xref: /openbmc/linux/drivers/virtio/virtio_ring.c (revision 1ec7ccb4)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /* Virtio ring implementation.
3  *
4  *  Copyright 2007 Rusty Russell IBM Corporation
5  */
6 #include <linux/virtio.h>
7 #include <linux/virtio_ring.h>
8 #include <linux/virtio_config.h>
9 #include <linux/device.h>
10 #include <linux/slab.h>
11 #include <linux/module.h>
12 #include <linux/hrtimer.h>
13 #include <linux/dma-mapping.h>
14 #include <linux/kmsan.h>
15 #include <linux/spinlock.h>
16 #include <xen/xen.h>
17 
18 #ifdef DEBUG
19 /* For development, we want to crash whenever the ring is screwed. */
20 #define BAD_RING(_vq, fmt, args...)				\
21 	do {							\
22 		dev_err(&(_vq)->vq.vdev->dev,			\
23 			"%s:"fmt, (_vq)->vq.name, ##args);	\
24 		BUG();						\
25 	} while (0)
26 /* Caller is supposed to guarantee no reentry. */
27 #define START_USE(_vq)						\
28 	do {							\
29 		if ((_vq)->in_use)				\
30 			panic("%s:in_use = %i\n",		\
31 			      (_vq)->vq.name, (_vq)->in_use);	\
32 		(_vq)->in_use = __LINE__;			\
33 	} while (0)
34 #define END_USE(_vq) \
35 	do { BUG_ON(!(_vq)->in_use); (_vq)->in_use = 0; } while(0)
36 #define LAST_ADD_TIME_UPDATE(_vq)				\
37 	do {							\
38 		ktime_t now = ktime_get();			\
39 								\
40 		/* No kick or get, with .1 second between?  Warn. */ \
41 		if ((_vq)->last_add_time_valid)			\
42 			WARN_ON(ktime_to_ms(ktime_sub(now,	\
43 				(_vq)->last_add_time)) > 100);	\
44 		(_vq)->last_add_time = now;			\
45 		(_vq)->last_add_time_valid = true;		\
46 	} while (0)
47 #define LAST_ADD_TIME_CHECK(_vq)				\
48 	do {							\
49 		if ((_vq)->last_add_time_valid) {		\
50 			WARN_ON(ktime_to_ms(ktime_sub(ktime_get(), \
51 				      (_vq)->last_add_time)) > 100); \
52 		}						\
53 	} while (0)
54 #define LAST_ADD_TIME_INVALID(_vq)				\
55 	((_vq)->last_add_time_valid = false)
56 #else
57 #define BAD_RING(_vq, fmt, args...)				\
58 	do {							\
59 		dev_err(&_vq->vq.vdev->dev,			\
60 			"%s:"fmt, (_vq)->vq.name, ##args);	\
61 		(_vq)->broken = true;				\
62 	} while (0)
63 #define START_USE(vq)
64 #define END_USE(vq)
65 #define LAST_ADD_TIME_UPDATE(vq)
66 #define LAST_ADD_TIME_CHECK(vq)
67 #define LAST_ADD_TIME_INVALID(vq)
68 #endif
69 
70 struct vring_desc_state_split {
71 	void *data;			/* Data for callback. */
72 	struct vring_desc *indir_desc;	/* Indirect descriptor, if any. */
73 };
74 
75 struct vring_desc_state_packed {
76 	void *data;			/* Data for callback. */
77 	struct vring_packed_desc *indir_desc; /* Indirect descriptor, if any. */
78 	u16 num;			/* Descriptor list length. */
79 	u16 last;			/* The last desc state in a list. */
80 };
81 
82 struct vring_desc_extra {
83 	dma_addr_t addr;		/* Descriptor DMA addr. */
84 	u32 len;			/* Descriptor length. */
85 	u16 flags;			/* Descriptor flags. */
86 	u16 next;			/* The next desc state in a list. */
87 };
88 
89 struct vring_virtqueue_split {
90 	/* Actual memory layout for this queue. */
91 	struct vring vring;
92 
93 	/* Last written value to avail->flags */
94 	u16 avail_flags_shadow;
95 
96 	/*
97 	 * Last written value to avail->idx in
98 	 * guest byte order.
99 	 */
100 	u16 avail_idx_shadow;
101 
102 	/* Per-descriptor state. */
103 	struct vring_desc_state_split *desc_state;
104 	struct vring_desc_extra *desc_extra;
105 
106 	/* DMA address and size information */
107 	dma_addr_t queue_dma_addr;
108 	size_t queue_size_in_bytes;
109 
110 	/*
111 	 * The parameters for creating vrings are reserved for creating new
112 	 * vring.
113 	 */
114 	u32 vring_align;
115 	bool may_reduce_num;
116 };
117 
118 struct vring_virtqueue_packed {
119 	/* Actual memory layout for this queue. */
120 	struct {
121 		unsigned int num;
122 		struct vring_packed_desc *desc;
123 		struct vring_packed_desc_event *driver;
124 		struct vring_packed_desc_event *device;
125 	} vring;
126 
127 	/* Driver ring wrap counter. */
128 	bool avail_wrap_counter;
129 
130 	/* Avail used flags. */
131 	u16 avail_used_flags;
132 
133 	/* Index of the next avail descriptor. */
134 	u16 next_avail_idx;
135 
136 	/*
137 	 * Last written value to driver->flags in
138 	 * guest byte order.
139 	 */
140 	u16 event_flags_shadow;
141 
142 	/* Per-descriptor state. */
143 	struct vring_desc_state_packed *desc_state;
144 	struct vring_desc_extra *desc_extra;
145 
146 	/* DMA address and size information */
147 	dma_addr_t ring_dma_addr;
148 	dma_addr_t driver_event_dma_addr;
149 	dma_addr_t device_event_dma_addr;
150 	size_t ring_size_in_bytes;
151 	size_t event_size_in_bytes;
152 };
153 
154 struct vring_virtqueue {
155 	struct virtqueue vq;
156 
157 	/* Is this a packed ring? */
158 	bool packed_ring;
159 
160 	/* Is DMA API used? */
161 	bool use_dma_api;
162 
163 	/* Can we use weak barriers? */
164 	bool weak_barriers;
165 
166 	/* Other side has made a mess, don't try any more. */
167 	bool broken;
168 
169 	/* Host supports indirect buffers */
170 	bool indirect;
171 
172 	/* Host publishes avail event idx */
173 	bool event;
174 
175 	/* Do DMA mapping by driver */
176 	bool premapped;
177 
178 	/* Do unmap or not for desc. Just when premapped is False and
179 	 * use_dma_api is true, this is true.
180 	 */
181 	bool do_unmap;
182 
183 	/* Head of free buffer list. */
184 	unsigned int free_head;
185 	/* Number we've added since last sync. */
186 	unsigned int num_added;
187 
188 	/* Last used index  we've seen.
189 	 * for split ring, it just contains last used index
190 	 * for packed ring:
191 	 * bits up to VRING_PACKED_EVENT_F_WRAP_CTR include the last used index.
192 	 * bits from VRING_PACKED_EVENT_F_WRAP_CTR include the used wrap counter.
193 	 */
194 	u16 last_used_idx;
195 
196 	/* Hint for event idx: already triggered no need to disable. */
197 	bool event_triggered;
198 
199 	union {
200 		/* Available for split ring */
201 		struct vring_virtqueue_split split;
202 
203 		/* Available for packed ring */
204 		struct vring_virtqueue_packed packed;
205 	};
206 
207 	/* How to notify other side. FIXME: commonalize hcalls! */
208 	bool (*notify)(struct virtqueue *vq);
209 
210 	/* DMA, allocation, and size information */
211 	bool we_own_ring;
212 
213 	/* Device used for doing DMA */
214 	struct device *dma_dev;
215 
216 #ifdef DEBUG
217 	/* They're supposed to lock for us. */
218 	unsigned int in_use;
219 
220 	/* Figure out if their kicks are too delayed. */
221 	bool last_add_time_valid;
222 	ktime_t last_add_time;
223 #endif
224 };
225 
226 static struct virtqueue *__vring_new_virtqueue(unsigned int index,
227 					       struct vring_virtqueue_split *vring_split,
228 					       struct virtio_device *vdev,
229 					       bool weak_barriers,
230 					       bool context,
231 					       bool (*notify)(struct virtqueue *),
232 					       void (*callback)(struct virtqueue *),
233 					       const char *name,
234 					       struct device *dma_dev);
235 static struct vring_desc_extra *vring_alloc_desc_extra(unsigned int num);
236 static void vring_free(struct virtqueue *_vq);
237 
238 /*
239  * Helpers.
240  */
241 
242 #define to_vvq(_vq) container_of_const(_vq, struct vring_virtqueue, vq)
243 
244 static bool virtqueue_use_indirect(const struct vring_virtqueue *vq,
245 				   unsigned int total_sg)
246 {
247 	/*
248 	 * If the host supports indirect descriptor tables, and we have multiple
249 	 * buffers, then go indirect. FIXME: tune this threshold
250 	 */
251 	return (vq->indirect && total_sg > 1 && vq->vq.num_free);
252 }
253 
254 /*
255  * Modern virtio devices have feature bits to specify whether they need a
256  * quirk and bypass the IOMMU. If not there, just use the DMA API.
257  *
258  * If there, the interaction between virtio and DMA API is messy.
259  *
260  * On most systems with virtio, physical addresses match bus addresses,
261  * and it doesn't particularly matter whether we use the DMA API.
262  *
263  * On some systems, including Xen and any system with a physical device
264  * that speaks virtio behind a physical IOMMU, we must use the DMA API
265  * for virtio DMA to work at all.
266  *
267  * On other systems, including SPARC and PPC64, virtio-pci devices are
268  * enumerated as though they are behind an IOMMU, but the virtio host
269  * ignores the IOMMU, so we must either pretend that the IOMMU isn't
270  * there or somehow map everything as the identity.
271  *
272  * For the time being, we preserve historic behavior and bypass the DMA
273  * API.
274  *
275  * TODO: install a per-device DMA ops structure that does the right thing
276  * taking into account all the above quirks, and use the DMA API
277  * unconditionally on data path.
278  */
279 
280 static bool vring_use_dma_api(const struct virtio_device *vdev)
281 {
282 	if (!virtio_has_dma_quirk(vdev))
283 		return true;
284 
285 	/* Otherwise, we are left to guess. */
286 	/*
287 	 * In theory, it's possible to have a buggy QEMU-supposed
288 	 * emulated Q35 IOMMU and Xen enabled at the same time.  On
289 	 * such a configuration, virtio has never worked and will
290 	 * not work without an even larger kludge.  Instead, enable
291 	 * the DMA API if we're a Xen guest, which at least allows
292 	 * all of the sensible Xen configurations to work correctly.
293 	 */
294 	if (xen_domain())
295 		return true;
296 
297 	return false;
298 }
299 
300 size_t virtio_max_dma_size(const struct virtio_device *vdev)
301 {
302 	size_t max_segment_size = SIZE_MAX;
303 
304 	if (vring_use_dma_api(vdev))
305 		max_segment_size = dma_max_mapping_size(vdev->dev.parent);
306 
307 	return max_segment_size;
308 }
309 EXPORT_SYMBOL_GPL(virtio_max_dma_size);
310 
311 static void *vring_alloc_queue(struct virtio_device *vdev, size_t size,
312 			       dma_addr_t *dma_handle, gfp_t flag,
313 			       struct device *dma_dev)
314 {
315 	if (vring_use_dma_api(vdev)) {
316 		return dma_alloc_coherent(dma_dev, size,
317 					  dma_handle, flag);
318 	} else {
319 		void *queue = alloc_pages_exact(PAGE_ALIGN(size), flag);
320 
321 		if (queue) {
322 			phys_addr_t phys_addr = virt_to_phys(queue);
323 			*dma_handle = (dma_addr_t)phys_addr;
324 
325 			/*
326 			 * Sanity check: make sure we dind't truncate
327 			 * the address.  The only arches I can find that
328 			 * have 64-bit phys_addr_t but 32-bit dma_addr_t
329 			 * are certain non-highmem MIPS and x86
330 			 * configurations, but these configurations
331 			 * should never allocate physical pages above 32
332 			 * bits, so this is fine.  Just in case, throw a
333 			 * warning and abort if we end up with an
334 			 * unrepresentable address.
335 			 */
336 			if (WARN_ON_ONCE(*dma_handle != phys_addr)) {
337 				free_pages_exact(queue, PAGE_ALIGN(size));
338 				return NULL;
339 			}
340 		}
341 		return queue;
342 	}
343 }
344 
345 static void vring_free_queue(struct virtio_device *vdev, size_t size,
346 			     void *queue, dma_addr_t dma_handle,
347 			     struct device *dma_dev)
348 {
349 	if (vring_use_dma_api(vdev))
350 		dma_free_coherent(dma_dev, size, queue, dma_handle);
351 	else
352 		free_pages_exact(queue, PAGE_ALIGN(size));
353 }
354 
355 /*
356  * The DMA ops on various arches are rather gnarly right now, and
357  * making all of the arch DMA ops work on the vring device itself
358  * is a mess.
359  */
360 static struct device *vring_dma_dev(const struct vring_virtqueue *vq)
361 {
362 	return vq->dma_dev;
363 }
364 
365 /* Map one sg entry. */
366 static int vring_map_one_sg(const struct vring_virtqueue *vq, struct scatterlist *sg,
367 			    enum dma_data_direction direction, dma_addr_t *addr)
368 {
369 	if (vq->premapped) {
370 		*addr = sg_dma_address(sg);
371 		return 0;
372 	}
373 
374 	if (!vq->use_dma_api) {
375 		/*
376 		 * If DMA is not used, KMSAN doesn't know that the scatterlist
377 		 * is initialized by the hardware. Explicitly check/unpoison it
378 		 * depending on the direction.
379 		 */
380 		kmsan_handle_dma(sg_page(sg), sg->offset, sg->length, direction);
381 		*addr = (dma_addr_t)sg_phys(sg);
382 		return 0;
383 	}
384 
385 	/*
386 	 * We can't use dma_map_sg, because we don't use scatterlists in
387 	 * the way it expects (we don't guarantee that the scatterlist
388 	 * will exist for the lifetime of the mapping).
389 	 */
390 	*addr = dma_map_page(vring_dma_dev(vq),
391 			    sg_page(sg), sg->offset, sg->length,
392 			    direction);
393 
394 	if (dma_mapping_error(vring_dma_dev(vq), *addr))
395 		return -ENOMEM;
396 
397 	return 0;
398 }
399 
400 static dma_addr_t vring_map_single(const struct vring_virtqueue *vq,
401 				   void *cpu_addr, size_t size,
402 				   enum dma_data_direction direction)
403 {
404 	if (!vq->use_dma_api)
405 		return (dma_addr_t)virt_to_phys(cpu_addr);
406 
407 	return dma_map_single(vring_dma_dev(vq),
408 			      cpu_addr, size, direction);
409 }
410 
411 static int vring_mapping_error(const struct vring_virtqueue *vq,
412 			       dma_addr_t addr)
413 {
414 	if (!vq->use_dma_api)
415 		return 0;
416 
417 	return dma_mapping_error(vring_dma_dev(vq), addr);
418 }
419 
420 static void virtqueue_init(struct vring_virtqueue *vq, u32 num)
421 {
422 	vq->vq.num_free = num;
423 
424 	if (vq->packed_ring)
425 		vq->last_used_idx = 0 | (1 << VRING_PACKED_EVENT_F_WRAP_CTR);
426 	else
427 		vq->last_used_idx = 0;
428 
429 	vq->event_triggered = false;
430 	vq->num_added = 0;
431 
432 #ifdef DEBUG
433 	vq->in_use = false;
434 	vq->last_add_time_valid = false;
435 #endif
436 }
437 
438 
439 /*
440  * Split ring specific functions - *_split().
441  */
442 
443 static void vring_unmap_one_split_indirect(const struct vring_virtqueue *vq,
444 					   const struct vring_desc *desc)
445 {
446 	u16 flags;
447 
448 	if (!vq->do_unmap)
449 		return;
450 
451 	flags = virtio16_to_cpu(vq->vq.vdev, desc->flags);
452 
453 	dma_unmap_page(vring_dma_dev(vq),
454 		       virtio64_to_cpu(vq->vq.vdev, desc->addr),
455 		       virtio32_to_cpu(vq->vq.vdev, desc->len),
456 		       (flags & VRING_DESC_F_WRITE) ?
457 		       DMA_FROM_DEVICE : DMA_TO_DEVICE);
458 }
459 
460 static unsigned int vring_unmap_one_split(const struct vring_virtqueue *vq,
461 					  unsigned int i)
462 {
463 	struct vring_desc_extra *extra = vq->split.desc_extra;
464 	u16 flags;
465 
466 	flags = extra[i].flags;
467 
468 	if (flags & VRING_DESC_F_INDIRECT) {
469 		if (!vq->use_dma_api)
470 			goto out;
471 
472 		dma_unmap_single(vring_dma_dev(vq),
473 				 extra[i].addr,
474 				 extra[i].len,
475 				 (flags & VRING_DESC_F_WRITE) ?
476 				 DMA_FROM_DEVICE : DMA_TO_DEVICE);
477 	} else {
478 		if (!vq->do_unmap)
479 			goto out;
480 
481 		dma_unmap_page(vring_dma_dev(vq),
482 			       extra[i].addr,
483 			       extra[i].len,
484 			       (flags & VRING_DESC_F_WRITE) ?
485 			       DMA_FROM_DEVICE : DMA_TO_DEVICE);
486 	}
487 
488 out:
489 	return extra[i].next;
490 }
491 
492 static struct vring_desc *alloc_indirect_split(struct virtqueue *_vq,
493 					       unsigned int total_sg,
494 					       gfp_t gfp)
495 {
496 	struct vring_desc *desc;
497 	unsigned int i;
498 
499 	/*
500 	 * We require lowmem mappings for the descriptors because
501 	 * otherwise virt_to_phys will give us bogus addresses in the
502 	 * virtqueue.
503 	 */
504 	gfp &= ~__GFP_HIGHMEM;
505 
506 	desc = kmalloc_array(total_sg, sizeof(struct vring_desc), gfp);
507 	if (!desc)
508 		return NULL;
509 
510 	for (i = 0; i < total_sg; i++)
511 		desc[i].next = cpu_to_virtio16(_vq->vdev, i + 1);
512 	return desc;
513 }
514 
515 static inline unsigned int virtqueue_add_desc_split(struct virtqueue *vq,
516 						    struct vring_desc *desc,
517 						    unsigned int i,
518 						    dma_addr_t addr,
519 						    unsigned int len,
520 						    u16 flags,
521 						    bool indirect)
522 {
523 	struct vring_virtqueue *vring = to_vvq(vq);
524 	struct vring_desc_extra *extra = vring->split.desc_extra;
525 	u16 next;
526 
527 	desc[i].flags = cpu_to_virtio16(vq->vdev, flags);
528 	desc[i].addr = cpu_to_virtio64(vq->vdev, addr);
529 	desc[i].len = cpu_to_virtio32(vq->vdev, len);
530 
531 	if (!indirect) {
532 		next = extra[i].next;
533 		desc[i].next = cpu_to_virtio16(vq->vdev, next);
534 
535 		extra[i].addr = addr;
536 		extra[i].len = len;
537 		extra[i].flags = flags;
538 	} else
539 		next = virtio16_to_cpu(vq->vdev, desc[i].next);
540 
541 	return next;
542 }
543 
544 static inline int virtqueue_add_split(struct virtqueue *_vq,
545 				      struct scatterlist *sgs[],
546 				      unsigned int total_sg,
547 				      unsigned int out_sgs,
548 				      unsigned int in_sgs,
549 				      void *data,
550 				      void *ctx,
551 				      gfp_t gfp)
552 {
553 	struct vring_virtqueue *vq = to_vvq(_vq);
554 	struct scatterlist *sg;
555 	struct vring_desc *desc;
556 	unsigned int i, n, avail, descs_used, prev, err_idx;
557 	int head;
558 	bool indirect;
559 
560 	START_USE(vq);
561 
562 	BUG_ON(data == NULL);
563 	BUG_ON(ctx && vq->indirect);
564 
565 	if (unlikely(vq->broken)) {
566 		END_USE(vq);
567 		return -EIO;
568 	}
569 
570 	LAST_ADD_TIME_UPDATE(vq);
571 
572 	BUG_ON(total_sg == 0);
573 
574 	head = vq->free_head;
575 
576 	if (virtqueue_use_indirect(vq, total_sg))
577 		desc = alloc_indirect_split(_vq, total_sg, gfp);
578 	else {
579 		desc = NULL;
580 		WARN_ON_ONCE(total_sg > vq->split.vring.num && !vq->indirect);
581 	}
582 
583 	if (desc) {
584 		/* Use a single buffer which doesn't continue */
585 		indirect = true;
586 		/* Set up rest to use this indirect table. */
587 		i = 0;
588 		descs_used = 1;
589 	} else {
590 		indirect = false;
591 		desc = vq->split.vring.desc;
592 		i = head;
593 		descs_used = total_sg;
594 	}
595 
596 	if (unlikely(vq->vq.num_free < descs_used)) {
597 		pr_debug("Can't add buf len %i - avail = %i\n",
598 			 descs_used, vq->vq.num_free);
599 		/* FIXME: for historical reasons, we force a notify here if
600 		 * there are outgoing parts to the buffer.  Presumably the
601 		 * host should service the ring ASAP. */
602 		if (out_sgs)
603 			vq->notify(&vq->vq);
604 		if (indirect)
605 			kfree(desc);
606 		END_USE(vq);
607 		return -ENOSPC;
608 	}
609 
610 	for (n = 0; n < out_sgs; n++) {
611 		for (sg = sgs[n]; sg; sg = sg_next(sg)) {
612 			dma_addr_t addr;
613 
614 			if (vring_map_one_sg(vq, sg, DMA_TO_DEVICE, &addr))
615 				goto unmap_release;
616 
617 			prev = i;
618 			/* Note that we trust indirect descriptor
619 			 * table since it use stream DMA mapping.
620 			 */
621 			i = virtqueue_add_desc_split(_vq, desc, i, addr, sg->length,
622 						     VRING_DESC_F_NEXT,
623 						     indirect);
624 		}
625 	}
626 	for (; n < (out_sgs + in_sgs); n++) {
627 		for (sg = sgs[n]; sg; sg = sg_next(sg)) {
628 			dma_addr_t addr;
629 
630 			if (vring_map_one_sg(vq, sg, DMA_FROM_DEVICE, &addr))
631 				goto unmap_release;
632 
633 			prev = i;
634 			/* Note that we trust indirect descriptor
635 			 * table since it use stream DMA mapping.
636 			 */
637 			i = virtqueue_add_desc_split(_vq, desc, i, addr,
638 						     sg->length,
639 						     VRING_DESC_F_NEXT |
640 						     VRING_DESC_F_WRITE,
641 						     indirect);
642 		}
643 	}
644 	/* Last one doesn't continue. */
645 	desc[prev].flags &= cpu_to_virtio16(_vq->vdev, ~VRING_DESC_F_NEXT);
646 	if (!indirect && vq->do_unmap)
647 		vq->split.desc_extra[prev & (vq->split.vring.num - 1)].flags &=
648 			~VRING_DESC_F_NEXT;
649 
650 	if (indirect) {
651 		/* Now that the indirect table is filled in, map it. */
652 		dma_addr_t addr = vring_map_single(
653 			vq, desc, total_sg * sizeof(struct vring_desc),
654 			DMA_TO_DEVICE);
655 		if (vring_mapping_error(vq, addr)) {
656 			if (vq->premapped)
657 				goto free_indirect;
658 
659 			goto unmap_release;
660 		}
661 
662 		virtqueue_add_desc_split(_vq, vq->split.vring.desc,
663 					 head, addr,
664 					 total_sg * sizeof(struct vring_desc),
665 					 VRING_DESC_F_INDIRECT,
666 					 false);
667 	}
668 
669 	/* We're using some buffers from the free list. */
670 	vq->vq.num_free -= descs_used;
671 
672 	/* Update free pointer */
673 	if (indirect)
674 		vq->free_head = vq->split.desc_extra[head].next;
675 	else
676 		vq->free_head = i;
677 
678 	/* Store token and indirect buffer state. */
679 	vq->split.desc_state[head].data = data;
680 	if (indirect)
681 		vq->split.desc_state[head].indir_desc = desc;
682 	else
683 		vq->split.desc_state[head].indir_desc = ctx;
684 
685 	/* Put entry in available array (but don't update avail->idx until they
686 	 * do sync). */
687 	avail = vq->split.avail_idx_shadow & (vq->split.vring.num - 1);
688 	vq->split.vring.avail->ring[avail] = cpu_to_virtio16(_vq->vdev, head);
689 
690 	/* Descriptors and available array need to be set before we expose the
691 	 * new available array entries. */
692 	virtio_wmb(vq->weak_barriers);
693 	vq->split.avail_idx_shadow++;
694 	vq->split.vring.avail->idx = cpu_to_virtio16(_vq->vdev,
695 						vq->split.avail_idx_shadow);
696 	vq->num_added++;
697 
698 	pr_debug("Added buffer head %i to %p\n", head, vq);
699 	END_USE(vq);
700 
701 	/* This is very unlikely, but theoretically possible.  Kick
702 	 * just in case. */
703 	if (unlikely(vq->num_added == (1 << 16) - 1))
704 		virtqueue_kick(_vq);
705 
706 	return 0;
707 
708 unmap_release:
709 	err_idx = i;
710 
711 	if (indirect)
712 		i = 0;
713 	else
714 		i = head;
715 
716 	for (n = 0; n < total_sg; n++) {
717 		if (i == err_idx)
718 			break;
719 		if (indirect) {
720 			vring_unmap_one_split_indirect(vq, &desc[i]);
721 			i = virtio16_to_cpu(_vq->vdev, desc[i].next);
722 		} else
723 			i = vring_unmap_one_split(vq, i);
724 	}
725 
726 free_indirect:
727 	if (indirect)
728 		kfree(desc);
729 
730 	END_USE(vq);
731 	return -ENOMEM;
732 }
733 
734 static bool virtqueue_kick_prepare_split(struct virtqueue *_vq)
735 {
736 	struct vring_virtqueue *vq = to_vvq(_vq);
737 	u16 new, old;
738 	bool needs_kick;
739 
740 	START_USE(vq);
741 	/* We need to expose available array entries before checking avail
742 	 * event. */
743 	virtio_mb(vq->weak_barriers);
744 
745 	old = vq->split.avail_idx_shadow - vq->num_added;
746 	new = vq->split.avail_idx_shadow;
747 	vq->num_added = 0;
748 
749 	LAST_ADD_TIME_CHECK(vq);
750 	LAST_ADD_TIME_INVALID(vq);
751 
752 	if (vq->event) {
753 		needs_kick = vring_need_event(virtio16_to_cpu(_vq->vdev,
754 					vring_avail_event(&vq->split.vring)),
755 					      new, old);
756 	} else {
757 		needs_kick = !(vq->split.vring.used->flags &
758 					cpu_to_virtio16(_vq->vdev,
759 						VRING_USED_F_NO_NOTIFY));
760 	}
761 	END_USE(vq);
762 	return needs_kick;
763 }
764 
765 static void detach_buf_split(struct vring_virtqueue *vq, unsigned int head,
766 			     void **ctx)
767 {
768 	unsigned int i, j;
769 	__virtio16 nextflag = cpu_to_virtio16(vq->vq.vdev, VRING_DESC_F_NEXT);
770 
771 	/* Clear data ptr. */
772 	vq->split.desc_state[head].data = NULL;
773 
774 	/* Put back on free list: unmap first-level descriptors and find end */
775 	i = head;
776 
777 	while (vq->split.vring.desc[i].flags & nextflag) {
778 		vring_unmap_one_split(vq, i);
779 		i = vq->split.desc_extra[i].next;
780 		vq->vq.num_free++;
781 	}
782 
783 	vring_unmap_one_split(vq, i);
784 	vq->split.desc_extra[i].next = vq->free_head;
785 	vq->free_head = head;
786 
787 	/* Plus final descriptor */
788 	vq->vq.num_free++;
789 
790 	if (vq->indirect) {
791 		struct vring_desc *indir_desc =
792 				vq->split.desc_state[head].indir_desc;
793 		u32 len;
794 
795 		/* Free the indirect table, if any, now that it's unmapped. */
796 		if (!indir_desc)
797 			return;
798 
799 		len = vq->split.desc_extra[head].len;
800 
801 		BUG_ON(!(vq->split.desc_extra[head].flags &
802 				VRING_DESC_F_INDIRECT));
803 		BUG_ON(len == 0 || len % sizeof(struct vring_desc));
804 
805 		if (vq->do_unmap) {
806 			for (j = 0; j < len / sizeof(struct vring_desc); j++)
807 				vring_unmap_one_split_indirect(vq, &indir_desc[j]);
808 		}
809 
810 		kfree(indir_desc);
811 		vq->split.desc_state[head].indir_desc = NULL;
812 	} else if (ctx) {
813 		*ctx = vq->split.desc_state[head].indir_desc;
814 	}
815 }
816 
817 static bool more_used_split(const struct vring_virtqueue *vq)
818 {
819 	return vq->last_used_idx != virtio16_to_cpu(vq->vq.vdev,
820 			vq->split.vring.used->idx);
821 }
822 
823 static void *virtqueue_get_buf_ctx_split(struct virtqueue *_vq,
824 					 unsigned int *len,
825 					 void **ctx)
826 {
827 	struct vring_virtqueue *vq = to_vvq(_vq);
828 	void *ret;
829 	unsigned int i;
830 	u16 last_used;
831 
832 	START_USE(vq);
833 
834 	if (unlikely(vq->broken)) {
835 		END_USE(vq);
836 		return NULL;
837 	}
838 
839 	if (!more_used_split(vq)) {
840 		pr_debug("No more buffers in queue\n");
841 		END_USE(vq);
842 		return NULL;
843 	}
844 
845 	/* Only get used array entries after they have been exposed by host. */
846 	virtio_rmb(vq->weak_barriers);
847 
848 	last_used = (vq->last_used_idx & (vq->split.vring.num - 1));
849 	i = virtio32_to_cpu(_vq->vdev,
850 			vq->split.vring.used->ring[last_used].id);
851 	*len = virtio32_to_cpu(_vq->vdev,
852 			vq->split.vring.used->ring[last_used].len);
853 
854 	if (unlikely(i >= vq->split.vring.num)) {
855 		BAD_RING(vq, "id %u out of range\n", i);
856 		return NULL;
857 	}
858 	if (unlikely(!vq->split.desc_state[i].data)) {
859 		BAD_RING(vq, "id %u is not a head!\n", i);
860 		return NULL;
861 	}
862 
863 	/* detach_buf_split clears data, so grab it now. */
864 	ret = vq->split.desc_state[i].data;
865 	detach_buf_split(vq, i, ctx);
866 	vq->last_used_idx++;
867 	/* If we expect an interrupt for the next entry, tell host
868 	 * by writing event index and flush out the write before
869 	 * the read in the next get_buf call. */
870 	if (!(vq->split.avail_flags_shadow & VRING_AVAIL_F_NO_INTERRUPT))
871 		virtio_store_mb(vq->weak_barriers,
872 				&vring_used_event(&vq->split.vring),
873 				cpu_to_virtio16(_vq->vdev, vq->last_used_idx));
874 
875 	LAST_ADD_TIME_INVALID(vq);
876 
877 	END_USE(vq);
878 	return ret;
879 }
880 
881 static void virtqueue_disable_cb_split(struct virtqueue *_vq)
882 {
883 	struct vring_virtqueue *vq = to_vvq(_vq);
884 
885 	if (!(vq->split.avail_flags_shadow & VRING_AVAIL_F_NO_INTERRUPT)) {
886 		vq->split.avail_flags_shadow |= VRING_AVAIL_F_NO_INTERRUPT;
887 
888 		/*
889 		 * If device triggered an event already it won't trigger one again:
890 		 * no need to disable.
891 		 */
892 		if (vq->event_triggered)
893 			return;
894 
895 		if (vq->event)
896 			/* TODO: this is a hack. Figure out a cleaner value to write. */
897 			vring_used_event(&vq->split.vring) = 0x0;
898 		else
899 			vq->split.vring.avail->flags =
900 				cpu_to_virtio16(_vq->vdev,
901 						vq->split.avail_flags_shadow);
902 	}
903 }
904 
905 static unsigned int virtqueue_enable_cb_prepare_split(struct virtqueue *_vq)
906 {
907 	struct vring_virtqueue *vq = to_vvq(_vq);
908 	u16 last_used_idx;
909 
910 	START_USE(vq);
911 
912 	/* We optimistically turn back on interrupts, then check if there was
913 	 * more to do. */
914 	/* Depending on the VIRTIO_RING_F_EVENT_IDX feature, we need to
915 	 * either clear the flags bit or point the event index at the next
916 	 * entry. Always do both to keep code simple. */
917 	if (vq->split.avail_flags_shadow & VRING_AVAIL_F_NO_INTERRUPT) {
918 		vq->split.avail_flags_shadow &= ~VRING_AVAIL_F_NO_INTERRUPT;
919 		if (!vq->event)
920 			vq->split.vring.avail->flags =
921 				cpu_to_virtio16(_vq->vdev,
922 						vq->split.avail_flags_shadow);
923 	}
924 	vring_used_event(&vq->split.vring) = cpu_to_virtio16(_vq->vdev,
925 			last_used_idx = vq->last_used_idx);
926 	END_USE(vq);
927 	return last_used_idx;
928 }
929 
930 static bool virtqueue_poll_split(struct virtqueue *_vq, unsigned int last_used_idx)
931 {
932 	struct vring_virtqueue *vq = to_vvq(_vq);
933 
934 	return (u16)last_used_idx != virtio16_to_cpu(_vq->vdev,
935 			vq->split.vring.used->idx);
936 }
937 
938 static bool virtqueue_enable_cb_delayed_split(struct virtqueue *_vq)
939 {
940 	struct vring_virtqueue *vq = to_vvq(_vq);
941 	u16 bufs;
942 
943 	START_USE(vq);
944 
945 	/* We optimistically turn back on interrupts, then check if there was
946 	 * more to do. */
947 	/* Depending on the VIRTIO_RING_F_USED_EVENT_IDX feature, we need to
948 	 * either clear the flags bit or point the event index at the next
949 	 * entry. Always update the event index to keep code simple. */
950 	if (vq->split.avail_flags_shadow & VRING_AVAIL_F_NO_INTERRUPT) {
951 		vq->split.avail_flags_shadow &= ~VRING_AVAIL_F_NO_INTERRUPT;
952 		if (!vq->event)
953 			vq->split.vring.avail->flags =
954 				cpu_to_virtio16(_vq->vdev,
955 						vq->split.avail_flags_shadow);
956 	}
957 	/* TODO: tune this threshold */
958 	bufs = (u16)(vq->split.avail_idx_shadow - vq->last_used_idx) * 3 / 4;
959 
960 	virtio_store_mb(vq->weak_barriers,
961 			&vring_used_event(&vq->split.vring),
962 			cpu_to_virtio16(_vq->vdev, vq->last_used_idx + bufs));
963 
964 	if (unlikely((u16)(virtio16_to_cpu(_vq->vdev, vq->split.vring.used->idx)
965 					- vq->last_used_idx) > bufs)) {
966 		END_USE(vq);
967 		return false;
968 	}
969 
970 	END_USE(vq);
971 	return true;
972 }
973 
974 static void *virtqueue_detach_unused_buf_split(struct virtqueue *_vq)
975 {
976 	struct vring_virtqueue *vq = to_vvq(_vq);
977 	unsigned int i;
978 	void *buf;
979 
980 	START_USE(vq);
981 
982 	for (i = 0; i < vq->split.vring.num; i++) {
983 		if (!vq->split.desc_state[i].data)
984 			continue;
985 		/* detach_buf_split clears data, so grab it now. */
986 		buf = vq->split.desc_state[i].data;
987 		detach_buf_split(vq, i, NULL);
988 		vq->split.avail_idx_shadow--;
989 		vq->split.vring.avail->idx = cpu_to_virtio16(_vq->vdev,
990 				vq->split.avail_idx_shadow);
991 		END_USE(vq);
992 		return buf;
993 	}
994 	/* That should have freed everything. */
995 	BUG_ON(vq->vq.num_free != vq->split.vring.num);
996 
997 	END_USE(vq);
998 	return NULL;
999 }
1000 
1001 static void virtqueue_vring_init_split(struct vring_virtqueue_split *vring_split,
1002 				       struct vring_virtqueue *vq)
1003 {
1004 	struct virtio_device *vdev;
1005 
1006 	vdev = vq->vq.vdev;
1007 
1008 	vring_split->avail_flags_shadow = 0;
1009 	vring_split->avail_idx_shadow = 0;
1010 
1011 	/* No callback?  Tell other side not to bother us. */
1012 	if (!vq->vq.callback) {
1013 		vring_split->avail_flags_shadow |= VRING_AVAIL_F_NO_INTERRUPT;
1014 		if (!vq->event)
1015 			vring_split->vring.avail->flags = cpu_to_virtio16(vdev,
1016 					vring_split->avail_flags_shadow);
1017 	}
1018 }
1019 
1020 static void virtqueue_reinit_split(struct vring_virtqueue *vq)
1021 {
1022 	int num;
1023 
1024 	num = vq->split.vring.num;
1025 
1026 	vq->split.vring.avail->flags = 0;
1027 	vq->split.vring.avail->idx = 0;
1028 
1029 	/* reset avail event */
1030 	vq->split.vring.avail->ring[num] = 0;
1031 
1032 	vq->split.vring.used->flags = 0;
1033 	vq->split.vring.used->idx = 0;
1034 
1035 	/* reset used event */
1036 	*(__virtio16 *)&(vq->split.vring.used->ring[num]) = 0;
1037 
1038 	virtqueue_init(vq, num);
1039 
1040 	virtqueue_vring_init_split(&vq->split, vq);
1041 }
1042 
1043 static void virtqueue_vring_attach_split(struct vring_virtqueue *vq,
1044 					 struct vring_virtqueue_split *vring_split)
1045 {
1046 	vq->split = *vring_split;
1047 
1048 	/* Put everything in free lists. */
1049 	vq->free_head = 0;
1050 }
1051 
1052 static int vring_alloc_state_extra_split(struct vring_virtqueue_split *vring_split)
1053 {
1054 	struct vring_desc_state_split *state;
1055 	struct vring_desc_extra *extra;
1056 	u32 num = vring_split->vring.num;
1057 
1058 	state = kmalloc_array(num, sizeof(struct vring_desc_state_split), GFP_KERNEL);
1059 	if (!state)
1060 		goto err_state;
1061 
1062 	extra = vring_alloc_desc_extra(num);
1063 	if (!extra)
1064 		goto err_extra;
1065 
1066 	memset(state, 0, num * sizeof(struct vring_desc_state_split));
1067 
1068 	vring_split->desc_state = state;
1069 	vring_split->desc_extra = extra;
1070 	return 0;
1071 
1072 err_extra:
1073 	kfree(state);
1074 err_state:
1075 	return -ENOMEM;
1076 }
1077 
1078 static void vring_free_split(struct vring_virtqueue_split *vring_split,
1079 			     struct virtio_device *vdev, struct device *dma_dev)
1080 {
1081 	vring_free_queue(vdev, vring_split->queue_size_in_bytes,
1082 			 vring_split->vring.desc,
1083 			 vring_split->queue_dma_addr,
1084 			 dma_dev);
1085 
1086 	kfree(vring_split->desc_state);
1087 	kfree(vring_split->desc_extra);
1088 }
1089 
1090 static int vring_alloc_queue_split(struct vring_virtqueue_split *vring_split,
1091 				   struct virtio_device *vdev,
1092 				   u32 num,
1093 				   unsigned int vring_align,
1094 				   bool may_reduce_num,
1095 				   struct device *dma_dev)
1096 {
1097 	void *queue = NULL;
1098 	dma_addr_t dma_addr;
1099 
1100 	/* We assume num is a power of 2. */
1101 	if (!is_power_of_2(num)) {
1102 		dev_warn(&vdev->dev, "Bad virtqueue length %u\n", num);
1103 		return -EINVAL;
1104 	}
1105 
1106 	/* TODO: allocate each queue chunk individually */
1107 	for (; num && vring_size(num, vring_align) > PAGE_SIZE; num /= 2) {
1108 		queue = vring_alloc_queue(vdev, vring_size(num, vring_align),
1109 					  &dma_addr,
1110 					  GFP_KERNEL | __GFP_NOWARN | __GFP_ZERO,
1111 					  dma_dev);
1112 		if (queue)
1113 			break;
1114 		if (!may_reduce_num)
1115 			return -ENOMEM;
1116 	}
1117 
1118 	if (!num)
1119 		return -ENOMEM;
1120 
1121 	if (!queue) {
1122 		/* Try to get a single page. You are my only hope! */
1123 		queue = vring_alloc_queue(vdev, vring_size(num, vring_align),
1124 					  &dma_addr, GFP_KERNEL | __GFP_ZERO,
1125 					  dma_dev);
1126 	}
1127 	if (!queue)
1128 		return -ENOMEM;
1129 
1130 	vring_init(&vring_split->vring, num, queue, vring_align);
1131 
1132 	vring_split->queue_dma_addr = dma_addr;
1133 	vring_split->queue_size_in_bytes = vring_size(num, vring_align);
1134 
1135 	vring_split->vring_align = vring_align;
1136 	vring_split->may_reduce_num = may_reduce_num;
1137 
1138 	return 0;
1139 }
1140 
1141 static struct virtqueue *vring_create_virtqueue_split(
1142 	unsigned int index,
1143 	unsigned int num,
1144 	unsigned int vring_align,
1145 	struct virtio_device *vdev,
1146 	bool weak_barriers,
1147 	bool may_reduce_num,
1148 	bool context,
1149 	bool (*notify)(struct virtqueue *),
1150 	void (*callback)(struct virtqueue *),
1151 	const char *name,
1152 	struct device *dma_dev)
1153 {
1154 	struct vring_virtqueue_split vring_split = {};
1155 	struct virtqueue *vq;
1156 	int err;
1157 
1158 	err = vring_alloc_queue_split(&vring_split, vdev, num, vring_align,
1159 				      may_reduce_num, dma_dev);
1160 	if (err)
1161 		return NULL;
1162 
1163 	vq = __vring_new_virtqueue(index, &vring_split, vdev, weak_barriers,
1164 				   context, notify, callback, name, dma_dev);
1165 	if (!vq) {
1166 		vring_free_split(&vring_split, vdev, dma_dev);
1167 		return NULL;
1168 	}
1169 
1170 	to_vvq(vq)->we_own_ring = true;
1171 
1172 	return vq;
1173 }
1174 
1175 static int virtqueue_resize_split(struct virtqueue *_vq, u32 num)
1176 {
1177 	struct vring_virtqueue_split vring_split = {};
1178 	struct vring_virtqueue *vq = to_vvq(_vq);
1179 	struct virtio_device *vdev = _vq->vdev;
1180 	int err;
1181 
1182 	err = vring_alloc_queue_split(&vring_split, vdev, num,
1183 				      vq->split.vring_align,
1184 				      vq->split.may_reduce_num,
1185 				      vring_dma_dev(vq));
1186 	if (err)
1187 		goto err;
1188 
1189 	err = vring_alloc_state_extra_split(&vring_split);
1190 	if (err)
1191 		goto err_state_extra;
1192 
1193 	vring_free(&vq->vq);
1194 
1195 	virtqueue_vring_init_split(&vring_split, vq);
1196 
1197 	virtqueue_init(vq, vring_split.vring.num);
1198 	virtqueue_vring_attach_split(vq, &vring_split);
1199 
1200 	return 0;
1201 
1202 err_state_extra:
1203 	vring_free_split(&vring_split, vdev, vring_dma_dev(vq));
1204 err:
1205 	virtqueue_reinit_split(vq);
1206 	return -ENOMEM;
1207 }
1208 
1209 
1210 /*
1211  * Packed ring specific functions - *_packed().
1212  */
1213 static bool packed_used_wrap_counter(u16 last_used_idx)
1214 {
1215 	return !!(last_used_idx & (1 << VRING_PACKED_EVENT_F_WRAP_CTR));
1216 }
1217 
1218 static u16 packed_last_used(u16 last_used_idx)
1219 {
1220 	return last_used_idx & ~(-(1 << VRING_PACKED_EVENT_F_WRAP_CTR));
1221 }
1222 
1223 static void vring_unmap_extra_packed(const struct vring_virtqueue *vq,
1224 				     const struct vring_desc_extra *extra)
1225 {
1226 	u16 flags;
1227 
1228 	flags = extra->flags;
1229 
1230 	if (flags & VRING_DESC_F_INDIRECT) {
1231 		if (!vq->use_dma_api)
1232 			return;
1233 
1234 		dma_unmap_single(vring_dma_dev(vq),
1235 				 extra->addr, extra->len,
1236 				 (flags & VRING_DESC_F_WRITE) ?
1237 				 DMA_FROM_DEVICE : DMA_TO_DEVICE);
1238 	} else {
1239 		if (!vq->do_unmap)
1240 			return;
1241 
1242 		dma_unmap_page(vring_dma_dev(vq),
1243 			       extra->addr, extra->len,
1244 			       (flags & VRING_DESC_F_WRITE) ?
1245 			       DMA_FROM_DEVICE : DMA_TO_DEVICE);
1246 	}
1247 }
1248 
1249 static void vring_unmap_desc_packed(const struct vring_virtqueue *vq,
1250 				    const struct vring_packed_desc *desc)
1251 {
1252 	u16 flags;
1253 
1254 	if (!vq->do_unmap)
1255 		return;
1256 
1257 	flags = le16_to_cpu(desc->flags);
1258 
1259 	dma_unmap_page(vring_dma_dev(vq),
1260 		       le64_to_cpu(desc->addr),
1261 		       le32_to_cpu(desc->len),
1262 		       (flags & VRING_DESC_F_WRITE) ?
1263 		       DMA_FROM_DEVICE : DMA_TO_DEVICE);
1264 }
1265 
1266 static struct vring_packed_desc *alloc_indirect_packed(unsigned int total_sg,
1267 						       gfp_t gfp)
1268 {
1269 	struct vring_packed_desc *desc;
1270 
1271 	/*
1272 	 * We require lowmem mappings for the descriptors because
1273 	 * otherwise virt_to_phys will give us bogus addresses in the
1274 	 * virtqueue.
1275 	 */
1276 	gfp &= ~__GFP_HIGHMEM;
1277 
1278 	desc = kmalloc_array(total_sg, sizeof(struct vring_packed_desc), gfp);
1279 
1280 	return desc;
1281 }
1282 
1283 static int virtqueue_add_indirect_packed(struct vring_virtqueue *vq,
1284 					 struct scatterlist *sgs[],
1285 					 unsigned int total_sg,
1286 					 unsigned int out_sgs,
1287 					 unsigned int in_sgs,
1288 					 void *data,
1289 					 gfp_t gfp)
1290 {
1291 	struct vring_packed_desc *desc;
1292 	struct scatterlist *sg;
1293 	unsigned int i, n, err_idx;
1294 	u16 head, id;
1295 	dma_addr_t addr;
1296 
1297 	head = vq->packed.next_avail_idx;
1298 	desc = alloc_indirect_packed(total_sg, gfp);
1299 	if (!desc)
1300 		return -ENOMEM;
1301 
1302 	if (unlikely(vq->vq.num_free < 1)) {
1303 		pr_debug("Can't add buf len 1 - avail = 0\n");
1304 		kfree(desc);
1305 		END_USE(vq);
1306 		return -ENOSPC;
1307 	}
1308 
1309 	i = 0;
1310 	id = vq->free_head;
1311 	BUG_ON(id == vq->packed.vring.num);
1312 
1313 	for (n = 0; n < out_sgs + in_sgs; n++) {
1314 		for (sg = sgs[n]; sg; sg = sg_next(sg)) {
1315 			if (vring_map_one_sg(vq, sg, n < out_sgs ?
1316 					     DMA_TO_DEVICE : DMA_FROM_DEVICE, &addr))
1317 				goto unmap_release;
1318 
1319 			desc[i].flags = cpu_to_le16(n < out_sgs ?
1320 						0 : VRING_DESC_F_WRITE);
1321 			desc[i].addr = cpu_to_le64(addr);
1322 			desc[i].len = cpu_to_le32(sg->length);
1323 			i++;
1324 		}
1325 	}
1326 
1327 	/* Now that the indirect table is filled in, map it. */
1328 	addr = vring_map_single(vq, desc,
1329 			total_sg * sizeof(struct vring_packed_desc),
1330 			DMA_TO_DEVICE);
1331 	if (vring_mapping_error(vq, addr)) {
1332 		if (vq->premapped)
1333 			goto free_desc;
1334 
1335 		goto unmap_release;
1336 	}
1337 
1338 	vq->packed.vring.desc[head].addr = cpu_to_le64(addr);
1339 	vq->packed.vring.desc[head].len = cpu_to_le32(total_sg *
1340 				sizeof(struct vring_packed_desc));
1341 	vq->packed.vring.desc[head].id = cpu_to_le16(id);
1342 
1343 	if (vq->use_dma_api) {
1344 		vq->packed.desc_extra[id].addr = addr;
1345 		vq->packed.desc_extra[id].len = total_sg *
1346 				sizeof(struct vring_packed_desc);
1347 		vq->packed.desc_extra[id].flags = VRING_DESC_F_INDIRECT |
1348 						  vq->packed.avail_used_flags;
1349 	}
1350 
1351 	/*
1352 	 * A driver MUST NOT make the first descriptor in the list
1353 	 * available before all subsequent descriptors comprising
1354 	 * the list are made available.
1355 	 */
1356 	virtio_wmb(vq->weak_barriers);
1357 	vq->packed.vring.desc[head].flags = cpu_to_le16(VRING_DESC_F_INDIRECT |
1358 						vq->packed.avail_used_flags);
1359 
1360 	/* We're using some buffers from the free list. */
1361 	vq->vq.num_free -= 1;
1362 
1363 	/* Update free pointer */
1364 	n = head + 1;
1365 	if (n >= vq->packed.vring.num) {
1366 		n = 0;
1367 		vq->packed.avail_wrap_counter ^= 1;
1368 		vq->packed.avail_used_flags ^=
1369 				1 << VRING_PACKED_DESC_F_AVAIL |
1370 				1 << VRING_PACKED_DESC_F_USED;
1371 	}
1372 	vq->packed.next_avail_idx = n;
1373 	vq->free_head = vq->packed.desc_extra[id].next;
1374 
1375 	/* Store token and indirect buffer state. */
1376 	vq->packed.desc_state[id].num = 1;
1377 	vq->packed.desc_state[id].data = data;
1378 	vq->packed.desc_state[id].indir_desc = desc;
1379 	vq->packed.desc_state[id].last = id;
1380 
1381 	vq->num_added += 1;
1382 
1383 	pr_debug("Added buffer head %i to %p\n", head, vq);
1384 	END_USE(vq);
1385 
1386 	return 0;
1387 
1388 unmap_release:
1389 	err_idx = i;
1390 
1391 	for (i = 0; i < err_idx; i++)
1392 		vring_unmap_desc_packed(vq, &desc[i]);
1393 
1394 free_desc:
1395 	kfree(desc);
1396 
1397 	END_USE(vq);
1398 	return -ENOMEM;
1399 }
1400 
1401 static inline int virtqueue_add_packed(struct virtqueue *_vq,
1402 				       struct scatterlist *sgs[],
1403 				       unsigned int total_sg,
1404 				       unsigned int out_sgs,
1405 				       unsigned int in_sgs,
1406 				       void *data,
1407 				       void *ctx,
1408 				       gfp_t gfp)
1409 {
1410 	struct vring_virtqueue *vq = to_vvq(_vq);
1411 	struct vring_packed_desc *desc;
1412 	struct scatterlist *sg;
1413 	unsigned int i, n, c, descs_used, err_idx;
1414 	__le16 head_flags, flags;
1415 	u16 head, id, prev, curr, avail_used_flags;
1416 	int err;
1417 
1418 	START_USE(vq);
1419 
1420 	BUG_ON(data == NULL);
1421 	BUG_ON(ctx && vq->indirect);
1422 
1423 	if (unlikely(vq->broken)) {
1424 		END_USE(vq);
1425 		return -EIO;
1426 	}
1427 
1428 	LAST_ADD_TIME_UPDATE(vq);
1429 
1430 	BUG_ON(total_sg == 0);
1431 
1432 	if (virtqueue_use_indirect(vq, total_sg)) {
1433 		err = virtqueue_add_indirect_packed(vq, sgs, total_sg, out_sgs,
1434 						    in_sgs, data, gfp);
1435 		if (err != -ENOMEM) {
1436 			END_USE(vq);
1437 			return err;
1438 		}
1439 
1440 		/* fall back on direct */
1441 	}
1442 
1443 	head = vq->packed.next_avail_idx;
1444 	avail_used_flags = vq->packed.avail_used_flags;
1445 
1446 	WARN_ON_ONCE(total_sg > vq->packed.vring.num && !vq->indirect);
1447 
1448 	desc = vq->packed.vring.desc;
1449 	i = head;
1450 	descs_used = total_sg;
1451 
1452 	if (unlikely(vq->vq.num_free < descs_used)) {
1453 		pr_debug("Can't add buf len %i - avail = %i\n",
1454 			 descs_used, vq->vq.num_free);
1455 		END_USE(vq);
1456 		return -ENOSPC;
1457 	}
1458 
1459 	id = vq->free_head;
1460 	BUG_ON(id == vq->packed.vring.num);
1461 
1462 	curr = id;
1463 	c = 0;
1464 	for (n = 0; n < out_sgs + in_sgs; n++) {
1465 		for (sg = sgs[n]; sg; sg = sg_next(sg)) {
1466 			dma_addr_t addr;
1467 
1468 			if (vring_map_one_sg(vq, sg, n < out_sgs ?
1469 					     DMA_TO_DEVICE : DMA_FROM_DEVICE, &addr))
1470 				goto unmap_release;
1471 
1472 			flags = cpu_to_le16(vq->packed.avail_used_flags |
1473 				    (++c == total_sg ? 0 : VRING_DESC_F_NEXT) |
1474 				    (n < out_sgs ? 0 : VRING_DESC_F_WRITE));
1475 			if (i == head)
1476 				head_flags = flags;
1477 			else
1478 				desc[i].flags = flags;
1479 
1480 			desc[i].addr = cpu_to_le64(addr);
1481 			desc[i].len = cpu_to_le32(sg->length);
1482 			desc[i].id = cpu_to_le16(id);
1483 
1484 			if (unlikely(vq->use_dma_api)) {
1485 				vq->packed.desc_extra[curr].addr = addr;
1486 				vq->packed.desc_extra[curr].len = sg->length;
1487 				vq->packed.desc_extra[curr].flags =
1488 					le16_to_cpu(flags);
1489 			}
1490 			prev = curr;
1491 			curr = vq->packed.desc_extra[curr].next;
1492 
1493 			if ((unlikely(++i >= vq->packed.vring.num))) {
1494 				i = 0;
1495 				vq->packed.avail_used_flags ^=
1496 					1 << VRING_PACKED_DESC_F_AVAIL |
1497 					1 << VRING_PACKED_DESC_F_USED;
1498 			}
1499 		}
1500 	}
1501 
1502 	if (i <= head)
1503 		vq->packed.avail_wrap_counter ^= 1;
1504 
1505 	/* We're using some buffers from the free list. */
1506 	vq->vq.num_free -= descs_used;
1507 
1508 	/* Update free pointer */
1509 	vq->packed.next_avail_idx = i;
1510 	vq->free_head = curr;
1511 
1512 	/* Store token. */
1513 	vq->packed.desc_state[id].num = descs_used;
1514 	vq->packed.desc_state[id].data = data;
1515 	vq->packed.desc_state[id].indir_desc = ctx;
1516 	vq->packed.desc_state[id].last = prev;
1517 
1518 	/*
1519 	 * A driver MUST NOT make the first descriptor in the list
1520 	 * available before all subsequent descriptors comprising
1521 	 * the list are made available.
1522 	 */
1523 	virtio_wmb(vq->weak_barriers);
1524 	vq->packed.vring.desc[head].flags = head_flags;
1525 	vq->num_added += descs_used;
1526 
1527 	pr_debug("Added buffer head %i to %p\n", head, vq);
1528 	END_USE(vq);
1529 
1530 	return 0;
1531 
1532 unmap_release:
1533 	err_idx = i;
1534 	i = head;
1535 	curr = vq->free_head;
1536 
1537 	vq->packed.avail_used_flags = avail_used_flags;
1538 
1539 	for (n = 0; n < total_sg; n++) {
1540 		if (i == err_idx)
1541 			break;
1542 		vring_unmap_extra_packed(vq, &vq->packed.desc_extra[curr]);
1543 		curr = vq->packed.desc_extra[curr].next;
1544 		i++;
1545 		if (i >= vq->packed.vring.num)
1546 			i = 0;
1547 	}
1548 
1549 	END_USE(vq);
1550 	return -EIO;
1551 }
1552 
1553 static bool virtqueue_kick_prepare_packed(struct virtqueue *_vq)
1554 {
1555 	struct vring_virtqueue *vq = to_vvq(_vq);
1556 	u16 new, old, off_wrap, flags, wrap_counter, event_idx;
1557 	bool needs_kick;
1558 	union {
1559 		struct {
1560 			__le16 off_wrap;
1561 			__le16 flags;
1562 		};
1563 		u32 u32;
1564 	} snapshot;
1565 
1566 	START_USE(vq);
1567 
1568 	/*
1569 	 * We need to expose the new flags value before checking notification
1570 	 * suppressions.
1571 	 */
1572 	virtio_mb(vq->weak_barriers);
1573 
1574 	old = vq->packed.next_avail_idx - vq->num_added;
1575 	new = vq->packed.next_avail_idx;
1576 	vq->num_added = 0;
1577 
1578 	snapshot.u32 = *(u32 *)vq->packed.vring.device;
1579 	flags = le16_to_cpu(snapshot.flags);
1580 
1581 	LAST_ADD_TIME_CHECK(vq);
1582 	LAST_ADD_TIME_INVALID(vq);
1583 
1584 	if (flags != VRING_PACKED_EVENT_FLAG_DESC) {
1585 		needs_kick = (flags != VRING_PACKED_EVENT_FLAG_DISABLE);
1586 		goto out;
1587 	}
1588 
1589 	off_wrap = le16_to_cpu(snapshot.off_wrap);
1590 
1591 	wrap_counter = off_wrap >> VRING_PACKED_EVENT_F_WRAP_CTR;
1592 	event_idx = off_wrap & ~(1 << VRING_PACKED_EVENT_F_WRAP_CTR);
1593 	if (wrap_counter != vq->packed.avail_wrap_counter)
1594 		event_idx -= vq->packed.vring.num;
1595 
1596 	needs_kick = vring_need_event(event_idx, new, old);
1597 out:
1598 	END_USE(vq);
1599 	return needs_kick;
1600 }
1601 
1602 static void detach_buf_packed(struct vring_virtqueue *vq,
1603 			      unsigned int id, void **ctx)
1604 {
1605 	struct vring_desc_state_packed *state = NULL;
1606 	struct vring_packed_desc *desc;
1607 	unsigned int i, curr;
1608 
1609 	state = &vq->packed.desc_state[id];
1610 
1611 	/* Clear data ptr. */
1612 	state->data = NULL;
1613 
1614 	vq->packed.desc_extra[state->last].next = vq->free_head;
1615 	vq->free_head = id;
1616 	vq->vq.num_free += state->num;
1617 
1618 	if (unlikely(vq->use_dma_api)) {
1619 		curr = id;
1620 		for (i = 0; i < state->num; i++) {
1621 			vring_unmap_extra_packed(vq,
1622 						 &vq->packed.desc_extra[curr]);
1623 			curr = vq->packed.desc_extra[curr].next;
1624 		}
1625 	}
1626 
1627 	if (vq->indirect) {
1628 		u32 len;
1629 
1630 		/* Free the indirect table, if any, now that it's unmapped. */
1631 		desc = state->indir_desc;
1632 		if (!desc)
1633 			return;
1634 
1635 		if (vq->do_unmap) {
1636 			len = vq->packed.desc_extra[id].len;
1637 			for (i = 0; i < len / sizeof(struct vring_packed_desc);
1638 					i++)
1639 				vring_unmap_desc_packed(vq, &desc[i]);
1640 		}
1641 		kfree(desc);
1642 		state->indir_desc = NULL;
1643 	} else if (ctx) {
1644 		*ctx = state->indir_desc;
1645 	}
1646 }
1647 
1648 static inline bool is_used_desc_packed(const struct vring_virtqueue *vq,
1649 				       u16 idx, bool used_wrap_counter)
1650 {
1651 	bool avail, used;
1652 	u16 flags;
1653 
1654 	flags = le16_to_cpu(vq->packed.vring.desc[idx].flags);
1655 	avail = !!(flags & (1 << VRING_PACKED_DESC_F_AVAIL));
1656 	used = !!(flags & (1 << VRING_PACKED_DESC_F_USED));
1657 
1658 	return avail == used && used == used_wrap_counter;
1659 }
1660 
1661 static bool more_used_packed(const struct vring_virtqueue *vq)
1662 {
1663 	u16 last_used;
1664 	u16 last_used_idx;
1665 	bool used_wrap_counter;
1666 
1667 	last_used_idx = READ_ONCE(vq->last_used_idx);
1668 	last_used = packed_last_used(last_used_idx);
1669 	used_wrap_counter = packed_used_wrap_counter(last_used_idx);
1670 	return is_used_desc_packed(vq, last_used, used_wrap_counter);
1671 }
1672 
1673 static void *virtqueue_get_buf_ctx_packed(struct virtqueue *_vq,
1674 					  unsigned int *len,
1675 					  void **ctx)
1676 {
1677 	struct vring_virtqueue *vq = to_vvq(_vq);
1678 	u16 last_used, id, last_used_idx;
1679 	bool used_wrap_counter;
1680 	void *ret;
1681 
1682 	START_USE(vq);
1683 
1684 	if (unlikely(vq->broken)) {
1685 		END_USE(vq);
1686 		return NULL;
1687 	}
1688 
1689 	if (!more_used_packed(vq)) {
1690 		pr_debug("No more buffers in queue\n");
1691 		END_USE(vq);
1692 		return NULL;
1693 	}
1694 
1695 	/* Only get used elements after they have been exposed by host. */
1696 	virtio_rmb(vq->weak_barriers);
1697 
1698 	last_used_idx = READ_ONCE(vq->last_used_idx);
1699 	used_wrap_counter = packed_used_wrap_counter(last_used_idx);
1700 	last_used = packed_last_used(last_used_idx);
1701 	id = le16_to_cpu(vq->packed.vring.desc[last_used].id);
1702 	*len = le32_to_cpu(vq->packed.vring.desc[last_used].len);
1703 
1704 	if (unlikely(id >= vq->packed.vring.num)) {
1705 		BAD_RING(vq, "id %u out of range\n", id);
1706 		return NULL;
1707 	}
1708 	if (unlikely(!vq->packed.desc_state[id].data)) {
1709 		BAD_RING(vq, "id %u is not a head!\n", id);
1710 		return NULL;
1711 	}
1712 
1713 	/* detach_buf_packed clears data, so grab it now. */
1714 	ret = vq->packed.desc_state[id].data;
1715 	detach_buf_packed(vq, id, ctx);
1716 
1717 	last_used += vq->packed.desc_state[id].num;
1718 	if (unlikely(last_used >= vq->packed.vring.num)) {
1719 		last_used -= vq->packed.vring.num;
1720 		used_wrap_counter ^= 1;
1721 	}
1722 
1723 	last_used = (last_used | (used_wrap_counter << VRING_PACKED_EVENT_F_WRAP_CTR));
1724 	WRITE_ONCE(vq->last_used_idx, last_used);
1725 
1726 	/*
1727 	 * If we expect an interrupt for the next entry, tell host
1728 	 * by writing event index and flush out the write before
1729 	 * the read in the next get_buf call.
1730 	 */
1731 	if (vq->packed.event_flags_shadow == VRING_PACKED_EVENT_FLAG_DESC)
1732 		virtio_store_mb(vq->weak_barriers,
1733 				&vq->packed.vring.driver->off_wrap,
1734 				cpu_to_le16(vq->last_used_idx));
1735 
1736 	LAST_ADD_TIME_INVALID(vq);
1737 
1738 	END_USE(vq);
1739 	return ret;
1740 }
1741 
1742 static void virtqueue_disable_cb_packed(struct virtqueue *_vq)
1743 {
1744 	struct vring_virtqueue *vq = to_vvq(_vq);
1745 
1746 	if (vq->packed.event_flags_shadow != VRING_PACKED_EVENT_FLAG_DISABLE) {
1747 		vq->packed.event_flags_shadow = VRING_PACKED_EVENT_FLAG_DISABLE;
1748 
1749 		/*
1750 		 * If device triggered an event already it won't trigger one again:
1751 		 * no need to disable.
1752 		 */
1753 		if (vq->event_triggered)
1754 			return;
1755 
1756 		vq->packed.vring.driver->flags =
1757 			cpu_to_le16(vq->packed.event_flags_shadow);
1758 	}
1759 }
1760 
1761 static unsigned int virtqueue_enable_cb_prepare_packed(struct virtqueue *_vq)
1762 {
1763 	struct vring_virtqueue *vq = to_vvq(_vq);
1764 
1765 	START_USE(vq);
1766 
1767 	/*
1768 	 * We optimistically turn back on interrupts, then check if there was
1769 	 * more to do.
1770 	 */
1771 
1772 	if (vq->event) {
1773 		vq->packed.vring.driver->off_wrap =
1774 			cpu_to_le16(vq->last_used_idx);
1775 		/*
1776 		 * We need to update event offset and event wrap
1777 		 * counter first before updating event flags.
1778 		 */
1779 		virtio_wmb(vq->weak_barriers);
1780 	}
1781 
1782 	if (vq->packed.event_flags_shadow == VRING_PACKED_EVENT_FLAG_DISABLE) {
1783 		vq->packed.event_flags_shadow = vq->event ?
1784 				VRING_PACKED_EVENT_FLAG_DESC :
1785 				VRING_PACKED_EVENT_FLAG_ENABLE;
1786 		vq->packed.vring.driver->flags =
1787 				cpu_to_le16(vq->packed.event_flags_shadow);
1788 	}
1789 
1790 	END_USE(vq);
1791 	return vq->last_used_idx;
1792 }
1793 
1794 static bool virtqueue_poll_packed(struct virtqueue *_vq, u16 off_wrap)
1795 {
1796 	struct vring_virtqueue *vq = to_vvq(_vq);
1797 	bool wrap_counter;
1798 	u16 used_idx;
1799 
1800 	wrap_counter = off_wrap >> VRING_PACKED_EVENT_F_WRAP_CTR;
1801 	used_idx = off_wrap & ~(1 << VRING_PACKED_EVENT_F_WRAP_CTR);
1802 
1803 	return is_used_desc_packed(vq, used_idx, wrap_counter);
1804 }
1805 
1806 static bool virtqueue_enable_cb_delayed_packed(struct virtqueue *_vq)
1807 {
1808 	struct vring_virtqueue *vq = to_vvq(_vq);
1809 	u16 used_idx, wrap_counter, last_used_idx;
1810 	u16 bufs;
1811 
1812 	START_USE(vq);
1813 
1814 	/*
1815 	 * We optimistically turn back on interrupts, then check if there was
1816 	 * more to do.
1817 	 */
1818 
1819 	if (vq->event) {
1820 		/* TODO: tune this threshold */
1821 		bufs = (vq->packed.vring.num - vq->vq.num_free) * 3 / 4;
1822 		last_used_idx = READ_ONCE(vq->last_used_idx);
1823 		wrap_counter = packed_used_wrap_counter(last_used_idx);
1824 
1825 		used_idx = packed_last_used(last_used_idx) + bufs;
1826 		if (used_idx >= vq->packed.vring.num) {
1827 			used_idx -= vq->packed.vring.num;
1828 			wrap_counter ^= 1;
1829 		}
1830 
1831 		vq->packed.vring.driver->off_wrap = cpu_to_le16(used_idx |
1832 			(wrap_counter << VRING_PACKED_EVENT_F_WRAP_CTR));
1833 
1834 		/*
1835 		 * We need to update event offset and event wrap
1836 		 * counter first before updating event flags.
1837 		 */
1838 		virtio_wmb(vq->weak_barriers);
1839 	}
1840 
1841 	if (vq->packed.event_flags_shadow == VRING_PACKED_EVENT_FLAG_DISABLE) {
1842 		vq->packed.event_flags_shadow = vq->event ?
1843 				VRING_PACKED_EVENT_FLAG_DESC :
1844 				VRING_PACKED_EVENT_FLAG_ENABLE;
1845 		vq->packed.vring.driver->flags =
1846 				cpu_to_le16(vq->packed.event_flags_shadow);
1847 	}
1848 
1849 	/*
1850 	 * We need to update event suppression structure first
1851 	 * before re-checking for more used buffers.
1852 	 */
1853 	virtio_mb(vq->weak_barriers);
1854 
1855 	last_used_idx = READ_ONCE(vq->last_used_idx);
1856 	wrap_counter = packed_used_wrap_counter(last_used_idx);
1857 	used_idx = packed_last_used(last_used_idx);
1858 	if (is_used_desc_packed(vq, used_idx, wrap_counter)) {
1859 		END_USE(vq);
1860 		return false;
1861 	}
1862 
1863 	END_USE(vq);
1864 	return true;
1865 }
1866 
1867 static void *virtqueue_detach_unused_buf_packed(struct virtqueue *_vq)
1868 {
1869 	struct vring_virtqueue *vq = to_vvq(_vq);
1870 	unsigned int i;
1871 	void *buf;
1872 
1873 	START_USE(vq);
1874 
1875 	for (i = 0; i < vq->packed.vring.num; i++) {
1876 		if (!vq->packed.desc_state[i].data)
1877 			continue;
1878 		/* detach_buf clears data, so grab it now. */
1879 		buf = vq->packed.desc_state[i].data;
1880 		detach_buf_packed(vq, i, NULL);
1881 		END_USE(vq);
1882 		return buf;
1883 	}
1884 	/* That should have freed everything. */
1885 	BUG_ON(vq->vq.num_free != vq->packed.vring.num);
1886 
1887 	END_USE(vq);
1888 	return NULL;
1889 }
1890 
1891 static struct vring_desc_extra *vring_alloc_desc_extra(unsigned int num)
1892 {
1893 	struct vring_desc_extra *desc_extra;
1894 	unsigned int i;
1895 
1896 	desc_extra = kmalloc_array(num, sizeof(struct vring_desc_extra),
1897 				   GFP_KERNEL);
1898 	if (!desc_extra)
1899 		return NULL;
1900 
1901 	memset(desc_extra, 0, num * sizeof(struct vring_desc_extra));
1902 
1903 	for (i = 0; i < num - 1; i++)
1904 		desc_extra[i].next = i + 1;
1905 
1906 	return desc_extra;
1907 }
1908 
1909 static void vring_free_packed(struct vring_virtqueue_packed *vring_packed,
1910 			      struct virtio_device *vdev,
1911 			      struct device *dma_dev)
1912 {
1913 	if (vring_packed->vring.desc)
1914 		vring_free_queue(vdev, vring_packed->ring_size_in_bytes,
1915 				 vring_packed->vring.desc,
1916 				 vring_packed->ring_dma_addr,
1917 				 dma_dev);
1918 
1919 	if (vring_packed->vring.driver)
1920 		vring_free_queue(vdev, vring_packed->event_size_in_bytes,
1921 				 vring_packed->vring.driver,
1922 				 vring_packed->driver_event_dma_addr,
1923 				 dma_dev);
1924 
1925 	if (vring_packed->vring.device)
1926 		vring_free_queue(vdev, vring_packed->event_size_in_bytes,
1927 				 vring_packed->vring.device,
1928 				 vring_packed->device_event_dma_addr,
1929 				 dma_dev);
1930 
1931 	kfree(vring_packed->desc_state);
1932 	kfree(vring_packed->desc_extra);
1933 }
1934 
1935 static int vring_alloc_queue_packed(struct vring_virtqueue_packed *vring_packed,
1936 				    struct virtio_device *vdev,
1937 				    u32 num, struct device *dma_dev)
1938 {
1939 	struct vring_packed_desc *ring;
1940 	struct vring_packed_desc_event *driver, *device;
1941 	dma_addr_t ring_dma_addr, driver_event_dma_addr, device_event_dma_addr;
1942 	size_t ring_size_in_bytes, event_size_in_bytes;
1943 
1944 	ring_size_in_bytes = num * sizeof(struct vring_packed_desc);
1945 
1946 	ring = vring_alloc_queue(vdev, ring_size_in_bytes,
1947 				 &ring_dma_addr,
1948 				 GFP_KERNEL | __GFP_NOWARN | __GFP_ZERO,
1949 				 dma_dev);
1950 	if (!ring)
1951 		goto err;
1952 
1953 	vring_packed->vring.desc         = ring;
1954 	vring_packed->ring_dma_addr      = ring_dma_addr;
1955 	vring_packed->ring_size_in_bytes = ring_size_in_bytes;
1956 
1957 	event_size_in_bytes = sizeof(struct vring_packed_desc_event);
1958 
1959 	driver = vring_alloc_queue(vdev, event_size_in_bytes,
1960 				   &driver_event_dma_addr,
1961 				   GFP_KERNEL | __GFP_NOWARN | __GFP_ZERO,
1962 				   dma_dev);
1963 	if (!driver)
1964 		goto err;
1965 
1966 	vring_packed->vring.driver          = driver;
1967 	vring_packed->event_size_in_bytes   = event_size_in_bytes;
1968 	vring_packed->driver_event_dma_addr = driver_event_dma_addr;
1969 
1970 	device = vring_alloc_queue(vdev, event_size_in_bytes,
1971 				   &device_event_dma_addr,
1972 				   GFP_KERNEL | __GFP_NOWARN | __GFP_ZERO,
1973 				   dma_dev);
1974 	if (!device)
1975 		goto err;
1976 
1977 	vring_packed->vring.device          = device;
1978 	vring_packed->device_event_dma_addr = device_event_dma_addr;
1979 
1980 	vring_packed->vring.num = num;
1981 
1982 	return 0;
1983 
1984 err:
1985 	vring_free_packed(vring_packed, vdev, dma_dev);
1986 	return -ENOMEM;
1987 }
1988 
1989 static int vring_alloc_state_extra_packed(struct vring_virtqueue_packed *vring_packed)
1990 {
1991 	struct vring_desc_state_packed *state;
1992 	struct vring_desc_extra *extra;
1993 	u32 num = vring_packed->vring.num;
1994 
1995 	state = kmalloc_array(num, sizeof(struct vring_desc_state_packed), GFP_KERNEL);
1996 	if (!state)
1997 		goto err_desc_state;
1998 
1999 	memset(state, 0, num * sizeof(struct vring_desc_state_packed));
2000 
2001 	extra = vring_alloc_desc_extra(num);
2002 	if (!extra)
2003 		goto err_desc_extra;
2004 
2005 	vring_packed->desc_state = state;
2006 	vring_packed->desc_extra = extra;
2007 
2008 	return 0;
2009 
2010 err_desc_extra:
2011 	kfree(state);
2012 err_desc_state:
2013 	return -ENOMEM;
2014 }
2015 
2016 static void virtqueue_vring_init_packed(struct vring_virtqueue_packed *vring_packed,
2017 					bool callback)
2018 {
2019 	vring_packed->next_avail_idx = 0;
2020 	vring_packed->avail_wrap_counter = 1;
2021 	vring_packed->event_flags_shadow = 0;
2022 	vring_packed->avail_used_flags = 1 << VRING_PACKED_DESC_F_AVAIL;
2023 
2024 	/* No callback?  Tell other side not to bother us. */
2025 	if (!callback) {
2026 		vring_packed->event_flags_shadow = VRING_PACKED_EVENT_FLAG_DISABLE;
2027 		vring_packed->vring.driver->flags =
2028 			cpu_to_le16(vring_packed->event_flags_shadow);
2029 	}
2030 }
2031 
2032 static void virtqueue_vring_attach_packed(struct vring_virtqueue *vq,
2033 					  struct vring_virtqueue_packed *vring_packed)
2034 {
2035 	vq->packed = *vring_packed;
2036 
2037 	/* Put everything in free lists. */
2038 	vq->free_head = 0;
2039 }
2040 
2041 static void virtqueue_reinit_packed(struct vring_virtqueue *vq)
2042 {
2043 	memset(vq->packed.vring.device, 0, vq->packed.event_size_in_bytes);
2044 	memset(vq->packed.vring.driver, 0, vq->packed.event_size_in_bytes);
2045 
2046 	/* we need to reset the desc.flags. For more, see is_used_desc_packed() */
2047 	memset(vq->packed.vring.desc, 0, vq->packed.ring_size_in_bytes);
2048 
2049 	virtqueue_init(vq, vq->packed.vring.num);
2050 	virtqueue_vring_init_packed(&vq->packed, !!vq->vq.callback);
2051 }
2052 
2053 static struct virtqueue *vring_create_virtqueue_packed(
2054 	unsigned int index,
2055 	unsigned int num,
2056 	unsigned int vring_align,
2057 	struct virtio_device *vdev,
2058 	bool weak_barriers,
2059 	bool may_reduce_num,
2060 	bool context,
2061 	bool (*notify)(struct virtqueue *),
2062 	void (*callback)(struct virtqueue *),
2063 	const char *name,
2064 	struct device *dma_dev)
2065 {
2066 	struct vring_virtqueue_packed vring_packed = {};
2067 	struct vring_virtqueue *vq;
2068 	int err;
2069 
2070 	if (vring_alloc_queue_packed(&vring_packed, vdev, num, dma_dev))
2071 		goto err_ring;
2072 
2073 	vq = kmalloc(sizeof(*vq), GFP_KERNEL);
2074 	if (!vq)
2075 		goto err_vq;
2076 
2077 	vq->vq.callback = callback;
2078 	vq->vq.vdev = vdev;
2079 	vq->vq.name = name;
2080 	vq->vq.index = index;
2081 	vq->vq.reset = false;
2082 	vq->we_own_ring = true;
2083 	vq->notify = notify;
2084 	vq->weak_barriers = weak_barriers;
2085 #ifdef CONFIG_VIRTIO_HARDEN_NOTIFICATION
2086 	vq->broken = true;
2087 #else
2088 	vq->broken = false;
2089 #endif
2090 	vq->packed_ring = true;
2091 	vq->dma_dev = dma_dev;
2092 	vq->use_dma_api = vring_use_dma_api(vdev);
2093 	vq->premapped = false;
2094 	vq->do_unmap = vq->use_dma_api;
2095 
2096 	vq->indirect = virtio_has_feature(vdev, VIRTIO_RING_F_INDIRECT_DESC) &&
2097 		!context;
2098 	vq->event = virtio_has_feature(vdev, VIRTIO_RING_F_EVENT_IDX);
2099 
2100 	if (virtio_has_feature(vdev, VIRTIO_F_ORDER_PLATFORM))
2101 		vq->weak_barriers = false;
2102 
2103 	err = vring_alloc_state_extra_packed(&vring_packed);
2104 	if (err)
2105 		goto err_state_extra;
2106 
2107 	virtqueue_vring_init_packed(&vring_packed, !!callback);
2108 
2109 	virtqueue_init(vq, num);
2110 	virtqueue_vring_attach_packed(vq, &vring_packed);
2111 
2112 	spin_lock(&vdev->vqs_list_lock);
2113 	list_add_tail(&vq->vq.list, &vdev->vqs);
2114 	spin_unlock(&vdev->vqs_list_lock);
2115 	return &vq->vq;
2116 
2117 err_state_extra:
2118 	kfree(vq);
2119 err_vq:
2120 	vring_free_packed(&vring_packed, vdev, dma_dev);
2121 err_ring:
2122 	return NULL;
2123 }
2124 
2125 static int virtqueue_resize_packed(struct virtqueue *_vq, u32 num)
2126 {
2127 	struct vring_virtqueue_packed vring_packed = {};
2128 	struct vring_virtqueue *vq = to_vvq(_vq);
2129 	struct virtio_device *vdev = _vq->vdev;
2130 	int err;
2131 
2132 	if (vring_alloc_queue_packed(&vring_packed, vdev, num, vring_dma_dev(vq)))
2133 		goto err_ring;
2134 
2135 	err = vring_alloc_state_extra_packed(&vring_packed);
2136 	if (err)
2137 		goto err_state_extra;
2138 
2139 	vring_free(&vq->vq);
2140 
2141 	virtqueue_vring_init_packed(&vring_packed, !!vq->vq.callback);
2142 
2143 	virtqueue_init(vq, vring_packed.vring.num);
2144 	virtqueue_vring_attach_packed(vq, &vring_packed);
2145 
2146 	return 0;
2147 
2148 err_state_extra:
2149 	vring_free_packed(&vring_packed, vdev, vring_dma_dev(vq));
2150 err_ring:
2151 	virtqueue_reinit_packed(vq);
2152 	return -ENOMEM;
2153 }
2154 
2155 static int virtqueue_disable_and_recycle(struct virtqueue *_vq,
2156 					 void (*recycle)(struct virtqueue *vq, void *buf))
2157 {
2158 	struct vring_virtqueue *vq = to_vvq(_vq);
2159 	struct virtio_device *vdev = vq->vq.vdev;
2160 	void *buf;
2161 	int err;
2162 
2163 	if (!vq->we_own_ring)
2164 		return -EPERM;
2165 
2166 	if (!vdev->config->disable_vq_and_reset)
2167 		return -ENOENT;
2168 
2169 	if (!vdev->config->enable_vq_after_reset)
2170 		return -ENOENT;
2171 
2172 	err = vdev->config->disable_vq_and_reset(_vq);
2173 	if (err)
2174 		return err;
2175 
2176 	while ((buf = virtqueue_detach_unused_buf(_vq)) != NULL)
2177 		recycle(_vq, buf);
2178 
2179 	return 0;
2180 }
2181 
2182 static int virtqueue_enable_after_reset(struct virtqueue *_vq)
2183 {
2184 	struct vring_virtqueue *vq = to_vvq(_vq);
2185 	struct virtio_device *vdev = vq->vq.vdev;
2186 
2187 	if (vdev->config->enable_vq_after_reset(_vq))
2188 		return -EBUSY;
2189 
2190 	return 0;
2191 }
2192 
2193 /*
2194  * Generic functions and exported symbols.
2195  */
2196 
2197 static inline int virtqueue_add(struct virtqueue *_vq,
2198 				struct scatterlist *sgs[],
2199 				unsigned int total_sg,
2200 				unsigned int out_sgs,
2201 				unsigned int in_sgs,
2202 				void *data,
2203 				void *ctx,
2204 				gfp_t gfp)
2205 {
2206 	struct vring_virtqueue *vq = to_vvq(_vq);
2207 
2208 	return vq->packed_ring ? virtqueue_add_packed(_vq, sgs, total_sg,
2209 					out_sgs, in_sgs, data, ctx, gfp) :
2210 				 virtqueue_add_split(_vq, sgs, total_sg,
2211 					out_sgs, in_sgs, data, ctx, gfp);
2212 }
2213 
2214 /**
2215  * virtqueue_add_sgs - expose buffers to other end
2216  * @_vq: the struct virtqueue we're talking about.
2217  * @sgs: array of terminated scatterlists.
2218  * @out_sgs: the number of scatterlists readable by other side
2219  * @in_sgs: the number of scatterlists which are writable (after readable ones)
2220  * @data: the token identifying the buffer.
2221  * @gfp: how to do memory allocations (if necessary).
2222  *
2223  * Caller must ensure we don't call this with other virtqueue operations
2224  * at the same time (except where noted).
2225  *
2226  * Returns zero or a negative error (ie. ENOSPC, ENOMEM, EIO).
2227  */
2228 int virtqueue_add_sgs(struct virtqueue *_vq,
2229 		      struct scatterlist *sgs[],
2230 		      unsigned int out_sgs,
2231 		      unsigned int in_sgs,
2232 		      void *data,
2233 		      gfp_t gfp)
2234 {
2235 	unsigned int i, total_sg = 0;
2236 
2237 	/* Count them first. */
2238 	for (i = 0; i < out_sgs + in_sgs; i++) {
2239 		struct scatterlist *sg;
2240 
2241 		for (sg = sgs[i]; sg; sg = sg_next(sg))
2242 			total_sg++;
2243 	}
2244 	return virtqueue_add(_vq, sgs, total_sg, out_sgs, in_sgs,
2245 			     data, NULL, gfp);
2246 }
2247 EXPORT_SYMBOL_GPL(virtqueue_add_sgs);
2248 
2249 /**
2250  * virtqueue_add_outbuf - expose output buffers to other end
2251  * @vq: the struct virtqueue we're talking about.
2252  * @sg: scatterlist (must be well-formed and terminated!)
2253  * @num: the number of entries in @sg readable by other side
2254  * @data: the token identifying the buffer.
2255  * @gfp: how to do memory allocations (if necessary).
2256  *
2257  * Caller must ensure we don't call this with other virtqueue operations
2258  * at the same time (except where noted).
2259  *
2260  * Returns zero or a negative error (ie. ENOSPC, ENOMEM, EIO).
2261  */
2262 int virtqueue_add_outbuf(struct virtqueue *vq,
2263 			 struct scatterlist *sg, unsigned int num,
2264 			 void *data,
2265 			 gfp_t gfp)
2266 {
2267 	return virtqueue_add(vq, &sg, num, 1, 0, data, NULL, gfp);
2268 }
2269 EXPORT_SYMBOL_GPL(virtqueue_add_outbuf);
2270 
2271 /**
2272  * virtqueue_add_inbuf - expose input buffers to other end
2273  * @vq: the struct virtqueue we're talking about.
2274  * @sg: scatterlist (must be well-formed and terminated!)
2275  * @num: the number of entries in @sg writable by other side
2276  * @data: the token identifying the buffer.
2277  * @gfp: how to do memory allocations (if necessary).
2278  *
2279  * Caller must ensure we don't call this with other virtqueue operations
2280  * at the same time (except where noted).
2281  *
2282  * Returns zero or a negative error (ie. ENOSPC, ENOMEM, EIO).
2283  */
2284 int virtqueue_add_inbuf(struct virtqueue *vq,
2285 			struct scatterlist *sg, unsigned int num,
2286 			void *data,
2287 			gfp_t gfp)
2288 {
2289 	return virtqueue_add(vq, &sg, num, 0, 1, data, NULL, gfp);
2290 }
2291 EXPORT_SYMBOL_GPL(virtqueue_add_inbuf);
2292 
2293 /**
2294  * virtqueue_add_inbuf_ctx - expose input buffers to other end
2295  * @vq: the struct virtqueue we're talking about.
2296  * @sg: scatterlist (must be well-formed and terminated!)
2297  * @num: the number of entries in @sg writable by other side
2298  * @data: the token identifying the buffer.
2299  * @ctx: extra context for the token
2300  * @gfp: how to do memory allocations (if necessary).
2301  *
2302  * Caller must ensure we don't call this with other virtqueue operations
2303  * at the same time (except where noted).
2304  *
2305  * Returns zero or a negative error (ie. ENOSPC, ENOMEM, EIO).
2306  */
2307 int virtqueue_add_inbuf_ctx(struct virtqueue *vq,
2308 			struct scatterlist *sg, unsigned int num,
2309 			void *data,
2310 			void *ctx,
2311 			gfp_t gfp)
2312 {
2313 	return virtqueue_add(vq, &sg, num, 0, 1, data, ctx, gfp);
2314 }
2315 EXPORT_SYMBOL_GPL(virtqueue_add_inbuf_ctx);
2316 
2317 /**
2318  * virtqueue_dma_dev - get the dma dev
2319  * @_vq: the struct virtqueue we're talking about.
2320  *
2321  * Returns the dma dev. That can been used for dma api.
2322  */
2323 struct device *virtqueue_dma_dev(struct virtqueue *_vq)
2324 {
2325 	struct vring_virtqueue *vq = to_vvq(_vq);
2326 
2327 	if (vq->use_dma_api)
2328 		return vring_dma_dev(vq);
2329 	else
2330 		return NULL;
2331 }
2332 EXPORT_SYMBOL_GPL(virtqueue_dma_dev);
2333 
2334 /**
2335  * virtqueue_kick_prepare - first half of split virtqueue_kick call.
2336  * @_vq: the struct virtqueue
2337  *
2338  * Instead of virtqueue_kick(), you can do:
2339  *	if (virtqueue_kick_prepare(vq))
2340  *		virtqueue_notify(vq);
2341  *
2342  * This is sometimes useful because the virtqueue_kick_prepare() needs
2343  * to be serialized, but the actual virtqueue_notify() call does not.
2344  */
2345 bool virtqueue_kick_prepare(struct virtqueue *_vq)
2346 {
2347 	struct vring_virtqueue *vq = to_vvq(_vq);
2348 
2349 	return vq->packed_ring ? virtqueue_kick_prepare_packed(_vq) :
2350 				 virtqueue_kick_prepare_split(_vq);
2351 }
2352 EXPORT_SYMBOL_GPL(virtqueue_kick_prepare);
2353 
2354 /**
2355  * virtqueue_notify - second half of split virtqueue_kick call.
2356  * @_vq: the struct virtqueue
2357  *
2358  * This does not need to be serialized.
2359  *
2360  * Returns false if host notify failed or queue is broken, otherwise true.
2361  */
2362 bool virtqueue_notify(struct virtqueue *_vq)
2363 {
2364 	struct vring_virtqueue *vq = to_vvq(_vq);
2365 
2366 	if (unlikely(vq->broken))
2367 		return false;
2368 
2369 	/* Prod other side to tell it about changes. */
2370 	if (!vq->notify(_vq)) {
2371 		vq->broken = true;
2372 		return false;
2373 	}
2374 	return true;
2375 }
2376 EXPORT_SYMBOL_GPL(virtqueue_notify);
2377 
2378 /**
2379  * virtqueue_kick - update after add_buf
2380  * @vq: the struct virtqueue
2381  *
2382  * After one or more virtqueue_add_* calls, invoke this to kick
2383  * the other side.
2384  *
2385  * Caller must ensure we don't call this with other virtqueue
2386  * operations at the same time (except where noted).
2387  *
2388  * Returns false if kick failed, otherwise true.
2389  */
2390 bool virtqueue_kick(struct virtqueue *vq)
2391 {
2392 	if (virtqueue_kick_prepare(vq))
2393 		return virtqueue_notify(vq);
2394 	return true;
2395 }
2396 EXPORT_SYMBOL_GPL(virtqueue_kick);
2397 
2398 /**
2399  * virtqueue_get_buf_ctx - get the next used buffer
2400  * @_vq: the struct virtqueue we're talking about.
2401  * @len: the length written into the buffer
2402  * @ctx: extra context for the token
2403  *
2404  * If the device wrote data into the buffer, @len will be set to the
2405  * amount written.  This means you don't need to clear the buffer
2406  * beforehand to ensure there's no data leakage in the case of short
2407  * writes.
2408  *
2409  * Caller must ensure we don't call this with other virtqueue
2410  * operations at the same time (except where noted).
2411  *
2412  * Returns NULL if there are no used buffers, or the "data" token
2413  * handed to virtqueue_add_*().
2414  */
2415 void *virtqueue_get_buf_ctx(struct virtqueue *_vq, unsigned int *len,
2416 			    void **ctx)
2417 {
2418 	struct vring_virtqueue *vq = to_vvq(_vq);
2419 
2420 	return vq->packed_ring ? virtqueue_get_buf_ctx_packed(_vq, len, ctx) :
2421 				 virtqueue_get_buf_ctx_split(_vq, len, ctx);
2422 }
2423 EXPORT_SYMBOL_GPL(virtqueue_get_buf_ctx);
2424 
2425 void *virtqueue_get_buf(struct virtqueue *_vq, unsigned int *len)
2426 {
2427 	return virtqueue_get_buf_ctx(_vq, len, NULL);
2428 }
2429 EXPORT_SYMBOL_GPL(virtqueue_get_buf);
2430 /**
2431  * virtqueue_disable_cb - disable callbacks
2432  * @_vq: the struct virtqueue we're talking about.
2433  *
2434  * Note that this is not necessarily synchronous, hence unreliable and only
2435  * useful as an optimization.
2436  *
2437  * Unlike other operations, this need not be serialized.
2438  */
2439 void virtqueue_disable_cb(struct virtqueue *_vq)
2440 {
2441 	struct vring_virtqueue *vq = to_vvq(_vq);
2442 
2443 	if (vq->packed_ring)
2444 		virtqueue_disable_cb_packed(_vq);
2445 	else
2446 		virtqueue_disable_cb_split(_vq);
2447 }
2448 EXPORT_SYMBOL_GPL(virtqueue_disable_cb);
2449 
2450 /**
2451  * virtqueue_enable_cb_prepare - restart callbacks after disable_cb
2452  * @_vq: the struct virtqueue we're talking about.
2453  *
2454  * This re-enables callbacks; it returns current queue state
2455  * in an opaque unsigned value. This value should be later tested by
2456  * virtqueue_poll, to detect a possible race between the driver checking for
2457  * more work, and enabling callbacks.
2458  *
2459  * Caller must ensure we don't call this with other virtqueue
2460  * operations at the same time (except where noted).
2461  */
2462 unsigned int virtqueue_enable_cb_prepare(struct virtqueue *_vq)
2463 {
2464 	struct vring_virtqueue *vq = to_vvq(_vq);
2465 
2466 	if (vq->event_triggered)
2467 		vq->event_triggered = false;
2468 
2469 	return vq->packed_ring ? virtqueue_enable_cb_prepare_packed(_vq) :
2470 				 virtqueue_enable_cb_prepare_split(_vq);
2471 }
2472 EXPORT_SYMBOL_GPL(virtqueue_enable_cb_prepare);
2473 
2474 /**
2475  * virtqueue_poll - query pending used buffers
2476  * @_vq: the struct virtqueue we're talking about.
2477  * @last_used_idx: virtqueue state (from call to virtqueue_enable_cb_prepare).
2478  *
2479  * Returns "true" if there are pending used buffers in the queue.
2480  *
2481  * This does not need to be serialized.
2482  */
2483 bool virtqueue_poll(struct virtqueue *_vq, unsigned int last_used_idx)
2484 {
2485 	struct vring_virtqueue *vq = to_vvq(_vq);
2486 
2487 	if (unlikely(vq->broken))
2488 		return false;
2489 
2490 	virtio_mb(vq->weak_barriers);
2491 	return vq->packed_ring ? virtqueue_poll_packed(_vq, last_used_idx) :
2492 				 virtqueue_poll_split(_vq, last_used_idx);
2493 }
2494 EXPORT_SYMBOL_GPL(virtqueue_poll);
2495 
2496 /**
2497  * virtqueue_enable_cb - restart callbacks after disable_cb.
2498  * @_vq: the struct virtqueue we're talking about.
2499  *
2500  * This re-enables callbacks; it returns "false" if there are pending
2501  * buffers in the queue, to detect a possible race between the driver
2502  * checking for more work, and enabling callbacks.
2503  *
2504  * Caller must ensure we don't call this with other virtqueue
2505  * operations at the same time (except where noted).
2506  */
2507 bool virtqueue_enable_cb(struct virtqueue *_vq)
2508 {
2509 	unsigned int last_used_idx = virtqueue_enable_cb_prepare(_vq);
2510 
2511 	return !virtqueue_poll(_vq, last_used_idx);
2512 }
2513 EXPORT_SYMBOL_GPL(virtqueue_enable_cb);
2514 
2515 /**
2516  * virtqueue_enable_cb_delayed - restart callbacks after disable_cb.
2517  * @_vq: the struct virtqueue we're talking about.
2518  *
2519  * This re-enables callbacks but hints to the other side to delay
2520  * interrupts until most of the available buffers have been processed;
2521  * it returns "false" if there are many pending buffers in the queue,
2522  * to detect a possible race between the driver checking for more work,
2523  * and enabling callbacks.
2524  *
2525  * Caller must ensure we don't call this with other virtqueue
2526  * operations at the same time (except where noted).
2527  */
2528 bool virtqueue_enable_cb_delayed(struct virtqueue *_vq)
2529 {
2530 	struct vring_virtqueue *vq = to_vvq(_vq);
2531 
2532 	if (vq->event_triggered)
2533 		vq->event_triggered = false;
2534 
2535 	return vq->packed_ring ? virtqueue_enable_cb_delayed_packed(_vq) :
2536 				 virtqueue_enable_cb_delayed_split(_vq);
2537 }
2538 EXPORT_SYMBOL_GPL(virtqueue_enable_cb_delayed);
2539 
2540 /**
2541  * virtqueue_detach_unused_buf - detach first unused buffer
2542  * @_vq: the struct virtqueue we're talking about.
2543  *
2544  * Returns NULL or the "data" token handed to virtqueue_add_*().
2545  * This is not valid on an active queue; it is useful for device
2546  * shutdown or the reset queue.
2547  */
2548 void *virtqueue_detach_unused_buf(struct virtqueue *_vq)
2549 {
2550 	struct vring_virtqueue *vq = to_vvq(_vq);
2551 
2552 	return vq->packed_ring ? virtqueue_detach_unused_buf_packed(_vq) :
2553 				 virtqueue_detach_unused_buf_split(_vq);
2554 }
2555 EXPORT_SYMBOL_GPL(virtqueue_detach_unused_buf);
2556 
2557 static inline bool more_used(const struct vring_virtqueue *vq)
2558 {
2559 	return vq->packed_ring ? more_used_packed(vq) : more_used_split(vq);
2560 }
2561 
2562 /**
2563  * vring_interrupt - notify a virtqueue on an interrupt
2564  * @irq: the IRQ number (ignored)
2565  * @_vq: the struct virtqueue to notify
2566  *
2567  * Calls the callback function of @_vq to process the virtqueue
2568  * notification.
2569  */
2570 irqreturn_t vring_interrupt(int irq, void *_vq)
2571 {
2572 	struct vring_virtqueue *vq = to_vvq(_vq);
2573 
2574 	if (!more_used(vq)) {
2575 		pr_debug("virtqueue interrupt with no work for %p\n", vq);
2576 		return IRQ_NONE;
2577 	}
2578 
2579 	if (unlikely(vq->broken)) {
2580 #ifdef CONFIG_VIRTIO_HARDEN_NOTIFICATION
2581 		dev_warn_once(&vq->vq.vdev->dev,
2582 			      "virtio vring IRQ raised before DRIVER_OK");
2583 		return IRQ_NONE;
2584 #else
2585 		return IRQ_HANDLED;
2586 #endif
2587 	}
2588 
2589 	/* Just a hint for performance: so it's ok that this can be racy! */
2590 	if (vq->event)
2591 		vq->event_triggered = true;
2592 
2593 	pr_debug("virtqueue callback for %p (%p)\n", vq, vq->vq.callback);
2594 	if (vq->vq.callback)
2595 		vq->vq.callback(&vq->vq);
2596 
2597 	return IRQ_HANDLED;
2598 }
2599 EXPORT_SYMBOL_GPL(vring_interrupt);
2600 
2601 /* Only available for split ring */
2602 static struct virtqueue *__vring_new_virtqueue(unsigned int index,
2603 					       struct vring_virtqueue_split *vring_split,
2604 					       struct virtio_device *vdev,
2605 					       bool weak_barriers,
2606 					       bool context,
2607 					       bool (*notify)(struct virtqueue *),
2608 					       void (*callback)(struct virtqueue *),
2609 					       const char *name,
2610 					       struct device *dma_dev)
2611 {
2612 	struct vring_virtqueue *vq;
2613 	int err;
2614 
2615 	if (virtio_has_feature(vdev, VIRTIO_F_RING_PACKED))
2616 		return NULL;
2617 
2618 	vq = kmalloc(sizeof(*vq), GFP_KERNEL);
2619 	if (!vq)
2620 		return NULL;
2621 
2622 	vq->packed_ring = false;
2623 	vq->vq.callback = callback;
2624 	vq->vq.vdev = vdev;
2625 	vq->vq.name = name;
2626 	vq->vq.index = index;
2627 	vq->vq.reset = false;
2628 	vq->we_own_ring = false;
2629 	vq->notify = notify;
2630 	vq->weak_barriers = weak_barriers;
2631 #ifdef CONFIG_VIRTIO_HARDEN_NOTIFICATION
2632 	vq->broken = true;
2633 #else
2634 	vq->broken = false;
2635 #endif
2636 	vq->dma_dev = dma_dev;
2637 	vq->use_dma_api = vring_use_dma_api(vdev);
2638 	vq->premapped = false;
2639 	vq->do_unmap = vq->use_dma_api;
2640 
2641 	vq->indirect = virtio_has_feature(vdev, VIRTIO_RING_F_INDIRECT_DESC) &&
2642 		!context;
2643 	vq->event = virtio_has_feature(vdev, VIRTIO_RING_F_EVENT_IDX);
2644 
2645 	if (virtio_has_feature(vdev, VIRTIO_F_ORDER_PLATFORM))
2646 		vq->weak_barriers = false;
2647 
2648 	err = vring_alloc_state_extra_split(vring_split);
2649 	if (err) {
2650 		kfree(vq);
2651 		return NULL;
2652 	}
2653 
2654 	virtqueue_vring_init_split(vring_split, vq);
2655 
2656 	virtqueue_init(vq, vring_split->vring.num);
2657 	virtqueue_vring_attach_split(vq, vring_split);
2658 
2659 	spin_lock(&vdev->vqs_list_lock);
2660 	list_add_tail(&vq->vq.list, &vdev->vqs);
2661 	spin_unlock(&vdev->vqs_list_lock);
2662 	return &vq->vq;
2663 }
2664 
2665 struct virtqueue *vring_create_virtqueue(
2666 	unsigned int index,
2667 	unsigned int num,
2668 	unsigned int vring_align,
2669 	struct virtio_device *vdev,
2670 	bool weak_barriers,
2671 	bool may_reduce_num,
2672 	bool context,
2673 	bool (*notify)(struct virtqueue *),
2674 	void (*callback)(struct virtqueue *),
2675 	const char *name)
2676 {
2677 
2678 	if (virtio_has_feature(vdev, VIRTIO_F_RING_PACKED))
2679 		return vring_create_virtqueue_packed(index, num, vring_align,
2680 				vdev, weak_barriers, may_reduce_num,
2681 				context, notify, callback, name, vdev->dev.parent);
2682 
2683 	return vring_create_virtqueue_split(index, num, vring_align,
2684 			vdev, weak_barriers, may_reduce_num,
2685 			context, notify, callback, name, vdev->dev.parent);
2686 }
2687 EXPORT_SYMBOL_GPL(vring_create_virtqueue);
2688 
2689 struct virtqueue *vring_create_virtqueue_dma(
2690 	unsigned int index,
2691 	unsigned int num,
2692 	unsigned int vring_align,
2693 	struct virtio_device *vdev,
2694 	bool weak_barriers,
2695 	bool may_reduce_num,
2696 	bool context,
2697 	bool (*notify)(struct virtqueue *),
2698 	void (*callback)(struct virtqueue *),
2699 	const char *name,
2700 	struct device *dma_dev)
2701 {
2702 
2703 	if (virtio_has_feature(vdev, VIRTIO_F_RING_PACKED))
2704 		return vring_create_virtqueue_packed(index, num, vring_align,
2705 				vdev, weak_barriers, may_reduce_num,
2706 				context, notify, callback, name, dma_dev);
2707 
2708 	return vring_create_virtqueue_split(index, num, vring_align,
2709 			vdev, weak_barriers, may_reduce_num,
2710 			context, notify, callback, name, dma_dev);
2711 }
2712 EXPORT_SYMBOL_GPL(vring_create_virtqueue_dma);
2713 
2714 /**
2715  * virtqueue_resize - resize the vring of vq
2716  * @_vq: the struct virtqueue we're talking about.
2717  * @num: new ring num
2718  * @recycle: callback to recycle unused buffers
2719  *
2720  * When it is really necessary to create a new vring, it will set the current vq
2721  * into the reset state. Then call the passed callback to recycle the buffer
2722  * that is no longer used. Only after the new vring is successfully created, the
2723  * old vring will be released.
2724  *
2725  * Caller must ensure we don't call this with other virtqueue operations
2726  * at the same time (except where noted).
2727  *
2728  * Returns zero or a negative error.
2729  * 0: success.
2730  * -ENOMEM: Failed to allocate a new ring, fall back to the original ring size.
2731  *  vq can still work normally
2732  * -EBUSY: Failed to sync with device, vq may not work properly
2733  * -ENOENT: Transport or device not supported
2734  * -E2BIG/-EINVAL: num error
2735  * -EPERM: Operation not permitted
2736  *
2737  */
2738 int virtqueue_resize(struct virtqueue *_vq, u32 num,
2739 		     void (*recycle)(struct virtqueue *vq, void *buf))
2740 {
2741 	struct vring_virtqueue *vq = to_vvq(_vq);
2742 	int err;
2743 
2744 	if (num > vq->vq.num_max)
2745 		return -E2BIG;
2746 
2747 	if (!num)
2748 		return -EINVAL;
2749 
2750 	if ((vq->packed_ring ? vq->packed.vring.num : vq->split.vring.num) == num)
2751 		return 0;
2752 
2753 	err = virtqueue_disable_and_recycle(_vq, recycle);
2754 	if (err)
2755 		return err;
2756 
2757 	if (vq->packed_ring)
2758 		err = virtqueue_resize_packed(_vq, num);
2759 	else
2760 		err = virtqueue_resize_split(_vq, num);
2761 
2762 	return virtqueue_enable_after_reset(_vq);
2763 }
2764 EXPORT_SYMBOL_GPL(virtqueue_resize);
2765 
2766 /**
2767  * virtqueue_set_dma_premapped - set the vring premapped mode
2768  * @_vq: the struct virtqueue we're talking about.
2769  *
2770  * Enable the premapped mode of the vq.
2771  *
2772  * The vring in premapped mode does not do dma internally, so the driver must
2773  * do dma mapping in advance. The driver must pass the dma_address through
2774  * dma_address of scatterlist. When the driver got a used buffer from
2775  * the vring, it has to unmap the dma address.
2776  *
2777  * This function must be called immediately after creating the vq, or after vq
2778  * reset, and before adding any buffers to it.
2779  *
2780  * Caller must ensure we don't call this with other virtqueue operations
2781  * at the same time (except where noted).
2782  *
2783  * Returns zero or a negative error.
2784  * 0: success.
2785  * -EINVAL: vring does not use the dma api, so we can not enable premapped mode.
2786  */
2787 int virtqueue_set_dma_premapped(struct virtqueue *_vq)
2788 {
2789 	struct vring_virtqueue *vq = to_vvq(_vq);
2790 	u32 num;
2791 
2792 	START_USE(vq);
2793 
2794 	num = vq->packed_ring ? vq->packed.vring.num : vq->split.vring.num;
2795 
2796 	if (num != vq->vq.num_free) {
2797 		END_USE(vq);
2798 		return -EINVAL;
2799 	}
2800 
2801 	if (!vq->use_dma_api) {
2802 		END_USE(vq);
2803 		return -EINVAL;
2804 	}
2805 
2806 	vq->premapped = true;
2807 	vq->do_unmap = false;
2808 
2809 	END_USE(vq);
2810 
2811 	return 0;
2812 }
2813 EXPORT_SYMBOL_GPL(virtqueue_set_dma_premapped);
2814 
2815 /**
2816  * virtqueue_reset - detach and recycle all unused buffers
2817  * @_vq: the struct virtqueue we're talking about.
2818  * @recycle: callback to recycle unused buffers
2819  *
2820  * Caller must ensure we don't call this with other virtqueue operations
2821  * at the same time (except where noted).
2822  *
2823  * Returns zero or a negative error.
2824  * 0: success.
2825  * -EBUSY: Failed to sync with device, vq may not work properly
2826  * -ENOENT: Transport or device not supported
2827  * -EPERM: Operation not permitted
2828  */
2829 int virtqueue_reset(struct virtqueue *_vq,
2830 		    void (*recycle)(struct virtqueue *vq, void *buf))
2831 {
2832 	struct vring_virtqueue *vq = to_vvq(_vq);
2833 	int err;
2834 
2835 	err = virtqueue_disable_and_recycle(_vq, recycle);
2836 	if (err)
2837 		return err;
2838 
2839 	if (vq->packed_ring)
2840 		virtqueue_reinit_packed(vq);
2841 	else
2842 		virtqueue_reinit_split(vq);
2843 
2844 	return virtqueue_enable_after_reset(_vq);
2845 }
2846 EXPORT_SYMBOL_GPL(virtqueue_reset);
2847 
2848 /* Only available for split ring */
2849 struct virtqueue *vring_new_virtqueue(unsigned int index,
2850 				      unsigned int num,
2851 				      unsigned int vring_align,
2852 				      struct virtio_device *vdev,
2853 				      bool weak_barriers,
2854 				      bool context,
2855 				      void *pages,
2856 				      bool (*notify)(struct virtqueue *vq),
2857 				      void (*callback)(struct virtqueue *vq),
2858 				      const char *name)
2859 {
2860 	struct vring_virtqueue_split vring_split = {};
2861 
2862 	if (virtio_has_feature(vdev, VIRTIO_F_RING_PACKED))
2863 		return NULL;
2864 
2865 	vring_init(&vring_split.vring, num, pages, vring_align);
2866 	return __vring_new_virtqueue(index, &vring_split, vdev, weak_barriers,
2867 				     context, notify, callback, name,
2868 				     vdev->dev.parent);
2869 }
2870 EXPORT_SYMBOL_GPL(vring_new_virtqueue);
2871 
2872 static void vring_free(struct virtqueue *_vq)
2873 {
2874 	struct vring_virtqueue *vq = to_vvq(_vq);
2875 
2876 	if (vq->we_own_ring) {
2877 		if (vq->packed_ring) {
2878 			vring_free_queue(vq->vq.vdev,
2879 					 vq->packed.ring_size_in_bytes,
2880 					 vq->packed.vring.desc,
2881 					 vq->packed.ring_dma_addr,
2882 					 vring_dma_dev(vq));
2883 
2884 			vring_free_queue(vq->vq.vdev,
2885 					 vq->packed.event_size_in_bytes,
2886 					 vq->packed.vring.driver,
2887 					 vq->packed.driver_event_dma_addr,
2888 					 vring_dma_dev(vq));
2889 
2890 			vring_free_queue(vq->vq.vdev,
2891 					 vq->packed.event_size_in_bytes,
2892 					 vq->packed.vring.device,
2893 					 vq->packed.device_event_dma_addr,
2894 					 vring_dma_dev(vq));
2895 
2896 			kfree(vq->packed.desc_state);
2897 			kfree(vq->packed.desc_extra);
2898 		} else {
2899 			vring_free_queue(vq->vq.vdev,
2900 					 vq->split.queue_size_in_bytes,
2901 					 vq->split.vring.desc,
2902 					 vq->split.queue_dma_addr,
2903 					 vring_dma_dev(vq));
2904 		}
2905 	}
2906 	if (!vq->packed_ring) {
2907 		kfree(vq->split.desc_state);
2908 		kfree(vq->split.desc_extra);
2909 	}
2910 }
2911 
2912 void vring_del_virtqueue(struct virtqueue *_vq)
2913 {
2914 	struct vring_virtqueue *vq = to_vvq(_vq);
2915 
2916 	spin_lock(&vq->vq.vdev->vqs_list_lock);
2917 	list_del(&_vq->list);
2918 	spin_unlock(&vq->vq.vdev->vqs_list_lock);
2919 
2920 	vring_free(_vq);
2921 
2922 	kfree(vq);
2923 }
2924 EXPORT_SYMBOL_GPL(vring_del_virtqueue);
2925 
2926 u32 vring_notification_data(struct virtqueue *_vq)
2927 {
2928 	struct vring_virtqueue *vq = to_vvq(_vq);
2929 	u16 next;
2930 
2931 	if (vq->packed_ring)
2932 		next = (vq->packed.next_avail_idx &
2933 				~(-(1 << VRING_PACKED_EVENT_F_WRAP_CTR))) |
2934 			vq->packed.avail_wrap_counter <<
2935 				VRING_PACKED_EVENT_F_WRAP_CTR;
2936 	else
2937 		next = vq->split.avail_idx_shadow;
2938 
2939 	return next << 16 | _vq->index;
2940 }
2941 EXPORT_SYMBOL_GPL(vring_notification_data);
2942 
2943 /* Manipulates transport-specific feature bits. */
2944 void vring_transport_features(struct virtio_device *vdev)
2945 {
2946 	unsigned int i;
2947 
2948 	for (i = VIRTIO_TRANSPORT_F_START; i < VIRTIO_TRANSPORT_F_END; i++) {
2949 		switch (i) {
2950 		case VIRTIO_RING_F_INDIRECT_DESC:
2951 			break;
2952 		case VIRTIO_RING_F_EVENT_IDX:
2953 			break;
2954 		case VIRTIO_F_VERSION_1:
2955 			break;
2956 		case VIRTIO_F_ACCESS_PLATFORM:
2957 			break;
2958 		case VIRTIO_F_RING_PACKED:
2959 			break;
2960 		case VIRTIO_F_ORDER_PLATFORM:
2961 			break;
2962 		case VIRTIO_F_NOTIFICATION_DATA:
2963 			break;
2964 		default:
2965 			/* We don't understand this bit. */
2966 			__virtio_clear_bit(vdev, i);
2967 		}
2968 	}
2969 }
2970 EXPORT_SYMBOL_GPL(vring_transport_features);
2971 
2972 /**
2973  * virtqueue_get_vring_size - return the size of the virtqueue's vring
2974  * @_vq: the struct virtqueue containing the vring of interest.
2975  *
2976  * Returns the size of the vring.  This is mainly used for boasting to
2977  * userspace.  Unlike other operations, this need not be serialized.
2978  */
2979 unsigned int virtqueue_get_vring_size(const struct virtqueue *_vq)
2980 {
2981 
2982 	const struct vring_virtqueue *vq = to_vvq(_vq);
2983 
2984 	return vq->packed_ring ? vq->packed.vring.num : vq->split.vring.num;
2985 }
2986 EXPORT_SYMBOL_GPL(virtqueue_get_vring_size);
2987 
2988 /*
2989  * This function should only be called by the core, not directly by the driver.
2990  */
2991 void __virtqueue_break(struct virtqueue *_vq)
2992 {
2993 	struct vring_virtqueue *vq = to_vvq(_vq);
2994 
2995 	/* Pairs with READ_ONCE() in virtqueue_is_broken(). */
2996 	WRITE_ONCE(vq->broken, true);
2997 }
2998 EXPORT_SYMBOL_GPL(__virtqueue_break);
2999 
3000 /*
3001  * This function should only be called by the core, not directly by the driver.
3002  */
3003 void __virtqueue_unbreak(struct virtqueue *_vq)
3004 {
3005 	struct vring_virtqueue *vq = to_vvq(_vq);
3006 
3007 	/* Pairs with READ_ONCE() in virtqueue_is_broken(). */
3008 	WRITE_ONCE(vq->broken, false);
3009 }
3010 EXPORT_SYMBOL_GPL(__virtqueue_unbreak);
3011 
3012 bool virtqueue_is_broken(const struct virtqueue *_vq)
3013 {
3014 	const struct vring_virtqueue *vq = to_vvq(_vq);
3015 
3016 	return READ_ONCE(vq->broken);
3017 }
3018 EXPORT_SYMBOL_GPL(virtqueue_is_broken);
3019 
3020 /*
3021  * This should prevent the device from being used, allowing drivers to
3022  * recover.  You may need to grab appropriate locks to flush.
3023  */
3024 void virtio_break_device(struct virtio_device *dev)
3025 {
3026 	struct virtqueue *_vq;
3027 
3028 	spin_lock(&dev->vqs_list_lock);
3029 	list_for_each_entry(_vq, &dev->vqs, list) {
3030 		struct vring_virtqueue *vq = to_vvq(_vq);
3031 
3032 		/* Pairs with READ_ONCE() in virtqueue_is_broken(). */
3033 		WRITE_ONCE(vq->broken, true);
3034 	}
3035 	spin_unlock(&dev->vqs_list_lock);
3036 }
3037 EXPORT_SYMBOL_GPL(virtio_break_device);
3038 
3039 /*
3040  * This should allow the device to be used by the driver. You may
3041  * need to grab appropriate locks to flush the write to
3042  * vq->broken. This should only be used in some specific case e.g
3043  * (probing and restoring). This function should only be called by the
3044  * core, not directly by the driver.
3045  */
3046 void __virtio_unbreak_device(struct virtio_device *dev)
3047 {
3048 	struct virtqueue *_vq;
3049 
3050 	spin_lock(&dev->vqs_list_lock);
3051 	list_for_each_entry(_vq, &dev->vqs, list) {
3052 		struct vring_virtqueue *vq = to_vvq(_vq);
3053 
3054 		/* Pairs with READ_ONCE() in virtqueue_is_broken(). */
3055 		WRITE_ONCE(vq->broken, false);
3056 	}
3057 	spin_unlock(&dev->vqs_list_lock);
3058 }
3059 EXPORT_SYMBOL_GPL(__virtio_unbreak_device);
3060 
3061 dma_addr_t virtqueue_get_desc_addr(const struct virtqueue *_vq)
3062 {
3063 	const struct vring_virtqueue *vq = to_vvq(_vq);
3064 
3065 	BUG_ON(!vq->we_own_ring);
3066 
3067 	if (vq->packed_ring)
3068 		return vq->packed.ring_dma_addr;
3069 
3070 	return vq->split.queue_dma_addr;
3071 }
3072 EXPORT_SYMBOL_GPL(virtqueue_get_desc_addr);
3073 
3074 dma_addr_t virtqueue_get_avail_addr(const struct virtqueue *_vq)
3075 {
3076 	const struct vring_virtqueue *vq = to_vvq(_vq);
3077 
3078 	BUG_ON(!vq->we_own_ring);
3079 
3080 	if (vq->packed_ring)
3081 		return vq->packed.driver_event_dma_addr;
3082 
3083 	return vq->split.queue_dma_addr +
3084 		((char *)vq->split.vring.avail - (char *)vq->split.vring.desc);
3085 }
3086 EXPORT_SYMBOL_GPL(virtqueue_get_avail_addr);
3087 
3088 dma_addr_t virtqueue_get_used_addr(const struct virtqueue *_vq)
3089 {
3090 	const struct vring_virtqueue *vq = to_vvq(_vq);
3091 
3092 	BUG_ON(!vq->we_own_ring);
3093 
3094 	if (vq->packed_ring)
3095 		return vq->packed.device_event_dma_addr;
3096 
3097 	return vq->split.queue_dma_addr +
3098 		((char *)vq->split.vring.used - (char *)vq->split.vring.desc);
3099 }
3100 EXPORT_SYMBOL_GPL(virtqueue_get_used_addr);
3101 
3102 /* Only available for split ring */
3103 const struct vring *virtqueue_get_vring(const struct virtqueue *vq)
3104 {
3105 	return &to_vvq(vq)->split.vring;
3106 }
3107 EXPORT_SYMBOL_GPL(virtqueue_get_vring);
3108 
3109 /**
3110  * virtqueue_dma_map_single_attrs - map DMA for _vq
3111  * @_vq: the struct virtqueue we're talking about.
3112  * @ptr: the pointer of the buffer to do dma
3113  * @size: the size of the buffer to do dma
3114  * @dir: DMA direction
3115  * @attrs: DMA Attrs
3116  *
3117  * The caller calls this to do dma mapping in advance. The DMA address can be
3118  * passed to this _vq when it is in pre-mapped mode.
3119  *
3120  * return DMA address. Caller should check that by virtqueue_dma_mapping_error().
3121  */
3122 dma_addr_t virtqueue_dma_map_single_attrs(struct virtqueue *_vq, void *ptr,
3123 					  size_t size,
3124 					  enum dma_data_direction dir,
3125 					  unsigned long attrs)
3126 {
3127 	struct vring_virtqueue *vq = to_vvq(_vq);
3128 
3129 	if (!vq->use_dma_api)
3130 		return (dma_addr_t)virt_to_phys(ptr);
3131 
3132 	return dma_map_single_attrs(vring_dma_dev(vq), ptr, size, dir, attrs);
3133 }
3134 EXPORT_SYMBOL_GPL(virtqueue_dma_map_single_attrs);
3135 
3136 /**
3137  * virtqueue_dma_unmap_single_attrs - unmap DMA for _vq
3138  * @_vq: the struct virtqueue we're talking about.
3139  * @addr: the dma address to unmap
3140  * @size: the size of the buffer
3141  * @dir: DMA direction
3142  * @attrs: DMA Attrs
3143  *
3144  * Unmap the address that is mapped by the virtqueue_dma_map_* APIs.
3145  *
3146  */
3147 void virtqueue_dma_unmap_single_attrs(struct virtqueue *_vq, dma_addr_t addr,
3148 				      size_t size, enum dma_data_direction dir,
3149 				      unsigned long attrs)
3150 {
3151 	struct vring_virtqueue *vq = to_vvq(_vq);
3152 
3153 	if (!vq->use_dma_api)
3154 		return;
3155 
3156 	dma_unmap_single_attrs(vring_dma_dev(vq), addr, size, dir, attrs);
3157 }
3158 EXPORT_SYMBOL_GPL(virtqueue_dma_unmap_single_attrs);
3159 
3160 /**
3161  * virtqueue_dma_mapping_error - check dma address
3162  * @_vq: the struct virtqueue we're talking about.
3163  * @addr: DMA address
3164  *
3165  * Returns 0 means dma valid. Other means invalid dma address.
3166  */
3167 int virtqueue_dma_mapping_error(struct virtqueue *_vq, dma_addr_t addr)
3168 {
3169 	struct vring_virtqueue *vq = to_vvq(_vq);
3170 
3171 	if (!vq->use_dma_api)
3172 		return 0;
3173 
3174 	return dma_mapping_error(vring_dma_dev(vq), addr);
3175 }
3176 EXPORT_SYMBOL_GPL(virtqueue_dma_mapping_error);
3177 
3178 /**
3179  * virtqueue_dma_need_sync - check a dma address needs sync
3180  * @_vq: the struct virtqueue we're talking about.
3181  * @addr: DMA address
3182  *
3183  * Check if the dma address mapped by the virtqueue_dma_map_* APIs needs to be
3184  * synchronized
3185  *
3186  * return bool
3187  */
3188 bool virtqueue_dma_need_sync(struct virtqueue *_vq, dma_addr_t addr)
3189 {
3190 	struct vring_virtqueue *vq = to_vvq(_vq);
3191 
3192 	if (!vq->use_dma_api)
3193 		return false;
3194 
3195 	return dma_need_sync(vring_dma_dev(vq), addr);
3196 }
3197 EXPORT_SYMBOL_GPL(virtqueue_dma_need_sync);
3198 
3199 /**
3200  * virtqueue_dma_sync_single_range_for_cpu - dma sync for cpu
3201  * @_vq: the struct virtqueue we're talking about.
3202  * @addr: DMA address
3203  * @offset: DMA address offset
3204  * @size: buf size for sync
3205  * @dir: DMA direction
3206  *
3207  * Before calling this function, use virtqueue_dma_need_sync() to confirm that
3208  * the DMA address really needs to be synchronized
3209  *
3210  */
3211 void virtqueue_dma_sync_single_range_for_cpu(struct virtqueue *_vq,
3212 					     dma_addr_t addr,
3213 					     unsigned long offset, size_t size,
3214 					     enum dma_data_direction dir)
3215 {
3216 	struct vring_virtqueue *vq = to_vvq(_vq);
3217 	struct device *dev = vring_dma_dev(vq);
3218 
3219 	if (!vq->use_dma_api)
3220 		return;
3221 
3222 	dma_sync_single_range_for_cpu(dev, addr, offset, size, dir);
3223 }
3224 EXPORT_SYMBOL_GPL(virtqueue_dma_sync_single_range_for_cpu);
3225 
3226 /**
3227  * virtqueue_dma_sync_single_range_for_device - dma sync for device
3228  * @_vq: the struct virtqueue we're talking about.
3229  * @addr: DMA address
3230  * @offset: DMA address offset
3231  * @size: buf size for sync
3232  * @dir: DMA direction
3233  *
3234  * Before calling this function, use virtqueue_dma_need_sync() to confirm that
3235  * the DMA address really needs to be synchronized
3236  */
3237 void virtqueue_dma_sync_single_range_for_device(struct virtqueue *_vq,
3238 						dma_addr_t addr,
3239 						unsigned long offset, size_t size,
3240 						enum dma_data_direction dir)
3241 {
3242 	struct vring_virtqueue *vq = to_vvq(_vq);
3243 	struct device *dev = vring_dma_dev(vq);
3244 
3245 	if (!vq->use_dma_api)
3246 		return;
3247 
3248 	dma_sync_single_range_for_device(dev, addr, offset, size, dir);
3249 }
3250 EXPORT_SYMBOL_GPL(virtqueue_dma_sync_single_range_for_device);
3251 
3252 MODULE_LICENSE("GPL");
3253