xref: /openbmc/linux/drivers/virt/fsl_hypervisor.c (revision cff4fa84)
1 /*
2  * Freescale Hypervisor Management Driver
3 
4  * Copyright (C) 2008-2011 Freescale Semiconductor, Inc.
5  * Author: Timur Tabi <timur@freescale.com>
6  *
7  * This file is licensed under the terms of the GNU General Public License
8  * version 2.  This program is licensed "as is" without any warranty of any
9  * kind, whether express or implied.
10  *
11  * The Freescale hypervisor management driver provides several services to
12  * drivers and applications related to the Freescale hypervisor:
13  *
14  * 1. An ioctl interface for querying and managing partitions.
15  *
16  * 2. A file interface to reading incoming doorbells.
17  *
18  * 3. An interrupt handler for shutting down the partition upon receiving the
19  *    shutdown doorbell from a manager partition.
20  *
21  * 4. A kernel interface for receiving callbacks when a managed partition
22  *    shuts down.
23  */
24 
25 #include <linux/kernel.h>
26 #include <linux/module.h>
27 #include <linux/init.h>
28 #include <linux/types.h>
29 #include <linux/err.h>
30 #include <linux/fs.h>
31 #include <linux/miscdevice.h>
32 #include <linux/mm.h>
33 #include <linux/pagemap.h>
34 #include <linux/slab.h>
35 #include <linux/poll.h>
36 #include <linux/of.h>
37 #include <linux/reboot.h>
38 #include <linux/uaccess.h>
39 #include <linux/notifier.h>
40 #include <linux/interrupt.h>
41 
42 #include <linux/io.h>
43 #include <asm/fsl_hcalls.h>
44 
45 #include <linux/fsl_hypervisor.h>
46 
47 static BLOCKING_NOTIFIER_HEAD(failover_subscribers);
48 
49 /*
50  * Ioctl interface for FSL_HV_IOCTL_PARTITION_RESTART
51  *
52  * Restart a running partition
53  */
54 static long ioctl_restart(struct fsl_hv_ioctl_restart __user *p)
55 {
56 	struct fsl_hv_ioctl_restart param;
57 
58 	/* Get the parameters from the user */
59 	if (copy_from_user(&param, p, sizeof(struct fsl_hv_ioctl_restart)))
60 		return -EFAULT;
61 
62 	param.ret = fh_partition_restart(param.partition);
63 
64 	if (copy_to_user(&p->ret, &param.ret, sizeof(__u32)))
65 		return -EFAULT;
66 
67 	return 0;
68 }
69 
70 /*
71  * Ioctl interface for FSL_HV_IOCTL_PARTITION_STATUS
72  *
73  * Query the status of a partition
74  */
75 static long ioctl_status(struct fsl_hv_ioctl_status __user *p)
76 {
77 	struct fsl_hv_ioctl_status param;
78 	u32 status;
79 
80 	/* Get the parameters from the user */
81 	if (copy_from_user(&param, p, sizeof(struct fsl_hv_ioctl_status)))
82 		return -EFAULT;
83 
84 	param.ret = fh_partition_get_status(param.partition, &status);
85 	if (!param.ret)
86 		param.status = status;
87 
88 	if (copy_to_user(p, &param, sizeof(struct fsl_hv_ioctl_status)))
89 		return -EFAULT;
90 
91 	return 0;
92 }
93 
94 /*
95  * Ioctl interface for FSL_HV_IOCTL_PARTITION_START
96  *
97  * Start a stopped partition.
98  */
99 static long ioctl_start(struct fsl_hv_ioctl_start __user *p)
100 {
101 	struct fsl_hv_ioctl_start param;
102 
103 	/* Get the parameters from the user */
104 	if (copy_from_user(&param, p, sizeof(struct fsl_hv_ioctl_start)))
105 		return -EFAULT;
106 
107 	param.ret = fh_partition_start(param.partition, param.entry_point,
108 				       param.load);
109 
110 	if (copy_to_user(&p->ret, &param.ret, sizeof(__u32)))
111 		return -EFAULT;
112 
113 	return 0;
114 }
115 
116 /*
117  * Ioctl interface for FSL_HV_IOCTL_PARTITION_STOP
118  *
119  * Stop a running partition
120  */
121 static long ioctl_stop(struct fsl_hv_ioctl_stop __user *p)
122 {
123 	struct fsl_hv_ioctl_stop param;
124 
125 	/* Get the parameters from the user */
126 	if (copy_from_user(&param, p, sizeof(struct fsl_hv_ioctl_stop)))
127 		return -EFAULT;
128 
129 	param.ret = fh_partition_stop(param.partition);
130 
131 	if (copy_to_user(&p->ret, &param.ret, sizeof(__u32)))
132 		return -EFAULT;
133 
134 	return 0;
135 }
136 
137 /*
138  * Ioctl interface for FSL_HV_IOCTL_MEMCPY
139  *
140  * The FH_MEMCPY hypercall takes an array of address/address/size structures
141  * to represent the data being copied.  As a convenience to the user, this
142  * ioctl takes a user-create buffer and a pointer to a guest physically
143  * contiguous buffer in the remote partition, and creates the
144  * address/address/size array for the hypercall.
145  */
146 static long ioctl_memcpy(struct fsl_hv_ioctl_memcpy __user *p)
147 {
148 	struct fsl_hv_ioctl_memcpy param;
149 
150 	struct page **pages = NULL;
151 	void *sg_list_unaligned = NULL;
152 	struct fh_sg_list *sg_list = NULL;
153 
154 	unsigned int num_pages;
155 	unsigned long lb_offset; /* Offset within a page of the local buffer */
156 
157 	unsigned int i;
158 	long ret = 0;
159 	int num_pinned; /* return value from get_user_pages() */
160 	phys_addr_t remote_paddr; /* The next address in the remote buffer */
161 	uint32_t count; /* The number of bytes left to copy */
162 
163 	/* Get the parameters from the user */
164 	if (copy_from_user(&param, p, sizeof(struct fsl_hv_ioctl_memcpy)))
165 		return -EFAULT;
166 
167 	/*
168 	 * One partition must be local, the other must be remote.  In other
169 	 * words, if source and target are both -1, or are both not -1, then
170 	 * return an error.
171 	 */
172 	if ((param.source == -1) == (param.target == -1))
173 		return -EINVAL;
174 
175 	/*
176 	 * The array of pages returned by get_user_pages() covers only
177 	 * page-aligned memory.  Since the user buffer is probably not
178 	 * page-aligned, we need to handle the discrepancy.
179 	 *
180 	 * We calculate the offset within a page of the S/G list, and make
181 	 * adjustments accordingly.  This will result in a page list that looks
182 	 * like this:
183 	 *
184 	 *      ----    <-- first page starts before the buffer
185 	 *     |    |
186 	 *     |////|-> ----
187 	 *     |////|  |    |
188 	 *      ----   |    |
189 	 *             |    |
190 	 *      ----   |    |
191 	 *     |////|  |    |
192 	 *     |////|  |    |
193 	 *     |////|  |    |
194 	 *      ----   |    |
195 	 *             |    |
196 	 *      ----   |    |
197 	 *     |////|  |    |
198 	 *     |////|  |    |
199 	 *     |////|  |    |
200 	 *      ----   |    |
201 	 *             |    |
202 	 *      ----   |    |
203 	 *     |////|  |    |
204 	 *     |////|-> ----
205 	 *     |    |   <-- last page ends after the buffer
206 	 *      ----
207 	 *
208 	 * The distance between the start of the first page and the start of the
209 	 * buffer is lb_offset.  The hashed (///) areas are the parts of the
210 	 * page list that contain the actual buffer.
211 	 *
212 	 * The advantage of this approach is that the number of pages is
213 	 * equal to the number of entries in the S/G list that we give to the
214 	 * hypervisor.
215 	 */
216 	lb_offset = param.local_vaddr & (PAGE_SIZE - 1);
217 	num_pages = (param.count + lb_offset + PAGE_SIZE - 1) >> PAGE_SHIFT;
218 
219 	/* Allocate the buffers we need */
220 
221 	/*
222 	 * 'pages' is an array of struct page pointers that's initialized by
223 	 * get_user_pages().
224 	 */
225 	pages = kzalloc(num_pages * sizeof(struct page *), GFP_KERNEL);
226 	if (!pages) {
227 		pr_debug("fsl-hv: could not allocate page list\n");
228 		return -ENOMEM;
229 	}
230 
231 	/*
232 	 * sg_list is the list of fh_sg_list objects that we pass to the
233 	 * hypervisor.
234 	 */
235 	sg_list_unaligned = kmalloc(num_pages * sizeof(struct fh_sg_list) +
236 		sizeof(struct fh_sg_list) - 1, GFP_KERNEL);
237 	if (!sg_list_unaligned) {
238 		pr_debug("fsl-hv: could not allocate S/G list\n");
239 		ret = -ENOMEM;
240 		goto exit;
241 	}
242 	sg_list = PTR_ALIGN(sg_list_unaligned, sizeof(struct fh_sg_list));
243 
244 	/* Get the physical addresses of the source buffer */
245 	down_read(&current->mm->mmap_sem);
246 	num_pinned = get_user_pages(current, current->mm,
247 		param.local_vaddr - lb_offset, num_pages,
248 		(param.source == -1) ? READ : WRITE,
249 		0, pages, NULL);
250 	up_read(&current->mm->mmap_sem);
251 
252 	if (num_pinned != num_pages) {
253 		/* get_user_pages() failed */
254 		pr_debug("fsl-hv: could not lock source buffer\n");
255 		ret = (num_pinned < 0) ? num_pinned : -EFAULT;
256 		goto exit;
257 	}
258 
259 	/*
260 	 * Build the fh_sg_list[] array.  The first page is special
261 	 * because it's misaligned.
262 	 */
263 	if (param.source == -1) {
264 		sg_list[0].source = page_to_phys(pages[0]) + lb_offset;
265 		sg_list[0].target = param.remote_paddr;
266 	} else {
267 		sg_list[0].source = param.remote_paddr;
268 		sg_list[0].target = page_to_phys(pages[0]) + lb_offset;
269 	}
270 	sg_list[0].size = min_t(uint64_t, param.count, PAGE_SIZE - lb_offset);
271 
272 	remote_paddr = param.remote_paddr + sg_list[0].size;
273 	count = param.count - sg_list[0].size;
274 
275 	for (i = 1; i < num_pages; i++) {
276 		if (param.source == -1) {
277 			/* local to remote */
278 			sg_list[i].source = page_to_phys(pages[i]);
279 			sg_list[i].target = remote_paddr;
280 		} else {
281 			/* remote to local */
282 			sg_list[i].source = remote_paddr;
283 			sg_list[i].target = page_to_phys(pages[i]);
284 		}
285 		sg_list[i].size = min_t(uint64_t, count, PAGE_SIZE);
286 
287 		remote_paddr += sg_list[i].size;
288 		count -= sg_list[i].size;
289 	}
290 
291 	param.ret = fh_partition_memcpy(param.source, param.target,
292 		virt_to_phys(sg_list), num_pages);
293 
294 exit:
295 	if (pages) {
296 		for (i = 0; i < num_pages; i++)
297 			if (pages[i])
298 				put_page(pages[i]);
299 	}
300 
301 	kfree(sg_list_unaligned);
302 	kfree(pages);
303 
304 	if (!ret)
305 		if (copy_to_user(&p->ret, &param.ret, sizeof(__u32)))
306 			return -EFAULT;
307 
308 	return ret;
309 }
310 
311 /*
312  * Ioctl interface for FSL_HV_IOCTL_DOORBELL
313  *
314  * Ring a doorbell
315  */
316 static long ioctl_doorbell(struct fsl_hv_ioctl_doorbell __user *p)
317 {
318 	struct fsl_hv_ioctl_doorbell param;
319 
320 	/* Get the parameters from the user. */
321 	if (copy_from_user(&param, p, sizeof(struct fsl_hv_ioctl_doorbell)))
322 		return -EFAULT;
323 
324 	param.ret = ev_doorbell_send(param.doorbell);
325 
326 	if (copy_to_user(&p->ret, &param.ret, sizeof(__u32)))
327 		return -EFAULT;
328 
329 	return 0;
330 }
331 
332 static long ioctl_dtprop(struct fsl_hv_ioctl_prop __user *p, int set)
333 {
334 	struct fsl_hv_ioctl_prop param;
335 	char __user *upath, *upropname;
336 	void __user *upropval;
337 	char *path = NULL, *propname = NULL;
338 	void *propval = NULL;
339 	int ret = 0;
340 
341 	/* Get the parameters from the user. */
342 	if (copy_from_user(&param, p, sizeof(struct fsl_hv_ioctl_prop)))
343 		return -EFAULT;
344 
345 	upath = (char __user *)(uintptr_t)param.path;
346 	upropname = (char __user *)(uintptr_t)param.propname;
347 	upropval = (void __user *)(uintptr_t)param.propval;
348 
349 	path = strndup_user(upath, FH_DTPROP_MAX_PATHLEN);
350 	if (IS_ERR(path)) {
351 		ret = PTR_ERR(path);
352 		goto out;
353 	}
354 
355 	propname = strndup_user(upropname, FH_DTPROP_MAX_PATHLEN);
356 	if (IS_ERR(propname)) {
357 		ret = PTR_ERR(propname);
358 		goto out;
359 	}
360 
361 	if (param.proplen > FH_DTPROP_MAX_PROPLEN) {
362 		ret = -EINVAL;
363 		goto out;
364 	}
365 
366 	propval = kmalloc(param.proplen, GFP_KERNEL);
367 	if (!propval) {
368 		ret = -ENOMEM;
369 		goto out;
370 	}
371 
372 	if (set) {
373 		if (copy_from_user(propval, upropval, param.proplen)) {
374 			ret = -EFAULT;
375 			goto out;
376 		}
377 
378 		param.ret = fh_partition_set_dtprop(param.handle,
379 						    virt_to_phys(path),
380 						    virt_to_phys(propname),
381 						    virt_to_phys(propval),
382 						    param.proplen);
383 	} else {
384 		param.ret = fh_partition_get_dtprop(param.handle,
385 						    virt_to_phys(path),
386 						    virt_to_phys(propname),
387 						    virt_to_phys(propval),
388 						    &param.proplen);
389 
390 		if (param.ret == 0) {
391 			if (copy_to_user(upropval, propval, param.proplen) ||
392 			    put_user(param.proplen, &p->proplen)) {
393 				ret = -EFAULT;
394 				goto out;
395 			}
396 		}
397 	}
398 
399 	if (put_user(param.ret, &p->ret))
400 		ret = -EFAULT;
401 
402 out:
403 	kfree(path);
404 	kfree(propval);
405 	kfree(propname);
406 
407 	return ret;
408 }
409 
410 /*
411  * Ioctl main entry point
412  */
413 static long fsl_hv_ioctl(struct file *file, unsigned int cmd,
414 			 unsigned long argaddr)
415 {
416 	void __user *arg = (void __user *)argaddr;
417 	long ret;
418 
419 	switch (cmd) {
420 	case FSL_HV_IOCTL_PARTITION_RESTART:
421 		ret = ioctl_restart(arg);
422 		break;
423 	case FSL_HV_IOCTL_PARTITION_GET_STATUS:
424 		ret = ioctl_status(arg);
425 		break;
426 	case FSL_HV_IOCTL_PARTITION_START:
427 		ret = ioctl_start(arg);
428 		break;
429 	case FSL_HV_IOCTL_PARTITION_STOP:
430 		ret = ioctl_stop(arg);
431 		break;
432 	case FSL_HV_IOCTL_MEMCPY:
433 		ret = ioctl_memcpy(arg);
434 		break;
435 	case FSL_HV_IOCTL_DOORBELL:
436 		ret = ioctl_doorbell(arg);
437 		break;
438 	case FSL_HV_IOCTL_GETPROP:
439 		ret = ioctl_dtprop(arg, 0);
440 		break;
441 	case FSL_HV_IOCTL_SETPROP:
442 		ret = ioctl_dtprop(arg, 1);
443 		break;
444 	default:
445 		pr_debug("fsl-hv: bad ioctl dir=%u type=%u cmd=%u size=%u\n",
446 			 _IOC_DIR(cmd), _IOC_TYPE(cmd), _IOC_NR(cmd),
447 			 _IOC_SIZE(cmd));
448 		return -ENOTTY;
449 	}
450 
451 	return ret;
452 }
453 
454 /* Linked list of processes that have us open */
455 static struct list_head db_list;
456 
457 /* spinlock for db_list */
458 static DEFINE_SPINLOCK(db_list_lock);
459 
460 /* The size of the doorbell event queue.  This must be a power of two. */
461 #define QSIZE	16
462 
463 /* Returns the next head/tail pointer, wrapping around the queue if necessary */
464 #define nextp(x) (((x) + 1) & (QSIZE - 1))
465 
466 /* Per-open data structure */
467 struct doorbell_queue {
468 	struct list_head list;
469 	spinlock_t lock;
470 	wait_queue_head_t wait;
471 	unsigned int head;
472 	unsigned int tail;
473 	uint32_t q[QSIZE];
474 };
475 
476 /* Linked list of ISRs that we registered */
477 struct list_head isr_list;
478 
479 /* Per-ISR data structure */
480 struct doorbell_isr {
481 	struct list_head list;
482 	unsigned int irq;
483 	uint32_t doorbell;	/* The doorbell handle */
484 	uint32_t partition;	/* The partition handle, if used */
485 };
486 
487 /*
488  * Add a doorbell to all of the doorbell queues
489  */
490 static void fsl_hv_queue_doorbell(uint32_t doorbell)
491 {
492 	struct doorbell_queue *dbq;
493 	unsigned long flags;
494 
495 	/* Prevent another core from modifying db_list */
496 	spin_lock_irqsave(&db_list_lock, flags);
497 
498 	list_for_each_entry(dbq, &db_list, list) {
499 		if (dbq->head != nextp(dbq->tail)) {
500 			dbq->q[dbq->tail] = doorbell;
501 			/*
502 			 * This memory barrier eliminates the need to grab
503 			 * the spinlock for dbq.
504 			 */
505 			smp_wmb();
506 			dbq->tail = nextp(dbq->tail);
507 			wake_up_interruptible(&dbq->wait);
508 		}
509 	}
510 
511 	spin_unlock_irqrestore(&db_list_lock, flags);
512 }
513 
514 /*
515  * Interrupt handler for all doorbells
516  *
517  * We use the same interrupt handler for all doorbells.  Whenever a doorbell
518  * is rung, and we receive an interrupt, we just put the handle for that
519  * doorbell (passed to us as *data) into all of the queues.
520  */
521 static irqreturn_t fsl_hv_isr(int irq, void *data)
522 {
523 	fsl_hv_queue_doorbell((uintptr_t) data);
524 
525 	return IRQ_HANDLED;
526 }
527 
528 /*
529  * State change thread function
530  *
531  * The state change notification arrives in an interrupt, but we can't call
532  * blocking_notifier_call_chain() in an interrupt handler.  We could call
533  * atomic_notifier_call_chain(), but that would require the clients' call-back
534  * function to run in interrupt context.  Since we don't want to impose that
535  * restriction on the clients, we use a threaded IRQ to process the
536  * notification in kernel context.
537  */
538 static irqreturn_t fsl_hv_state_change_thread(int irq, void *data)
539 {
540 	struct doorbell_isr *dbisr = data;
541 
542 	blocking_notifier_call_chain(&failover_subscribers, dbisr->partition,
543 				     NULL);
544 
545 	return IRQ_HANDLED;
546 }
547 
548 /*
549  * Interrupt handler for state-change doorbells
550  */
551 static irqreturn_t fsl_hv_state_change_isr(int irq, void *data)
552 {
553 	unsigned int status;
554 	struct doorbell_isr *dbisr = data;
555 	int ret;
556 
557 	/* It's still a doorbell, so add it to all the queues. */
558 	fsl_hv_queue_doorbell(dbisr->doorbell);
559 
560 	/* Determine the new state, and if it's stopped, notify the clients. */
561 	ret = fh_partition_get_status(dbisr->partition, &status);
562 	if (!ret && (status == FH_PARTITION_STOPPED))
563 		return IRQ_WAKE_THREAD;
564 
565 	return IRQ_HANDLED;
566 }
567 
568 /*
569  * Returns a bitmask indicating whether a read will block
570  */
571 static unsigned int fsl_hv_poll(struct file *filp, struct poll_table_struct *p)
572 {
573 	struct doorbell_queue *dbq = filp->private_data;
574 	unsigned long flags;
575 	unsigned int mask;
576 
577 	spin_lock_irqsave(&dbq->lock, flags);
578 
579 	poll_wait(filp, &dbq->wait, p);
580 	mask = (dbq->head == dbq->tail) ? 0 : (POLLIN | POLLRDNORM);
581 
582 	spin_unlock_irqrestore(&dbq->lock, flags);
583 
584 	return mask;
585 }
586 
587 /*
588  * Return the handles for any incoming doorbells
589  *
590  * If there are doorbell handles in the queue for this open instance, then
591  * return them to the caller as an array of 32-bit integers.  Otherwise,
592  * block until there is at least one handle to return.
593  */
594 static ssize_t fsl_hv_read(struct file *filp, char __user *buf, size_t len,
595 			   loff_t *off)
596 {
597 	struct doorbell_queue *dbq = filp->private_data;
598 	uint32_t __user *p = (uint32_t __user *) buf; /* for put_user() */
599 	unsigned long flags;
600 	ssize_t count = 0;
601 
602 	/* Make sure we stop when the user buffer is full. */
603 	while (len >= sizeof(uint32_t)) {
604 		uint32_t dbell;	/* Local copy of doorbell queue data */
605 
606 		spin_lock_irqsave(&dbq->lock, flags);
607 
608 		/*
609 		 * If the queue is empty, then either we're done or we need
610 		 * to block.  If the application specified O_NONBLOCK, then
611 		 * we return the appropriate error code.
612 		 */
613 		if (dbq->head == dbq->tail) {
614 			spin_unlock_irqrestore(&dbq->lock, flags);
615 			if (count)
616 				break;
617 			if (filp->f_flags & O_NONBLOCK)
618 				return -EAGAIN;
619 			if (wait_event_interruptible(dbq->wait,
620 						     dbq->head != dbq->tail))
621 				return -ERESTARTSYS;
622 			continue;
623 		}
624 
625 		/*
626 		 * Even though we have an smp_wmb() in the ISR, the core
627 		 * might speculatively execute the "dbell = ..." below while
628 		 * it's evaluating the if-statement above.  In that case, the
629 		 * value put into dbell could be stale if the core accepts the
630 		 * speculation. To prevent that, we need a read memory barrier
631 		 * here as well.
632 		 */
633 		smp_rmb();
634 
635 		/* Copy the data to a temporary local buffer, because
636 		 * we can't call copy_to_user() from inside a spinlock
637 		 */
638 		dbell = dbq->q[dbq->head];
639 		dbq->head = nextp(dbq->head);
640 
641 		spin_unlock_irqrestore(&dbq->lock, flags);
642 
643 		if (put_user(dbell, p))
644 			return -EFAULT;
645 		p++;
646 		count += sizeof(uint32_t);
647 		len -= sizeof(uint32_t);
648 	}
649 
650 	return count;
651 }
652 
653 /*
654  * Open the driver and prepare for reading doorbells.
655  *
656  * Every time an application opens the driver, we create a doorbell queue
657  * for that file handle.  This queue is used for any incoming doorbells.
658  */
659 static int fsl_hv_open(struct inode *inode, struct file *filp)
660 {
661 	struct doorbell_queue *dbq;
662 	unsigned long flags;
663 	int ret = 0;
664 
665 	dbq = kzalloc(sizeof(struct doorbell_queue), GFP_KERNEL);
666 	if (!dbq) {
667 		pr_err("fsl-hv: out of memory\n");
668 		return -ENOMEM;
669 	}
670 
671 	spin_lock_init(&dbq->lock);
672 	init_waitqueue_head(&dbq->wait);
673 
674 	spin_lock_irqsave(&db_list_lock, flags);
675 	list_add(&dbq->list, &db_list);
676 	spin_unlock_irqrestore(&db_list_lock, flags);
677 
678 	filp->private_data = dbq;
679 
680 	return ret;
681 }
682 
683 /*
684  * Close the driver
685  */
686 static int fsl_hv_close(struct inode *inode, struct file *filp)
687 {
688 	struct doorbell_queue *dbq = filp->private_data;
689 	unsigned long flags;
690 
691 	int ret = 0;
692 
693 	spin_lock_irqsave(&db_list_lock, flags);
694 	list_del(&dbq->list);
695 	spin_unlock_irqrestore(&db_list_lock, flags);
696 
697 	kfree(dbq);
698 
699 	return ret;
700 }
701 
702 static const struct file_operations fsl_hv_fops = {
703 	.owner = THIS_MODULE,
704 	.open = fsl_hv_open,
705 	.release = fsl_hv_close,
706 	.poll = fsl_hv_poll,
707 	.read = fsl_hv_read,
708 	.unlocked_ioctl = fsl_hv_ioctl,
709 };
710 
711 static struct miscdevice fsl_hv_misc_dev = {
712 	MISC_DYNAMIC_MINOR,
713 	"fsl-hv",
714 	&fsl_hv_fops
715 };
716 
717 static irqreturn_t fsl_hv_shutdown_isr(int irq, void *data)
718 {
719 	orderly_poweroff(false);
720 
721 	return IRQ_HANDLED;
722 }
723 
724 /*
725  * Returns the handle of the parent of the given node
726  *
727  * The handle is the value of the 'hv-handle' property
728  */
729 static int get_parent_handle(struct device_node *np)
730 {
731 	struct device_node *parent;
732 	const uint32_t *prop;
733 	uint32_t handle;
734 	int len;
735 
736 	parent = of_get_parent(np);
737 	if (!parent)
738 		/* It's not really possible for this to fail */
739 		return -ENODEV;
740 
741 	/*
742 	 * The proper name for the handle property is "hv-handle", but some
743 	 * older versions of the hypervisor used "reg".
744 	 */
745 	prop = of_get_property(parent, "hv-handle", &len);
746 	if (!prop)
747 		prop = of_get_property(parent, "reg", &len);
748 
749 	if (!prop || (len != sizeof(uint32_t))) {
750 		/* This can happen only if the node is malformed */
751 		of_node_put(parent);
752 		return -ENODEV;
753 	}
754 
755 	handle = be32_to_cpup(prop);
756 	of_node_put(parent);
757 
758 	return handle;
759 }
760 
761 /*
762  * Register a callback for failover events
763  *
764  * This function is called by device drivers to register their callback
765  * functions for fail-over events.
766  */
767 int fsl_hv_failover_register(struct notifier_block *nb)
768 {
769 	return blocking_notifier_chain_register(&failover_subscribers, nb);
770 }
771 EXPORT_SYMBOL(fsl_hv_failover_register);
772 
773 /*
774  * Unregister a callback for failover events
775  */
776 int fsl_hv_failover_unregister(struct notifier_block *nb)
777 {
778 	return blocking_notifier_chain_unregister(&failover_subscribers, nb);
779 }
780 EXPORT_SYMBOL(fsl_hv_failover_unregister);
781 
782 /*
783  * Return TRUE if we're running under FSL hypervisor
784  *
785  * This function checks to see if we're running under the Freescale
786  * hypervisor, and returns zero if we're not, or non-zero if we are.
787  *
788  * First, it checks if MSR[GS]==1, which means we're running under some
789  * hypervisor.  Then it checks if there is a hypervisor node in the device
790  * tree.  Currently, that means there needs to be a node in the root called
791  * "hypervisor" and which has a property named "fsl,hv-version".
792  */
793 static int has_fsl_hypervisor(void)
794 {
795 	struct device_node *node;
796 	int ret;
797 
798 	if (!(mfmsr() & MSR_GS))
799 		return 0;
800 
801 	node = of_find_node_by_path("/hypervisor");
802 	if (!node)
803 		return 0;
804 
805 	ret = of_find_property(node, "fsl,hv-version", NULL) != NULL;
806 
807 	of_node_put(node);
808 
809 	return ret;
810 }
811 
812 /*
813  * Freescale hypervisor management driver init
814  *
815  * This function is called when this module is loaded.
816  *
817  * Register ourselves as a miscellaneous driver.  This will register the
818  * fops structure and create the right sysfs entries for udev.
819  */
820 static int __init fsl_hypervisor_init(void)
821 {
822 	struct device_node *np;
823 	struct doorbell_isr *dbisr, *n;
824 	int ret;
825 
826 	pr_info("Freescale hypervisor management driver\n");
827 
828 	if (!has_fsl_hypervisor()) {
829 		pr_info("fsl-hv: no hypervisor found\n");
830 		return -ENODEV;
831 	}
832 
833 	ret = misc_register(&fsl_hv_misc_dev);
834 	if (ret) {
835 		pr_err("fsl-hv: cannot register device\n");
836 		return ret;
837 	}
838 
839 	INIT_LIST_HEAD(&db_list);
840 	INIT_LIST_HEAD(&isr_list);
841 
842 	for_each_compatible_node(np, NULL, "epapr,hv-receive-doorbell") {
843 		unsigned int irq;
844 		const uint32_t *handle;
845 
846 		handle = of_get_property(np, "interrupts", NULL);
847 		irq = irq_of_parse_and_map(np, 0);
848 		if (!handle || (irq == NO_IRQ)) {
849 			pr_err("fsl-hv: no 'interrupts' property in %s node\n",
850 				np->full_name);
851 			continue;
852 		}
853 
854 		dbisr = kzalloc(sizeof(*dbisr), GFP_KERNEL);
855 		if (!dbisr)
856 			goto out_of_memory;
857 
858 		dbisr->irq = irq;
859 		dbisr->doorbell = be32_to_cpup(handle);
860 
861 		if (of_device_is_compatible(np, "fsl,hv-shutdown-doorbell")) {
862 			/* The shutdown doorbell gets its own ISR */
863 			ret = request_irq(irq, fsl_hv_shutdown_isr, 0,
864 					  np->name, NULL);
865 		} else if (of_device_is_compatible(np,
866 			"fsl,hv-state-change-doorbell")) {
867 			/*
868 			 * The state change doorbell triggers a notification if
869 			 * the state of the managed partition changes to
870 			 * "stopped". We need a separate interrupt handler for
871 			 * that, and we also need to know the handle of the
872 			 * target partition, not just the handle of the
873 			 * doorbell.
874 			 */
875 			dbisr->partition = ret = get_parent_handle(np);
876 			if (ret < 0) {
877 				pr_err("fsl-hv: node %s has missing or "
878 				       "malformed parent\n", np->full_name);
879 				kfree(dbisr);
880 				continue;
881 			}
882 			ret = request_threaded_irq(irq, fsl_hv_state_change_isr,
883 						   fsl_hv_state_change_thread,
884 						   0, np->name, dbisr);
885 		} else
886 			ret = request_irq(irq, fsl_hv_isr, 0, np->name, dbisr);
887 
888 		if (ret < 0) {
889 			pr_err("fsl-hv: could not request irq %u for node %s\n",
890 			       irq, np->full_name);
891 			kfree(dbisr);
892 			continue;
893 		}
894 
895 		list_add(&dbisr->list, &isr_list);
896 
897 		pr_info("fsl-hv: registered handler for doorbell %u\n",
898 			dbisr->doorbell);
899 	}
900 
901 	return 0;
902 
903 out_of_memory:
904 	list_for_each_entry_safe(dbisr, n, &isr_list, list) {
905 		free_irq(dbisr->irq, dbisr);
906 		list_del(&dbisr->list);
907 		kfree(dbisr);
908 	}
909 
910 	misc_deregister(&fsl_hv_misc_dev);
911 
912 	return -ENOMEM;
913 }
914 
915 /*
916  * Freescale hypervisor management driver termination
917  *
918  * This function is called when this driver is unloaded.
919  */
920 static void __exit fsl_hypervisor_exit(void)
921 {
922 	struct doorbell_isr *dbisr, *n;
923 
924 	list_for_each_entry_safe(dbisr, n, &isr_list, list) {
925 		free_irq(dbisr->irq, dbisr);
926 		list_del(&dbisr->list);
927 		kfree(dbisr);
928 	}
929 
930 	misc_deregister(&fsl_hv_misc_dev);
931 }
932 
933 module_init(fsl_hypervisor_init);
934 module_exit(fsl_hypervisor_exit);
935 
936 MODULE_AUTHOR("Timur Tabi <timur@freescale.com>");
937 MODULE_DESCRIPTION("Freescale hypervisor management driver");
938 MODULE_LICENSE("GPL v2");
939