1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright 2020 Amazon.com, Inc. or its affiliates. All Rights Reserved. 4 */ 5 6 /** 7 * DOC: Enclave lifetime management driver for Nitro Enclaves (NE). 8 * Nitro is a hypervisor that has been developed by Amazon. 9 */ 10 11 #include <linux/anon_inodes.h> 12 #include <linux/capability.h> 13 #include <linux/cpu.h> 14 #include <linux/device.h> 15 #include <linux/file.h> 16 #include <linux/hugetlb.h> 17 #include <linux/limits.h> 18 #include <linux/list.h> 19 #include <linux/miscdevice.h> 20 #include <linux/mm.h> 21 #include <linux/mman.h> 22 #include <linux/module.h> 23 #include <linux/mutex.h> 24 #include <linux/nitro_enclaves.h> 25 #include <linux/pci.h> 26 #include <linux/poll.h> 27 #include <linux/slab.h> 28 #include <linux/types.h> 29 #include <uapi/linux/vm_sockets.h> 30 31 #include "ne_misc_dev.h" 32 #include "ne_pci_dev.h" 33 34 /** 35 * NE_CPUS_SIZE - Size for max 128 CPUs, for now, in a cpu-list string, comma 36 * separated. The NE CPU pool includes CPUs from a single NUMA 37 * node. 38 */ 39 #define NE_CPUS_SIZE (512) 40 41 /** 42 * NE_EIF_LOAD_OFFSET - The offset where to copy the Enclave Image Format (EIF) 43 * image in enclave memory. 44 */ 45 #define NE_EIF_LOAD_OFFSET (8 * 1024UL * 1024UL) 46 47 /** 48 * NE_MIN_ENCLAVE_MEM_SIZE - The minimum memory size an enclave can be launched 49 * with. 50 */ 51 #define NE_MIN_ENCLAVE_MEM_SIZE (64 * 1024UL * 1024UL) 52 53 /** 54 * NE_MIN_MEM_REGION_SIZE - The minimum size of an enclave memory region. 55 */ 56 #define NE_MIN_MEM_REGION_SIZE (2 * 1024UL * 1024UL) 57 58 /** 59 * NE_PARENT_VM_CID - The CID for the vsock device of the primary / parent VM. 60 */ 61 #define NE_PARENT_VM_CID (3) 62 63 static long ne_ioctl(struct file *file, unsigned int cmd, unsigned long arg); 64 65 static const struct file_operations ne_fops = { 66 .owner = THIS_MODULE, 67 .llseek = noop_llseek, 68 .unlocked_ioctl = ne_ioctl, 69 }; 70 71 static struct miscdevice ne_misc_dev = { 72 .minor = MISC_DYNAMIC_MINOR, 73 .name = "nitro_enclaves", 74 .fops = &ne_fops, 75 .mode = 0660, 76 }; 77 78 struct ne_devs ne_devs = { 79 .ne_misc_dev = &ne_misc_dev, 80 }; 81 82 /* 83 * TODO: Update logic to create new sysfs entries instead of using 84 * a kernel parameter e.g. if multiple sysfs files needed. 85 */ 86 static int ne_set_kernel_param(const char *val, const struct kernel_param *kp); 87 88 static const struct kernel_param_ops ne_cpu_pool_ops = { 89 .get = param_get_string, 90 .set = ne_set_kernel_param, 91 }; 92 93 static char ne_cpus[NE_CPUS_SIZE]; 94 static struct kparam_string ne_cpus_arg = { 95 .maxlen = sizeof(ne_cpus), 96 .string = ne_cpus, 97 }; 98 99 module_param_cb(ne_cpus, &ne_cpu_pool_ops, &ne_cpus_arg, 0644); 100 /* https://www.kernel.org/doc/html/latest/admin-guide/kernel-parameters.html#cpu-lists */ 101 MODULE_PARM_DESC(ne_cpus, "<cpu-list> - CPU pool used for Nitro Enclaves"); 102 103 /** 104 * struct ne_cpu_pool - CPU pool used for Nitro Enclaves. 105 * @avail_threads_per_core: Available full CPU cores to be dedicated to 106 * enclave(s). The cpumasks from the array, indexed 107 * by core id, contain all the threads from the 108 * available cores, that are not set for created 109 * enclave(s). The full CPU cores are part of the 110 * NE CPU pool. 111 * @mutex: Mutex for the access to the NE CPU pool. 112 * @nr_parent_vm_cores : The size of the available threads per core array. 113 * The total number of CPU cores available on the 114 * primary / parent VM. 115 * @nr_threads_per_core: The number of threads that a full CPU core has. 116 * @numa_node: NUMA node of the CPUs in the pool. 117 */ 118 struct ne_cpu_pool { 119 cpumask_var_t *avail_threads_per_core; 120 struct mutex mutex; 121 unsigned int nr_parent_vm_cores; 122 unsigned int nr_threads_per_core; 123 int numa_node; 124 }; 125 126 static struct ne_cpu_pool ne_cpu_pool; 127 128 /** 129 * ne_check_enclaves_created() - Verify if at least one enclave has been created. 130 * @void: No parameters provided. 131 * 132 * Context: Process context. 133 * Return: 134 * * True if at least one enclave is created. 135 * * False otherwise. 136 */ 137 static bool ne_check_enclaves_created(void) 138 { 139 struct ne_pci_dev *ne_pci_dev = ne_devs.ne_pci_dev; 140 bool ret = false; 141 142 if (!ne_pci_dev) 143 return ret; 144 145 mutex_lock(&ne_pci_dev->enclaves_list_mutex); 146 147 if (!list_empty(&ne_pci_dev->enclaves_list)) 148 ret = true; 149 150 mutex_unlock(&ne_pci_dev->enclaves_list_mutex); 151 152 return ret; 153 } 154 155 /** 156 * ne_setup_cpu_pool() - Set the NE CPU pool after handling sanity checks such 157 * as not sharing CPU cores with the primary / parent VM 158 * or not using CPU 0, which should remain available for 159 * the primary / parent VM. Offline the CPUs from the 160 * pool after the checks passed. 161 * @ne_cpu_list: The CPU list used for setting NE CPU pool. 162 * 163 * Context: Process context. 164 * Return: 165 * * 0 on success. 166 * * Negative return value on failure. 167 */ 168 static int ne_setup_cpu_pool(const char *ne_cpu_list) 169 { 170 int core_id = -1; 171 unsigned int cpu = 0; 172 cpumask_var_t cpu_pool; 173 unsigned int cpu_sibling = 0; 174 unsigned int i = 0; 175 int numa_node = -1; 176 int rc = -EINVAL; 177 178 if (!zalloc_cpumask_var(&cpu_pool, GFP_KERNEL)) 179 return -ENOMEM; 180 181 mutex_lock(&ne_cpu_pool.mutex); 182 183 rc = cpulist_parse(ne_cpu_list, cpu_pool); 184 if (rc < 0) { 185 pr_err("%s: Error in cpulist parse [rc=%d]\n", ne_misc_dev.name, rc); 186 187 goto free_pool_cpumask; 188 } 189 190 cpu = cpumask_any(cpu_pool); 191 if (cpu >= nr_cpu_ids) { 192 pr_err("%s: No CPUs available in CPU pool\n", ne_misc_dev.name); 193 194 rc = -EINVAL; 195 196 goto free_pool_cpumask; 197 } 198 199 /* 200 * Check if the CPUs are online, to further get info about them 201 * e.g. numa node, core id, siblings. 202 */ 203 for_each_cpu(cpu, cpu_pool) 204 if (cpu_is_offline(cpu)) { 205 pr_err("%s: CPU %d is offline, has to be online to get its metadata\n", 206 ne_misc_dev.name, cpu); 207 208 rc = -EINVAL; 209 210 goto free_pool_cpumask; 211 } 212 213 /* 214 * Check if the CPUs from the NE CPU pool are from the same NUMA node. 215 */ 216 for_each_cpu(cpu, cpu_pool) 217 if (numa_node < 0) { 218 numa_node = cpu_to_node(cpu); 219 if (numa_node < 0) { 220 pr_err("%s: Invalid NUMA node %d\n", 221 ne_misc_dev.name, numa_node); 222 223 rc = -EINVAL; 224 225 goto free_pool_cpumask; 226 } 227 } else { 228 if (numa_node != cpu_to_node(cpu)) { 229 pr_err("%s: CPUs with different NUMA nodes\n", 230 ne_misc_dev.name); 231 232 rc = -EINVAL; 233 234 goto free_pool_cpumask; 235 } 236 } 237 238 /* 239 * Check if CPU 0 and its siblings are included in the provided CPU pool 240 * They should remain available for the primary / parent VM. 241 */ 242 if (cpumask_test_cpu(0, cpu_pool)) { 243 pr_err("%s: CPU 0 has to remain available\n", ne_misc_dev.name); 244 245 rc = -EINVAL; 246 247 goto free_pool_cpumask; 248 } 249 250 for_each_cpu(cpu_sibling, topology_sibling_cpumask(0)) { 251 if (cpumask_test_cpu(cpu_sibling, cpu_pool)) { 252 pr_err("%s: CPU sibling %d for CPU 0 is in CPU pool\n", 253 ne_misc_dev.name, cpu_sibling); 254 255 rc = -EINVAL; 256 257 goto free_pool_cpumask; 258 } 259 } 260 261 /* 262 * Check if CPU siblings are included in the provided CPU pool. The 263 * expectation is that full CPU cores are made available in the CPU pool 264 * for enclaves. 265 */ 266 for_each_cpu(cpu, cpu_pool) { 267 for_each_cpu(cpu_sibling, topology_sibling_cpumask(cpu)) { 268 if (!cpumask_test_cpu(cpu_sibling, cpu_pool)) { 269 pr_err("%s: CPU %d is not in CPU pool\n", 270 ne_misc_dev.name, cpu_sibling); 271 272 rc = -EINVAL; 273 274 goto free_pool_cpumask; 275 } 276 } 277 } 278 279 /* Calculate the number of threads from a full CPU core. */ 280 cpu = cpumask_any(cpu_pool); 281 for_each_cpu(cpu_sibling, topology_sibling_cpumask(cpu)) 282 ne_cpu_pool.nr_threads_per_core++; 283 284 ne_cpu_pool.nr_parent_vm_cores = nr_cpu_ids / ne_cpu_pool.nr_threads_per_core; 285 286 ne_cpu_pool.avail_threads_per_core = kcalloc(ne_cpu_pool.nr_parent_vm_cores, 287 sizeof(*ne_cpu_pool.avail_threads_per_core), 288 GFP_KERNEL); 289 if (!ne_cpu_pool.avail_threads_per_core) { 290 rc = -ENOMEM; 291 292 goto free_pool_cpumask; 293 } 294 295 for (i = 0; i < ne_cpu_pool.nr_parent_vm_cores; i++) 296 if (!zalloc_cpumask_var(&ne_cpu_pool.avail_threads_per_core[i], GFP_KERNEL)) { 297 rc = -ENOMEM; 298 299 goto free_cores_cpumask; 300 } 301 302 /* 303 * Split the NE CPU pool in threads per core to keep the CPU topology 304 * after offlining the CPUs. 305 */ 306 for_each_cpu(cpu, cpu_pool) { 307 core_id = topology_core_id(cpu); 308 if (core_id < 0 || core_id >= ne_cpu_pool.nr_parent_vm_cores) { 309 pr_err("%s: Invalid core id %d for CPU %d\n", 310 ne_misc_dev.name, core_id, cpu); 311 312 rc = -EINVAL; 313 314 goto clear_cpumask; 315 } 316 317 cpumask_set_cpu(cpu, ne_cpu_pool.avail_threads_per_core[core_id]); 318 } 319 320 /* 321 * CPUs that are given to enclave(s) should not be considered online 322 * by Linux anymore, as the hypervisor will degrade them to floating. 323 * The physical CPUs (full cores) are carved out of the primary / parent 324 * VM and given to the enclave VM. The same number of vCPUs would run 325 * on less pCPUs for the primary / parent VM. 326 * 327 * We offline them here, to not degrade performance and expose correct 328 * topology to Linux and user space. 329 */ 330 for_each_cpu(cpu, cpu_pool) { 331 rc = remove_cpu(cpu); 332 if (rc != 0) { 333 pr_err("%s: CPU %d is not offlined [rc=%d]\n", 334 ne_misc_dev.name, cpu, rc); 335 336 goto online_cpus; 337 } 338 } 339 340 free_cpumask_var(cpu_pool); 341 342 ne_cpu_pool.numa_node = numa_node; 343 344 mutex_unlock(&ne_cpu_pool.mutex); 345 346 return 0; 347 348 online_cpus: 349 for_each_cpu(cpu, cpu_pool) 350 add_cpu(cpu); 351 clear_cpumask: 352 for (i = 0; i < ne_cpu_pool.nr_parent_vm_cores; i++) 353 cpumask_clear(ne_cpu_pool.avail_threads_per_core[i]); 354 free_cores_cpumask: 355 for (i = 0; i < ne_cpu_pool.nr_parent_vm_cores; i++) 356 free_cpumask_var(ne_cpu_pool.avail_threads_per_core[i]); 357 kfree(ne_cpu_pool.avail_threads_per_core); 358 free_pool_cpumask: 359 free_cpumask_var(cpu_pool); 360 ne_cpu_pool.nr_parent_vm_cores = 0; 361 ne_cpu_pool.nr_threads_per_core = 0; 362 ne_cpu_pool.numa_node = -1; 363 mutex_unlock(&ne_cpu_pool.mutex); 364 365 return rc; 366 } 367 368 /** 369 * ne_teardown_cpu_pool() - Online the CPUs from the NE CPU pool and cleanup the 370 * CPU pool. 371 * @void: No parameters provided. 372 * 373 * Context: Process context. 374 */ 375 static void ne_teardown_cpu_pool(void) 376 { 377 unsigned int cpu = 0; 378 unsigned int i = 0; 379 int rc = -EINVAL; 380 381 mutex_lock(&ne_cpu_pool.mutex); 382 383 if (!ne_cpu_pool.nr_parent_vm_cores) { 384 mutex_unlock(&ne_cpu_pool.mutex); 385 386 return; 387 } 388 389 for (i = 0; i < ne_cpu_pool.nr_parent_vm_cores; i++) { 390 for_each_cpu(cpu, ne_cpu_pool.avail_threads_per_core[i]) { 391 rc = add_cpu(cpu); 392 if (rc != 0) 393 pr_err("%s: CPU %d is not onlined [rc=%d]\n", 394 ne_misc_dev.name, cpu, rc); 395 } 396 397 cpumask_clear(ne_cpu_pool.avail_threads_per_core[i]); 398 399 free_cpumask_var(ne_cpu_pool.avail_threads_per_core[i]); 400 } 401 402 kfree(ne_cpu_pool.avail_threads_per_core); 403 ne_cpu_pool.nr_parent_vm_cores = 0; 404 ne_cpu_pool.nr_threads_per_core = 0; 405 ne_cpu_pool.numa_node = -1; 406 407 mutex_unlock(&ne_cpu_pool.mutex); 408 } 409 410 /** 411 * ne_set_kernel_param() - Set the NE CPU pool value via the NE kernel parameter. 412 * @val: NE CPU pool string value. 413 * @kp : NE kernel parameter associated with the NE CPU pool. 414 * 415 * Context: Process context. 416 * Return: 417 * * 0 on success. 418 * * Negative return value on failure. 419 */ 420 static int ne_set_kernel_param(const char *val, const struct kernel_param *kp) 421 { 422 char error_val[] = ""; 423 int rc = -EINVAL; 424 425 if (!capable(CAP_SYS_ADMIN)) 426 return -EPERM; 427 428 if (ne_check_enclaves_created()) { 429 pr_err("%s: The CPU pool is used by enclave(s)\n", ne_misc_dev.name); 430 431 return -EPERM; 432 } 433 434 ne_teardown_cpu_pool(); 435 436 rc = ne_setup_cpu_pool(val); 437 if (rc < 0) { 438 pr_err("%s: Error in setup CPU pool [rc=%d]\n", ne_misc_dev.name, rc); 439 440 param_set_copystring(error_val, kp); 441 442 return rc; 443 } 444 445 rc = param_set_copystring(val, kp); 446 if (rc < 0) { 447 pr_err("%s: Error in param set copystring [rc=%d]\n", ne_misc_dev.name, rc); 448 449 ne_teardown_cpu_pool(); 450 451 param_set_copystring(error_val, kp); 452 453 return rc; 454 } 455 456 return 0; 457 } 458 459 /** 460 * ne_donated_cpu() - Check if the provided CPU is already used by the enclave. 461 * @ne_enclave : Private data associated with the current enclave. 462 * @cpu: CPU to check if already used. 463 * 464 * Context: Process context. This function is called with the ne_enclave mutex held. 465 * Return: 466 * * True if the provided CPU is already used by the enclave. 467 * * False otherwise. 468 */ 469 static bool ne_donated_cpu(struct ne_enclave *ne_enclave, unsigned int cpu) 470 { 471 if (cpumask_test_cpu(cpu, ne_enclave->vcpu_ids)) 472 return true; 473 474 return false; 475 } 476 477 /** 478 * ne_get_unused_core_from_cpu_pool() - Get the id of a full core from the 479 * NE CPU pool. 480 * @void: No parameters provided. 481 * 482 * Context: Process context. This function is called with the ne_enclave and 483 * ne_cpu_pool mutexes held. 484 * Return: 485 * * Core id. 486 * * -1 if no CPU core available in the pool. 487 */ 488 static int ne_get_unused_core_from_cpu_pool(void) 489 { 490 int core_id = -1; 491 unsigned int i = 0; 492 493 for (i = 0; i < ne_cpu_pool.nr_parent_vm_cores; i++) 494 if (!cpumask_empty(ne_cpu_pool.avail_threads_per_core[i])) { 495 core_id = i; 496 497 break; 498 } 499 500 return core_id; 501 } 502 503 /** 504 * ne_set_enclave_threads_per_core() - Set the threads of the provided core in 505 * the enclave data structure. 506 * @ne_enclave : Private data associated with the current enclave. 507 * @core_id: Core id to get its threads from the NE CPU pool. 508 * @vcpu_id: vCPU id part of the provided core. 509 * 510 * Context: Process context. This function is called with the ne_enclave and 511 * ne_cpu_pool mutexes held. 512 * Return: 513 * * 0 on success. 514 * * Negative return value on failure. 515 */ 516 static int ne_set_enclave_threads_per_core(struct ne_enclave *ne_enclave, 517 int core_id, u32 vcpu_id) 518 { 519 unsigned int cpu = 0; 520 521 if (core_id < 0 && vcpu_id == 0) { 522 dev_err_ratelimited(ne_misc_dev.this_device, 523 "No CPUs available in NE CPU pool\n"); 524 525 return -NE_ERR_NO_CPUS_AVAIL_IN_POOL; 526 } 527 528 if (core_id < 0) { 529 dev_err_ratelimited(ne_misc_dev.this_device, 530 "CPU %d is not in NE CPU pool\n", vcpu_id); 531 532 return -NE_ERR_VCPU_NOT_IN_CPU_POOL; 533 } 534 535 if (core_id >= ne_enclave->nr_parent_vm_cores) { 536 dev_err_ratelimited(ne_misc_dev.this_device, 537 "Invalid core id %d - ne_enclave\n", core_id); 538 539 return -NE_ERR_VCPU_INVALID_CPU_CORE; 540 } 541 542 for_each_cpu(cpu, ne_cpu_pool.avail_threads_per_core[core_id]) 543 cpumask_set_cpu(cpu, ne_enclave->threads_per_core[core_id]); 544 545 cpumask_clear(ne_cpu_pool.avail_threads_per_core[core_id]); 546 547 return 0; 548 } 549 550 /** 551 * ne_get_cpu_from_cpu_pool() - Get a CPU from the NE CPU pool, either from the 552 * remaining sibling(s) of a CPU core or the first 553 * sibling of a new CPU core. 554 * @ne_enclave : Private data associated with the current enclave. 555 * @vcpu_id: vCPU to get from the NE CPU pool. 556 * 557 * Context: Process context. This function is called with the ne_enclave mutex held. 558 * Return: 559 * * 0 on success. 560 * * Negative return value on failure. 561 */ 562 static int ne_get_cpu_from_cpu_pool(struct ne_enclave *ne_enclave, u32 *vcpu_id) 563 { 564 int core_id = -1; 565 unsigned int cpu = 0; 566 unsigned int i = 0; 567 int rc = -EINVAL; 568 569 /* 570 * If previously allocated a thread of a core to this enclave, first 571 * check remaining sibling(s) for new CPU allocations, so that full 572 * CPU cores are used for the enclave. 573 */ 574 for (i = 0; i < ne_enclave->nr_parent_vm_cores; i++) 575 for_each_cpu(cpu, ne_enclave->threads_per_core[i]) 576 if (!ne_donated_cpu(ne_enclave, cpu)) { 577 *vcpu_id = cpu; 578 579 return 0; 580 } 581 582 mutex_lock(&ne_cpu_pool.mutex); 583 584 /* 585 * If no remaining siblings, get a core from the NE CPU pool and keep 586 * track of all the threads in the enclave threads per core data structure. 587 */ 588 core_id = ne_get_unused_core_from_cpu_pool(); 589 590 rc = ne_set_enclave_threads_per_core(ne_enclave, core_id, *vcpu_id); 591 if (rc < 0) 592 goto unlock_mutex; 593 594 *vcpu_id = cpumask_any(ne_enclave->threads_per_core[core_id]); 595 596 rc = 0; 597 598 unlock_mutex: 599 mutex_unlock(&ne_cpu_pool.mutex); 600 601 return rc; 602 } 603 604 /** 605 * ne_get_vcpu_core_from_cpu_pool() - Get from the NE CPU pool the id of the 606 * core associated with the provided vCPU. 607 * @vcpu_id: Provided vCPU id to get its associated core id. 608 * 609 * Context: Process context. This function is called with the ne_enclave and 610 * ne_cpu_pool mutexes held. 611 * Return: 612 * * Core id. 613 * * -1 if the provided vCPU is not in the pool. 614 */ 615 static int ne_get_vcpu_core_from_cpu_pool(u32 vcpu_id) 616 { 617 int core_id = -1; 618 unsigned int i = 0; 619 620 for (i = 0; i < ne_cpu_pool.nr_parent_vm_cores; i++) 621 if (cpumask_test_cpu(vcpu_id, ne_cpu_pool.avail_threads_per_core[i])) { 622 core_id = i; 623 624 break; 625 } 626 627 return core_id; 628 } 629 630 /** 631 * ne_check_cpu_in_cpu_pool() - Check if the given vCPU is in the available CPUs 632 * from the pool. 633 * @ne_enclave : Private data associated with the current enclave. 634 * @vcpu_id: ID of the vCPU to check if available in the NE CPU pool. 635 * 636 * Context: Process context. This function is called with the ne_enclave mutex held. 637 * Return: 638 * * 0 on success. 639 * * Negative return value on failure. 640 */ 641 static int ne_check_cpu_in_cpu_pool(struct ne_enclave *ne_enclave, u32 vcpu_id) 642 { 643 int core_id = -1; 644 unsigned int i = 0; 645 int rc = -EINVAL; 646 647 if (ne_donated_cpu(ne_enclave, vcpu_id)) { 648 dev_err_ratelimited(ne_misc_dev.this_device, 649 "CPU %d already used\n", vcpu_id); 650 651 return -NE_ERR_VCPU_ALREADY_USED; 652 } 653 654 /* 655 * If previously allocated a thread of a core to this enclave, but not 656 * the full core, first check remaining sibling(s). 657 */ 658 for (i = 0; i < ne_enclave->nr_parent_vm_cores; i++) 659 if (cpumask_test_cpu(vcpu_id, ne_enclave->threads_per_core[i])) 660 return 0; 661 662 mutex_lock(&ne_cpu_pool.mutex); 663 664 /* 665 * If no remaining siblings, get from the NE CPU pool the core 666 * associated with the vCPU and keep track of all the threads in the 667 * enclave threads per core data structure. 668 */ 669 core_id = ne_get_vcpu_core_from_cpu_pool(vcpu_id); 670 671 rc = ne_set_enclave_threads_per_core(ne_enclave, core_id, vcpu_id); 672 if (rc < 0) 673 goto unlock_mutex; 674 675 rc = 0; 676 677 unlock_mutex: 678 mutex_unlock(&ne_cpu_pool.mutex); 679 680 return rc; 681 } 682 683 /** 684 * ne_add_vcpu_ioctl() - Add a vCPU to the slot associated with the current 685 * enclave. 686 * @ne_enclave : Private data associated with the current enclave. 687 * @vcpu_id: ID of the CPU to be associated with the given slot, 688 * apic id on x86. 689 * 690 * Context: Process context. This function is called with the ne_enclave mutex held. 691 * Return: 692 * * 0 on success. 693 * * Negative return value on failure. 694 */ 695 static int ne_add_vcpu_ioctl(struct ne_enclave *ne_enclave, u32 vcpu_id) 696 { 697 struct ne_pci_dev_cmd_reply cmd_reply = {}; 698 struct pci_dev *pdev = ne_devs.ne_pci_dev->pdev; 699 int rc = -EINVAL; 700 struct slot_add_vcpu_req slot_add_vcpu_req = {}; 701 702 if (ne_enclave->mm != current->mm) 703 return -EIO; 704 705 slot_add_vcpu_req.slot_uid = ne_enclave->slot_uid; 706 slot_add_vcpu_req.vcpu_id = vcpu_id; 707 708 rc = ne_do_request(pdev, SLOT_ADD_VCPU, 709 &slot_add_vcpu_req, sizeof(slot_add_vcpu_req), 710 &cmd_reply, sizeof(cmd_reply)); 711 if (rc < 0) { 712 dev_err_ratelimited(ne_misc_dev.this_device, 713 "Error in slot add vCPU [rc=%d]\n", rc); 714 715 return rc; 716 } 717 718 cpumask_set_cpu(vcpu_id, ne_enclave->vcpu_ids); 719 720 ne_enclave->nr_vcpus++; 721 722 return 0; 723 } 724 725 /** 726 * ne_sanity_check_user_mem_region() - Sanity check the user space memory 727 * region received during the set user 728 * memory region ioctl call. 729 * @ne_enclave : Private data associated with the current enclave. 730 * @mem_region : User space memory region to be sanity checked. 731 * 732 * Context: Process context. This function is called with the ne_enclave mutex held. 733 * Return: 734 * * 0 on success. 735 * * Negative return value on failure. 736 */ 737 static int ne_sanity_check_user_mem_region(struct ne_enclave *ne_enclave, 738 struct ne_user_memory_region mem_region) 739 { 740 struct ne_mem_region *ne_mem_region = NULL; 741 742 if (ne_enclave->mm != current->mm) 743 return -EIO; 744 745 if (mem_region.memory_size & (NE_MIN_MEM_REGION_SIZE - 1)) { 746 dev_err_ratelimited(ne_misc_dev.this_device, 747 "User space memory size is not multiple of 2 MiB\n"); 748 749 return -NE_ERR_INVALID_MEM_REGION_SIZE; 750 } 751 752 if (!IS_ALIGNED(mem_region.userspace_addr, NE_MIN_MEM_REGION_SIZE)) { 753 dev_err_ratelimited(ne_misc_dev.this_device, 754 "User space address is not 2 MiB aligned\n"); 755 756 return -NE_ERR_UNALIGNED_MEM_REGION_ADDR; 757 } 758 759 if ((mem_region.userspace_addr & (NE_MIN_MEM_REGION_SIZE - 1)) || 760 !access_ok((void __user *)(unsigned long)mem_region.userspace_addr, 761 mem_region.memory_size)) { 762 dev_err_ratelimited(ne_misc_dev.this_device, 763 "Invalid user space address range\n"); 764 765 return -NE_ERR_INVALID_MEM_REGION_ADDR; 766 } 767 768 list_for_each_entry(ne_mem_region, &ne_enclave->mem_regions_list, 769 mem_region_list_entry) { 770 u64 memory_size = ne_mem_region->memory_size; 771 u64 userspace_addr = ne_mem_region->userspace_addr; 772 773 if ((userspace_addr <= mem_region.userspace_addr && 774 mem_region.userspace_addr < (userspace_addr + memory_size)) || 775 (mem_region.userspace_addr <= userspace_addr && 776 (mem_region.userspace_addr + mem_region.memory_size) > userspace_addr)) { 777 dev_err_ratelimited(ne_misc_dev.this_device, 778 "User space memory region already used\n"); 779 780 return -NE_ERR_MEM_REGION_ALREADY_USED; 781 } 782 } 783 784 return 0; 785 } 786 787 /** 788 * ne_sanity_check_user_mem_region_page() - Sanity check a page from the user space 789 * memory region received during the set 790 * user memory region ioctl call. 791 * @ne_enclave : Private data associated with the current enclave. 792 * @mem_region_page: Page from the user space memory region to be sanity checked. 793 * 794 * Context: Process context. This function is called with the ne_enclave mutex held. 795 * Return: 796 * * 0 on success. 797 * * Negative return value on failure. 798 */ 799 static int ne_sanity_check_user_mem_region_page(struct ne_enclave *ne_enclave, 800 struct page *mem_region_page) 801 { 802 if (!PageHuge(mem_region_page)) { 803 dev_err_ratelimited(ne_misc_dev.this_device, 804 "Not a hugetlbfs page\n"); 805 806 return -NE_ERR_MEM_NOT_HUGE_PAGE; 807 } 808 809 if (page_size(mem_region_page) & (NE_MIN_MEM_REGION_SIZE - 1)) { 810 dev_err_ratelimited(ne_misc_dev.this_device, 811 "Page size not multiple of 2 MiB\n"); 812 813 return -NE_ERR_INVALID_PAGE_SIZE; 814 } 815 816 if (ne_enclave->numa_node != page_to_nid(mem_region_page)) { 817 dev_err_ratelimited(ne_misc_dev.this_device, 818 "Page is not from NUMA node %d\n", 819 ne_enclave->numa_node); 820 821 return -NE_ERR_MEM_DIFFERENT_NUMA_NODE; 822 } 823 824 return 0; 825 } 826 827 /** 828 * ne_set_user_memory_region_ioctl() - Add user space memory region to the slot 829 * associated with the current enclave. 830 * @ne_enclave : Private data associated with the current enclave. 831 * @mem_region : User space memory region to be associated with the given slot. 832 * 833 * Context: Process context. This function is called with the ne_enclave mutex held. 834 * Return: 835 * * 0 on success. 836 * * Negative return value on failure. 837 */ 838 static int ne_set_user_memory_region_ioctl(struct ne_enclave *ne_enclave, 839 struct ne_user_memory_region mem_region) 840 { 841 long gup_rc = 0; 842 unsigned long i = 0; 843 unsigned long max_nr_pages = 0; 844 unsigned long memory_size = 0; 845 struct ne_mem_region *ne_mem_region = NULL; 846 unsigned long nr_phys_contig_mem_regions = 0; 847 struct pci_dev *pdev = ne_devs.ne_pci_dev->pdev; 848 struct page **phys_contig_mem_regions = NULL; 849 int rc = -EINVAL; 850 851 rc = ne_sanity_check_user_mem_region(ne_enclave, mem_region); 852 if (rc < 0) 853 return rc; 854 855 ne_mem_region = kzalloc(sizeof(*ne_mem_region), GFP_KERNEL); 856 if (!ne_mem_region) 857 return -ENOMEM; 858 859 max_nr_pages = mem_region.memory_size / NE_MIN_MEM_REGION_SIZE; 860 861 ne_mem_region->pages = kcalloc(max_nr_pages, sizeof(*ne_mem_region->pages), 862 GFP_KERNEL); 863 if (!ne_mem_region->pages) { 864 rc = -ENOMEM; 865 866 goto free_mem_region; 867 } 868 869 phys_contig_mem_regions = kcalloc(max_nr_pages, sizeof(*phys_contig_mem_regions), 870 GFP_KERNEL); 871 if (!phys_contig_mem_regions) { 872 rc = -ENOMEM; 873 874 goto free_mem_region; 875 } 876 877 do { 878 i = ne_mem_region->nr_pages; 879 880 if (i == max_nr_pages) { 881 dev_err_ratelimited(ne_misc_dev.this_device, 882 "Reached max nr of pages in the pages data struct\n"); 883 884 rc = -ENOMEM; 885 886 goto put_pages; 887 } 888 889 gup_rc = get_user_pages(mem_region.userspace_addr + memory_size, 1, FOLL_GET, 890 ne_mem_region->pages + i, NULL); 891 if (gup_rc < 0) { 892 rc = gup_rc; 893 894 dev_err_ratelimited(ne_misc_dev.this_device, 895 "Error in get user pages [rc=%d]\n", rc); 896 897 goto put_pages; 898 } 899 900 rc = ne_sanity_check_user_mem_region_page(ne_enclave, ne_mem_region->pages[i]); 901 if (rc < 0) 902 goto put_pages; 903 904 /* 905 * TODO: Update once handled non-contiguous memory regions 906 * received from user space or contiguous physical memory regions 907 * larger than 2 MiB e.g. 8 MiB. 908 */ 909 phys_contig_mem_regions[i] = ne_mem_region->pages[i]; 910 911 memory_size += page_size(ne_mem_region->pages[i]); 912 913 ne_mem_region->nr_pages++; 914 } while (memory_size < mem_region.memory_size); 915 916 /* 917 * TODO: Update once handled non-contiguous memory regions received 918 * from user space or contiguous physical memory regions larger than 919 * 2 MiB e.g. 8 MiB. 920 */ 921 nr_phys_contig_mem_regions = ne_mem_region->nr_pages; 922 923 if ((ne_enclave->nr_mem_regions + nr_phys_contig_mem_regions) > 924 ne_enclave->max_mem_regions) { 925 dev_err_ratelimited(ne_misc_dev.this_device, 926 "Reached max memory regions %lld\n", 927 ne_enclave->max_mem_regions); 928 929 rc = -NE_ERR_MEM_MAX_REGIONS; 930 931 goto put_pages; 932 } 933 934 for (i = 0; i < nr_phys_contig_mem_regions; i++) { 935 u64 phys_region_addr = page_to_phys(phys_contig_mem_regions[i]); 936 u64 phys_region_size = page_size(phys_contig_mem_regions[i]); 937 938 if (phys_region_size & (NE_MIN_MEM_REGION_SIZE - 1)) { 939 dev_err_ratelimited(ne_misc_dev.this_device, 940 "Physical mem region size is not multiple of 2 MiB\n"); 941 942 rc = -EINVAL; 943 944 goto put_pages; 945 } 946 947 if (!IS_ALIGNED(phys_region_addr, NE_MIN_MEM_REGION_SIZE)) { 948 dev_err_ratelimited(ne_misc_dev.this_device, 949 "Physical mem region address is not 2 MiB aligned\n"); 950 951 rc = -EINVAL; 952 953 goto put_pages; 954 } 955 } 956 957 ne_mem_region->memory_size = mem_region.memory_size; 958 ne_mem_region->userspace_addr = mem_region.userspace_addr; 959 960 list_add(&ne_mem_region->mem_region_list_entry, &ne_enclave->mem_regions_list); 961 962 for (i = 0; i < nr_phys_contig_mem_regions; i++) { 963 struct ne_pci_dev_cmd_reply cmd_reply = {}; 964 struct slot_add_mem_req slot_add_mem_req = {}; 965 966 slot_add_mem_req.slot_uid = ne_enclave->slot_uid; 967 slot_add_mem_req.paddr = page_to_phys(phys_contig_mem_regions[i]); 968 slot_add_mem_req.size = page_size(phys_contig_mem_regions[i]); 969 970 rc = ne_do_request(pdev, SLOT_ADD_MEM, 971 &slot_add_mem_req, sizeof(slot_add_mem_req), 972 &cmd_reply, sizeof(cmd_reply)); 973 if (rc < 0) { 974 dev_err_ratelimited(ne_misc_dev.this_device, 975 "Error in slot add mem [rc=%d]\n", rc); 976 977 kfree(phys_contig_mem_regions); 978 979 /* 980 * Exit here without put pages as memory regions may 981 * already been added. 982 */ 983 return rc; 984 } 985 986 ne_enclave->mem_size += slot_add_mem_req.size; 987 ne_enclave->nr_mem_regions++; 988 } 989 990 kfree(phys_contig_mem_regions); 991 992 return 0; 993 994 put_pages: 995 for (i = 0; i < ne_mem_region->nr_pages; i++) 996 put_page(ne_mem_region->pages[i]); 997 free_mem_region: 998 kfree(phys_contig_mem_regions); 999 kfree(ne_mem_region->pages); 1000 kfree(ne_mem_region); 1001 1002 return rc; 1003 } 1004 1005 /** 1006 * ne_start_enclave_ioctl() - Trigger enclave start after the enclave resources, 1007 * such as memory and CPU, have been set. 1008 * @ne_enclave : Private data associated with the current enclave. 1009 * @enclave_start_info : Enclave info that includes enclave cid and flags. 1010 * 1011 * Context: Process context. This function is called with the ne_enclave mutex held. 1012 * Return: 1013 * * 0 on success. 1014 * * Negative return value on failure. 1015 */ 1016 static int ne_start_enclave_ioctl(struct ne_enclave *ne_enclave, 1017 struct ne_enclave_start_info *enclave_start_info) 1018 { 1019 struct ne_pci_dev_cmd_reply cmd_reply = {}; 1020 unsigned int cpu = 0; 1021 struct enclave_start_req enclave_start_req = {}; 1022 unsigned int i = 0; 1023 struct pci_dev *pdev = ne_devs.ne_pci_dev->pdev; 1024 int rc = -EINVAL; 1025 1026 if (!ne_enclave->nr_mem_regions) { 1027 dev_err_ratelimited(ne_misc_dev.this_device, 1028 "Enclave has no mem regions\n"); 1029 1030 return -NE_ERR_NO_MEM_REGIONS_ADDED; 1031 } 1032 1033 if (ne_enclave->mem_size < NE_MIN_ENCLAVE_MEM_SIZE) { 1034 dev_err_ratelimited(ne_misc_dev.this_device, 1035 "Enclave memory is less than %ld\n", 1036 NE_MIN_ENCLAVE_MEM_SIZE); 1037 1038 return -NE_ERR_ENCLAVE_MEM_MIN_SIZE; 1039 } 1040 1041 if (!ne_enclave->nr_vcpus) { 1042 dev_err_ratelimited(ne_misc_dev.this_device, 1043 "Enclave has no vCPUs\n"); 1044 1045 return -NE_ERR_NO_VCPUS_ADDED; 1046 } 1047 1048 for (i = 0; i < ne_enclave->nr_parent_vm_cores; i++) 1049 for_each_cpu(cpu, ne_enclave->threads_per_core[i]) 1050 if (!cpumask_test_cpu(cpu, ne_enclave->vcpu_ids)) { 1051 dev_err_ratelimited(ne_misc_dev.this_device, 1052 "Full CPU cores not used\n"); 1053 1054 return -NE_ERR_FULL_CORES_NOT_USED; 1055 } 1056 1057 enclave_start_req.enclave_cid = enclave_start_info->enclave_cid; 1058 enclave_start_req.flags = enclave_start_info->flags; 1059 enclave_start_req.slot_uid = ne_enclave->slot_uid; 1060 1061 rc = ne_do_request(pdev, ENCLAVE_START, 1062 &enclave_start_req, sizeof(enclave_start_req), 1063 &cmd_reply, sizeof(cmd_reply)); 1064 if (rc < 0) { 1065 dev_err_ratelimited(ne_misc_dev.this_device, 1066 "Error in enclave start [rc=%d]\n", rc); 1067 1068 return rc; 1069 } 1070 1071 ne_enclave->state = NE_STATE_RUNNING; 1072 1073 enclave_start_info->enclave_cid = cmd_reply.enclave_cid; 1074 1075 return 0; 1076 } 1077 1078 /** 1079 * ne_enclave_ioctl() - Ioctl function provided by the enclave file. 1080 * @file: File associated with this ioctl function. 1081 * @cmd: The command that is set for the ioctl call. 1082 * @arg: The argument that is provided for the ioctl call. 1083 * 1084 * Context: Process context. 1085 * Return: 1086 * * 0 on success. 1087 * * Negative return value on failure. 1088 */ 1089 static long ne_enclave_ioctl(struct file *file, unsigned int cmd, unsigned long arg) 1090 { 1091 struct ne_enclave *ne_enclave = file->private_data; 1092 1093 switch (cmd) { 1094 case NE_ADD_VCPU: { 1095 int rc = -EINVAL; 1096 u32 vcpu_id = 0; 1097 1098 if (copy_from_user(&vcpu_id, (void __user *)arg, sizeof(vcpu_id))) 1099 return -EFAULT; 1100 1101 mutex_lock(&ne_enclave->enclave_info_mutex); 1102 1103 if (ne_enclave->state != NE_STATE_INIT) { 1104 dev_err_ratelimited(ne_misc_dev.this_device, 1105 "Enclave is not in init state\n"); 1106 1107 mutex_unlock(&ne_enclave->enclave_info_mutex); 1108 1109 return -NE_ERR_NOT_IN_INIT_STATE; 1110 } 1111 1112 if (vcpu_id >= (ne_enclave->nr_parent_vm_cores * 1113 ne_enclave->nr_threads_per_core)) { 1114 dev_err_ratelimited(ne_misc_dev.this_device, 1115 "vCPU id higher than max CPU id\n"); 1116 1117 mutex_unlock(&ne_enclave->enclave_info_mutex); 1118 1119 return -NE_ERR_INVALID_VCPU; 1120 } 1121 1122 if (!vcpu_id) { 1123 /* Use the CPU pool for choosing a CPU for the enclave. */ 1124 rc = ne_get_cpu_from_cpu_pool(ne_enclave, &vcpu_id); 1125 if (rc < 0) { 1126 dev_err_ratelimited(ne_misc_dev.this_device, 1127 "Error in get CPU from pool [rc=%d]\n", 1128 rc); 1129 1130 mutex_unlock(&ne_enclave->enclave_info_mutex); 1131 1132 return rc; 1133 } 1134 } else { 1135 /* Check if the provided vCPU is available in the NE CPU pool. */ 1136 rc = ne_check_cpu_in_cpu_pool(ne_enclave, vcpu_id); 1137 if (rc < 0) { 1138 dev_err_ratelimited(ne_misc_dev.this_device, 1139 "Error in check CPU %d in pool [rc=%d]\n", 1140 vcpu_id, rc); 1141 1142 mutex_unlock(&ne_enclave->enclave_info_mutex); 1143 1144 return rc; 1145 } 1146 } 1147 1148 rc = ne_add_vcpu_ioctl(ne_enclave, vcpu_id); 1149 if (rc < 0) { 1150 mutex_unlock(&ne_enclave->enclave_info_mutex); 1151 1152 return rc; 1153 } 1154 1155 mutex_unlock(&ne_enclave->enclave_info_mutex); 1156 1157 if (copy_to_user((void __user *)arg, &vcpu_id, sizeof(vcpu_id))) 1158 return -EFAULT; 1159 1160 return 0; 1161 } 1162 1163 case NE_GET_IMAGE_LOAD_INFO: { 1164 struct ne_image_load_info image_load_info = {}; 1165 1166 if (copy_from_user(&image_load_info, (void __user *)arg, sizeof(image_load_info))) 1167 return -EFAULT; 1168 1169 mutex_lock(&ne_enclave->enclave_info_mutex); 1170 1171 if (ne_enclave->state != NE_STATE_INIT) { 1172 dev_err_ratelimited(ne_misc_dev.this_device, 1173 "Enclave is not in init state\n"); 1174 1175 mutex_unlock(&ne_enclave->enclave_info_mutex); 1176 1177 return -NE_ERR_NOT_IN_INIT_STATE; 1178 } 1179 1180 mutex_unlock(&ne_enclave->enclave_info_mutex); 1181 1182 if (!image_load_info.flags || 1183 image_load_info.flags >= NE_IMAGE_LOAD_MAX_FLAG_VAL) { 1184 dev_err_ratelimited(ne_misc_dev.this_device, 1185 "Incorrect flag in enclave image load info\n"); 1186 1187 return -NE_ERR_INVALID_FLAG_VALUE; 1188 } 1189 1190 if (image_load_info.flags == NE_EIF_IMAGE) 1191 image_load_info.memory_offset = NE_EIF_LOAD_OFFSET; 1192 1193 if (copy_to_user((void __user *)arg, &image_load_info, sizeof(image_load_info))) 1194 return -EFAULT; 1195 1196 return 0; 1197 } 1198 1199 case NE_SET_USER_MEMORY_REGION: { 1200 struct ne_user_memory_region mem_region = {}; 1201 int rc = -EINVAL; 1202 1203 if (copy_from_user(&mem_region, (void __user *)arg, sizeof(mem_region))) 1204 return -EFAULT; 1205 1206 if (mem_region.flags >= NE_MEMORY_REGION_MAX_FLAG_VAL) { 1207 dev_err_ratelimited(ne_misc_dev.this_device, 1208 "Incorrect flag for user memory region\n"); 1209 1210 return -NE_ERR_INVALID_FLAG_VALUE; 1211 } 1212 1213 mutex_lock(&ne_enclave->enclave_info_mutex); 1214 1215 if (ne_enclave->state != NE_STATE_INIT) { 1216 dev_err_ratelimited(ne_misc_dev.this_device, 1217 "Enclave is not in init state\n"); 1218 1219 mutex_unlock(&ne_enclave->enclave_info_mutex); 1220 1221 return -NE_ERR_NOT_IN_INIT_STATE; 1222 } 1223 1224 rc = ne_set_user_memory_region_ioctl(ne_enclave, mem_region); 1225 if (rc < 0) { 1226 mutex_unlock(&ne_enclave->enclave_info_mutex); 1227 1228 return rc; 1229 } 1230 1231 mutex_unlock(&ne_enclave->enclave_info_mutex); 1232 1233 return 0; 1234 } 1235 1236 case NE_START_ENCLAVE: { 1237 struct ne_enclave_start_info enclave_start_info = {}; 1238 int rc = -EINVAL; 1239 1240 if (copy_from_user(&enclave_start_info, (void __user *)arg, 1241 sizeof(enclave_start_info))) 1242 return -EFAULT; 1243 1244 if (enclave_start_info.flags >= NE_ENCLAVE_START_MAX_FLAG_VAL) { 1245 dev_err_ratelimited(ne_misc_dev.this_device, 1246 "Incorrect flag in enclave start info\n"); 1247 1248 return -NE_ERR_INVALID_FLAG_VALUE; 1249 } 1250 1251 /* 1252 * Do not use well-known CIDs - 0, 1, 2 - for enclaves. 1253 * VMADDR_CID_ANY = -1U 1254 * VMADDR_CID_HYPERVISOR = 0 1255 * VMADDR_CID_LOCAL = 1 1256 * VMADDR_CID_HOST = 2 1257 * Note: 0 is used as a placeholder to auto-generate an enclave CID. 1258 * http://man7.org/linux/man-pages/man7/vsock.7.html 1259 */ 1260 if (enclave_start_info.enclave_cid > 0 && 1261 enclave_start_info.enclave_cid <= VMADDR_CID_HOST) { 1262 dev_err_ratelimited(ne_misc_dev.this_device, 1263 "Well-known CID value, not to be used for enclaves\n"); 1264 1265 return -NE_ERR_INVALID_ENCLAVE_CID; 1266 } 1267 1268 if (enclave_start_info.enclave_cid == U32_MAX) { 1269 dev_err_ratelimited(ne_misc_dev.this_device, 1270 "Well-known CID value, not to be used for enclaves\n"); 1271 1272 return -NE_ERR_INVALID_ENCLAVE_CID; 1273 } 1274 1275 /* 1276 * Do not use the CID of the primary / parent VM for enclaves. 1277 */ 1278 if (enclave_start_info.enclave_cid == NE_PARENT_VM_CID) { 1279 dev_err_ratelimited(ne_misc_dev.this_device, 1280 "CID of the parent VM, not to be used for enclaves\n"); 1281 1282 return -NE_ERR_INVALID_ENCLAVE_CID; 1283 } 1284 1285 /* 64-bit CIDs are not yet supported for the vsock device. */ 1286 if (enclave_start_info.enclave_cid > U32_MAX) { 1287 dev_err_ratelimited(ne_misc_dev.this_device, 1288 "64-bit CIDs not yet supported for the vsock device\n"); 1289 1290 return -NE_ERR_INVALID_ENCLAVE_CID; 1291 } 1292 1293 mutex_lock(&ne_enclave->enclave_info_mutex); 1294 1295 if (ne_enclave->state != NE_STATE_INIT) { 1296 dev_err_ratelimited(ne_misc_dev.this_device, 1297 "Enclave is not in init state\n"); 1298 1299 mutex_unlock(&ne_enclave->enclave_info_mutex); 1300 1301 return -NE_ERR_NOT_IN_INIT_STATE; 1302 } 1303 1304 rc = ne_start_enclave_ioctl(ne_enclave, &enclave_start_info); 1305 if (rc < 0) { 1306 mutex_unlock(&ne_enclave->enclave_info_mutex); 1307 1308 return rc; 1309 } 1310 1311 mutex_unlock(&ne_enclave->enclave_info_mutex); 1312 1313 if (copy_to_user((void __user *)arg, &enclave_start_info, 1314 sizeof(enclave_start_info))) 1315 return -EFAULT; 1316 1317 return 0; 1318 } 1319 1320 default: 1321 return -ENOTTY; 1322 } 1323 1324 return 0; 1325 } 1326 1327 /** 1328 * ne_enclave_remove_all_mem_region_entries() - Remove all memory region entries 1329 * from the enclave data structure. 1330 * @ne_enclave : Private data associated with the current enclave. 1331 * 1332 * Context: Process context. This function is called with the ne_enclave mutex held. 1333 */ 1334 static void ne_enclave_remove_all_mem_region_entries(struct ne_enclave *ne_enclave) 1335 { 1336 unsigned long i = 0; 1337 struct ne_mem_region *ne_mem_region = NULL; 1338 struct ne_mem_region *ne_mem_region_tmp = NULL; 1339 1340 list_for_each_entry_safe(ne_mem_region, ne_mem_region_tmp, 1341 &ne_enclave->mem_regions_list, 1342 mem_region_list_entry) { 1343 list_del(&ne_mem_region->mem_region_list_entry); 1344 1345 for (i = 0; i < ne_mem_region->nr_pages; i++) 1346 put_page(ne_mem_region->pages[i]); 1347 1348 kfree(ne_mem_region->pages); 1349 1350 kfree(ne_mem_region); 1351 } 1352 } 1353 1354 /** 1355 * ne_enclave_remove_all_vcpu_id_entries() - Remove all vCPU id entries from 1356 * the enclave data structure. 1357 * @ne_enclave : Private data associated with the current enclave. 1358 * 1359 * Context: Process context. This function is called with the ne_enclave mutex held. 1360 */ 1361 static void ne_enclave_remove_all_vcpu_id_entries(struct ne_enclave *ne_enclave) 1362 { 1363 unsigned int cpu = 0; 1364 unsigned int i = 0; 1365 1366 mutex_lock(&ne_cpu_pool.mutex); 1367 1368 for (i = 0; i < ne_enclave->nr_parent_vm_cores; i++) { 1369 for_each_cpu(cpu, ne_enclave->threads_per_core[i]) 1370 /* Update the available NE CPU pool. */ 1371 cpumask_set_cpu(cpu, ne_cpu_pool.avail_threads_per_core[i]); 1372 1373 free_cpumask_var(ne_enclave->threads_per_core[i]); 1374 } 1375 1376 mutex_unlock(&ne_cpu_pool.mutex); 1377 1378 kfree(ne_enclave->threads_per_core); 1379 1380 free_cpumask_var(ne_enclave->vcpu_ids); 1381 } 1382 1383 /** 1384 * ne_pci_dev_remove_enclave_entry() - Remove the enclave entry from the data 1385 * structure that is part of the NE PCI 1386 * device private data. 1387 * @ne_enclave : Private data associated with the current enclave. 1388 * @ne_pci_dev : Private data associated with the PCI device. 1389 * 1390 * Context: Process context. This function is called with the ne_pci_dev enclave 1391 * mutex held. 1392 */ 1393 static void ne_pci_dev_remove_enclave_entry(struct ne_enclave *ne_enclave, 1394 struct ne_pci_dev *ne_pci_dev) 1395 { 1396 struct ne_enclave *ne_enclave_entry = NULL; 1397 struct ne_enclave *ne_enclave_entry_tmp = NULL; 1398 1399 list_for_each_entry_safe(ne_enclave_entry, ne_enclave_entry_tmp, 1400 &ne_pci_dev->enclaves_list, enclave_list_entry) { 1401 if (ne_enclave_entry->slot_uid == ne_enclave->slot_uid) { 1402 list_del(&ne_enclave_entry->enclave_list_entry); 1403 1404 break; 1405 } 1406 } 1407 } 1408 1409 /** 1410 * ne_enclave_release() - Release function provided by the enclave file. 1411 * @inode: Inode associated with this file release function. 1412 * @file: File associated with this release function. 1413 * 1414 * Context: Process context. 1415 * Return: 1416 * * 0 on success. 1417 * * Negative return value on failure. 1418 */ 1419 static int ne_enclave_release(struct inode *inode, struct file *file) 1420 { 1421 struct ne_pci_dev_cmd_reply cmd_reply = {}; 1422 struct enclave_stop_req enclave_stop_request = {}; 1423 struct ne_enclave *ne_enclave = file->private_data; 1424 struct ne_pci_dev *ne_pci_dev = ne_devs.ne_pci_dev; 1425 struct pci_dev *pdev = ne_pci_dev->pdev; 1426 int rc = -EINVAL; 1427 struct slot_free_req slot_free_req = {}; 1428 1429 if (!ne_enclave) 1430 return 0; 1431 1432 /* 1433 * Early exit in case there is an error in the enclave creation logic 1434 * and fput() is called on the cleanup path. 1435 */ 1436 if (!ne_enclave->slot_uid) 1437 return 0; 1438 1439 /* 1440 * Acquire the enclave list mutex before the enclave mutex 1441 * in order to avoid deadlocks with @ref ne_event_work_handler. 1442 */ 1443 mutex_lock(&ne_pci_dev->enclaves_list_mutex); 1444 mutex_lock(&ne_enclave->enclave_info_mutex); 1445 1446 if (ne_enclave->state != NE_STATE_INIT && ne_enclave->state != NE_STATE_STOPPED) { 1447 enclave_stop_request.slot_uid = ne_enclave->slot_uid; 1448 1449 rc = ne_do_request(pdev, ENCLAVE_STOP, 1450 &enclave_stop_request, sizeof(enclave_stop_request), 1451 &cmd_reply, sizeof(cmd_reply)); 1452 if (rc < 0) { 1453 dev_err_ratelimited(ne_misc_dev.this_device, 1454 "Error in enclave stop [rc=%d]\n", rc); 1455 1456 goto unlock_mutex; 1457 } 1458 1459 memset(&cmd_reply, 0, sizeof(cmd_reply)); 1460 } 1461 1462 slot_free_req.slot_uid = ne_enclave->slot_uid; 1463 1464 rc = ne_do_request(pdev, SLOT_FREE, 1465 &slot_free_req, sizeof(slot_free_req), 1466 &cmd_reply, sizeof(cmd_reply)); 1467 if (rc < 0) { 1468 dev_err_ratelimited(ne_misc_dev.this_device, 1469 "Error in slot free [rc=%d]\n", rc); 1470 1471 goto unlock_mutex; 1472 } 1473 1474 ne_pci_dev_remove_enclave_entry(ne_enclave, ne_pci_dev); 1475 ne_enclave_remove_all_mem_region_entries(ne_enclave); 1476 ne_enclave_remove_all_vcpu_id_entries(ne_enclave); 1477 1478 mutex_unlock(&ne_enclave->enclave_info_mutex); 1479 mutex_unlock(&ne_pci_dev->enclaves_list_mutex); 1480 1481 kfree(ne_enclave); 1482 1483 return 0; 1484 1485 unlock_mutex: 1486 mutex_unlock(&ne_enclave->enclave_info_mutex); 1487 mutex_unlock(&ne_pci_dev->enclaves_list_mutex); 1488 1489 return rc; 1490 } 1491 1492 /** 1493 * ne_enclave_poll() - Poll functionality used for enclave out-of-band events. 1494 * @file: File associated with this poll function. 1495 * @wait: Poll table data structure. 1496 * 1497 * Context: Process context. 1498 * Return: 1499 * * Poll mask. 1500 */ 1501 static __poll_t ne_enclave_poll(struct file *file, poll_table *wait) 1502 { 1503 __poll_t mask = 0; 1504 struct ne_enclave *ne_enclave = file->private_data; 1505 1506 poll_wait(file, &ne_enclave->eventq, wait); 1507 1508 if (ne_enclave->has_event) 1509 mask |= EPOLLHUP; 1510 1511 return mask; 1512 } 1513 1514 static const struct file_operations ne_enclave_fops = { 1515 .owner = THIS_MODULE, 1516 .llseek = noop_llseek, 1517 .poll = ne_enclave_poll, 1518 .unlocked_ioctl = ne_enclave_ioctl, 1519 .release = ne_enclave_release, 1520 }; 1521 1522 /** 1523 * ne_create_vm_ioctl() - Alloc slot to be associated with an enclave. Create 1524 * enclave file descriptor to be further used for enclave 1525 * resources handling e.g. memory regions and CPUs. 1526 * @ne_pci_dev : Private data associated with the PCI device. 1527 * @slot_uid: User pointer to store the generated unique slot id 1528 * associated with an enclave to. 1529 * 1530 * Context: Process context. This function is called with the ne_pci_dev enclave 1531 * mutex held. 1532 * Return: 1533 * * Enclave fd on success. 1534 * * Negative return value on failure. 1535 */ 1536 static int ne_create_vm_ioctl(struct ne_pci_dev *ne_pci_dev, u64 __user *slot_uid) 1537 { 1538 struct ne_pci_dev_cmd_reply cmd_reply = {}; 1539 int enclave_fd = -1; 1540 struct file *enclave_file = NULL; 1541 unsigned int i = 0; 1542 struct ne_enclave *ne_enclave = NULL; 1543 struct pci_dev *pdev = ne_pci_dev->pdev; 1544 int rc = -EINVAL; 1545 struct slot_alloc_req slot_alloc_req = {}; 1546 1547 mutex_lock(&ne_cpu_pool.mutex); 1548 1549 for (i = 0; i < ne_cpu_pool.nr_parent_vm_cores; i++) 1550 if (!cpumask_empty(ne_cpu_pool.avail_threads_per_core[i])) 1551 break; 1552 1553 if (i == ne_cpu_pool.nr_parent_vm_cores) { 1554 dev_err_ratelimited(ne_misc_dev.this_device, 1555 "No CPUs available in CPU pool\n"); 1556 1557 mutex_unlock(&ne_cpu_pool.mutex); 1558 1559 return -NE_ERR_NO_CPUS_AVAIL_IN_POOL; 1560 } 1561 1562 mutex_unlock(&ne_cpu_pool.mutex); 1563 1564 ne_enclave = kzalloc(sizeof(*ne_enclave), GFP_KERNEL); 1565 if (!ne_enclave) 1566 return -ENOMEM; 1567 1568 mutex_lock(&ne_cpu_pool.mutex); 1569 1570 ne_enclave->nr_parent_vm_cores = ne_cpu_pool.nr_parent_vm_cores; 1571 ne_enclave->nr_threads_per_core = ne_cpu_pool.nr_threads_per_core; 1572 ne_enclave->numa_node = ne_cpu_pool.numa_node; 1573 1574 mutex_unlock(&ne_cpu_pool.mutex); 1575 1576 ne_enclave->threads_per_core = kcalloc(ne_enclave->nr_parent_vm_cores, 1577 sizeof(*ne_enclave->threads_per_core), GFP_KERNEL); 1578 if (!ne_enclave->threads_per_core) { 1579 rc = -ENOMEM; 1580 1581 goto free_ne_enclave; 1582 } 1583 1584 for (i = 0; i < ne_enclave->nr_parent_vm_cores; i++) 1585 if (!zalloc_cpumask_var(&ne_enclave->threads_per_core[i], GFP_KERNEL)) { 1586 rc = -ENOMEM; 1587 1588 goto free_cpumask; 1589 } 1590 1591 if (!zalloc_cpumask_var(&ne_enclave->vcpu_ids, GFP_KERNEL)) { 1592 rc = -ENOMEM; 1593 1594 goto free_cpumask; 1595 } 1596 1597 enclave_fd = get_unused_fd_flags(O_CLOEXEC); 1598 if (enclave_fd < 0) { 1599 rc = enclave_fd; 1600 1601 dev_err_ratelimited(ne_misc_dev.this_device, 1602 "Error in getting unused fd [rc=%d]\n", rc); 1603 1604 goto free_cpumask; 1605 } 1606 1607 enclave_file = anon_inode_getfile("ne-vm", &ne_enclave_fops, ne_enclave, O_RDWR); 1608 if (IS_ERR(enclave_file)) { 1609 rc = PTR_ERR(enclave_file); 1610 1611 dev_err_ratelimited(ne_misc_dev.this_device, 1612 "Error in anon inode get file [rc=%d]\n", rc); 1613 1614 goto put_fd; 1615 } 1616 1617 rc = ne_do_request(pdev, SLOT_ALLOC, 1618 &slot_alloc_req, sizeof(slot_alloc_req), 1619 &cmd_reply, sizeof(cmd_reply)); 1620 if (rc < 0) { 1621 dev_err_ratelimited(ne_misc_dev.this_device, 1622 "Error in slot alloc [rc=%d]\n", rc); 1623 1624 goto put_file; 1625 } 1626 1627 init_waitqueue_head(&ne_enclave->eventq); 1628 ne_enclave->has_event = false; 1629 mutex_init(&ne_enclave->enclave_info_mutex); 1630 ne_enclave->max_mem_regions = cmd_reply.mem_regions; 1631 INIT_LIST_HEAD(&ne_enclave->mem_regions_list); 1632 ne_enclave->mm = current->mm; 1633 ne_enclave->slot_uid = cmd_reply.slot_uid; 1634 ne_enclave->state = NE_STATE_INIT; 1635 1636 list_add(&ne_enclave->enclave_list_entry, &ne_pci_dev->enclaves_list); 1637 1638 if (copy_to_user(slot_uid, &ne_enclave->slot_uid, sizeof(ne_enclave->slot_uid))) { 1639 /* 1640 * As we're holding the only reference to 'enclave_file', fput() 1641 * will call ne_enclave_release() which will do a proper cleanup 1642 * of all so far allocated resources, leaving only the unused fd 1643 * for us to free. 1644 */ 1645 fput(enclave_file); 1646 put_unused_fd(enclave_fd); 1647 1648 return -EFAULT; 1649 } 1650 1651 fd_install(enclave_fd, enclave_file); 1652 1653 return enclave_fd; 1654 1655 put_file: 1656 fput(enclave_file); 1657 put_fd: 1658 put_unused_fd(enclave_fd); 1659 free_cpumask: 1660 free_cpumask_var(ne_enclave->vcpu_ids); 1661 for (i = 0; i < ne_enclave->nr_parent_vm_cores; i++) 1662 free_cpumask_var(ne_enclave->threads_per_core[i]); 1663 kfree(ne_enclave->threads_per_core); 1664 free_ne_enclave: 1665 kfree(ne_enclave); 1666 1667 return rc; 1668 } 1669 1670 /** 1671 * ne_ioctl() - Ioctl function provided by the NE misc device. 1672 * @file: File associated with this ioctl function. 1673 * @cmd: The command that is set for the ioctl call. 1674 * @arg: The argument that is provided for the ioctl call. 1675 * 1676 * Context: Process context. 1677 * Return: 1678 * * Ioctl result (e.g. enclave file descriptor) on success. 1679 * * Negative return value on failure. 1680 */ 1681 static long ne_ioctl(struct file *file, unsigned int cmd, unsigned long arg) 1682 { 1683 switch (cmd) { 1684 case NE_CREATE_VM: { 1685 int enclave_fd = -1; 1686 struct ne_pci_dev *ne_pci_dev = ne_devs.ne_pci_dev; 1687 u64 __user *slot_uid = (void __user *)arg; 1688 1689 mutex_lock(&ne_pci_dev->enclaves_list_mutex); 1690 enclave_fd = ne_create_vm_ioctl(ne_pci_dev, slot_uid); 1691 mutex_unlock(&ne_pci_dev->enclaves_list_mutex); 1692 1693 return enclave_fd; 1694 } 1695 1696 default: 1697 return -ENOTTY; 1698 } 1699 1700 return 0; 1701 } 1702 1703 static int __init ne_init(void) 1704 { 1705 mutex_init(&ne_cpu_pool.mutex); 1706 1707 return pci_register_driver(&ne_pci_driver); 1708 } 1709 1710 static void __exit ne_exit(void) 1711 { 1712 pci_unregister_driver(&ne_pci_driver); 1713 1714 ne_teardown_cpu_pool(); 1715 } 1716 1717 module_init(ne_init); 1718 module_exit(ne_exit); 1719 1720 MODULE_AUTHOR("Amazon.com, Inc. or its affiliates"); 1721 MODULE_DESCRIPTION("Nitro Enclaves Driver"); 1722 MODULE_LICENSE("GPL v2"); 1723