1 /* 2 * Freescale Hypervisor Management Driver 3 4 * Copyright (C) 2008-2011 Freescale Semiconductor, Inc. 5 * Author: Timur Tabi <timur@freescale.com> 6 * 7 * This file is licensed under the terms of the GNU General Public License 8 * version 2. This program is licensed "as is" without any warranty of any 9 * kind, whether express or implied. 10 * 11 * The Freescale hypervisor management driver provides several services to 12 * drivers and applications related to the Freescale hypervisor: 13 * 14 * 1. An ioctl interface for querying and managing partitions. 15 * 16 * 2. A file interface to reading incoming doorbells. 17 * 18 * 3. An interrupt handler for shutting down the partition upon receiving the 19 * shutdown doorbell from a manager partition. 20 * 21 * 4. A kernel interface for receiving callbacks when a managed partition 22 * shuts down. 23 */ 24 25 #include <linux/kernel.h> 26 #include <linux/module.h> 27 #include <linux/init.h> 28 #include <linux/types.h> 29 #include <linux/err.h> 30 #include <linux/fs.h> 31 #include <linux/miscdevice.h> 32 #include <linux/mm.h> 33 #include <linux/pagemap.h> 34 #include <linux/slab.h> 35 #include <linux/poll.h> 36 #include <linux/of.h> 37 #include <linux/of_irq.h> 38 #include <linux/reboot.h> 39 #include <linux/uaccess.h> 40 #include <linux/notifier.h> 41 #include <linux/interrupt.h> 42 43 #include <linux/io.h> 44 #include <asm/fsl_hcalls.h> 45 46 #include <linux/fsl_hypervisor.h> 47 48 static BLOCKING_NOTIFIER_HEAD(failover_subscribers); 49 50 /* 51 * Ioctl interface for FSL_HV_IOCTL_PARTITION_RESTART 52 * 53 * Restart a running partition 54 */ 55 static long ioctl_restart(struct fsl_hv_ioctl_restart __user *p) 56 { 57 struct fsl_hv_ioctl_restart param; 58 59 /* Get the parameters from the user */ 60 if (copy_from_user(¶m, p, sizeof(struct fsl_hv_ioctl_restart))) 61 return -EFAULT; 62 63 param.ret = fh_partition_restart(param.partition); 64 65 if (copy_to_user(&p->ret, ¶m.ret, sizeof(__u32))) 66 return -EFAULT; 67 68 return 0; 69 } 70 71 /* 72 * Ioctl interface for FSL_HV_IOCTL_PARTITION_STATUS 73 * 74 * Query the status of a partition 75 */ 76 static long ioctl_status(struct fsl_hv_ioctl_status __user *p) 77 { 78 struct fsl_hv_ioctl_status param; 79 u32 status; 80 81 /* Get the parameters from the user */ 82 if (copy_from_user(¶m, p, sizeof(struct fsl_hv_ioctl_status))) 83 return -EFAULT; 84 85 param.ret = fh_partition_get_status(param.partition, &status); 86 if (!param.ret) 87 param.status = status; 88 89 if (copy_to_user(p, ¶m, sizeof(struct fsl_hv_ioctl_status))) 90 return -EFAULT; 91 92 return 0; 93 } 94 95 /* 96 * Ioctl interface for FSL_HV_IOCTL_PARTITION_START 97 * 98 * Start a stopped partition. 99 */ 100 static long ioctl_start(struct fsl_hv_ioctl_start __user *p) 101 { 102 struct fsl_hv_ioctl_start param; 103 104 /* Get the parameters from the user */ 105 if (copy_from_user(¶m, p, sizeof(struct fsl_hv_ioctl_start))) 106 return -EFAULT; 107 108 param.ret = fh_partition_start(param.partition, param.entry_point, 109 param.load); 110 111 if (copy_to_user(&p->ret, ¶m.ret, sizeof(__u32))) 112 return -EFAULT; 113 114 return 0; 115 } 116 117 /* 118 * Ioctl interface for FSL_HV_IOCTL_PARTITION_STOP 119 * 120 * Stop a running partition 121 */ 122 static long ioctl_stop(struct fsl_hv_ioctl_stop __user *p) 123 { 124 struct fsl_hv_ioctl_stop param; 125 126 /* Get the parameters from the user */ 127 if (copy_from_user(¶m, p, sizeof(struct fsl_hv_ioctl_stop))) 128 return -EFAULT; 129 130 param.ret = fh_partition_stop(param.partition); 131 132 if (copy_to_user(&p->ret, ¶m.ret, sizeof(__u32))) 133 return -EFAULT; 134 135 return 0; 136 } 137 138 /* 139 * Ioctl interface for FSL_HV_IOCTL_MEMCPY 140 * 141 * The FH_MEMCPY hypercall takes an array of address/address/size structures 142 * to represent the data being copied. As a convenience to the user, this 143 * ioctl takes a user-create buffer and a pointer to a guest physically 144 * contiguous buffer in the remote partition, and creates the 145 * address/address/size array for the hypercall. 146 */ 147 static long ioctl_memcpy(struct fsl_hv_ioctl_memcpy __user *p) 148 { 149 struct fsl_hv_ioctl_memcpy param; 150 151 struct page **pages = NULL; 152 void *sg_list_unaligned = NULL; 153 struct fh_sg_list *sg_list = NULL; 154 155 unsigned int num_pages; 156 unsigned long lb_offset; /* Offset within a page of the local buffer */ 157 158 unsigned int i; 159 long ret = 0; 160 int num_pinned = 0; /* return value from get_user_pages_fast() */ 161 phys_addr_t remote_paddr; /* The next address in the remote buffer */ 162 uint32_t count; /* The number of bytes left to copy */ 163 164 /* Get the parameters from the user */ 165 if (copy_from_user(¶m, p, sizeof(struct fsl_hv_ioctl_memcpy))) 166 return -EFAULT; 167 168 /* 169 * One partition must be local, the other must be remote. In other 170 * words, if source and target are both -1, or are both not -1, then 171 * return an error. 172 */ 173 if ((param.source == -1) == (param.target == -1)) 174 return -EINVAL; 175 176 /* 177 * The array of pages returned by get_user_pages_fast() covers only 178 * page-aligned memory. Since the user buffer is probably not 179 * page-aligned, we need to handle the discrepancy. 180 * 181 * We calculate the offset within a page of the S/G list, and make 182 * adjustments accordingly. This will result in a page list that looks 183 * like this: 184 * 185 * ---- <-- first page starts before the buffer 186 * | | 187 * |////|-> ---- 188 * |////| | | 189 * ---- | | 190 * | | 191 * ---- | | 192 * |////| | | 193 * |////| | | 194 * |////| | | 195 * ---- | | 196 * | | 197 * ---- | | 198 * |////| | | 199 * |////| | | 200 * |////| | | 201 * ---- | | 202 * | | 203 * ---- | | 204 * |////| | | 205 * |////|-> ---- 206 * | | <-- last page ends after the buffer 207 * ---- 208 * 209 * The distance between the start of the first page and the start of the 210 * buffer is lb_offset. The hashed (///) areas are the parts of the 211 * page list that contain the actual buffer. 212 * 213 * The advantage of this approach is that the number of pages is 214 * equal to the number of entries in the S/G list that we give to the 215 * hypervisor. 216 */ 217 lb_offset = param.local_vaddr & (PAGE_SIZE - 1); 218 if (param.count == 0 || 219 param.count > U64_MAX - lb_offset - PAGE_SIZE + 1) 220 return -EINVAL; 221 num_pages = (param.count + lb_offset + PAGE_SIZE - 1) >> PAGE_SHIFT; 222 223 /* Allocate the buffers we need */ 224 225 /* 226 * 'pages' is an array of struct page pointers that's initialized by 227 * get_user_pages_fast(). 228 */ 229 pages = kcalloc(num_pages, sizeof(struct page *), GFP_KERNEL); 230 if (!pages) { 231 pr_debug("fsl-hv: could not allocate page list\n"); 232 return -ENOMEM; 233 } 234 235 /* 236 * sg_list is the list of fh_sg_list objects that we pass to the 237 * hypervisor. 238 */ 239 sg_list_unaligned = kmalloc(num_pages * sizeof(struct fh_sg_list) + 240 sizeof(struct fh_sg_list) - 1, GFP_KERNEL); 241 if (!sg_list_unaligned) { 242 pr_debug("fsl-hv: could not allocate S/G list\n"); 243 ret = -ENOMEM; 244 goto free_pages; 245 } 246 sg_list = PTR_ALIGN(sg_list_unaligned, sizeof(struct fh_sg_list)); 247 248 /* Get the physical addresses of the source buffer */ 249 num_pinned = get_user_pages_fast(param.local_vaddr - lb_offset, 250 num_pages, param.source != -1 ? FOLL_WRITE : 0, pages); 251 252 if (num_pinned != num_pages) { 253 pr_debug("fsl-hv: could not lock source buffer\n"); 254 ret = (num_pinned < 0) ? num_pinned : -EFAULT; 255 goto exit; 256 } 257 258 /* 259 * Build the fh_sg_list[] array. The first page is special 260 * because it's misaligned. 261 */ 262 if (param.source == -1) { 263 sg_list[0].source = page_to_phys(pages[0]) + lb_offset; 264 sg_list[0].target = param.remote_paddr; 265 } else { 266 sg_list[0].source = param.remote_paddr; 267 sg_list[0].target = page_to_phys(pages[0]) + lb_offset; 268 } 269 sg_list[0].size = min_t(uint64_t, param.count, PAGE_SIZE - lb_offset); 270 271 remote_paddr = param.remote_paddr + sg_list[0].size; 272 count = param.count - sg_list[0].size; 273 274 for (i = 1; i < num_pages; i++) { 275 if (param.source == -1) { 276 /* local to remote */ 277 sg_list[i].source = page_to_phys(pages[i]); 278 sg_list[i].target = remote_paddr; 279 } else { 280 /* remote to local */ 281 sg_list[i].source = remote_paddr; 282 sg_list[i].target = page_to_phys(pages[i]); 283 } 284 sg_list[i].size = min_t(uint64_t, count, PAGE_SIZE); 285 286 remote_paddr += sg_list[i].size; 287 count -= sg_list[i].size; 288 } 289 290 param.ret = fh_partition_memcpy(param.source, param.target, 291 virt_to_phys(sg_list), num_pages); 292 293 exit: 294 if (pages && (num_pinned > 0)) { 295 for (i = 0; i < num_pinned; i++) 296 put_page(pages[i]); 297 } 298 299 kfree(sg_list_unaligned); 300 free_pages: 301 kfree(pages); 302 303 if (!ret) 304 if (copy_to_user(&p->ret, ¶m.ret, sizeof(__u32))) 305 return -EFAULT; 306 307 return ret; 308 } 309 310 /* 311 * Ioctl interface for FSL_HV_IOCTL_DOORBELL 312 * 313 * Ring a doorbell 314 */ 315 static long ioctl_doorbell(struct fsl_hv_ioctl_doorbell __user *p) 316 { 317 struct fsl_hv_ioctl_doorbell param; 318 319 /* Get the parameters from the user. */ 320 if (copy_from_user(¶m, p, sizeof(struct fsl_hv_ioctl_doorbell))) 321 return -EFAULT; 322 323 param.ret = ev_doorbell_send(param.doorbell); 324 325 if (copy_to_user(&p->ret, ¶m.ret, sizeof(__u32))) 326 return -EFAULT; 327 328 return 0; 329 } 330 331 static long ioctl_dtprop(struct fsl_hv_ioctl_prop __user *p, int set) 332 { 333 struct fsl_hv_ioctl_prop param; 334 char __user *upath, *upropname; 335 void __user *upropval; 336 char *path, *propname; 337 void *propval; 338 int ret = 0; 339 340 /* Get the parameters from the user. */ 341 if (copy_from_user(¶m, p, sizeof(struct fsl_hv_ioctl_prop))) 342 return -EFAULT; 343 344 upath = (char __user *)(uintptr_t)param.path; 345 upropname = (char __user *)(uintptr_t)param.propname; 346 upropval = (void __user *)(uintptr_t)param.propval; 347 348 path = strndup_user(upath, FH_DTPROP_MAX_PATHLEN); 349 if (IS_ERR(path)) 350 return PTR_ERR(path); 351 352 propname = strndup_user(upropname, FH_DTPROP_MAX_PATHLEN); 353 if (IS_ERR(propname)) { 354 ret = PTR_ERR(propname); 355 goto err_free_path; 356 } 357 358 if (param.proplen > FH_DTPROP_MAX_PROPLEN) { 359 ret = -EINVAL; 360 goto err_free_propname; 361 } 362 363 propval = kmalloc(param.proplen, GFP_KERNEL); 364 if (!propval) { 365 ret = -ENOMEM; 366 goto err_free_propname; 367 } 368 369 if (set) { 370 if (copy_from_user(propval, upropval, param.proplen)) { 371 ret = -EFAULT; 372 goto err_free_propval; 373 } 374 375 param.ret = fh_partition_set_dtprop(param.handle, 376 virt_to_phys(path), 377 virt_to_phys(propname), 378 virt_to_phys(propval), 379 param.proplen); 380 } else { 381 param.ret = fh_partition_get_dtprop(param.handle, 382 virt_to_phys(path), 383 virt_to_phys(propname), 384 virt_to_phys(propval), 385 ¶m.proplen); 386 387 if (param.ret == 0) { 388 if (copy_to_user(upropval, propval, param.proplen) || 389 put_user(param.proplen, &p->proplen)) { 390 ret = -EFAULT; 391 goto err_free_propval; 392 } 393 } 394 } 395 396 if (put_user(param.ret, &p->ret)) 397 ret = -EFAULT; 398 399 err_free_propval: 400 kfree(propval); 401 err_free_propname: 402 kfree(propname); 403 err_free_path: 404 kfree(path); 405 406 return ret; 407 } 408 409 /* 410 * Ioctl main entry point 411 */ 412 static long fsl_hv_ioctl(struct file *file, unsigned int cmd, 413 unsigned long argaddr) 414 { 415 void __user *arg = (void __user *)argaddr; 416 long ret; 417 418 switch (cmd) { 419 case FSL_HV_IOCTL_PARTITION_RESTART: 420 ret = ioctl_restart(arg); 421 break; 422 case FSL_HV_IOCTL_PARTITION_GET_STATUS: 423 ret = ioctl_status(arg); 424 break; 425 case FSL_HV_IOCTL_PARTITION_START: 426 ret = ioctl_start(arg); 427 break; 428 case FSL_HV_IOCTL_PARTITION_STOP: 429 ret = ioctl_stop(arg); 430 break; 431 case FSL_HV_IOCTL_MEMCPY: 432 ret = ioctl_memcpy(arg); 433 break; 434 case FSL_HV_IOCTL_DOORBELL: 435 ret = ioctl_doorbell(arg); 436 break; 437 case FSL_HV_IOCTL_GETPROP: 438 ret = ioctl_dtprop(arg, 0); 439 break; 440 case FSL_HV_IOCTL_SETPROP: 441 ret = ioctl_dtprop(arg, 1); 442 break; 443 default: 444 pr_debug("fsl-hv: bad ioctl dir=%u type=%u cmd=%u size=%u\n", 445 _IOC_DIR(cmd), _IOC_TYPE(cmd), _IOC_NR(cmd), 446 _IOC_SIZE(cmd)); 447 return -ENOTTY; 448 } 449 450 return ret; 451 } 452 453 /* Linked list of processes that have us open */ 454 static struct list_head db_list; 455 456 /* spinlock for db_list */ 457 static DEFINE_SPINLOCK(db_list_lock); 458 459 /* The size of the doorbell event queue. This must be a power of two. */ 460 #define QSIZE 16 461 462 /* Returns the next head/tail pointer, wrapping around the queue if necessary */ 463 #define nextp(x) (((x) + 1) & (QSIZE - 1)) 464 465 /* Per-open data structure */ 466 struct doorbell_queue { 467 struct list_head list; 468 spinlock_t lock; 469 wait_queue_head_t wait; 470 unsigned int head; 471 unsigned int tail; 472 uint32_t q[QSIZE]; 473 }; 474 475 /* Linked list of ISRs that we registered */ 476 struct list_head isr_list; 477 478 /* Per-ISR data structure */ 479 struct doorbell_isr { 480 struct list_head list; 481 unsigned int irq; 482 uint32_t doorbell; /* The doorbell handle */ 483 uint32_t partition; /* The partition handle, if used */ 484 }; 485 486 /* 487 * Add a doorbell to all of the doorbell queues 488 */ 489 static void fsl_hv_queue_doorbell(uint32_t doorbell) 490 { 491 struct doorbell_queue *dbq; 492 unsigned long flags; 493 494 /* Prevent another core from modifying db_list */ 495 spin_lock_irqsave(&db_list_lock, flags); 496 497 list_for_each_entry(dbq, &db_list, list) { 498 if (dbq->head != nextp(dbq->tail)) { 499 dbq->q[dbq->tail] = doorbell; 500 /* 501 * This memory barrier eliminates the need to grab 502 * the spinlock for dbq. 503 */ 504 smp_wmb(); 505 dbq->tail = nextp(dbq->tail); 506 wake_up_interruptible(&dbq->wait); 507 } 508 } 509 510 spin_unlock_irqrestore(&db_list_lock, flags); 511 } 512 513 /* 514 * Interrupt handler for all doorbells 515 * 516 * We use the same interrupt handler for all doorbells. Whenever a doorbell 517 * is rung, and we receive an interrupt, we just put the handle for that 518 * doorbell (passed to us as *data) into all of the queues. 519 */ 520 static irqreturn_t fsl_hv_isr(int irq, void *data) 521 { 522 fsl_hv_queue_doorbell((uintptr_t) data); 523 524 return IRQ_HANDLED; 525 } 526 527 /* 528 * State change thread function 529 * 530 * The state change notification arrives in an interrupt, but we can't call 531 * blocking_notifier_call_chain() in an interrupt handler. We could call 532 * atomic_notifier_call_chain(), but that would require the clients' call-back 533 * function to run in interrupt context. Since we don't want to impose that 534 * restriction on the clients, we use a threaded IRQ to process the 535 * notification in kernel context. 536 */ 537 static irqreturn_t fsl_hv_state_change_thread(int irq, void *data) 538 { 539 struct doorbell_isr *dbisr = data; 540 541 blocking_notifier_call_chain(&failover_subscribers, dbisr->partition, 542 NULL); 543 544 return IRQ_HANDLED; 545 } 546 547 /* 548 * Interrupt handler for state-change doorbells 549 */ 550 static irqreturn_t fsl_hv_state_change_isr(int irq, void *data) 551 { 552 unsigned int status; 553 struct doorbell_isr *dbisr = data; 554 int ret; 555 556 /* It's still a doorbell, so add it to all the queues. */ 557 fsl_hv_queue_doorbell(dbisr->doorbell); 558 559 /* Determine the new state, and if it's stopped, notify the clients. */ 560 ret = fh_partition_get_status(dbisr->partition, &status); 561 if (!ret && (status == FH_PARTITION_STOPPED)) 562 return IRQ_WAKE_THREAD; 563 564 return IRQ_HANDLED; 565 } 566 567 /* 568 * Returns a bitmask indicating whether a read will block 569 */ 570 static __poll_t fsl_hv_poll(struct file *filp, struct poll_table_struct *p) 571 { 572 struct doorbell_queue *dbq = filp->private_data; 573 unsigned long flags; 574 __poll_t mask; 575 576 spin_lock_irqsave(&dbq->lock, flags); 577 578 poll_wait(filp, &dbq->wait, p); 579 mask = (dbq->head == dbq->tail) ? 0 : (EPOLLIN | EPOLLRDNORM); 580 581 spin_unlock_irqrestore(&dbq->lock, flags); 582 583 return mask; 584 } 585 586 /* 587 * Return the handles for any incoming doorbells 588 * 589 * If there are doorbell handles in the queue for this open instance, then 590 * return them to the caller as an array of 32-bit integers. Otherwise, 591 * block until there is at least one handle to return. 592 */ 593 static ssize_t fsl_hv_read(struct file *filp, char __user *buf, size_t len, 594 loff_t *off) 595 { 596 struct doorbell_queue *dbq = filp->private_data; 597 uint32_t __user *p = (uint32_t __user *) buf; /* for put_user() */ 598 unsigned long flags; 599 ssize_t count = 0; 600 601 /* Make sure we stop when the user buffer is full. */ 602 while (len >= sizeof(uint32_t)) { 603 uint32_t dbell; /* Local copy of doorbell queue data */ 604 605 spin_lock_irqsave(&dbq->lock, flags); 606 607 /* 608 * If the queue is empty, then either we're done or we need 609 * to block. If the application specified O_NONBLOCK, then 610 * we return the appropriate error code. 611 */ 612 if (dbq->head == dbq->tail) { 613 spin_unlock_irqrestore(&dbq->lock, flags); 614 if (count) 615 break; 616 if (filp->f_flags & O_NONBLOCK) 617 return -EAGAIN; 618 if (wait_event_interruptible(dbq->wait, 619 dbq->head != dbq->tail)) 620 return -ERESTARTSYS; 621 continue; 622 } 623 624 /* 625 * Even though we have an smp_wmb() in the ISR, the core 626 * might speculatively execute the "dbell = ..." below while 627 * it's evaluating the if-statement above. In that case, the 628 * value put into dbell could be stale if the core accepts the 629 * speculation. To prevent that, we need a read memory barrier 630 * here as well. 631 */ 632 smp_rmb(); 633 634 /* Copy the data to a temporary local buffer, because 635 * we can't call copy_to_user() from inside a spinlock 636 */ 637 dbell = dbq->q[dbq->head]; 638 dbq->head = nextp(dbq->head); 639 640 spin_unlock_irqrestore(&dbq->lock, flags); 641 642 if (put_user(dbell, p)) 643 return -EFAULT; 644 p++; 645 count += sizeof(uint32_t); 646 len -= sizeof(uint32_t); 647 } 648 649 return count; 650 } 651 652 /* 653 * Open the driver and prepare for reading doorbells. 654 * 655 * Every time an application opens the driver, we create a doorbell queue 656 * for that file handle. This queue is used for any incoming doorbells. 657 */ 658 static int fsl_hv_open(struct inode *inode, struct file *filp) 659 { 660 struct doorbell_queue *dbq; 661 unsigned long flags; 662 int ret = 0; 663 664 dbq = kzalloc(sizeof(struct doorbell_queue), GFP_KERNEL); 665 if (!dbq) { 666 pr_err("fsl-hv: out of memory\n"); 667 return -ENOMEM; 668 } 669 670 spin_lock_init(&dbq->lock); 671 init_waitqueue_head(&dbq->wait); 672 673 spin_lock_irqsave(&db_list_lock, flags); 674 list_add(&dbq->list, &db_list); 675 spin_unlock_irqrestore(&db_list_lock, flags); 676 677 filp->private_data = dbq; 678 679 return ret; 680 } 681 682 /* 683 * Close the driver 684 */ 685 static int fsl_hv_close(struct inode *inode, struct file *filp) 686 { 687 struct doorbell_queue *dbq = filp->private_data; 688 unsigned long flags; 689 690 int ret = 0; 691 692 spin_lock_irqsave(&db_list_lock, flags); 693 list_del(&dbq->list); 694 spin_unlock_irqrestore(&db_list_lock, flags); 695 696 kfree(dbq); 697 698 return ret; 699 } 700 701 static const struct file_operations fsl_hv_fops = { 702 .owner = THIS_MODULE, 703 .open = fsl_hv_open, 704 .release = fsl_hv_close, 705 .poll = fsl_hv_poll, 706 .read = fsl_hv_read, 707 .unlocked_ioctl = fsl_hv_ioctl, 708 .compat_ioctl = compat_ptr_ioctl, 709 }; 710 711 static struct miscdevice fsl_hv_misc_dev = { 712 MISC_DYNAMIC_MINOR, 713 "fsl-hv", 714 &fsl_hv_fops 715 }; 716 717 static irqreturn_t fsl_hv_shutdown_isr(int irq, void *data) 718 { 719 orderly_poweroff(false); 720 721 return IRQ_HANDLED; 722 } 723 724 /* 725 * Returns the handle of the parent of the given node 726 * 727 * The handle is the value of the 'hv-handle' property 728 */ 729 static int get_parent_handle(struct device_node *np) 730 { 731 struct device_node *parent; 732 const uint32_t *prop; 733 uint32_t handle; 734 int len; 735 736 parent = of_get_parent(np); 737 if (!parent) 738 /* It's not really possible for this to fail */ 739 return -ENODEV; 740 741 /* 742 * The proper name for the handle property is "hv-handle", but some 743 * older versions of the hypervisor used "reg". 744 */ 745 prop = of_get_property(parent, "hv-handle", &len); 746 if (!prop) 747 prop = of_get_property(parent, "reg", &len); 748 749 if (!prop || (len != sizeof(uint32_t))) { 750 /* This can happen only if the node is malformed */ 751 of_node_put(parent); 752 return -ENODEV; 753 } 754 755 handle = be32_to_cpup(prop); 756 of_node_put(parent); 757 758 return handle; 759 } 760 761 /* 762 * Register a callback for failover events 763 * 764 * This function is called by device drivers to register their callback 765 * functions for fail-over events. 766 */ 767 int fsl_hv_failover_register(struct notifier_block *nb) 768 { 769 return blocking_notifier_chain_register(&failover_subscribers, nb); 770 } 771 EXPORT_SYMBOL(fsl_hv_failover_register); 772 773 /* 774 * Unregister a callback for failover events 775 */ 776 int fsl_hv_failover_unregister(struct notifier_block *nb) 777 { 778 return blocking_notifier_chain_unregister(&failover_subscribers, nb); 779 } 780 EXPORT_SYMBOL(fsl_hv_failover_unregister); 781 782 /* 783 * Return TRUE if we're running under FSL hypervisor 784 * 785 * This function checks to see if we're running under the Freescale 786 * hypervisor, and returns zero if we're not, or non-zero if we are. 787 * 788 * First, it checks if MSR[GS]==1, which means we're running under some 789 * hypervisor. Then it checks if there is a hypervisor node in the device 790 * tree. Currently, that means there needs to be a node in the root called 791 * "hypervisor" and which has a property named "fsl,hv-version". 792 */ 793 static int has_fsl_hypervisor(void) 794 { 795 struct device_node *node; 796 int ret; 797 798 node = of_find_node_by_path("/hypervisor"); 799 if (!node) 800 return 0; 801 802 ret = of_find_property(node, "fsl,hv-version", NULL) != NULL; 803 804 of_node_put(node); 805 806 return ret; 807 } 808 809 /* 810 * Freescale hypervisor management driver init 811 * 812 * This function is called when this module is loaded. 813 * 814 * Register ourselves as a miscellaneous driver. This will register the 815 * fops structure and create the right sysfs entries for udev. 816 */ 817 static int __init fsl_hypervisor_init(void) 818 { 819 struct device_node *np; 820 struct doorbell_isr *dbisr, *n; 821 int ret; 822 823 pr_info("Freescale hypervisor management driver\n"); 824 825 if (!has_fsl_hypervisor()) { 826 pr_info("fsl-hv: no hypervisor found\n"); 827 return -ENODEV; 828 } 829 830 ret = misc_register(&fsl_hv_misc_dev); 831 if (ret) { 832 pr_err("fsl-hv: cannot register device\n"); 833 return ret; 834 } 835 836 INIT_LIST_HEAD(&db_list); 837 INIT_LIST_HEAD(&isr_list); 838 839 for_each_compatible_node(np, NULL, "epapr,hv-receive-doorbell") { 840 unsigned int irq; 841 const uint32_t *handle; 842 843 handle = of_get_property(np, "interrupts", NULL); 844 irq = irq_of_parse_and_map(np, 0); 845 if (!handle || (irq == NO_IRQ)) { 846 pr_err("fsl-hv: no 'interrupts' property in %pOF node\n", 847 np); 848 continue; 849 } 850 851 dbisr = kzalloc(sizeof(*dbisr), GFP_KERNEL); 852 if (!dbisr) 853 goto out_of_memory; 854 855 dbisr->irq = irq; 856 dbisr->doorbell = be32_to_cpup(handle); 857 858 if (of_device_is_compatible(np, "fsl,hv-shutdown-doorbell")) { 859 /* The shutdown doorbell gets its own ISR */ 860 ret = request_irq(irq, fsl_hv_shutdown_isr, 0, 861 np->name, NULL); 862 } else if (of_device_is_compatible(np, 863 "fsl,hv-state-change-doorbell")) { 864 /* 865 * The state change doorbell triggers a notification if 866 * the state of the managed partition changes to 867 * "stopped". We need a separate interrupt handler for 868 * that, and we also need to know the handle of the 869 * target partition, not just the handle of the 870 * doorbell. 871 */ 872 dbisr->partition = ret = get_parent_handle(np); 873 if (ret < 0) { 874 pr_err("fsl-hv: node %pOF has missing or " 875 "malformed parent\n", np); 876 kfree(dbisr); 877 continue; 878 } 879 ret = request_threaded_irq(irq, fsl_hv_state_change_isr, 880 fsl_hv_state_change_thread, 881 0, np->name, dbisr); 882 } else 883 ret = request_irq(irq, fsl_hv_isr, 0, np->name, dbisr); 884 885 if (ret < 0) { 886 pr_err("fsl-hv: could not request irq %u for node %pOF\n", 887 irq, np); 888 kfree(dbisr); 889 continue; 890 } 891 892 list_add(&dbisr->list, &isr_list); 893 894 pr_info("fsl-hv: registered handler for doorbell %u\n", 895 dbisr->doorbell); 896 } 897 898 return 0; 899 900 out_of_memory: 901 list_for_each_entry_safe(dbisr, n, &isr_list, list) { 902 free_irq(dbisr->irq, dbisr); 903 list_del(&dbisr->list); 904 kfree(dbisr); 905 } 906 907 misc_deregister(&fsl_hv_misc_dev); 908 909 return -ENOMEM; 910 } 911 912 /* 913 * Freescale hypervisor management driver termination 914 * 915 * This function is called when this driver is unloaded. 916 */ 917 static void __exit fsl_hypervisor_exit(void) 918 { 919 struct doorbell_isr *dbisr, *n; 920 921 list_for_each_entry_safe(dbisr, n, &isr_list, list) { 922 free_irq(dbisr->irq, dbisr); 923 list_del(&dbisr->list); 924 kfree(dbisr); 925 } 926 927 misc_deregister(&fsl_hv_misc_dev); 928 } 929 930 module_init(fsl_hypervisor_init); 931 module_exit(fsl_hypervisor_exit); 932 933 MODULE_AUTHOR("Timur Tabi <timur@freescale.com>"); 934 MODULE_DESCRIPTION("Freescale hypervisor management driver"); 935 MODULE_LICENSE("GPL v2"); 936