xref: /openbmc/linux/drivers/virt/nitro_enclaves/ne_misc_dev.c (revision 47aab53331effedd3f5a6136854bd1da011f94b6)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright 2020-2021 Amazon.com, Inc. or its affiliates. All Rights Reserved.
4  */
5 
6 /**
7  * DOC: Enclave lifetime management driver for Nitro Enclaves (NE).
8  * Nitro is a hypervisor that has been developed by Amazon.
9  */
10 
11 #include <linux/anon_inodes.h>
12 #include <linux/capability.h>
13 #include <linux/cpu.h>
14 #include <linux/device.h>
15 #include <linux/file.h>
16 #include <linux/hugetlb.h>
17 #include <linux/limits.h>
18 #include <linux/list.h>
19 #include <linux/miscdevice.h>
20 #include <linux/mm.h>
21 #include <linux/mman.h>
22 #include <linux/module.h>
23 #include <linux/mutex.h>
24 #include <linux/nitro_enclaves.h>
25 #include <linux/pci.h>
26 #include <linux/poll.h>
27 #include <linux/range.h>
28 #include <linux/slab.h>
29 #include <linux/types.h>
30 #include <uapi/linux/vm_sockets.h>
31 
32 #include "ne_misc_dev.h"
33 #include "ne_pci_dev.h"
34 
35 /**
36  * NE_CPUS_SIZE - Size for max 128 CPUs, for now, in a cpu-list string, comma
37  *		  separated. The NE CPU pool includes CPUs from a single NUMA
38  *		  node.
39  */
40 #define NE_CPUS_SIZE		(512)
41 
42 /**
43  * NE_EIF_LOAD_OFFSET - The offset where to copy the Enclave Image Format (EIF)
44  *			image in enclave memory.
45  */
46 #define NE_EIF_LOAD_OFFSET	(8 * 1024UL * 1024UL)
47 
48 /**
49  * NE_MIN_ENCLAVE_MEM_SIZE - The minimum memory size an enclave can be launched
50  *			     with.
51  */
52 #define NE_MIN_ENCLAVE_MEM_SIZE	(64 * 1024UL * 1024UL)
53 
54 /**
55  * NE_MIN_MEM_REGION_SIZE - The minimum size of an enclave memory region.
56  */
57 #define NE_MIN_MEM_REGION_SIZE	(2 * 1024UL * 1024UL)
58 
59 /**
60  * NE_PARENT_VM_CID - The CID for the vsock device of the primary / parent VM.
61  */
62 #define NE_PARENT_VM_CID	(3)
63 
64 static long ne_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
65 
66 static const struct file_operations ne_fops = {
67 	.owner		= THIS_MODULE,
68 	.llseek		= noop_llseek,
69 	.unlocked_ioctl	= ne_ioctl,
70 };
71 
72 static struct miscdevice ne_misc_dev = {
73 	.minor	= MISC_DYNAMIC_MINOR,
74 	.name	= "nitro_enclaves",
75 	.fops	= &ne_fops,
76 	.mode	= 0660,
77 };
78 
79 struct ne_devs ne_devs = {
80 	.ne_misc_dev	= &ne_misc_dev,
81 };
82 
83 /*
84  * TODO: Update logic to create new sysfs entries instead of using
85  * a kernel parameter e.g. if multiple sysfs files needed.
86  */
87 static int ne_set_kernel_param(const char *val, const struct kernel_param *kp);
88 
89 static const struct kernel_param_ops ne_cpu_pool_ops = {
90 	.get	= param_get_string,
91 	.set	= ne_set_kernel_param,
92 };
93 
94 static char ne_cpus[NE_CPUS_SIZE];
95 static struct kparam_string ne_cpus_arg = {
96 	.maxlen	= sizeof(ne_cpus),
97 	.string	= ne_cpus,
98 };
99 
100 module_param_cb(ne_cpus, &ne_cpu_pool_ops, &ne_cpus_arg, 0644);
101 /* https://www.kernel.org/doc/html/latest/admin-guide/kernel-parameters.html#cpu-lists */
102 MODULE_PARM_DESC(ne_cpus, "<cpu-list> - CPU pool used for Nitro Enclaves");
103 
104 /**
105  * struct ne_cpu_pool - CPU pool used for Nitro Enclaves.
106  * @avail_threads_per_core:	Available full CPU cores to be dedicated to
107  *				enclave(s). The cpumasks from the array, indexed
108  *				by core id, contain all the threads from the
109  *				available cores, that are not set for created
110  *				enclave(s). The full CPU cores are part of the
111  *				NE CPU pool.
112  * @mutex:			Mutex for the access to the NE CPU pool.
113  * @nr_parent_vm_cores :	The size of the available threads per core array.
114  *				The total number of CPU cores available on the
115  *				primary / parent VM.
116  * @nr_threads_per_core:	The number of threads that a full CPU core has.
117  * @numa_node:			NUMA node of the CPUs in the pool.
118  */
119 struct ne_cpu_pool {
120 	cpumask_var_t	*avail_threads_per_core;
121 	struct mutex	mutex;
122 	unsigned int	nr_parent_vm_cores;
123 	unsigned int	nr_threads_per_core;
124 	int		numa_node;
125 };
126 
127 static struct ne_cpu_pool ne_cpu_pool;
128 
129 /**
130  * struct ne_phys_contig_mem_regions - Contiguous physical memory regions.
131  * @num:	The number of regions that currently has.
132  * @regions:	The array of physical memory regions.
133  */
134 struct ne_phys_contig_mem_regions {
135 	unsigned long num;
136 	struct range  *regions;
137 };
138 
139 /**
140  * ne_check_enclaves_created() - Verify if at least one enclave has been created.
141  * @void:	No parameters provided.
142  *
143  * Context: Process context.
144  * Return:
145  * * True if at least one enclave is created.
146  * * False otherwise.
147  */
148 static bool ne_check_enclaves_created(void)
149 {
150 	struct ne_pci_dev *ne_pci_dev = ne_devs.ne_pci_dev;
151 	bool ret = false;
152 
153 	if (!ne_pci_dev)
154 		return ret;
155 
156 	mutex_lock(&ne_pci_dev->enclaves_list_mutex);
157 
158 	if (!list_empty(&ne_pci_dev->enclaves_list))
159 		ret = true;
160 
161 	mutex_unlock(&ne_pci_dev->enclaves_list_mutex);
162 
163 	return ret;
164 }
165 
166 /**
167  * ne_setup_cpu_pool() - Set the NE CPU pool after handling sanity checks such
168  *			 as not sharing CPU cores with the primary / parent VM
169  *			 or not using CPU 0, which should remain available for
170  *			 the primary / parent VM. Offline the CPUs from the
171  *			 pool after the checks passed.
172  * @ne_cpu_list:	The CPU list used for setting NE CPU pool.
173  *
174  * Context: Process context.
175  * Return:
176  * * 0 on success.
177  * * Negative return value on failure.
178  */
179 static int ne_setup_cpu_pool(const char *ne_cpu_list)
180 {
181 	int core_id = -1;
182 	unsigned int cpu = 0;
183 	cpumask_var_t cpu_pool;
184 	unsigned int cpu_sibling = 0;
185 	unsigned int i = 0;
186 	int numa_node = -1;
187 	int rc = -EINVAL;
188 
189 	if (!zalloc_cpumask_var(&cpu_pool, GFP_KERNEL))
190 		return -ENOMEM;
191 
192 	mutex_lock(&ne_cpu_pool.mutex);
193 
194 	rc = cpulist_parse(ne_cpu_list, cpu_pool);
195 	if (rc < 0) {
196 		pr_err("%s: Error in cpulist parse [rc=%d]\n", ne_misc_dev.name, rc);
197 
198 		goto free_pool_cpumask;
199 	}
200 
201 	cpu = cpumask_any(cpu_pool);
202 	if (cpu >= nr_cpu_ids) {
203 		pr_err("%s: No CPUs available in CPU pool\n", ne_misc_dev.name);
204 
205 		rc = -EINVAL;
206 
207 		goto free_pool_cpumask;
208 	}
209 
210 	/*
211 	 * Check if the CPUs are online, to further get info about them
212 	 * e.g. numa node, core id, siblings.
213 	 */
214 	for_each_cpu(cpu, cpu_pool)
215 		if (cpu_is_offline(cpu)) {
216 			pr_err("%s: CPU %d is offline, has to be online to get its metadata\n",
217 			       ne_misc_dev.name, cpu);
218 
219 			rc = -EINVAL;
220 
221 			goto free_pool_cpumask;
222 		}
223 
224 	/*
225 	 * Check if the CPUs from the NE CPU pool are from the same NUMA node.
226 	 */
227 	for_each_cpu(cpu, cpu_pool)
228 		if (numa_node < 0) {
229 			numa_node = cpu_to_node(cpu);
230 			if (numa_node < 0) {
231 				pr_err("%s: Invalid NUMA node %d\n",
232 				       ne_misc_dev.name, numa_node);
233 
234 				rc = -EINVAL;
235 
236 				goto free_pool_cpumask;
237 			}
238 		} else {
239 			if (numa_node != cpu_to_node(cpu)) {
240 				pr_err("%s: CPUs with different NUMA nodes\n",
241 				       ne_misc_dev.name);
242 
243 				rc = -EINVAL;
244 
245 				goto free_pool_cpumask;
246 			}
247 		}
248 
249 	/*
250 	 * Check if CPU 0 and its siblings are included in the provided CPU pool
251 	 * They should remain available for the primary / parent VM.
252 	 */
253 	if (cpumask_test_cpu(0, cpu_pool)) {
254 		pr_err("%s: CPU 0 has to remain available\n", ne_misc_dev.name);
255 
256 		rc = -EINVAL;
257 
258 		goto free_pool_cpumask;
259 	}
260 
261 	for_each_cpu(cpu_sibling, topology_sibling_cpumask(0)) {
262 		if (cpumask_test_cpu(cpu_sibling, cpu_pool)) {
263 			pr_err("%s: CPU sibling %d for CPU 0 is in CPU pool\n",
264 			       ne_misc_dev.name, cpu_sibling);
265 
266 			rc = -EINVAL;
267 
268 			goto free_pool_cpumask;
269 		}
270 	}
271 
272 	/*
273 	 * Check if CPU siblings are included in the provided CPU pool. The
274 	 * expectation is that full CPU cores are made available in the CPU pool
275 	 * for enclaves.
276 	 */
277 	for_each_cpu(cpu, cpu_pool) {
278 		for_each_cpu(cpu_sibling, topology_sibling_cpumask(cpu)) {
279 			if (!cpumask_test_cpu(cpu_sibling, cpu_pool)) {
280 				pr_err("%s: CPU %d is not in CPU pool\n",
281 				       ne_misc_dev.name, cpu_sibling);
282 
283 				rc = -EINVAL;
284 
285 				goto free_pool_cpumask;
286 			}
287 		}
288 	}
289 
290 	/* Calculate the number of threads from a full CPU core. */
291 	cpu = cpumask_any(cpu_pool);
292 	for_each_cpu(cpu_sibling, topology_sibling_cpumask(cpu))
293 		ne_cpu_pool.nr_threads_per_core++;
294 
295 	ne_cpu_pool.nr_parent_vm_cores = nr_cpu_ids / ne_cpu_pool.nr_threads_per_core;
296 
297 	ne_cpu_pool.avail_threads_per_core = kcalloc(ne_cpu_pool.nr_parent_vm_cores,
298 						     sizeof(*ne_cpu_pool.avail_threads_per_core),
299 						     GFP_KERNEL);
300 	if (!ne_cpu_pool.avail_threads_per_core) {
301 		rc = -ENOMEM;
302 
303 		goto free_pool_cpumask;
304 	}
305 
306 	for (i = 0; i < ne_cpu_pool.nr_parent_vm_cores; i++)
307 		if (!zalloc_cpumask_var(&ne_cpu_pool.avail_threads_per_core[i], GFP_KERNEL)) {
308 			rc = -ENOMEM;
309 
310 			goto free_cores_cpumask;
311 		}
312 
313 	/*
314 	 * Split the NE CPU pool in threads per core to keep the CPU topology
315 	 * after offlining the CPUs.
316 	 */
317 	for_each_cpu(cpu, cpu_pool) {
318 		core_id = topology_core_id(cpu);
319 		if (core_id < 0 || core_id >= ne_cpu_pool.nr_parent_vm_cores) {
320 			pr_err("%s: Invalid core id  %d for CPU %d\n",
321 			       ne_misc_dev.name, core_id, cpu);
322 
323 			rc = -EINVAL;
324 
325 			goto clear_cpumask;
326 		}
327 
328 		cpumask_set_cpu(cpu, ne_cpu_pool.avail_threads_per_core[core_id]);
329 	}
330 
331 	/*
332 	 * CPUs that are given to enclave(s) should not be considered online
333 	 * by Linux anymore, as the hypervisor will degrade them to floating.
334 	 * The physical CPUs (full cores) are carved out of the primary / parent
335 	 * VM and given to the enclave VM. The same number of vCPUs would run
336 	 * on less pCPUs for the primary / parent VM.
337 	 *
338 	 * We offline them here, to not degrade performance and expose correct
339 	 * topology to Linux and user space.
340 	 */
341 	for_each_cpu(cpu, cpu_pool) {
342 		rc = remove_cpu(cpu);
343 		if (rc != 0) {
344 			pr_err("%s: CPU %d is not offlined [rc=%d]\n",
345 			       ne_misc_dev.name, cpu, rc);
346 
347 			goto online_cpus;
348 		}
349 	}
350 
351 	free_cpumask_var(cpu_pool);
352 
353 	ne_cpu_pool.numa_node = numa_node;
354 
355 	mutex_unlock(&ne_cpu_pool.mutex);
356 
357 	return 0;
358 
359 online_cpus:
360 	for_each_cpu(cpu, cpu_pool)
361 		add_cpu(cpu);
362 clear_cpumask:
363 	for (i = 0; i < ne_cpu_pool.nr_parent_vm_cores; i++)
364 		cpumask_clear(ne_cpu_pool.avail_threads_per_core[i]);
365 free_cores_cpumask:
366 	for (i = 0; i < ne_cpu_pool.nr_parent_vm_cores; i++)
367 		free_cpumask_var(ne_cpu_pool.avail_threads_per_core[i]);
368 	kfree(ne_cpu_pool.avail_threads_per_core);
369 free_pool_cpumask:
370 	free_cpumask_var(cpu_pool);
371 	ne_cpu_pool.nr_parent_vm_cores = 0;
372 	ne_cpu_pool.nr_threads_per_core = 0;
373 	ne_cpu_pool.numa_node = -1;
374 	mutex_unlock(&ne_cpu_pool.mutex);
375 
376 	return rc;
377 }
378 
379 /**
380  * ne_teardown_cpu_pool() - Online the CPUs from the NE CPU pool and cleanup the
381  *			    CPU pool.
382  * @void:	No parameters provided.
383  *
384  * Context: Process context.
385  */
386 static void ne_teardown_cpu_pool(void)
387 {
388 	unsigned int cpu = 0;
389 	unsigned int i = 0;
390 	int rc = -EINVAL;
391 
392 	mutex_lock(&ne_cpu_pool.mutex);
393 
394 	if (!ne_cpu_pool.nr_parent_vm_cores) {
395 		mutex_unlock(&ne_cpu_pool.mutex);
396 
397 		return;
398 	}
399 
400 	for (i = 0; i < ne_cpu_pool.nr_parent_vm_cores; i++) {
401 		for_each_cpu(cpu, ne_cpu_pool.avail_threads_per_core[i]) {
402 			rc = add_cpu(cpu);
403 			if (rc != 0)
404 				pr_err("%s: CPU %d is not onlined [rc=%d]\n",
405 				       ne_misc_dev.name, cpu, rc);
406 		}
407 
408 		cpumask_clear(ne_cpu_pool.avail_threads_per_core[i]);
409 
410 		free_cpumask_var(ne_cpu_pool.avail_threads_per_core[i]);
411 	}
412 
413 	kfree(ne_cpu_pool.avail_threads_per_core);
414 	ne_cpu_pool.nr_parent_vm_cores = 0;
415 	ne_cpu_pool.nr_threads_per_core = 0;
416 	ne_cpu_pool.numa_node = -1;
417 
418 	mutex_unlock(&ne_cpu_pool.mutex);
419 }
420 
421 /**
422  * ne_set_kernel_param() - Set the NE CPU pool value via the NE kernel parameter.
423  * @val:	NE CPU pool string value.
424  * @kp :	NE kernel parameter associated with the NE CPU pool.
425  *
426  * Context: Process context.
427  * Return:
428  * * 0 on success.
429  * * Negative return value on failure.
430  */
431 static int ne_set_kernel_param(const char *val, const struct kernel_param *kp)
432 {
433 	char error_val[] = "";
434 	int rc = -EINVAL;
435 
436 	if (!capable(CAP_SYS_ADMIN))
437 		return -EPERM;
438 
439 	if (ne_check_enclaves_created()) {
440 		pr_err("%s: The CPU pool is used by enclave(s)\n", ne_misc_dev.name);
441 
442 		return -EPERM;
443 	}
444 
445 	ne_teardown_cpu_pool();
446 
447 	rc = ne_setup_cpu_pool(val);
448 	if (rc < 0) {
449 		pr_err("%s: Error in setup CPU pool [rc=%d]\n", ne_misc_dev.name, rc);
450 
451 		param_set_copystring(error_val, kp);
452 
453 		return rc;
454 	}
455 
456 	rc = param_set_copystring(val, kp);
457 	if (rc < 0) {
458 		pr_err("%s: Error in param set copystring [rc=%d]\n", ne_misc_dev.name, rc);
459 
460 		ne_teardown_cpu_pool();
461 
462 		param_set_copystring(error_val, kp);
463 
464 		return rc;
465 	}
466 
467 	return 0;
468 }
469 
470 /**
471  * ne_donated_cpu() - Check if the provided CPU is already used by the enclave.
472  * @ne_enclave :	Private data associated with the current enclave.
473  * @cpu:		CPU to check if already used.
474  *
475  * Context: Process context. This function is called with the ne_enclave mutex held.
476  * Return:
477  * * True if the provided CPU is already used by the enclave.
478  * * False otherwise.
479  */
480 static bool ne_donated_cpu(struct ne_enclave *ne_enclave, unsigned int cpu)
481 {
482 	if (cpumask_test_cpu(cpu, ne_enclave->vcpu_ids))
483 		return true;
484 
485 	return false;
486 }
487 
488 /**
489  * ne_get_unused_core_from_cpu_pool() - Get the id of a full core from the
490  *					NE CPU pool.
491  * @void:	No parameters provided.
492  *
493  * Context: Process context. This function is called with the ne_enclave and
494  *	    ne_cpu_pool mutexes held.
495  * Return:
496  * * Core id.
497  * * -1 if no CPU core available in the pool.
498  */
499 static int ne_get_unused_core_from_cpu_pool(void)
500 {
501 	int core_id = -1;
502 	unsigned int i = 0;
503 
504 	for (i = 0; i < ne_cpu_pool.nr_parent_vm_cores; i++)
505 		if (!cpumask_empty(ne_cpu_pool.avail_threads_per_core[i])) {
506 			core_id = i;
507 
508 			break;
509 		}
510 
511 	return core_id;
512 }
513 
514 /**
515  * ne_set_enclave_threads_per_core() - Set the threads of the provided core in
516  *				       the enclave data structure.
517  * @ne_enclave :	Private data associated with the current enclave.
518  * @core_id:		Core id to get its threads from the NE CPU pool.
519  * @vcpu_id:		vCPU id part of the provided core.
520  *
521  * Context: Process context. This function is called with the ne_enclave and
522  *	    ne_cpu_pool mutexes held.
523  * Return:
524  * * 0 on success.
525  * * Negative return value on failure.
526  */
527 static int ne_set_enclave_threads_per_core(struct ne_enclave *ne_enclave,
528 					   int core_id, u32 vcpu_id)
529 {
530 	unsigned int cpu = 0;
531 
532 	if (core_id < 0 && vcpu_id == 0) {
533 		dev_err_ratelimited(ne_misc_dev.this_device,
534 				    "No CPUs available in NE CPU pool\n");
535 
536 		return -NE_ERR_NO_CPUS_AVAIL_IN_POOL;
537 	}
538 
539 	if (core_id < 0) {
540 		dev_err_ratelimited(ne_misc_dev.this_device,
541 				    "CPU %d is not in NE CPU pool\n", vcpu_id);
542 
543 		return -NE_ERR_VCPU_NOT_IN_CPU_POOL;
544 	}
545 
546 	if (core_id >= ne_enclave->nr_parent_vm_cores) {
547 		dev_err_ratelimited(ne_misc_dev.this_device,
548 				    "Invalid core id %d - ne_enclave\n", core_id);
549 
550 		return -NE_ERR_VCPU_INVALID_CPU_CORE;
551 	}
552 
553 	for_each_cpu(cpu, ne_cpu_pool.avail_threads_per_core[core_id])
554 		cpumask_set_cpu(cpu, ne_enclave->threads_per_core[core_id]);
555 
556 	cpumask_clear(ne_cpu_pool.avail_threads_per_core[core_id]);
557 
558 	return 0;
559 }
560 
561 /**
562  * ne_get_cpu_from_cpu_pool() - Get a CPU from the NE CPU pool, either from the
563  *				remaining sibling(s) of a CPU core or the first
564  *				sibling of a new CPU core.
565  * @ne_enclave :	Private data associated with the current enclave.
566  * @vcpu_id:		vCPU to get from the NE CPU pool.
567  *
568  * Context: Process context. This function is called with the ne_enclave mutex held.
569  * Return:
570  * * 0 on success.
571  * * Negative return value on failure.
572  */
573 static int ne_get_cpu_from_cpu_pool(struct ne_enclave *ne_enclave, u32 *vcpu_id)
574 {
575 	int core_id = -1;
576 	unsigned int cpu = 0;
577 	unsigned int i = 0;
578 	int rc = -EINVAL;
579 
580 	/*
581 	 * If previously allocated a thread of a core to this enclave, first
582 	 * check remaining sibling(s) for new CPU allocations, so that full
583 	 * CPU cores are used for the enclave.
584 	 */
585 	for (i = 0; i < ne_enclave->nr_parent_vm_cores; i++)
586 		for_each_cpu(cpu, ne_enclave->threads_per_core[i])
587 			if (!ne_donated_cpu(ne_enclave, cpu)) {
588 				*vcpu_id = cpu;
589 
590 				return 0;
591 			}
592 
593 	mutex_lock(&ne_cpu_pool.mutex);
594 
595 	/*
596 	 * If no remaining siblings, get a core from the NE CPU pool and keep
597 	 * track of all the threads in the enclave threads per core data structure.
598 	 */
599 	core_id = ne_get_unused_core_from_cpu_pool();
600 
601 	rc = ne_set_enclave_threads_per_core(ne_enclave, core_id, *vcpu_id);
602 	if (rc < 0)
603 		goto unlock_mutex;
604 
605 	*vcpu_id = cpumask_any(ne_enclave->threads_per_core[core_id]);
606 
607 	rc = 0;
608 
609 unlock_mutex:
610 	mutex_unlock(&ne_cpu_pool.mutex);
611 
612 	return rc;
613 }
614 
615 /**
616  * ne_get_vcpu_core_from_cpu_pool() - Get from the NE CPU pool the id of the
617  *				      core associated with the provided vCPU.
618  * @vcpu_id:	Provided vCPU id to get its associated core id.
619  *
620  * Context: Process context. This function is called with the ne_enclave and
621  *	    ne_cpu_pool mutexes held.
622  * Return:
623  * * Core id.
624  * * -1 if the provided vCPU is not in the pool.
625  */
626 static int ne_get_vcpu_core_from_cpu_pool(u32 vcpu_id)
627 {
628 	int core_id = -1;
629 	unsigned int i = 0;
630 
631 	for (i = 0; i < ne_cpu_pool.nr_parent_vm_cores; i++)
632 		if (cpumask_test_cpu(vcpu_id, ne_cpu_pool.avail_threads_per_core[i])) {
633 			core_id = i;
634 
635 			break;
636 	}
637 
638 	return core_id;
639 }
640 
641 /**
642  * ne_check_cpu_in_cpu_pool() - Check if the given vCPU is in the available CPUs
643  *				from the pool.
644  * @ne_enclave :	Private data associated with the current enclave.
645  * @vcpu_id:		ID of the vCPU to check if available in the NE CPU pool.
646  *
647  * Context: Process context. This function is called with the ne_enclave mutex held.
648  * Return:
649  * * 0 on success.
650  * * Negative return value on failure.
651  */
652 static int ne_check_cpu_in_cpu_pool(struct ne_enclave *ne_enclave, u32 vcpu_id)
653 {
654 	int core_id = -1;
655 	unsigned int i = 0;
656 	int rc = -EINVAL;
657 
658 	if (ne_donated_cpu(ne_enclave, vcpu_id)) {
659 		dev_err_ratelimited(ne_misc_dev.this_device,
660 				    "CPU %d already used\n", vcpu_id);
661 
662 		return -NE_ERR_VCPU_ALREADY_USED;
663 	}
664 
665 	/*
666 	 * If previously allocated a thread of a core to this enclave, but not
667 	 * the full core, first check remaining sibling(s).
668 	 */
669 	for (i = 0; i < ne_enclave->nr_parent_vm_cores; i++)
670 		if (cpumask_test_cpu(vcpu_id, ne_enclave->threads_per_core[i]))
671 			return 0;
672 
673 	mutex_lock(&ne_cpu_pool.mutex);
674 
675 	/*
676 	 * If no remaining siblings, get from the NE CPU pool the core
677 	 * associated with the vCPU and keep track of all the threads in the
678 	 * enclave threads per core data structure.
679 	 */
680 	core_id = ne_get_vcpu_core_from_cpu_pool(vcpu_id);
681 
682 	rc = ne_set_enclave_threads_per_core(ne_enclave, core_id, vcpu_id);
683 	if (rc < 0)
684 		goto unlock_mutex;
685 
686 	rc = 0;
687 
688 unlock_mutex:
689 	mutex_unlock(&ne_cpu_pool.mutex);
690 
691 	return rc;
692 }
693 
694 /**
695  * ne_add_vcpu_ioctl() - Add a vCPU to the slot associated with the current
696  *			 enclave.
697  * @ne_enclave :	Private data associated with the current enclave.
698  * @vcpu_id:		ID of the CPU to be associated with the given slot,
699  *			apic id on x86.
700  *
701  * Context: Process context. This function is called with the ne_enclave mutex held.
702  * Return:
703  * * 0 on success.
704  * * Negative return value on failure.
705  */
706 static int ne_add_vcpu_ioctl(struct ne_enclave *ne_enclave, u32 vcpu_id)
707 {
708 	struct ne_pci_dev_cmd_reply cmd_reply = {};
709 	struct pci_dev *pdev = ne_devs.ne_pci_dev->pdev;
710 	int rc = -EINVAL;
711 	struct slot_add_vcpu_req slot_add_vcpu_req = {};
712 
713 	if (ne_enclave->mm != current->mm)
714 		return -EIO;
715 
716 	slot_add_vcpu_req.slot_uid = ne_enclave->slot_uid;
717 	slot_add_vcpu_req.vcpu_id = vcpu_id;
718 
719 	rc = ne_do_request(pdev, SLOT_ADD_VCPU,
720 			   &slot_add_vcpu_req, sizeof(slot_add_vcpu_req),
721 			   &cmd_reply, sizeof(cmd_reply));
722 	if (rc < 0) {
723 		dev_err_ratelimited(ne_misc_dev.this_device,
724 				    "Error in slot add vCPU [rc=%d]\n", rc);
725 
726 		return rc;
727 	}
728 
729 	cpumask_set_cpu(vcpu_id, ne_enclave->vcpu_ids);
730 
731 	ne_enclave->nr_vcpus++;
732 
733 	return 0;
734 }
735 
736 /**
737  * ne_sanity_check_user_mem_region() - Sanity check the user space memory
738  *				       region received during the set user
739  *				       memory region ioctl call.
740  * @ne_enclave :	Private data associated with the current enclave.
741  * @mem_region :	User space memory region to be sanity checked.
742  *
743  * Context: Process context. This function is called with the ne_enclave mutex held.
744  * Return:
745  * * 0 on success.
746  * * Negative return value on failure.
747  */
748 static int ne_sanity_check_user_mem_region(struct ne_enclave *ne_enclave,
749 					   struct ne_user_memory_region mem_region)
750 {
751 	struct ne_mem_region *ne_mem_region = NULL;
752 
753 	if (ne_enclave->mm != current->mm)
754 		return -EIO;
755 
756 	if (mem_region.memory_size & (NE_MIN_MEM_REGION_SIZE - 1)) {
757 		dev_err_ratelimited(ne_misc_dev.this_device,
758 				    "User space memory size is not multiple of 2 MiB\n");
759 
760 		return -NE_ERR_INVALID_MEM_REGION_SIZE;
761 	}
762 
763 	if (!IS_ALIGNED(mem_region.userspace_addr, NE_MIN_MEM_REGION_SIZE)) {
764 		dev_err_ratelimited(ne_misc_dev.this_device,
765 				    "User space address is not 2 MiB aligned\n");
766 
767 		return -NE_ERR_UNALIGNED_MEM_REGION_ADDR;
768 	}
769 
770 	if ((mem_region.userspace_addr & (NE_MIN_MEM_REGION_SIZE - 1)) ||
771 	    !access_ok((void __user *)(unsigned long)mem_region.userspace_addr,
772 		       mem_region.memory_size)) {
773 		dev_err_ratelimited(ne_misc_dev.this_device,
774 				    "Invalid user space address range\n");
775 
776 		return -NE_ERR_INVALID_MEM_REGION_ADDR;
777 	}
778 
779 	list_for_each_entry(ne_mem_region, &ne_enclave->mem_regions_list,
780 			    mem_region_list_entry) {
781 		u64 memory_size = ne_mem_region->memory_size;
782 		u64 userspace_addr = ne_mem_region->userspace_addr;
783 
784 		if ((userspace_addr <= mem_region.userspace_addr &&
785 		     mem_region.userspace_addr < (userspace_addr + memory_size)) ||
786 		    (mem_region.userspace_addr <= userspace_addr &&
787 		    (mem_region.userspace_addr + mem_region.memory_size) > userspace_addr)) {
788 			dev_err_ratelimited(ne_misc_dev.this_device,
789 					    "User space memory region already used\n");
790 
791 			return -NE_ERR_MEM_REGION_ALREADY_USED;
792 		}
793 	}
794 
795 	return 0;
796 }
797 
798 /**
799  * ne_sanity_check_user_mem_region_page() - Sanity check a page from the user space
800  *					    memory region received during the set
801  *					    user memory region ioctl call.
802  * @ne_enclave :	Private data associated with the current enclave.
803  * @mem_region_page:	Page from the user space memory region to be sanity checked.
804  *
805  * Context: Process context. This function is called with the ne_enclave mutex held.
806  * Return:
807  * * 0 on success.
808  * * Negative return value on failure.
809  */
810 static int ne_sanity_check_user_mem_region_page(struct ne_enclave *ne_enclave,
811 						struct page *mem_region_page)
812 {
813 	if (!PageHuge(mem_region_page)) {
814 		dev_err_ratelimited(ne_misc_dev.this_device,
815 				    "Not a hugetlbfs page\n");
816 
817 		return -NE_ERR_MEM_NOT_HUGE_PAGE;
818 	}
819 
820 	if (page_size(mem_region_page) & (NE_MIN_MEM_REGION_SIZE - 1)) {
821 		dev_err_ratelimited(ne_misc_dev.this_device,
822 				    "Page size not multiple of 2 MiB\n");
823 
824 		return -NE_ERR_INVALID_PAGE_SIZE;
825 	}
826 
827 	if (ne_enclave->numa_node != page_to_nid(mem_region_page)) {
828 		dev_err_ratelimited(ne_misc_dev.this_device,
829 				    "Page is not from NUMA node %d\n",
830 				    ne_enclave->numa_node);
831 
832 		return -NE_ERR_MEM_DIFFERENT_NUMA_NODE;
833 	}
834 
835 	return 0;
836 }
837 
838 /**
839  * ne_sanity_check_phys_mem_region() - Sanity check the start address and the size
840  *                                     of a physical memory region.
841  * @phys_mem_region_paddr : Physical start address of the region to be sanity checked.
842  * @phys_mem_region_size  : Length of the region to be sanity checked.
843  *
844  * Context: Process context. This function is called with the ne_enclave mutex held.
845  * Return:
846  * * 0 on success.
847  * * Negative return value on failure.
848  */
849 static int ne_sanity_check_phys_mem_region(u64 phys_mem_region_paddr,
850 					   u64 phys_mem_region_size)
851 {
852 	if (phys_mem_region_size & (NE_MIN_MEM_REGION_SIZE - 1)) {
853 		dev_err_ratelimited(ne_misc_dev.this_device,
854 				    "Physical mem region size is not multiple of 2 MiB\n");
855 
856 		return -EINVAL;
857 	}
858 
859 	if (!IS_ALIGNED(phys_mem_region_paddr, NE_MIN_MEM_REGION_SIZE)) {
860 		dev_err_ratelimited(ne_misc_dev.this_device,
861 				    "Physical mem region address is not 2 MiB aligned\n");
862 
863 		return -EINVAL;
864 	}
865 
866 	return 0;
867 }
868 
869 /**
870  * ne_merge_phys_contig_memory_regions() - Add a memory region and merge the adjacent
871  *                                         regions if they are physically contiguous.
872  * @phys_contig_regions : Private data associated with the contiguous physical memory regions.
873  * @page_paddr :          Physical start address of the region to be added.
874  * @page_size :           Length of the region to be added.
875  *
876  * Context: Process context. This function is called with the ne_enclave mutex held.
877  * Return:
878  * * 0 on success.
879  * * Negative return value on failure.
880  */
881 static int
882 ne_merge_phys_contig_memory_regions(struct ne_phys_contig_mem_regions *phys_contig_regions,
883 				    u64 page_paddr, u64 page_size)
884 {
885 	unsigned long num = phys_contig_regions->num;
886 	int rc = 0;
887 
888 	rc = ne_sanity_check_phys_mem_region(page_paddr, page_size);
889 	if (rc < 0)
890 		return rc;
891 
892 	/* Physically contiguous, just merge */
893 	if (num && (phys_contig_regions->regions[num - 1].end + 1) == page_paddr) {
894 		phys_contig_regions->regions[num - 1].end += page_size;
895 	} else {
896 		phys_contig_regions->regions[num].start = page_paddr;
897 		phys_contig_regions->regions[num].end = page_paddr + page_size - 1;
898 		phys_contig_regions->num++;
899 	}
900 
901 	return 0;
902 }
903 
904 /**
905  * ne_set_user_memory_region_ioctl() - Add user space memory region to the slot
906  *				       associated with the current enclave.
907  * @ne_enclave :	Private data associated with the current enclave.
908  * @mem_region :	User space memory region to be associated with the given slot.
909  *
910  * Context: Process context. This function is called with the ne_enclave mutex held.
911  * Return:
912  * * 0 on success.
913  * * Negative return value on failure.
914  */
915 static int ne_set_user_memory_region_ioctl(struct ne_enclave *ne_enclave,
916 					   struct ne_user_memory_region mem_region)
917 {
918 	long gup_rc = 0;
919 	unsigned long i = 0;
920 	unsigned long max_nr_pages = 0;
921 	unsigned long memory_size = 0;
922 	struct ne_mem_region *ne_mem_region = NULL;
923 	struct pci_dev *pdev = ne_devs.ne_pci_dev->pdev;
924 	struct ne_phys_contig_mem_regions phys_contig_mem_regions = {};
925 	int rc = -EINVAL;
926 
927 	rc = ne_sanity_check_user_mem_region(ne_enclave, mem_region);
928 	if (rc < 0)
929 		return rc;
930 
931 	ne_mem_region = kzalloc(sizeof(*ne_mem_region), GFP_KERNEL);
932 	if (!ne_mem_region)
933 		return -ENOMEM;
934 
935 	max_nr_pages = mem_region.memory_size / NE_MIN_MEM_REGION_SIZE;
936 
937 	ne_mem_region->pages = kcalloc(max_nr_pages, sizeof(*ne_mem_region->pages),
938 				       GFP_KERNEL);
939 	if (!ne_mem_region->pages) {
940 		rc = -ENOMEM;
941 
942 		goto free_mem_region;
943 	}
944 
945 	phys_contig_mem_regions.regions = kcalloc(max_nr_pages,
946 						  sizeof(*phys_contig_mem_regions.regions),
947 						  GFP_KERNEL);
948 	if (!phys_contig_mem_regions.regions) {
949 		rc = -ENOMEM;
950 
951 		goto free_mem_region;
952 	}
953 
954 	do {
955 		i = ne_mem_region->nr_pages;
956 
957 		if (i == max_nr_pages) {
958 			dev_err_ratelimited(ne_misc_dev.this_device,
959 					    "Reached max nr of pages in the pages data struct\n");
960 
961 			rc = -ENOMEM;
962 
963 			goto put_pages;
964 		}
965 
966 		gup_rc = get_user_pages_unlocked(mem_region.userspace_addr + memory_size, 1,
967 						 ne_mem_region->pages + i, FOLL_GET);
968 
969 		if (gup_rc < 0) {
970 			rc = gup_rc;
971 
972 			dev_err_ratelimited(ne_misc_dev.this_device,
973 					    "Error in get user pages [rc=%d]\n", rc);
974 
975 			goto put_pages;
976 		}
977 
978 		rc = ne_sanity_check_user_mem_region_page(ne_enclave, ne_mem_region->pages[i]);
979 		if (rc < 0)
980 			goto put_pages;
981 
982 		rc = ne_merge_phys_contig_memory_regions(&phys_contig_mem_regions,
983 							 page_to_phys(ne_mem_region->pages[i]),
984 							 page_size(ne_mem_region->pages[i]));
985 		if (rc < 0)
986 			goto put_pages;
987 
988 		memory_size += page_size(ne_mem_region->pages[i]);
989 
990 		ne_mem_region->nr_pages++;
991 	} while (memory_size < mem_region.memory_size);
992 
993 	if ((ne_enclave->nr_mem_regions + phys_contig_mem_regions.num) >
994 	    ne_enclave->max_mem_regions) {
995 		dev_err_ratelimited(ne_misc_dev.this_device,
996 				    "Reached max memory regions %lld\n",
997 				    ne_enclave->max_mem_regions);
998 
999 		rc = -NE_ERR_MEM_MAX_REGIONS;
1000 
1001 		goto put_pages;
1002 	}
1003 
1004 	for (i = 0; i < phys_contig_mem_regions.num; i++) {
1005 		u64 phys_region_addr = phys_contig_mem_regions.regions[i].start;
1006 		u64 phys_region_size = range_len(&phys_contig_mem_regions.regions[i]);
1007 
1008 		rc = ne_sanity_check_phys_mem_region(phys_region_addr, phys_region_size);
1009 		if (rc < 0)
1010 			goto put_pages;
1011 	}
1012 
1013 	ne_mem_region->memory_size = mem_region.memory_size;
1014 	ne_mem_region->userspace_addr = mem_region.userspace_addr;
1015 
1016 	list_add(&ne_mem_region->mem_region_list_entry, &ne_enclave->mem_regions_list);
1017 
1018 	for (i = 0; i < phys_contig_mem_regions.num; i++) {
1019 		struct ne_pci_dev_cmd_reply cmd_reply = {};
1020 		struct slot_add_mem_req slot_add_mem_req = {};
1021 
1022 		slot_add_mem_req.slot_uid = ne_enclave->slot_uid;
1023 		slot_add_mem_req.paddr = phys_contig_mem_regions.regions[i].start;
1024 		slot_add_mem_req.size = range_len(&phys_contig_mem_regions.regions[i]);
1025 
1026 		rc = ne_do_request(pdev, SLOT_ADD_MEM,
1027 				   &slot_add_mem_req, sizeof(slot_add_mem_req),
1028 				   &cmd_reply, sizeof(cmd_reply));
1029 		if (rc < 0) {
1030 			dev_err_ratelimited(ne_misc_dev.this_device,
1031 					    "Error in slot add mem [rc=%d]\n", rc);
1032 
1033 			kfree(phys_contig_mem_regions.regions);
1034 
1035 			/*
1036 			 * Exit here without put pages as memory regions may
1037 			 * already been added.
1038 			 */
1039 			return rc;
1040 		}
1041 
1042 		ne_enclave->mem_size += slot_add_mem_req.size;
1043 		ne_enclave->nr_mem_regions++;
1044 	}
1045 
1046 	kfree(phys_contig_mem_regions.regions);
1047 
1048 	return 0;
1049 
1050 put_pages:
1051 	for (i = 0; i < ne_mem_region->nr_pages; i++)
1052 		put_page(ne_mem_region->pages[i]);
1053 free_mem_region:
1054 	kfree(phys_contig_mem_regions.regions);
1055 	kfree(ne_mem_region->pages);
1056 	kfree(ne_mem_region);
1057 
1058 	return rc;
1059 }
1060 
1061 /**
1062  * ne_start_enclave_ioctl() - Trigger enclave start after the enclave resources,
1063  *			      such as memory and CPU, have been set.
1064  * @ne_enclave :		Private data associated with the current enclave.
1065  * @enclave_start_info :	Enclave info that includes enclave cid and flags.
1066  *
1067  * Context: Process context. This function is called with the ne_enclave mutex held.
1068  * Return:
1069  * * 0 on success.
1070  * * Negative return value on failure.
1071  */
1072 static int ne_start_enclave_ioctl(struct ne_enclave *ne_enclave,
1073 				  struct ne_enclave_start_info *enclave_start_info)
1074 {
1075 	struct ne_pci_dev_cmd_reply cmd_reply = {};
1076 	unsigned int cpu = 0;
1077 	struct enclave_start_req enclave_start_req = {};
1078 	unsigned int i = 0;
1079 	struct pci_dev *pdev = ne_devs.ne_pci_dev->pdev;
1080 	int rc = -EINVAL;
1081 
1082 	if (!ne_enclave->nr_mem_regions) {
1083 		dev_err_ratelimited(ne_misc_dev.this_device,
1084 				    "Enclave has no mem regions\n");
1085 
1086 		return -NE_ERR_NO_MEM_REGIONS_ADDED;
1087 	}
1088 
1089 	if (ne_enclave->mem_size < NE_MIN_ENCLAVE_MEM_SIZE) {
1090 		dev_err_ratelimited(ne_misc_dev.this_device,
1091 				    "Enclave memory is less than %ld\n",
1092 				    NE_MIN_ENCLAVE_MEM_SIZE);
1093 
1094 		return -NE_ERR_ENCLAVE_MEM_MIN_SIZE;
1095 	}
1096 
1097 	if (!ne_enclave->nr_vcpus) {
1098 		dev_err_ratelimited(ne_misc_dev.this_device,
1099 				    "Enclave has no vCPUs\n");
1100 
1101 		return -NE_ERR_NO_VCPUS_ADDED;
1102 	}
1103 
1104 	for (i = 0; i < ne_enclave->nr_parent_vm_cores; i++)
1105 		for_each_cpu(cpu, ne_enclave->threads_per_core[i])
1106 			if (!cpumask_test_cpu(cpu, ne_enclave->vcpu_ids)) {
1107 				dev_err_ratelimited(ne_misc_dev.this_device,
1108 						    "Full CPU cores not used\n");
1109 
1110 				return -NE_ERR_FULL_CORES_NOT_USED;
1111 			}
1112 
1113 	enclave_start_req.enclave_cid = enclave_start_info->enclave_cid;
1114 	enclave_start_req.flags = enclave_start_info->flags;
1115 	enclave_start_req.slot_uid = ne_enclave->slot_uid;
1116 
1117 	rc = ne_do_request(pdev, ENCLAVE_START,
1118 			   &enclave_start_req, sizeof(enclave_start_req),
1119 			   &cmd_reply, sizeof(cmd_reply));
1120 	if (rc < 0) {
1121 		dev_err_ratelimited(ne_misc_dev.this_device,
1122 				    "Error in enclave start [rc=%d]\n", rc);
1123 
1124 		return rc;
1125 	}
1126 
1127 	ne_enclave->state = NE_STATE_RUNNING;
1128 
1129 	enclave_start_info->enclave_cid = cmd_reply.enclave_cid;
1130 
1131 	return 0;
1132 }
1133 
1134 /**
1135  * ne_enclave_ioctl() - Ioctl function provided by the enclave file.
1136  * @file:	File associated with this ioctl function.
1137  * @cmd:	The command that is set for the ioctl call.
1138  * @arg:	The argument that is provided for the ioctl call.
1139  *
1140  * Context: Process context.
1141  * Return:
1142  * * 0 on success.
1143  * * Negative return value on failure.
1144  */
1145 static long ne_enclave_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
1146 {
1147 	struct ne_enclave *ne_enclave = file->private_data;
1148 
1149 	switch (cmd) {
1150 	case NE_ADD_VCPU: {
1151 		int rc = -EINVAL;
1152 		u32 vcpu_id = 0;
1153 
1154 		if (copy_from_user(&vcpu_id, (void __user *)arg, sizeof(vcpu_id)))
1155 			return -EFAULT;
1156 
1157 		mutex_lock(&ne_enclave->enclave_info_mutex);
1158 
1159 		if (ne_enclave->state != NE_STATE_INIT) {
1160 			dev_err_ratelimited(ne_misc_dev.this_device,
1161 					    "Enclave is not in init state\n");
1162 
1163 			mutex_unlock(&ne_enclave->enclave_info_mutex);
1164 
1165 			return -NE_ERR_NOT_IN_INIT_STATE;
1166 		}
1167 
1168 		if (vcpu_id >= (ne_enclave->nr_parent_vm_cores *
1169 		    ne_enclave->nr_threads_per_core)) {
1170 			dev_err_ratelimited(ne_misc_dev.this_device,
1171 					    "vCPU id higher than max CPU id\n");
1172 
1173 			mutex_unlock(&ne_enclave->enclave_info_mutex);
1174 
1175 			return -NE_ERR_INVALID_VCPU;
1176 		}
1177 
1178 		if (!vcpu_id) {
1179 			/* Use the CPU pool for choosing a CPU for the enclave. */
1180 			rc = ne_get_cpu_from_cpu_pool(ne_enclave, &vcpu_id);
1181 			if (rc < 0) {
1182 				dev_err_ratelimited(ne_misc_dev.this_device,
1183 						    "Error in get CPU from pool [rc=%d]\n",
1184 						    rc);
1185 
1186 				mutex_unlock(&ne_enclave->enclave_info_mutex);
1187 
1188 				return rc;
1189 			}
1190 		} else {
1191 			/* Check if the provided vCPU is available in the NE CPU pool. */
1192 			rc = ne_check_cpu_in_cpu_pool(ne_enclave, vcpu_id);
1193 			if (rc < 0) {
1194 				dev_err_ratelimited(ne_misc_dev.this_device,
1195 						    "Error in check CPU %d in pool [rc=%d]\n",
1196 						    vcpu_id, rc);
1197 
1198 				mutex_unlock(&ne_enclave->enclave_info_mutex);
1199 
1200 				return rc;
1201 			}
1202 		}
1203 
1204 		rc = ne_add_vcpu_ioctl(ne_enclave, vcpu_id);
1205 		if (rc < 0) {
1206 			mutex_unlock(&ne_enclave->enclave_info_mutex);
1207 
1208 			return rc;
1209 		}
1210 
1211 		mutex_unlock(&ne_enclave->enclave_info_mutex);
1212 
1213 		if (copy_to_user((void __user *)arg, &vcpu_id, sizeof(vcpu_id)))
1214 			return -EFAULT;
1215 
1216 		return 0;
1217 	}
1218 
1219 	case NE_GET_IMAGE_LOAD_INFO: {
1220 		struct ne_image_load_info image_load_info = {};
1221 
1222 		if (copy_from_user(&image_load_info, (void __user *)arg, sizeof(image_load_info)))
1223 			return -EFAULT;
1224 
1225 		mutex_lock(&ne_enclave->enclave_info_mutex);
1226 
1227 		if (ne_enclave->state != NE_STATE_INIT) {
1228 			dev_err_ratelimited(ne_misc_dev.this_device,
1229 					    "Enclave is not in init state\n");
1230 
1231 			mutex_unlock(&ne_enclave->enclave_info_mutex);
1232 
1233 			return -NE_ERR_NOT_IN_INIT_STATE;
1234 		}
1235 
1236 		mutex_unlock(&ne_enclave->enclave_info_mutex);
1237 
1238 		if (!image_load_info.flags ||
1239 		    image_load_info.flags >= NE_IMAGE_LOAD_MAX_FLAG_VAL) {
1240 			dev_err_ratelimited(ne_misc_dev.this_device,
1241 					    "Incorrect flag in enclave image load info\n");
1242 
1243 			return -NE_ERR_INVALID_FLAG_VALUE;
1244 		}
1245 
1246 		if (image_load_info.flags == NE_EIF_IMAGE)
1247 			image_load_info.memory_offset = NE_EIF_LOAD_OFFSET;
1248 
1249 		if (copy_to_user((void __user *)arg, &image_load_info, sizeof(image_load_info)))
1250 			return -EFAULT;
1251 
1252 		return 0;
1253 	}
1254 
1255 	case NE_SET_USER_MEMORY_REGION: {
1256 		struct ne_user_memory_region mem_region = {};
1257 		int rc = -EINVAL;
1258 
1259 		if (copy_from_user(&mem_region, (void __user *)arg, sizeof(mem_region)))
1260 			return -EFAULT;
1261 
1262 		if (mem_region.flags >= NE_MEMORY_REGION_MAX_FLAG_VAL) {
1263 			dev_err_ratelimited(ne_misc_dev.this_device,
1264 					    "Incorrect flag for user memory region\n");
1265 
1266 			return -NE_ERR_INVALID_FLAG_VALUE;
1267 		}
1268 
1269 		mutex_lock(&ne_enclave->enclave_info_mutex);
1270 
1271 		if (ne_enclave->state != NE_STATE_INIT) {
1272 			dev_err_ratelimited(ne_misc_dev.this_device,
1273 					    "Enclave is not in init state\n");
1274 
1275 			mutex_unlock(&ne_enclave->enclave_info_mutex);
1276 
1277 			return -NE_ERR_NOT_IN_INIT_STATE;
1278 		}
1279 
1280 		rc = ne_set_user_memory_region_ioctl(ne_enclave, mem_region);
1281 		if (rc < 0) {
1282 			mutex_unlock(&ne_enclave->enclave_info_mutex);
1283 
1284 			return rc;
1285 		}
1286 
1287 		mutex_unlock(&ne_enclave->enclave_info_mutex);
1288 
1289 		return 0;
1290 	}
1291 
1292 	case NE_START_ENCLAVE: {
1293 		struct ne_enclave_start_info enclave_start_info = {};
1294 		int rc = -EINVAL;
1295 
1296 		if (copy_from_user(&enclave_start_info, (void __user *)arg,
1297 				   sizeof(enclave_start_info)))
1298 			return -EFAULT;
1299 
1300 		if (enclave_start_info.flags >= NE_ENCLAVE_START_MAX_FLAG_VAL) {
1301 			dev_err_ratelimited(ne_misc_dev.this_device,
1302 					    "Incorrect flag in enclave start info\n");
1303 
1304 			return -NE_ERR_INVALID_FLAG_VALUE;
1305 		}
1306 
1307 		/*
1308 		 * Do not use well-known CIDs - 0, 1, 2 - for enclaves.
1309 		 * VMADDR_CID_ANY = -1U
1310 		 * VMADDR_CID_HYPERVISOR = 0
1311 		 * VMADDR_CID_LOCAL = 1
1312 		 * VMADDR_CID_HOST = 2
1313 		 * Note: 0 is used as a placeholder to auto-generate an enclave CID.
1314 		 * http://man7.org/linux/man-pages/man7/vsock.7.html
1315 		 */
1316 		if (enclave_start_info.enclave_cid > 0 &&
1317 		    enclave_start_info.enclave_cid <= VMADDR_CID_HOST) {
1318 			dev_err_ratelimited(ne_misc_dev.this_device,
1319 					    "Well-known CID value, not to be used for enclaves\n");
1320 
1321 			return -NE_ERR_INVALID_ENCLAVE_CID;
1322 		}
1323 
1324 		if (enclave_start_info.enclave_cid == U32_MAX) {
1325 			dev_err_ratelimited(ne_misc_dev.this_device,
1326 					    "Well-known CID value, not to be used for enclaves\n");
1327 
1328 			return -NE_ERR_INVALID_ENCLAVE_CID;
1329 		}
1330 
1331 		/*
1332 		 * Do not use the CID of the primary / parent VM for enclaves.
1333 		 */
1334 		if (enclave_start_info.enclave_cid == NE_PARENT_VM_CID) {
1335 			dev_err_ratelimited(ne_misc_dev.this_device,
1336 					    "CID of the parent VM, not to be used for enclaves\n");
1337 
1338 			return -NE_ERR_INVALID_ENCLAVE_CID;
1339 		}
1340 
1341 		/* 64-bit CIDs are not yet supported for the vsock device. */
1342 		if (enclave_start_info.enclave_cid > U32_MAX) {
1343 			dev_err_ratelimited(ne_misc_dev.this_device,
1344 					    "64-bit CIDs not yet supported for the vsock device\n");
1345 
1346 			return -NE_ERR_INVALID_ENCLAVE_CID;
1347 		}
1348 
1349 		mutex_lock(&ne_enclave->enclave_info_mutex);
1350 
1351 		if (ne_enclave->state != NE_STATE_INIT) {
1352 			dev_err_ratelimited(ne_misc_dev.this_device,
1353 					    "Enclave is not in init state\n");
1354 
1355 			mutex_unlock(&ne_enclave->enclave_info_mutex);
1356 
1357 			return -NE_ERR_NOT_IN_INIT_STATE;
1358 		}
1359 
1360 		rc = ne_start_enclave_ioctl(ne_enclave, &enclave_start_info);
1361 		if (rc < 0) {
1362 			mutex_unlock(&ne_enclave->enclave_info_mutex);
1363 
1364 			return rc;
1365 		}
1366 
1367 		mutex_unlock(&ne_enclave->enclave_info_mutex);
1368 
1369 		if (copy_to_user((void __user *)arg, &enclave_start_info,
1370 				 sizeof(enclave_start_info)))
1371 			return -EFAULT;
1372 
1373 		return 0;
1374 	}
1375 
1376 	default:
1377 		return -ENOTTY;
1378 	}
1379 
1380 	return 0;
1381 }
1382 
1383 /**
1384  * ne_enclave_remove_all_mem_region_entries() - Remove all memory region entries
1385  *						from the enclave data structure.
1386  * @ne_enclave :	Private data associated with the current enclave.
1387  *
1388  * Context: Process context. This function is called with the ne_enclave mutex held.
1389  */
1390 static void ne_enclave_remove_all_mem_region_entries(struct ne_enclave *ne_enclave)
1391 {
1392 	unsigned long i = 0;
1393 	struct ne_mem_region *ne_mem_region = NULL;
1394 	struct ne_mem_region *ne_mem_region_tmp = NULL;
1395 
1396 	list_for_each_entry_safe(ne_mem_region, ne_mem_region_tmp,
1397 				 &ne_enclave->mem_regions_list,
1398 				 mem_region_list_entry) {
1399 		list_del(&ne_mem_region->mem_region_list_entry);
1400 
1401 		for (i = 0; i < ne_mem_region->nr_pages; i++)
1402 			put_page(ne_mem_region->pages[i]);
1403 
1404 		kfree(ne_mem_region->pages);
1405 
1406 		kfree(ne_mem_region);
1407 	}
1408 }
1409 
1410 /**
1411  * ne_enclave_remove_all_vcpu_id_entries() - Remove all vCPU id entries from
1412  *					     the enclave data structure.
1413  * @ne_enclave :	Private data associated with the current enclave.
1414  *
1415  * Context: Process context. This function is called with the ne_enclave mutex held.
1416  */
1417 static void ne_enclave_remove_all_vcpu_id_entries(struct ne_enclave *ne_enclave)
1418 {
1419 	unsigned int cpu = 0;
1420 	unsigned int i = 0;
1421 
1422 	mutex_lock(&ne_cpu_pool.mutex);
1423 
1424 	for (i = 0; i < ne_enclave->nr_parent_vm_cores; i++) {
1425 		for_each_cpu(cpu, ne_enclave->threads_per_core[i])
1426 			/* Update the available NE CPU pool. */
1427 			cpumask_set_cpu(cpu, ne_cpu_pool.avail_threads_per_core[i]);
1428 
1429 		free_cpumask_var(ne_enclave->threads_per_core[i]);
1430 	}
1431 
1432 	mutex_unlock(&ne_cpu_pool.mutex);
1433 
1434 	kfree(ne_enclave->threads_per_core);
1435 
1436 	free_cpumask_var(ne_enclave->vcpu_ids);
1437 }
1438 
1439 /**
1440  * ne_pci_dev_remove_enclave_entry() - Remove the enclave entry from the data
1441  *				       structure that is part of the NE PCI
1442  *				       device private data.
1443  * @ne_enclave :	Private data associated with the current enclave.
1444  * @ne_pci_dev :	Private data associated with the PCI device.
1445  *
1446  * Context: Process context. This function is called with the ne_pci_dev enclave
1447  *	    mutex held.
1448  */
1449 static void ne_pci_dev_remove_enclave_entry(struct ne_enclave *ne_enclave,
1450 					    struct ne_pci_dev *ne_pci_dev)
1451 {
1452 	struct ne_enclave *ne_enclave_entry = NULL;
1453 	struct ne_enclave *ne_enclave_entry_tmp = NULL;
1454 
1455 	list_for_each_entry_safe(ne_enclave_entry, ne_enclave_entry_tmp,
1456 				 &ne_pci_dev->enclaves_list, enclave_list_entry) {
1457 		if (ne_enclave_entry->slot_uid == ne_enclave->slot_uid) {
1458 			list_del(&ne_enclave_entry->enclave_list_entry);
1459 
1460 			break;
1461 		}
1462 	}
1463 }
1464 
1465 /**
1466  * ne_enclave_release() - Release function provided by the enclave file.
1467  * @inode:	Inode associated with this file release function.
1468  * @file:	File associated with this release function.
1469  *
1470  * Context: Process context.
1471  * Return:
1472  * * 0 on success.
1473  * * Negative return value on failure.
1474  */
1475 static int ne_enclave_release(struct inode *inode, struct file *file)
1476 {
1477 	struct ne_pci_dev_cmd_reply cmd_reply = {};
1478 	struct enclave_stop_req enclave_stop_request = {};
1479 	struct ne_enclave *ne_enclave = file->private_data;
1480 	struct ne_pci_dev *ne_pci_dev = ne_devs.ne_pci_dev;
1481 	struct pci_dev *pdev = ne_pci_dev->pdev;
1482 	int rc = -EINVAL;
1483 	struct slot_free_req slot_free_req = {};
1484 
1485 	if (!ne_enclave)
1486 		return 0;
1487 
1488 	/*
1489 	 * Early exit in case there is an error in the enclave creation logic
1490 	 * and fput() is called on the cleanup path.
1491 	 */
1492 	if (!ne_enclave->slot_uid)
1493 		return 0;
1494 
1495 	/*
1496 	 * Acquire the enclave list mutex before the enclave mutex
1497 	 * in order to avoid deadlocks with @ref ne_event_work_handler.
1498 	 */
1499 	mutex_lock(&ne_pci_dev->enclaves_list_mutex);
1500 	mutex_lock(&ne_enclave->enclave_info_mutex);
1501 
1502 	if (ne_enclave->state != NE_STATE_INIT && ne_enclave->state != NE_STATE_STOPPED) {
1503 		enclave_stop_request.slot_uid = ne_enclave->slot_uid;
1504 
1505 		rc = ne_do_request(pdev, ENCLAVE_STOP,
1506 				   &enclave_stop_request, sizeof(enclave_stop_request),
1507 				   &cmd_reply, sizeof(cmd_reply));
1508 		if (rc < 0) {
1509 			dev_err_ratelimited(ne_misc_dev.this_device,
1510 					    "Error in enclave stop [rc=%d]\n", rc);
1511 
1512 			goto unlock_mutex;
1513 		}
1514 
1515 		memset(&cmd_reply, 0, sizeof(cmd_reply));
1516 	}
1517 
1518 	slot_free_req.slot_uid = ne_enclave->slot_uid;
1519 
1520 	rc = ne_do_request(pdev, SLOT_FREE,
1521 			   &slot_free_req, sizeof(slot_free_req),
1522 			   &cmd_reply, sizeof(cmd_reply));
1523 	if (rc < 0) {
1524 		dev_err_ratelimited(ne_misc_dev.this_device,
1525 				    "Error in slot free [rc=%d]\n", rc);
1526 
1527 		goto unlock_mutex;
1528 	}
1529 
1530 	ne_pci_dev_remove_enclave_entry(ne_enclave, ne_pci_dev);
1531 	ne_enclave_remove_all_mem_region_entries(ne_enclave);
1532 	ne_enclave_remove_all_vcpu_id_entries(ne_enclave);
1533 
1534 	mutex_unlock(&ne_enclave->enclave_info_mutex);
1535 	mutex_unlock(&ne_pci_dev->enclaves_list_mutex);
1536 
1537 	kfree(ne_enclave);
1538 
1539 	return 0;
1540 
1541 unlock_mutex:
1542 	mutex_unlock(&ne_enclave->enclave_info_mutex);
1543 	mutex_unlock(&ne_pci_dev->enclaves_list_mutex);
1544 
1545 	return rc;
1546 }
1547 
1548 /**
1549  * ne_enclave_poll() - Poll functionality used for enclave out-of-band events.
1550  * @file:	File associated with this poll function.
1551  * @wait:	Poll table data structure.
1552  *
1553  * Context: Process context.
1554  * Return:
1555  * * Poll mask.
1556  */
1557 static __poll_t ne_enclave_poll(struct file *file, poll_table *wait)
1558 {
1559 	__poll_t mask = 0;
1560 	struct ne_enclave *ne_enclave = file->private_data;
1561 
1562 	poll_wait(file, &ne_enclave->eventq, wait);
1563 
1564 	if (ne_enclave->has_event)
1565 		mask |= EPOLLHUP;
1566 
1567 	return mask;
1568 }
1569 
1570 static const struct file_operations ne_enclave_fops = {
1571 	.owner		= THIS_MODULE,
1572 	.llseek		= noop_llseek,
1573 	.poll		= ne_enclave_poll,
1574 	.unlocked_ioctl	= ne_enclave_ioctl,
1575 	.release	= ne_enclave_release,
1576 };
1577 
1578 /**
1579  * ne_create_vm_ioctl() - Alloc slot to be associated with an enclave. Create
1580  *			  enclave file descriptor to be further used for enclave
1581  *			  resources handling e.g. memory regions and CPUs.
1582  * @ne_pci_dev :	Private data associated with the PCI device.
1583  * @slot_uid:		User pointer to store the generated unique slot id
1584  *			associated with an enclave to.
1585  *
1586  * Context: Process context. This function is called with the ne_pci_dev enclave
1587  *	    mutex held.
1588  * Return:
1589  * * Enclave fd on success.
1590  * * Negative return value on failure.
1591  */
1592 static int ne_create_vm_ioctl(struct ne_pci_dev *ne_pci_dev, u64 __user *slot_uid)
1593 {
1594 	struct ne_pci_dev_cmd_reply cmd_reply = {};
1595 	int enclave_fd = -1;
1596 	struct file *enclave_file = NULL;
1597 	unsigned int i = 0;
1598 	struct ne_enclave *ne_enclave = NULL;
1599 	struct pci_dev *pdev = ne_pci_dev->pdev;
1600 	int rc = -EINVAL;
1601 	struct slot_alloc_req slot_alloc_req = {};
1602 
1603 	mutex_lock(&ne_cpu_pool.mutex);
1604 
1605 	for (i = 0; i < ne_cpu_pool.nr_parent_vm_cores; i++)
1606 		if (!cpumask_empty(ne_cpu_pool.avail_threads_per_core[i]))
1607 			break;
1608 
1609 	if (i == ne_cpu_pool.nr_parent_vm_cores) {
1610 		dev_err_ratelimited(ne_misc_dev.this_device,
1611 				    "No CPUs available in CPU pool\n");
1612 
1613 		mutex_unlock(&ne_cpu_pool.mutex);
1614 
1615 		return -NE_ERR_NO_CPUS_AVAIL_IN_POOL;
1616 	}
1617 
1618 	mutex_unlock(&ne_cpu_pool.mutex);
1619 
1620 	ne_enclave = kzalloc(sizeof(*ne_enclave), GFP_KERNEL);
1621 	if (!ne_enclave)
1622 		return -ENOMEM;
1623 
1624 	mutex_lock(&ne_cpu_pool.mutex);
1625 
1626 	ne_enclave->nr_parent_vm_cores = ne_cpu_pool.nr_parent_vm_cores;
1627 	ne_enclave->nr_threads_per_core = ne_cpu_pool.nr_threads_per_core;
1628 	ne_enclave->numa_node = ne_cpu_pool.numa_node;
1629 
1630 	mutex_unlock(&ne_cpu_pool.mutex);
1631 
1632 	ne_enclave->threads_per_core = kcalloc(ne_enclave->nr_parent_vm_cores,
1633 					       sizeof(*ne_enclave->threads_per_core),
1634 					       GFP_KERNEL);
1635 	if (!ne_enclave->threads_per_core) {
1636 		rc = -ENOMEM;
1637 
1638 		goto free_ne_enclave;
1639 	}
1640 
1641 	for (i = 0; i < ne_enclave->nr_parent_vm_cores; i++)
1642 		if (!zalloc_cpumask_var(&ne_enclave->threads_per_core[i], GFP_KERNEL)) {
1643 			rc = -ENOMEM;
1644 
1645 			goto free_cpumask;
1646 		}
1647 
1648 	if (!zalloc_cpumask_var(&ne_enclave->vcpu_ids, GFP_KERNEL)) {
1649 		rc = -ENOMEM;
1650 
1651 		goto free_cpumask;
1652 	}
1653 
1654 	enclave_fd = get_unused_fd_flags(O_CLOEXEC);
1655 	if (enclave_fd < 0) {
1656 		rc = enclave_fd;
1657 
1658 		dev_err_ratelimited(ne_misc_dev.this_device,
1659 				    "Error in getting unused fd [rc=%d]\n", rc);
1660 
1661 		goto free_cpumask;
1662 	}
1663 
1664 	enclave_file = anon_inode_getfile("ne-vm", &ne_enclave_fops, ne_enclave, O_RDWR);
1665 	if (IS_ERR(enclave_file)) {
1666 		rc = PTR_ERR(enclave_file);
1667 
1668 		dev_err_ratelimited(ne_misc_dev.this_device,
1669 				    "Error in anon inode get file [rc=%d]\n", rc);
1670 
1671 		goto put_fd;
1672 	}
1673 
1674 	rc = ne_do_request(pdev, SLOT_ALLOC,
1675 			   &slot_alloc_req, sizeof(slot_alloc_req),
1676 			   &cmd_reply, sizeof(cmd_reply));
1677 	if (rc < 0) {
1678 		dev_err_ratelimited(ne_misc_dev.this_device,
1679 				    "Error in slot alloc [rc=%d]\n", rc);
1680 
1681 		goto put_file;
1682 	}
1683 
1684 	init_waitqueue_head(&ne_enclave->eventq);
1685 	ne_enclave->has_event = false;
1686 	mutex_init(&ne_enclave->enclave_info_mutex);
1687 	ne_enclave->max_mem_regions = cmd_reply.mem_regions;
1688 	INIT_LIST_HEAD(&ne_enclave->mem_regions_list);
1689 	ne_enclave->mm = current->mm;
1690 	ne_enclave->slot_uid = cmd_reply.slot_uid;
1691 	ne_enclave->state = NE_STATE_INIT;
1692 
1693 	list_add(&ne_enclave->enclave_list_entry, &ne_pci_dev->enclaves_list);
1694 
1695 	if (copy_to_user(slot_uid, &ne_enclave->slot_uid, sizeof(ne_enclave->slot_uid))) {
1696 		/*
1697 		 * As we're holding the only reference to 'enclave_file', fput()
1698 		 * will call ne_enclave_release() which will do a proper cleanup
1699 		 * of all so far allocated resources, leaving only the unused fd
1700 		 * for us to free.
1701 		 */
1702 		fput(enclave_file);
1703 		put_unused_fd(enclave_fd);
1704 
1705 		return -EFAULT;
1706 	}
1707 
1708 	fd_install(enclave_fd, enclave_file);
1709 
1710 	return enclave_fd;
1711 
1712 put_file:
1713 	fput(enclave_file);
1714 put_fd:
1715 	put_unused_fd(enclave_fd);
1716 free_cpumask:
1717 	free_cpumask_var(ne_enclave->vcpu_ids);
1718 	for (i = 0; i < ne_enclave->nr_parent_vm_cores; i++)
1719 		free_cpumask_var(ne_enclave->threads_per_core[i]);
1720 	kfree(ne_enclave->threads_per_core);
1721 free_ne_enclave:
1722 	kfree(ne_enclave);
1723 
1724 	return rc;
1725 }
1726 
1727 /**
1728  * ne_ioctl() - Ioctl function provided by the NE misc device.
1729  * @file:	File associated with this ioctl function.
1730  * @cmd:	The command that is set for the ioctl call.
1731  * @arg:	The argument that is provided for the ioctl call.
1732  *
1733  * Context: Process context.
1734  * Return:
1735  * * Ioctl result (e.g. enclave file descriptor) on success.
1736  * * Negative return value on failure.
1737  */
1738 static long ne_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
1739 {
1740 	switch (cmd) {
1741 	case NE_CREATE_VM: {
1742 		int enclave_fd = -1;
1743 		struct ne_pci_dev *ne_pci_dev = ne_devs.ne_pci_dev;
1744 		u64 __user *slot_uid = (void __user *)arg;
1745 
1746 		mutex_lock(&ne_pci_dev->enclaves_list_mutex);
1747 		enclave_fd = ne_create_vm_ioctl(ne_pci_dev, slot_uid);
1748 		mutex_unlock(&ne_pci_dev->enclaves_list_mutex);
1749 
1750 		return enclave_fd;
1751 	}
1752 
1753 	default:
1754 		return -ENOTTY;
1755 	}
1756 
1757 	return 0;
1758 }
1759 
1760 #if defined(CONFIG_NITRO_ENCLAVES_MISC_DEV_TEST)
1761 #include "ne_misc_dev_test.c"
1762 #endif
1763 
1764 static int __init ne_init(void)
1765 {
1766 	mutex_init(&ne_cpu_pool.mutex);
1767 
1768 	return pci_register_driver(&ne_pci_driver);
1769 }
1770 
1771 static void __exit ne_exit(void)
1772 {
1773 	pci_unregister_driver(&ne_pci_driver);
1774 
1775 	ne_teardown_cpu_pool();
1776 }
1777 
1778 module_init(ne_init);
1779 module_exit(ne_exit);
1780 
1781 MODULE_AUTHOR("Amazon.com, Inc. or its affiliates");
1782 MODULE_DESCRIPTION("Nitro Enclaves Driver");
1783 MODULE_LICENSE("GPL v2");
1784