq->packed.desc_extra[id].len = total_sg *
1112 				sizeof(struct vring_packed_desc);
1113 		vq->packed.desc_extra[id].flags = VRING_DESC_F_INDIRECT |
1114 						  vq->packed.avail_used_flags;
1115 	}
1116 
1117 	/*
1118 	 * A driver MUST NOT make the first descriptor in the list
1119 	 * available before all subsequent descriptors comprising
1120 	 * the list are made available.
1121 	 */
1122 	virtio_wmb(vq->weak_barriers);
1123 	vq->packed.vring.desc[head].flags = cpu_to_le16(VRING_DESC_F_INDIRECT |
1124 						vq->packed.avail_used_flags);
1125 
1126 	/* We're using some buffers from the free list. */
1127 	vq->vq.num_free -= 1;
1128 
1129 	/* Update free pointer */
1130 	n = head + 1;
1131 	if (n >= vq->packed.vring.num) {
1132 		n = 0;
1133 		vq->packed.avail_wrap_counter ^= 1;
1134 		vq->packed.avail_used_flags ^=
1135 				1 << VRING_PACKED_DESC_F_AVAIL |
1136 				1 << VRING_PACKED_DESC_F_USED;
1137 	}
1138 	vq->packed.next_avail_idx = n;
1139 	vq->free_head = vq->packed.desc_extra[id].next;
1140 
1141 	/* Store token and indirect buffer state. */
1142 	vq->packed.desc_state[id].num = 1;
1143 	vq->packed.desc_state[id].data = data;
1144 	vq->packed.desc_state[id].indir_desc = desc;
1145 	vq->packed.desc_state[id].last = id;
1146 
1147 	vq->num_added += 1;
1148 
1149 	pr_debug("Added buffer head %i to %p\n", head, vq);
1150 	END_USE(vq);
1151 
1152 	return 0;
1153 
1154 unmap_release:
1155 	err_idx = i;
1156 
1157 	for (i = 0; i < err_idx; i++)
1158 		vring_unmap_desc_packed(vq, &desc[i]);
1159 
1160 	kfree(desc);
1161 
1162 	END_USE(vq);
1163 	return -ENOMEM;
1164 }
1165 
1166 static inline int virtqueue_add_packed(struct virtqueue *_vq,
1167 				       struct scatterlist *sgs[],
1168 				       unsigned int total_sg,
1169 				       unsigned int out_sgs,
1170 				       unsigned int in_sgs,
1171 				       void *data,
1172 				       void *ctx,
1173 				       gfp_t gfp)
1174 {
1175 	struct vring_virtqueue *vq = to_vvq(_vq);
1176 	struct vring_packed_desc *desc;
1177 	struct scatterlist *sg;
1178 	unsigned int i, n, c, descs_used, err_idx;
1179 	__le16 head_flags, flags;
1180 	u16 head, id, prev, curr, avail_used_flags;
1181 	int err;
1182 
1183 	START_USE(vq);
1184 
1185 	BUG_ON(data == NULL);
1186 	BUG_ON(ctx && vq->indirect);
1187 
1188 	if (unlikely(vq->broken)) {
1189 		END_USE(vq);
1190 		return -EIO;
1191 	}
1192 
1193 	LAST_ADD_TIME_UPDATE(vq);
1194 
1195 	BUG_ON(total_sg == 0);
1196 
1197 	if (virtqueue_use_indirect(_vq, total_sg)) {
1198 		err = virtqueue_add_indirect_packed(vq, sgs, total_sg, out_sgs,
1199 						    in_sgs, data, gfp);
1200 		if (err != -ENOMEM) {
1201 			END_USE(vq);
1202 			return err;
1203 		}
1204 
1205 		/* fall back on direct */
1206 	}
1207 
1208 	head = vq->packed.next_avail_idx;
1209 	avail_used_flags = vq->packed.avail_used_flags;
1210 
1211 	WARN_ON_ONCE(total_sg > vq->packed.vring.num && !vq->indirect);
1212 
1213 	desc = vq->packed.vring.desc;
1214 	i = head;
1215 	descs_used = total_sg;
1216 
1217 	if (unlikely(vq->vq.num_free < descs_used)) {
1218 		pr_debug("Can't add buf len %i - avail = %i\n",
1219 			 descs_used, vq->vq.num_free);
1220 		END_USE(vq);
1221 		return -ENOSPC;
1222 	}
1223 
1224 	id = vq->free_head;
1225 	BUG_ON(id == vq->packed.vring.num);
1226 
1227 	curr = id;
1228 	c = 0;
1229 	for (n = 0; n < out_sgs + in_sgs; n++) {
1230 		for (sg = sgs[n]; sg; sg = sg_next(sg)) {
1231 			dma_addr_t addr = vring_map_one_sg(vq, sg, n < out_sgs ?
1232 					DMA_TO_DEVICE : DMA_FROM_DEVICE);
1233 			if (vring_mapping_error(vq, addr))
1234 				goto unmap_release;
1235 
1236 			flags = cpu_to_le16(vq->packed.avail_used_flags |
1237 				    (++c == total_sg ? 0 : VRING_DESC_F_NEXT) |
1238 				    (n < out_sgs ? 0 : VRING_DESC_F_WRITE));
1239 			if (i == head)
1240 				head_flags = flags;
1241 			else
1242 				desc[i].flags = flags;
1243 
1244 			desc[i].addr = cpu_to_le64(addr);
1245 			desc[i].len = cpu_to_le32(sg->length);
1246 			desc[i].id = cpu_to_le16(id);
1247 
1248 			if (unlikely(vq->use_dma_api)) {
1249 				vq->packed.desc_extra[curr].addr = addr;
1250 				vq->packed.desc_extra[curr].len = sg->length;
1251 				vq->packed.desc_extra[curr].flags =
1252 					le16_to_cpu(flags);
1253 			}
1254 			prev = curr;
1255 			curr = vq->packed.desc_extra[curr].next;
1256 
1257 			if ((unlikely(++i >= vq->packed.vring.num))) {
1258 				i = 0;
1259 				vq->packed.avail_used_flags ^=
1260 					1 << VRING_PACKED_DESC_F_AVAIL |
1261 					1 << VRING_PACKED_DESC_F_USED;
1262 			}
1263 		}
1264 	}
1265 
1266 	if (i < head)
1267 		vq->packed.avail_wrap_counter ^= 1;
1268 
1269 	/* We're using some buffers from the free list. */
1270 	vq->vq.num_free -= descs_used;
1271 
1272 	/* Update free pointer */
1273 	vq->packed.next_avail_idx = i;
1274 	vq->free_head = curr;
1275 
1276 	/* Store token. */
1277 	vq->packed.desc_state[id].num = descs_used;
1278 	vq->packed.desc_state[id].data = data;
1279 	vq->packed.desc_state[id].indir_desc = ctx;
1280 	vq->packed.desc_state[id].last = prev;
1281 
1282 	/*
1283 	 * A driver MUST NOT make the first descriptor in the list
1284 	 * available before all subsequent descriptors comprising
1285 	 * the list are made available.
1286 	 */
1287 	virtio_wmb(vq->weak_barriers);
1288 	vq->packed.vring.desc[head].flags = head_flags;
1289 	vq->num_added += descs_used;
1290 
1291 	pr_debug("Added buffer head %i to %p\n", head, vq);
1292 	END_USE(vq);
1293 
1294 	return 0;
1295 
1296 unmap_release:
1297 	err_idx = i;
1298 	i = head;
1299 	curr = vq->free_head;
1300 
1301 	vq->packed.avail_used_flags = avail_used_flags;
1302 
1303 	for (n = 0; n < total_sg; n++) {
1304 		if (i == err_idx)
1305 			break;
1306 		vring_unmap_state_packed(vq,
1307 					 &vq->packed.desc_extra[curr]);
1308 		curr = vq->packed.desc_extra[curr].next;
1309 		i++;
1310 		if (i >= vq->packed.vring.num)
1311 			i = 0;
1312 	}
1313 
1314 	END_USE(vq);
1315 	return -EIO;
1316 }
1317 
1318 static bool virtqueue_kick_prepare_packed(struct virtqueue *_vq)
1319 {
1320 	struct vring_virtqueue *vq = to_vvq(_vq);
1321 	u16 new, old, off_wrap, flags, wrap_counter, event_idx;
1322 	bool needs_kick;
1323 	union {
1324 		struct {
1325 			__le16 off_wrap;
1326 			__le16 flags;
1327 		};
1328 		u32 u32;
1329 	} snapshot;
1330 
1331 	START_USE(vq);
1332 
1333 	/*
1334 	 * We need to expose the new flags value before checking notification
1335 	 * suppressions.
1336 	 */
1337 	virtio_mb(vq->weak_barriers);
1338 
1339 	old = vq->packed.next_avail_idx - vq->num_added;
1340 	new = vq->packed.next_avail_idx;
1341 	vq->num_added = 0;
1342 
1343 	snapshot.u32 = *(u32 *)vq->packed.vring.device;
1344 	flags = le16_to_cpu(snapshot.flags);
1345 
1346 	LAST_ADD_TIME_CHECK(vq);
1347 	LAST_ADD_TIME_INVALID(vq);
1348 
1349 	if (flags != VRING_PACKED_EVENT_FLAG_DESC) {
1350 		needs_kick = (flags != VRING_PACKED_EVENT_FLAG_DISABLE);
1351 		goto out;
1352 	}
1353 
1354 	off_wrap = le16_to_cpu(snapshot.off_wrap);
1355 
1356 	wrap_counter = off_wrap >> VRING_PACKED_EVENT_F_WRAP_CTR;
1357 	event_idx = off_wrap & ~(1 << VRING_PACKED_EVENT_F_WRAP_CTR);
1358 	if (wrap_counter != vq->packed.avail_wrap_counter)
1359 		event_idx -= vq->packed.vring.num;
1360 
1361 	needs_kick = vring_need_event(event_idx, new, old);
1362 out:
1363 	END_USE(vq);
1364 	return needs_kick;
1365 }
1366 
1367 static void detach_buf_packed(struct vring_virtqueue *vq,
1368 			      unsigned int id, void **ctx)
1369 {
1370 	struct vring_desc_state_packed *state = NULL;
1371 	struct vring_packed_desc *desc;
1372 	unsigned int i, curr;
1373 
1374 	state = &vq->packed.desc_state[id];
1375 
1376 	/* Clear data ptr. */
1377 	state->data = NULL;
1378 
1379 	vq->packed.desc_extra[state->last].next = vq->free_head;
1380 	vq->free_head = id;
1381 	vq->vq.num_free += state->num;
1382 
1383 	if (unlikely(vq->use_dma_api)) {
1384 		curr = id;
1385 		for (i = 0; i < state->num; i++) {
1386 			vring_unmap_state_packed(vq,
1387 				&vq->packed.desc_extra[curr]);
1388 			curr = vq->packed.desc_extra[curr].next;
1389 		}
1390 	}
1391 
1392 	if (vq->indirect) {
1393 		u32 len;
1394 
1395 		/* Free the indirect table, if any, now that it's unmapped. */
1396 		desc = state->indir_desc;
1397 		if (!desc)
1398 			return;
1399 
1400 		if (vq->use_dma_api) {
1401 			len = vq->packed.desc_extra[id].len;
1402 			for (i = 0; i < len / sizeof(struct vring_packed_desc);
1403 					i++)
1404 				vring_unmap_desc_packed(vq, &desc[i]);
1405 		}
1406 		kfree(desc);
1407 		state->indir_desc = NULL;
1408 	} else if (ctx) {
1409 		*ctx = state->indir_desc;
1410 	}
1411 }
1412 
1413 static inline bool is_used_desc_packed(const struct vring_virtqueue *vq,
1414 				       u16 idx, bool used_wrap_counter)
1415 {
1416 	bool avail, used;
1417 	u16 flags;
1418 
1419 	flags = le16_to_cpu(vq->packed.vring.desc[idx].flags);
1420 	avail = !!(flags & (1 << VRING_PACKED_DESC_F_AVAIL));
1421 	used = !!(flags & (1 << VRING_PACKED_DESC_F_USED));
1422 
1423 	return avail == used && used == used_wrap_counter;
1424 }
1425 
1426 static inline bool more_used_packed(const struct vring_virtqueue *vq)
1427 {
1428 	return is_used_desc_packed(vq, vq->last_used_idx,
1429 			vq->packed.used_wrap_counter);
1430 }
1431 
1432 static void *virtqueue_get_buf_ctx_packed(struct virtqueue *_vq,
1433 					  unsigned int *len,
1434 					  void **ctx)
1435 {
1436 	struct vring_virtqueue *vq = to_vvq(_vq);
1437 	u16 last_used, id;
1438 	void *ret;
1439 
1440 	START_USE(vq);
1441 
1442 	if (unlikely(vq->broken)) {
1443 		END_USE(vq);
1444 		return NULL;
1445 	}
1446 
1447 	if (!more_used_packed(vq)) {
1448 		pr_debug("No more buffers in queue\n");
1449 		END_USE(vq);
1450 		return NULL;
1451 	}
1452 
1453 	/* Only get used elements after they have been exposed by host. */
1454 	virtio_rmb(vq->weak_barriers);
1455 
1456 	last_used = vq->last_used_idx;
1457 	id = le16_to_cpu(vq->packed.vring.desc[last_used].id);
1458 	*len = le32_to_cpu(vq->packed.vring.desc[last_used].len);
1459 
1460 	if (unlikely(id >= vq->packed.vring.num)) {
1461 		BAD_RING(vq, "id %u out of range\n", id);
1462 		return NULL;
1463 	}
1464 	if (unlikely(!vq->packed.desc_state[id].data)) {
1465 		BAD_RING(vq, "id %u is not a head!\n", id);
1466 		return NULL;
1467 	}
1468 
1469 	/* detach_buf_packed clears data, so grab it now. */
1470 	ret = vq->packed.desc_state[id].data;
1471 	detach_buf_packed(vq, id, ctx);
1472 
1473 	vq->last_used_idx += vq->packed.desc_state[id].num;
1474 	if (unlikely(vq->last_used_idx >= vq->packed.vring.num)) {
1475 		vq->last_used_idx -= vq->packed.vring.num;
1476 		vq->packed.used_wrap_counter ^= 1;
1477 	}
1478 
1479 	/*
1480 	 * If we expect an interrupt for the next entry, tell host
1481 	 * by writing event index and flush out the write before
1482 	 * the read in the next get_buf call.
1483 	 */
1484 	if (vq->packed.event_flags_shadow == VRING_PACKED_EVENT_FLAG_DESC)
1485 		virtio_store_mb(vq->weak_barriers,
1486 				&vq->packed.vring.driver->off_wrap,
1487 				cpu_to_le16(vq->last_used_idx |
1488 					(vq->packed.used_wrap_counter <<
1489 					 VRING_PACKED_EVENT_F_WRAP_CTR)));
1490 
1491 	LAST_ADD_TIME_INVALID(vq);
1492 
1493 	END_USE(vq);
1494 	return ret;
1495 }
1496 
1497 static void virtqueue_disable_cb_packed(struct virtqueue *_vq)
1498 {
1499 	struct vring_virtqueue *vq = to_vvq(_vq);
1500 
1501 	if (vq->packed.event_flags_shadow != VRING_PACKED_EVENT_FLAG_DISABLE) {
1502 		vq->packed.event_flags_shadow = VRING_PACKED_EVENT_FLAG_DISABLE;
1503 		vq->packed.vring.driver->flags =
1504 			cpu_to_le16(vq->packed.event_flags_shadow);
1505 	}
1506 }
1507 
1508 static unsigned virtqueue_enable_cb_prepare_packed(struct virtqueue *_vq)
1509 {
1510 	struct vring_virtqueue *vq = to_vvq(_vq);
1511 
1512 	START_USE(vq);
1513 
1514 	/*
1515 	 * We optimistically turn back on interrupts, then check if there was
1516 	 * more to do.
1517 	 */
1518 
1519 	if (vq->event) {
1520 		vq->packed.vring.driver->off_wrap =
1521 			cpu_to_le16(vq->last_used_idx |
1522 				(vq->packed.used_wrap_counter <<
1523 				 VRING_PACKED_EVENT_F_WRAP_CTR));
1524 		/*
1525 		 * We need to update event offset and event wrap
1526 		 * counter first before updating event flags.
1527 		 */
1528 		virtio_wmb(vq->weak_barriers);
1529 	}
1530 
1531 	if (vq->packed.event_flags_shadow == VRING_PACKED_EVENT_FLAG_DISABLE) {
1532 		vq->packed.event_flags_shadow = vq->event ?
1533 				VRING_PACKED_EVENT_FLAG_DESC :
1534 				VRING_PACKED_EVENT_FLAG_ENABLE;
1535 		vq->packed.vring.driver->flags =
1536 				cpu_to_le16(vq->packed.event_flags_shadow);
1537 	}
1538 
1539 	END_USE(vq);
1540 	return vq->last_used_idx | ((u16)vq->packed.used_wrap_counter <<
1541 			VRING_PACKED_EVENT_F_WRAP_CTR);
1542 }
1543 
1544 static bool virtqueue_poll_packed(struct virtqueue *_vq, u16 off_wrap)
1545 {
1546 	struct vring_virtqueue *vq = to_vvq(_vq);
1547 	bool wrap_counter;
1548 	u16 used_idx;
1549 
1550 	wrap_counter = off_wrap >> VRING_PACKED_EVENT_F_WRAP_CTR;
1551 	used_idx = off_wrap & ~(1 << VRING_PACKED_EVENT_F_WRAP_CTR);
1552 
1553 	return is_used_desc_packed(vq, used_idx, wrap_counter);
1554 }
1555 
1556 static bool virtqueue_enable_cb_delayed_packed(struct virtqueue *_vq)
1557 {
1558 	struct vring_virtqueue *vq = to_vvq(_vq);
1559 	u16 used_idx, wrap_counter;
1560 	u16 bufs;
1561 
1562 	START_USE(vq);
1563 
1564 	/*
1565 	 * We optimistically turn back on interrupts, then check if there was
1566 	 * more to do.
1567 	 */
1568 
1569 	if (vq->event) {
1570 		/* TODO: tune this threshold */
1571 		bufs = (vq->packed.vring.num - vq->vq.num_free) * 3 / 4;
1572 		wrap_counter = vq->packed.used_wrap_counter;
1573 
1574 		used_idx = vq->last_used_idx + bufs;
1575 		if (used_idx >= vq->packed.vring.num) {
1576 			used_idx -= vq->packed.vring.num;
1577 			wrap_counter ^= 1;
1578 		}
1579 
1580 		vq->packed.vring.driver->off_wrap = cpu_to_le16(used_idx |
1581 			(wrap_counter << VRING_PACKED_EVENT_F_WRAP_CTR));
1582 
1583 		/*
1584 		 * We need to update event offset and event wrap
1585 		 * counter first before updating event flags.
1586 		 */
1587 		virtio_wmb(vq->weak_barriers);
1588 	}
1589 
1590 	if (vq->packed.event_flags_shadow == VRING_PACKED_EVENT_FLAG_DISABLE) {
1591 		vq->packed.event_flags_shadow = vq->event ?
1592 				VRING_PACKED_EVENT_FLAG_DESC :
1593 				VRING_PACKED_EVENT_FLAG_ENABLE;
1594 		vq->packed.vring.driver->flags =
1595 				cpu_to_le16(vq->packed.event_flags_shadow);
1596 	}
1597 
1598 	/*
1599 	 * We need to update event suppression structure first
1600 	 * before re-checking for more used buffers.
1601 	 */
1602 	virtio_mb(vq->weak_barriers);
1603 
1604 	if (is_used_desc_packed(vq,
1605 				vq->last_used_idx,
1606 				vq->packed.used_wrap_counter)) {
1607 		END_USE(vq);
1608 		return false;
1609 	}
1610 
1611 	END_USE(vq);
1612 	return true;
1613 }
1614 
1615 static void *virtqueue_detach_unused_buf_packed(struct virtqueue *_vq)
1616 {
1617 	struct vring_virtqueue *vq = to_vvq(_vq);
1618 	unsigned int i;
1619 	void *buf;
1620 
1621 	START_USE(vq);
1622 
1623 	for (i = 0; i < vq->packed.vring.num; i++) {
1624 		if (!vq->packed.desc_state[i].data)
1625 			continue;
1626 		/* detach_buf clears data, so grab it now. */
1627 		buf = vq->packed.desc_state[i].data;
1628 		detach_buf_packed(vq, i, NULL);
1629 		END_USE(vq);
1630 		return buf;
1631 	}
1632 	/* That should have freed everything. */
1633 	BUG_ON(vq->vq.num_free != vq->packed.vring.num);
1634 
1635 	END_USE(vq);
1636 	return NULL;
1637 }
1638 
1639 static struct vring_desc_extra *vring_alloc_desc_extra(struct vring_virtqueue *vq,
1640 						       unsigned int num)
1641 {
1642 	struct vring_desc_extra *desc_extra;
1643 	unsigned int i;
1644 
1645 	desc_extra = kmalloc_array(num, sizeof(struct vring_desc_extra),
1646 				   GFP_KERNEL);
1647 	if (!desc_extra)
1648 		return NULL;
1649 
1650 	memset(desc_extra, 0, num * sizeof(struct vring_desc_extra));
1651 
1652 	for (i = 0; i < num - 1; i++)
1653 		desc_extra[i].next = i + 1;
1654 
1655 	return desc_extra;
1656 }
1657 
1658 static struct virtqueue *vring_create_virtqueue_packed(
1659 	unsigned int index,
1660 	unsigned int num,
1661 	unsigned int vring_align,
1662 	struct virtio_device *vdev,
1663 	bool weak_barriers,
1664 	bool may_reduce_num,
1665 	bool context,
1666 	bool (*notify)(struct virtqueue *),
1667 	void (*callback)(struct virtqueue *),
1668 	const char *name)
1669 {
1670 	struct vring_virtqueue *vq;
1671 	struct vring_packed_desc *ring;
1672 	struct vring_packed_desc_event *driver, *device;
1673 	dma_addr_t ring_dma_addr, driver_event_dma_addr, device_event_dma_addr;
1674 	size_t ring_size_in_bytes, event_size_in_bytes;
1675 
1676 	ring_size_in_bytes = num * sizeof(struct vring_packed_desc);
1677 
1678 	ring = vring_alloc_queue(vdev, ring_size_in_bytes,
1679 				 &ring_dma_addr,
1680 				 GFP_KERNEL|__GFP_NOWARN|__GFP_ZERO);
1681 	if (!ring)
1682 		goto err_ring;
1683 
1684 	event_size_in_bytes = sizeof(struct vring_packed_desc_event);
1685 
1686 	driver = vring_alloc_queue(vdev, event_size_in_bytes,
1687 				   &driver_event_dma_addr,
1688 				   GFP_KERNEL|__GFP_NOWARN|__GFP_ZERO);
1689 	if (!driver)
1690 		goto err_driver;
1691 
1692 	device = vring_alloc_queue(vdev, event_size_in_bytes,
1693 				   &device_event_dma_addr,
1694 				   GFP_KERNEL|__GFP_NOWARN|__GFP_ZERO);
1695 	if (!device)
1696 		goto err_device;
1697 
1698 	vq = kmalloc(sizeof(*vq), GFP_KERNEL);
1699 	if (!vq)
1700 		goto err_vq;
1701 
1702 	vq->vq.callback = callback;
1703 	vq->vq.vdev = vdev;
1704 	vq->vq.name = name;
1705 	vq->vq.num_free = num;
1706 	vq->vq.index = index;
1707 	vq->we_own_ring = true;
1708 	vq->notify = notify;
1709 	vq->weak_barriers = weak_barriers;
1710 	vq->broken = false;
1711 	vq->last_used_idx = 0;
1712 	vq->event_triggered = false;
1713 	vq->num_added = 0;
1714 	vq->packed_ring = true;
1715 	vq->use_dma_api = vring_use_dma_api(vdev);
1716 #ifdef DEBUG
1717 	vq->in_use = false;
1718 	vq->last_add_time_valid = false;
1719 #endif
1720 
1721 	vq->indirect = virtio_has_feature(vdev, VIRTIO_RING_F_INDIRECT_DESC) &&
1722 		!context;
1723 	vq->event = virtio_has_feature(vdev, VIRTIO_RING_F_EVENT_IDX);
1724 
1725 	if (virtio_has_feature(vdev, VIRTIO_F_ORDER_PLATFORM))
1726 		vq->weak_barriers = false;
1727 
1728 	vq->packed.ring_dma_addr = ring_dma_addr;
1729 	vq->packed.driver_event_dma_addr = driver_event_dma_addr;
1730 	vq->packed.device_event_dma_addr = device_event_dma_addr;
1731 
1732 	vq->packed.ring_size_in_bytes = ring_size_in_bytes;
1733 	vq->packed.event_size_in_bytes = event_size_in_bytes;
1734 
1735 	vq->packed.vring.num = num;
1736 	vq->packed.vring.desc = ring;
1737 	vq->packed.vring.driver = driver;
1738 	vq->packed.vring.device = device;
1739 
1740 	vq->packed.next_avail_idx = 0;
1741 	vq->packed.avail_wrap_counter = 1;
1742 	vq->packed.used_wrap_counter = 1;
1743 	vq->packed.event_flags_shadow = 0;
1744 	vq->packed.avail_used_flags = 1 << VRING_PACKED_DESC_F_AVAIL;
1745 
1746 	vq->packed.desc_state = kmalloc_array(num,
1747 			sizeof(struct vring_desc_state_packed),
1748 			GFP_KERNEL);
1749 	if (!vq->packed.desc_state)
1750 		goto err_desc_state;
1751 
1752 	memset(vq->packed.desc_state, 0,
1753 		num * sizeof(struct vring_desc_state_packed));
1754 
1755 	/* Put everything in free lists. */
1756 	vq->free_head = 0;
1757 
1758 	vq->packed.desc_extra = vring_alloc_desc_extra(vq, num);
1759 	if (!vq->packed.desc_extra)
1760 		goto err_desc_extra;
1761 
1762 	/* No callback?  Tell other side not to bother us. */
1763 	if (!callback) {
1764 		vq->packed.event_flags_shadow = VRING_PACKED_EVENT_FLAG_DISABLE;
1765 		vq->packed.vring.driver->flags =
1766 			cpu_to_le16(vq->packed.event_flags_shadow);
1767 	}
1768 
1769 	spin_lock(&vdev->vqs_list_lock);
1770 	list_add_tail(&vq->vq.list, &vdev->vqs);
1771 	spin_unlock(&vdev->vqs_list_lock);
1772 	return &vq->vq;
1773 
1774 err_desc_extra:
1775 	kfree(vq->packed.desc_state);
1776 err_desc_state:
1777 	kfree(vq);
1778 err_vq:
1779 	vring_free_queue(vdev, event_size_in_bytes, device, device_event_dma_addr);
1780 err_device:
1781 	vring_free_queue(vdev, event_size_in_bytes, driver, driver_event_dma_addr);
1782 err_driver:
1783 	vring_free_queue(vdev, ring_size_in_bytes, ring, ring_dma_addr);
1784 err_ring:
1785 	return NULL;
1786 }
1787 
1788 
1789 /*
1790  * Generic functions and exported symbols.
1791  */
1792 
1793 static inline int virtqueue_add(struct virtqueue *_vq,
1794 				struct scatterlist *sgs[],
1795 				unsigned int total_sg,
1796 				unsigned int out_sgs,
1797 				unsigned int in_sgs,
1798 				void *data,
1799 				void *ctx,
1800 				gfp_t gfp)
1801 {
1802 	struct vring_virtqueue *vq = to_vvq(_vq);
1803 
1804 	return vq->packed_ring ? virtqueue_add_packed(_vq, sgs, total_sg,
1805 					out_sgs, in_sgs, data, ctx, gfp) :
1806 				 virtqueue_add_split(_vq, sgs, total_sg,
1807 					out_sgs, in_sgs, data, ctx, gfp);
1808 }
1809 
1810 /**
1811  * virtqueue_add_sgs - expose buffers to other end
1812  * @_vq: the struct virtqueue we're talking about.
1813  * @sgs: array of terminated scatterlists.
1814  * @out_sgs: the number of scatterlists readable by other side
1815  * @in_sgs: the number of scatterlists which are writable (after readable ones)
1816  * @data: the token identifying the buffer.
1817  * @gfp: how to do memory allocations (if necessary).
1818  *
1819  * Caller must ensure we don't call this with other virtqueue operations
1820  * at the same time (except where noted).
1821  *
1822  * Returns zero or a negative error (ie. ENOSPC, ENOMEM, EIO).
1823  */
1824 int virtqueue_add_sgs(struct virtqueue *_vq,
1825 		      struct scatterlist *sgs[],
1826 		      unsigned int out_sgs,
1827 		      unsigned int in_sgs,
1828 		      void *data,
1829 		      gfp_t gfp)
1830 {
1831 	unsigned int i, total_sg = 0;
1832 
1833 	/* Count them first. */
1834 	for (i = 0; i < out_sgs + in_sgs; i++) {
1835 		struct scatterlist *sg;
1836 
1837 		for (sg = sgs[i]; sg; sg = sg_next(sg))
1838 			total_sg++;
1839 	}
1840 	return virtqueue_add(_vq, sgs, total_sg, out_sgs, in_sgs,
1841 			     data, NULL, gfp);
1842 }
1843 EXPORT_SYMBOL_GPL(virtqueue_add_sgs);
1844 
1845 /**
1846  * virtqueue_add_outbuf - expose output buffers to other end
1847  * @vq: the struct virtqueue we're talking about.
1848  * @sg: scatterlist (must be well-formed and terminated!)
1849  * @num: the number of entries in @sg readable by other side
1850  * @data: the token identifying the buffer.
1851  * @gfp: how to do memory allocations (if necessary).
1852  *
1853  * Caller must ensure we don't call this with other virtqueue operations
1854  * at the same time (except where noted).
1855  *
1856  * Returns zero or a negative error (ie. ENOSPC, ENOMEM, EIO).
1857  */
1858 int virtqueue_add_outbuf(struct virtqueue *vq,
1859 			 struct scatterlist *sg, unsigned int num,
1860 			 void *data,
1861 			 gfp_t gfp)
1862 {
1863 	return virtqueue_add(vq, &sg, num, 1, 0, data, NULL, gfp);
1864 }
1865 EXPORT_SYMBOL_GPL(virtqueue_add_outbuf);
1866 
1867 /**
1868  * virtqueue_add_inbuf - expose input buffers to other end
1869  * @vq: the struct virtqueue we're talking about.
1870  * @sg: scatterlist (must be well-formed and terminated!)
1871  * @num: the number of entries in @sg writable by other side
1872  * @data: the token identifying the buffer.
1873  * @gfp: how to do memory allocations (if necessary).
1874  *
1875  * Caller must ensure we don't call this with other virtqueue operations
1876  * at the same time (except where noted).
1877  *
1878  * Returns zero or a negative error (ie. ENOSPC, ENOMEM, EIO).
1879  */
1880 int virtqueue_add_inbuf(struct virtqueue *vq,
1881 			struct scatterlist *sg, unsigned int num,
1882 			void *data,
1883 			gfp_t gfp)
1884 {
1885 	return virtqueue_add(vq, &sg, num, 0, 1, data, NULL, gfp);
1886 }
1887 EXPORT_SYMBOL_GPL(virtqueue_add_inbuf);
1888 
1889 /**
1890  * virtqueue_add_inbuf_ctx - expose input buffers to other end
1891  * @vq: the struct virtqueue we're talking about.
1892  * @sg: scatterlist (must be well-formed and terminated!)
1893  * @num: the number of entries in @sg writable by other side
1894  * @data: the token identifying the buffer.
1895  * @ctx: extra context for the token
1896  * @gfp: how to do memory allocations (if necessary).
1897  *
1898  * Caller must ensure we don't call this with other virtqueue operations
1899  * at the same time (except where noted).
1900  *
1901  * Returns zero or a negative error (ie. ENOSPC, ENOMEM, EIO).
1902  */
1903 int virtqueue_add_inbuf_ctx(struct virtqueue *vq,
1904 			struct scatterlist *sg, unsigned int num,
1905 			void *data,
1906 			void *ctx,
1907 			gfp_t gfp)
1908 {
1909 	return virtqueue_add(vq, &sg, num, 0, 1, data, ctx, gfp);
1910 }
1911 EXPORT_SYMBOL_GPL(virtqueue_add_inbuf_ctx);
1912 
1913 /**
1914  * virtqueue_kick_prepare - first half of split virtqueue_kick call.
1915  * @_vq: the struct virtqueue
1916  *
1917  * Instead of virtqueue_kick(), you can do:
1918  *	if (virtqueue_kick_prepare(vq))
1919  *		virtqueue_notify(vq);
1920  *
1921  * This is sometimes useful because the virtqueue_kick_prepare() needs
1922  * to be serialized, but the actual virtqueue_notify() call does not.
1923  */
1924 bool virtqueue_kick_prepare(struct virtqueue *_vq)
1925 {
1926 	struct vring_virtqueue *vq = to_vvq(_vq);
1927 
1928 	return vq->packed_ring ? virtqueue_kick_prepare_packed(_vq) :
1929 				 virtqueue_kick_prepare_split(_vq);
1930 }
1931 EXPORT_SYMBOL_GPL(virtqueue_kick_prepare);
1932 
1933 /**
1934  * virtqueue_notify - second half of split virtqueue_kick call.
1935  * @_vq: the struct virtqueue
1936  *
1937  * This does not need to be serialized.
1938  *
1939  * Returns false if host notify failed or queue is broken, otherwise true.
1940  */
1941 bool virtqueue_notify(struct virtqueue *_vq)
1942 {
1943 	struct vring_virtqueue *vq = to_vvq(_vq);
1944 
1945 	if (unlikely(vq->broken))
1946 		return false;
1947 
1948 	/* Prod other side to tell it about changes. */
1949 	if (!vq->notify(_vq)) {
1950 		vq->broken = true;
1951 		return false;
1952 	}
1953 	return true;
1954 }
1955 EXPORT_SYMBOL_GPL(virtqueue_notify);
1956 
1957 /**
1958  * virtqueue_kick - update after add_buf
1959  * @vq: the struct virtqueue
1960  *
1961  * After one or more virtqueue_add_* calls, invoke this to kick
1962  * the other side.
1963  *
1964  * Caller must ensure we don't call this with other virtqueue
1965  * operations at the same time (except where noted).
1966  *
1967  * Returns false if kick failed, otherwise true.
1968  */
1969 bool virtqueue_kick(struct virtqueue *vq)
1970 {
1971 	if (virtqueue_kick_prepare(vq))
1972 		return virtqueue_notify(vq);
1973 	return true;
1974 }
1975 EXPORT_SYMBOL_GPL(virtqueue_kick);
1976 
1977 /**
1978  * virtqueue_get_buf_ctx - get the next used buffer
1979  * @_vq: the struct virtqueue we're talking about.
1980  * @len: the length written into the buffer
1981  * @ctx: extra context for the token
1982  *
1983  * If the device wrote data into the buffer, @len will be set to the
1984  * amount written.  This means you don't need to clear the buffer
1985  * beforehand to ensure there's no data leakage in the case of short
1986  * writes.
1987  *
1988  * Caller must ensure we don't call this with other virtqueue
1989  * operations at the same time (except where noted).
1990  *
1991  * Returns NULL if there are no used buffers, or the "data" token
1992  * handed to virtqueue_add_*().
1993  */
1994 void *virtqueue_get_buf_ctx(struct virtqueue *_vq, unsigned int *len,
1995 			    void **ctx)
1996 {
1997 	struct vring_virtqueue *vq = to_vvq(_vq);
1998 
1999 	return vq->packed_ring ? virtqueue_get_buf_ctx_packed(_vq, len, ctx) :
2000 				 virtqueue_get_buf_ctx_split(_vq, len, ctx);
2001 }
2002 EXPORT_SYMBOL_GPL(virtqueue_get_buf_ctx);
2003 
2004 void *virtqueue_get_buf(struct virtqueue *_vq, unsigned int *len)
2005 {
2006 	return virtqueue_get_buf_ctx(_vq, len, NULL);
2007 }
2008 EXPORT_SYMBOL_GPL(virtqueue_get_buf);
2009 /**
2010  * virtqueue_disable_cb - disable callbacks
2011  * @_vq: the struct virtqueue we're talking about.
2012  *
2013  * Note that this is not necessarily synchronous, hence unreliable and only
2014  * useful as an optimization.
2015  *
2016  * Unlike other operations, this need not be serialized.
2017  */
2018 void virtqueue_disable_cb(struct virtqueue *_vq)
2019 {
2020 	struct vring_virtqueue *vq = to_vvq(_vq);
2021 
2022 	/* If device triggered an event already it won't trigger one again:
2023 	 * no need to disable.
2024 	 */
2025 	if (vq->event_triggered)
2026 		return;
2027 
2028 	if (vq->packed_ring)
2029 		virtqueue_disable_cb_packed(_vq);
2030 	else
2031 		virtqueue_disable_cb_split(_vq);
2032 }
2033 EXPORT_SYMBOL_GPL(virtqueue_disable_cb);
2034 
2035 /**
2036  * virtqueue_enable_cb_prepare - restart callbacks after disable_cb
2037  * @_vq: the struct virtqueue we're talking about.
2038  *
2039  * This re-enables callbacks; it returns current queue state
2040  * in an opaque unsigned value. This value should be later tested by
2041  * virtqueue_poll, to detect a possible race between the driver checking for
2042  * more work, and enabling callbacks.
2043  *
2044  * Caller must ensure we don't call this with other virtqueue
2045  * operations at the same time (except where noted).
2046  */
2047 unsigned virtqueue_enable_cb_prepare(struct virtqueue *_vq)
2048 {
2049 	struct vring_virtqueue *vq = to_vvq(_vq);
2050 
2051 	if (vq->event_triggered)
2052 		vq->event_triggered = false;
2053 
2054 	return vq->packed_ring ? virtqueue_enable_cb_prepare_packed(_vq) :
2055 				 virtqueue_enable_cb_prepare_split(_vq);
2056 }
2057 EXPORT_SYMBOL_GPL(virtqueue_enable_cb_prepare);
2058 
2059 /**
2060  * virtqueue_poll - query pending used buffers
2061  * @_vq: the struct virtqueue we're talking about.
2062  * @last_used_idx: virtqueue state (from call to virtqueue_enable_cb_prepare).
2063  *
2064  * Returns "true" if there are pending used buffers in the queue.
2065  *
2066  * This does not need to be serialized.
2067  */
2068 bool virtqueue_poll(struct virtqueue *_vq, unsigned last_used_idx)
2069 {
2070 	struct vring_virtqueue *vq = to_vvq(_vq);
2071 
2072 	if (unlikely(vq->broken))
2073 		return false;
2074 
2075 	virtio_mb(vq->weak_barriers);
2076 	return vq->packed_ring ? virtqueue_poll_packed(_vq, last_used_idx) :
2077 				 virtqueue_poll_split(_vq, last_used_idx);
2078 }
2079 EXPORT_SYMBOL_GPL(virtqueue_poll);
2080 
2081 /**
2082  * virtqueue_enable_cb - restart callbacks after disable_cb.
2083  * @_vq: the struct virtqueue we're talking about.
2084  *
2085  * This re-enables callbacks; it returns "false" if there are pending
2086  * buffers in the queue, to detect a possible race between the driver
2087  * checking for more work, and enabling callbacks.
2088  *
2089  * Caller must ensure we don't call this with other virtqueue
2090  * operations at the same time (except where noted).
2091  */
2092 bool virtqueue_enable_cb(struct virtqueue *_vq)
2093 {
2094 	unsigned last_used_idx = virtqueue_enable_cb_prepare(_vq);
2095 
2096 	return !virtqueue_poll(_vq, last_used_idx);
2097 }
2098 EXPORT_SYMBOL_GPL(virtqueue_enable_cb);
2099 
2100 /**
2101  * virtqueue_enable_cb_delayed - restart callbacks after disable_cb.
2102  * @_vq: the struct virtqueue we're talking about.
2103  *
2104  * This re-enables callbacks but hints to the other side to delay
2105  * interrupts until most of the available buffers have been processed;
2106  * it returns "false" if there are many pending buffers in the queue,
2107  * to detect a possible race between the driver checking for more work,
2108  * and enabling callbacks.
2109  *
2110  * Caller must ensure we don't call this with other virtqueue
2111  * operations at the same time (except where noted).
2112  */
2113 bool virtqueue_enable_cb_delayed(struct virtqueue *_vq)
2114 {
2115 	struct vring_virtqueue *vq = to_vvq(_vq);
2116 
2117 	if (vq->event_triggered)
2118 		vq->event_triggered = false;
2119 
2120 	return vq->packed_ring ? virtqueue_enable_cb_delayed_packed(_vq) :
2121 				 virtqueue_enable_cb_delayed_split(_vq);
2122 }
2123 EXPORT_SYMBOL_GPL(virtqueue_enable_cb_delayed);
2124 
2125 /**
2126  * virtqueue_detach_unused_buf - detach first unused buffer
2127  * @_vq: the struct virtqueue we're talking about.
2128  *
2129  * Returns NULL or the "data" token handed to virtqueue_add_*().
2130  * This is not valid on an active queue; it is useful only for device
2131  * shutdown.
2132  */
2133 void *virtqueue_detach_unused_buf(struct virtqueue *_vq)
2134 {
2135 	struct vring_virtqueue *vq = to_vvq(_vq);
2136 
2137 	return vq->packed_ring ? virtqueue_detach_unused_buf_packed(_vq) :
2138 				 virtqueue_detach_unused_buf_split(_vq);
2139 }
2140 EXPORT_SYMBOL_GPL(virtqueue_detach_unused_buf);
2141 
2142 static inline bool more_used(const struct vring_virtqueue *vq)
2143 {
2144 	return vq->packed_ring ? more_used_packed(vq) : more_used_split(vq);
2145 }
2146 
2147 irqreturn_t vring_interrupt(int irq, void *_vq)
2148 {
2149 	struct vring_virtqueue *vq = to_vvq(_vq);
2150 
2151 	if (!more_used(vq)) {
2152 		pr_debug("virtqueue interrupt with no work for %p\n", vq);
2153 		return IRQ_NONE;
2154 	}
2155 
2156 	if (unlikely(vq->broken))
2157 		return IRQ_HANDLED;
2158 
2159 	/* Just a hint for performance: so it's ok that this can be racy! */
2160 	if (vq->event)
2161 		vq->event_triggered = true;
2162 
2163 	pr_debug("virtqueue callback for %p (%p)\n", vq, vq->vq.callback);
2164 	if (vq->vq.callback)
2165 		vq->vq.callback(&vq->vq);
2166 
2167 	return IRQ_HANDLED;
2168 }
2169 EXPORT_SYMBOL_GPL(vring_interrupt);
2170 
2171 /* Only available for split ring */
2172 struct virtqueue *__vring_new_virtqueue(unsigned int index,
2173 					struct vring vring,
2174 					struct virtio_device *vdev,
2175 					bool weak_barriers,
2176 					bool context,
2177 					bool (*notify)(struct virtqueue *),
2178 					void (*callback)(struct virtqueue *),
2179 					const char *name)
2180 {
2181 	struct vring_virtqueue *vq;
2182 
2183 	if (virtio_has_feature(vdev, VIRTIO_F_RING_PACKED))
2184 		return NULL;
2185 
2186 	vq = kmalloc(sizeof(*vq), GFP_KERNEL);
2187 	if (!vq)
2188 		return NULL;
2189 
2190 	vq->packed_ring = false;
2191 	vq->vq.callback = callback;
2192 	vq->vq.vdev = vdev;
2193 	vq->vq.name = name;
2194 	vq->vq.num_free = vring.num;
2195 	vq->vq.index = index;
2196 	vq->we_own_ring = false;
2197 	vq->notify = notify;
2198 	vq->weak_barriers = weak_barriers;
2199 	vq->broken = false;
2200 	vq->last_used_idx = 0;
2201 	vq->event_triggered = false;
2202 	vq->num_added = 0;
2203 	vq->use_dma_api = vring_use_dma_api(vdev);
2204 #ifdef DEBUG
2205 	vq->in_use = false;
2206 	vq->last_add_time_valid = false;
2207 #endif
2208 
2209 	vq->indirect = virtio_has_feature(vdev, VIRTIO_RING_F_INDIRECT_DESC) &&
2210 		!context;
2211 	vq->event = virtio_has_feature(vdev, VIRTIO_RING_F_EVENT_IDX);
2212 
2213 	if (virtio_has_feature(vdev, VIRTIO_F_ORDER_PLATFORM))
2214 		vq->weak_barriers = false;
2215 
2216 	vq->split.queue_dma_addr = 0;
2217 	vq->split.queue_size_in_bytes = 0;
2218 
2219 	vq->split.vring = vring;
2220 	vq->split.avail_flags_shadow = 0;
2221 	vq->split.avail_idx_shadow = 0;
2222 
2223 	/* No callback?  Tell other side not to bother us. */
2224 	if (!callback) {
2225 		vq->split.avail_flags_shadow |= VRING_AVAIL_F_NO_INTERRUPT;
2226 		if (!vq->event)
2227 			vq->split.vring.avail->flags = cpu_to_virtio16(vdev,
2228 					vq->split.avail_flags_shadow);
2229 	}
2230 
2231 	vq->split.desc_state = kmalloc_array(vring.num,
2232 			sizeof(struct vring_desc_state_split), GFP_KERNEL);
2233 	if (!vq->split.desc_state)
2234 		goto err_state;
2235 
2236 	vq->split.desc_extra = vring_alloc_desc_extra(vq, vring.num);
2237 	if (!vq->split.desc_extra)
2238 		goto err_extra;
2239 
2240 	/* Put everything in free lists. */
2241 	vq->free_head = 0;
2242 	memset(vq->split.desc_state, 0, vring.num *
2243 			sizeof(struct vring_desc_state_split));
2244 
2245 	spin_lock(&vdev->vqs_list_lock);
2246 	list_add_tail(&vq->vq.list, &vdev->vqs);
2247 	spin_unlock(&vdev->vqs_list_lock);
2248 	return &vq->vq;
2249 
2250 err_extra:
2251 	kfree(vq->split.desc_state);
2252 err_state:
2253 	kfree(vq);
2254 	return NULL;
2255 }
2256 EXPORT_SYMBOL_GPL(__vring_new_virtqueue);
2257 
2258 struct virtqueue *vring_create_virtqueue(
2259 	unsigned int index,
2260 	unsigned int num,
2261 	unsigned int vring_align,
2262 	struct virtio_device *vdev,
2263 	bool weak_barriers,
2264 	bool may_reduce_num,
2265 	bool context,
2266 	bool (*notify)(struct virtqueue *),
2267 	void (*callback)(struct virtqueue *),
2268 	const char *name)
2269 {
2270 
2271 	if (virtio_has_feature(vdev, VIRTIO_F_RING_PACKED))
2272 		return vring_create_virtqueue_packed(index, num, vring_align,
2273 				vdev, weak_barriers, may_reduce_num,
2274 				context, notify, callback, name);
2275 
2276 	return vring_create_virtqueue_split(index, num, vring_align,
2277 			vdev, weak_barriers, may_reduce_num,
2278 			context, notify, callback, name);
2279 }
2280 EXPORT_SYMBOL_GPL(vring_create_virtqueue);
2281 
2282 /* Only available for split ring */
2283 struct virtqueue *vring_new_virtqueue(unsigned int index,
2284 				      unsigned int num,
2285 				      unsigned int vring_align,
2286 				      struct virtio_device *vdev,
2287 				      bool weak_barriers,
2288 				      bool context,
2289 				      void *pages,
2290 				      bool (*notify)(struct virtqueue *vq),
2291 				      void (*callback)(struct virtqueue *vq),
2292 				      const char *name)
2293 {
2294 	struct vring vring;
2295 
2296 	if (virtio_has_feature(vdev, VIRTIO_F_RING_PACKED))
2297 		return NULL;
2298 
2299 	vring_init(&vring, num, pages, vring_align);
2300 	return __vring_new_virtqueue(index, vring, vdev, weak_barriers, context,
2301 				     notify, callback, name);
2302 }
2303 EXPORT_SYMBOL_GPL(vring_new_virtqueue);
2304 
2305 void vring_del_virtqueue(struct virtqueue *_vq)
2306 {
2307 	struct vring_virtqueue *vq = to_vvq(_vq);
2308 
2309 	spin_lock(&vq->vq.vdev->vqs_list_lock);
2310 	list_del(&_vq->list);
2311 	spin_unlock(&vq->vq.vdev->vqs_list_lock);
2312 
2313 	if (vq->we_own_ring) {
2314 		if (vq->packed_ring) {
2315 			vring_free_queue(vq->vq.vdev,
2316 					 vq->packed.ring_size_in_bytes,
2317 					 vq->packed.vring.desc,
2318 					 vq->packed.ring_dma_addr);
2319 
2320 			vring_free_queue(vq->vq.vdev,
2321 					 vq->packed.event_size_in_bytes,
2322 					 vq->packed.vring.driver,
2323 					 vq->packed.driver_event_dma_addr);
2324 
2325 			vring_free_queue(vq->vq.vdev,
2326 					 vq->packed.event_size_in_bytes,
2327 					 vq->packed.vring.device,
2328 					 vq->packed.device_event_dma_addr);
2329 
2330 			kfree(vq->packed.desc_state);
2331 			kfree(vq->packed.desc_extra);
2332 		} else {
2333 			vring_free_queue(vq->vq.vdev,
2334 					 vq->split.queue_size_in_bytes,
2335 					 vq->split.vring.desc,
2336 					 vq->split.queue_dma_addr);
2337 		}
2338 	}
2339 	if (!vq->packed_ring) {
2340 		kfree(vq->split.desc_state);
2341 		kfree(vq->split.desc_extra);
2342 	}
2343 	kfree(vq);
2344 }
2345 EXPORT_SYMBOL_GPL(vring_del_virtqueue);
2346 
2347 /* Manipulates transport-specific feature bits. */
2348 void vring_transport_features(struct virtio_device *vdev)
2349 {
2350 	unsigned int i;
2351 
2352 	for (i = VIRTIO_TRANSPORT_F_START; i < VIRTIO_TRANSPORT_F_END; i++) {
2353 		switch (i) {
2354 		case VIRTIO_RING_F_INDIRECT_DESC:
2355 			break;
2356 		case VIRTIO_RING_F_EVENT_IDX:
2357 			break;
2358 		case VIRTIO_F_VERSION_1:
2359 			break;
2360 		case VIRTIO_F_ACCESS_PLATFORM:
2361 			break;
2362 		case VIRTIO_F_RING_PACKED:
2363 			break;
2364 		case VIRTIO_F_ORDER_PLATFORM:
2365 			break;
2366 		default:
2367 			/* We don't understand this bit. */
2368 			__virtio_clear_bit(vdev, i);
2369 		}
2370 	}
2371 }
2372 EXPORT_SYMBOL_GPL(vring_transport_features);
2373 
2374 /**
2375  * virtqueue_get_vring_size - return the size of the virtqueue's vring
2376  * @_vq: the struct virtqueue containing the vring of interest.
2377  *
2378  * Returns the size of the vring.  This is mainly used for boasting to
2379  * userspace.  Unlike other operations, this need not be serialized.
2380  */
2381 unsigned int virtqueue_get_vring_size(struct virtqueue *_vq)
2382 {
2383 
2384 	struct vring_virtqueue *vq = to_vvq(_vq);
2385 
2386 	return vq->packed_ring ? vq->packed.vring.num : vq->split.vring.num;
2387 }
2388 EXPORT_SYMBOL_GPL(virtqueue_get_vring_size);
2389 
2390 bool virtqueue_is_broken(struct virtqueue *_vq)
2391 {
2392 	struct vring_virtqueue *vq = to_vvq(_vq);
2393 
2394 	return READ_ONCE(vq->broken);
2395 }
2396 EXPORT_SYMBOL_GPL(virtqueue_is_broken);
2397 
2398 /*
2399  * This should prevent the device from being used, allowing drivers to
2400  * recover.  You may need to grab appropriate locks to flush.
2401  */
2402 void virtio_break_device(struct virtio_device *dev)
2403 {
2404 	struct virtqueue *_vq;
2405 
2406 	spin_lock(&dev->vqs_list_lock);
2407 	list_for_each_entry(_vq, &dev->vqs, list) {
2408 		struct vring_virtqueue *vq = to_vvq(_vq);
2409 
2410 		/* Pairs with READ_ONCE() in virtqueue_is_broken(). */
2411 		WRITE_ONCE(vq->broken, true);
2412 	}
2413 	spin_unlock(&dev->vqs_list_lock);
2414 }
2415 EXPORT_SYMBOL_GPL(virtio_break_device);
2416 
2417 dma_addr_t virtqueue_get_desc_addr(struct virtqueue *_vq)
2418 {
2419 	struct vring_virtqueue *vq = to_vvq(_vq);
2420 
2421 	BUG_ON(!vq->we_own_ring);
2422 
2423 	if (vq->packed_ring)
2424 		return vq->packed.ring_dma_addr;
2425 
2426 	return vq->split.queue_dma_addr;
2427 }
2428 EXPORT_SYMBOL_GPL(virtqueue_get_desc_addr);
2429 
2430 dma_addr_t virtqueue_get_avail_addr(struct virtqueue *_vq)
2431 {
2432 	struct vring_virtqueue *vq = to_vvq(_vq);
2433 
2434 	BUG_ON(!vq->we_own_ring);
2435 
2436 	if (vq->packed_ring)
2437 		return vq->packed.driver_event_dma_addr;
2438 
2439 	return vq->split.queue_dma_addr +
2440 		((char *)vq->split.vring.avail - (char *)vq->split.vring.desc);
2441 }
2442 EXPORT_SYMBOL_GPL(virtqueue_get_avail_addr);
2443 
2444 dma_addr_t virtqueue_get_used_addr(struct virtqueue *_vq)
2445 {
2446 	struct vring_virtqueue *vq = to_vvq(_vq);
2447 
2448 	BUG_ON(!vq->we_own_ring);
2449 
2450 	if (vq->packed_ring)
2451 		return vq->packed.device_event_dma_addr;
2452 
2453 	return vq->split.queue_dma_addr +
2454 		((char *)vq->split.vring.used - (char *)vq->split.vring.desc);
2455 }
2456 EXPORT_SYMBOL_GPL(virtqueue_get_used_addr);
2457 
2458 /* Only available for split ring */
2459 const struct vring *virtqueue_get_vring(struct virtqueue *vq)
2460 {
2461 	return &to_vvq(vq)->split.vring;
2462 }
2463 EXPORT_SYMBOL_GPL(virtqueue_get_vring);
2464 
2465 MODULE_LICENSE("GPL");
2466