1 /* 2 * Freescale Hypervisor Management Driver 3 4 * Copyright (C) 2008-2011 Freescale Semiconductor, Inc. 5 * Author: Timur Tabi <timur@freescale.com> 6 * 7 * This file is licensed under the terms of the GNU General Public License 8 * version 2. This program is licensed "as is" without any warranty of any 9 * kind, whether express or implied. 10 * 11 * The Freescale hypervisor management driver provides several services to 12 * drivers and applications related to the Freescale hypervisor: 13 * 14 * 1. An ioctl interface for querying and managing partitions. 15 * 16 * 2. A file interface to reading incoming doorbells. 17 * 18 * 3. An interrupt handler for shutting down the partition upon receiving the 19 * shutdown doorbell from a manager partition. 20 * 21 * 4. A kernel interface for receiving callbacks when a managed partition 22 * shuts down. 23 */ 24 25 #include <linux/kernel.h> 26 #include <linux/module.h> 27 #include <linux/init.h> 28 #include <linux/types.h> 29 #include <linux/err.h> 30 #include <linux/fs.h> 31 #include <linux/miscdevice.h> 32 #include <linux/mm.h> 33 #include <linux/pagemap.h> 34 #include <linux/slab.h> 35 #include <linux/poll.h> 36 #include <linux/of.h> 37 #include <linux/of_irq.h> 38 #include <linux/reboot.h> 39 #include <linux/uaccess.h> 40 #include <linux/notifier.h> 41 #include <linux/interrupt.h> 42 43 #include <linux/io.h> 44 #include <asm/fsl_hcalls.h> 45 46 #include <linux/fsl_hypervisor.h> 47 48 static BLOCKING_NOTIFIER_HEAD(failover_subscribers); 49 50 /* 51 * Ioctl interface for FSL_HV_IOCTL_PARTITION_RESTART 52 * 53 * Restart a running partition 54 */ 55 static long ioctl_restart(struct fsl_hv_ioctl_restart __user *p) 56 { 57 struct fsl_hv_ioctl_restart param; 58 59 /* Get the parameters from the user */ 60 if (copy_from_user(¶m, p, sizeof(struct fsl_hv_ioctl_restart))) 61 return -EFAULT; 62 63 param.ret = fh_partition_restart(param.partition); 64 65 if (copy_to_user(&p->ret, ¶m.ret, sizeof(__u32))) 66 return -EFAULT; 67 68 return 0; 69 } 70 71 /* 72 * Ioctl interface for FSL_HV_IOCTL_PARTITION_STATUS 73 * 74 * Query the status of a partition 75 */ 76 static long ioctl_status(struct fsl_hv_ioctl_status __user *p) 77 { 78 struct fsl_hv_ioctl_status param; 79 u32 status; 80 81 /* Get the parameters from the user */ 82 if (copy_from_user(¶m, p, sizeof(struct fsl_hv_ioctl_status))) 83 return -EFAULT; 84 85 param.ret = fh_partition_get_status(param.partition, &status); 86 if (!param.ret) 87 param.status = status; 88 89 if (copy_to_user(p, ¶m, sizeof(struct fsl_hv_ioctl_status))) 90 return -EFAULT; 91 92 return 0; 93 } 94 95 /* 96 * Ioctl interface for FSL_HV_IOCTL_PARTITION_START 97 * 98 * Start a stopped partition. 99 */ 100 static long ioctl_start(struct fsl_hv_ioctl_start __user *p) 101 { 102 struct fsl_hv_ioctl_start param; 103 104 /* Get the parameters from the user */ 105 if (copy_from_user(¶m, p, sizeof(struct fsl_hv_ioctl_start))) 106 return -EFAULT; 107 108 param.ret = fh_partition_start(param.partition, param.entry_point, 109 param.load); 110 111 if (copy_to_user(&p->ret, ¶m.ret, sizeof(__u32))) 112 return -EFAULT; 113 114 return 0; 115 } 116 117 /* 118 * Ioctl interface for FSL_HV_IOCTL_PARTITION_STOP 119 * 120 * Stop a running partition 121 */ 122 static long ioctl_stop(struct fsl_hv_ioctl_stop __user *p) 123 { 124 struct fsl_hv_ioctl_stop param; 125 126 /* Get the parameters from the user */ 127 if (copy_from_user(¶m, p, sizeof(struct fsl_hv_ioctl_stop))) 128 return -EFAULT; 129 130 param.ret = fh_partition_stop(param.partition); 131 132 if (copy_to_user(&p->ret, ¶m.ret, sizeof(__u32))) 133 return -EFAULT; 134 135 return 0; 136 } 137 138 /* 139 * Ioctl interface for FSL_HV_IOCTL_MEMCPY 140 * 141 * The FH_MEMCPY hypercall takes an array of address/address/size structures 142 * to represent the data being copied. As a convenience to the user, this 143 * ioctl takes a user-create buffer and a pointer to a guest physically 144 * contiguous buffer in the remote partition, and creates the 145 * address/address/size array for the hypercall. 146 */ 147 static long ioctl_memcpy(struct fsl_hv_ioctl_memcpy __user *p) 148 { 149 struct fsl_hv_ioctl_memcpy param; 150 151 struct page **pages = NULL; 152 void *sg_list_unaligned = NULL; 153 struct fh_sg_list *sg_list = NULL; 154 155 unsigned int num_pages; 156 unsigned long lb_offset; /* Offset within a page of the local buffer */ 157 158 unsigned int i; 159 long ret = 0; 160 int num_pinned; /* return value from get_user_pages() */ 161 phys_addr_t remote_paddr; /* The next address in the remote buffer */ 162 uint32_t count; /* The number of bytes left to copy */ 163 164 /* Get the parameters from the user */ 165 if (copy_from_user(¶m, p, sizeof(struct fsl_hv_ioctl_memcpy))) 166 return -EFAULT; 167 168 /* 169 * One partition must be local, the other must be remote. In other 170 * words, if source and target are both -1, or are both not -1, then 171 * return an error. 172 */ 173 if ((param.source == -1) == (param.target == -1)) 174 return -EINVAL; 175 176 /* 177 * The array of pages returned by get_user_pages() covers only 178 * page-aligned memory. Since the user buffer is probably not 179 * page-aligned, we need to handle the discrepancy. 180 * 181 * We calculate the offset within a page of the S/G list, and make 182 * adjustments accordingly. This will result in a page list that looks 183 * like this: 184 * 185 * ---- <-- first page starts before the buffer 186 * | | 187 * |////|-> ---- 188 * |////| | | 189 * ---- | | 190 * | | 191 * ---- | | 192 * |////| | | 193 * |////| | | 194 * |////| | | 195 * ---- | | 196 * | | 197 * ---- | | 198 * |////| | | 199 * |////| | | 200 * |////| | | 201 * ---- | | 202 * | | 203 * ---- | | 204 * |////| | | 205 * |////|-> ---- 206 * | | <-- last page ends after the buffer 207 * ---- 208 * 209 * The distance between the start of the first page and the start of the 210 * buffer is lb_offset. The hashed (///) areas are the parts of the 211 * page list that contain the actual buffer. 212 * 213 * The advantage of this approach is that the number of pages is 214 * equal to the number of entries in the S/G list that we give to the 215 * hypervisor. 216 */ 217 lb_offset = param.local_vaddr & (PAGE_SIZE - 1); 218 num_pages = (param.count + lb_offset + PAGE_SIZE - 1) >> PAGE_SHIFT; 219 220 /* Allocate the buffers we need */ 221 222 /* 223 * 'pages' is an array of struct page pointers that's initialized by 224 * get_user_pages(). 225 */ 226 pages = kzalloc(num_pages * sizeof(struct page *), GFP_KERNEL); 227 if (!pages) { 228 pr_debug("fsl-hv: could not allocate page list\n"); 229 return -ENOMEM; 230 } 231 232 /* 233 * sg_list is the list of fh_sg_list objects that we pass to the 234 * hypervisor. 235 */ 236 sg_list_unaligned = kmalloc(num_pages * sizeof(struct fh_sg_list) + 237 sizeof(struct fh_sg_list) - 1, GFP_KERNEL); 238 if (!sg_list_unaligned) { 239 pr_debug("fsl-hv: could not allocate S/G list\n"); 240 ret = -ENOMEM; 241 goto exit; 242 } 243 sg_list = PTR_ALIGN(sg_list_unaligned, sizeof(struct fh_sg_list)); 244 245 /* Get the physical addresses of the source buffer */ 246 num_pinned = get_user_pages_fast(param.local_vaddr - lb_offset, 247 num_pages, param.source != -1, pages); 248 249 if (num_pinned != num_pages) { 250 /* get_user_pages() failed */ 251 pr_debug("fsl-hv: could not lock source buffer\n"); 252 ret = (num_pinned < 0) ? num_pinned : -EFAULT; 253 goto exit; 254 } 255 256 /* 257 * Build the fh_sg_list[] array. The first page is special 258 * because it's misaligned. 259 */ 260 if (param.source == -1) { 261 sg_list[0].source = page_to_phys(pages[0]) + lb_offset; 262 sg_list[0].target = param.remote_paddr; 263 } else { 264 sg_list[0].source = param.remote_paddr; 265 sg_list[0].target = page_to_phys(pages[0]) + lb_offset; 266 } 267 sg_list[0].size = min_t(uint64_t, param.count, PAGE_SIZE - lb_offset); 268 269 remote_paddr = param.remote_paddr + sg_list[0].size; 270 count = param.count - sg_list[0].size; 271 272 for (i = 1; i < num_pages; i++) { 273 if (param.source == -1) { 274 /* local to remote */ 275 sg_list[i].source = page_to_phys(pages[i]); 276 sg_list[i].target = remote_paddr; 277 } else { 278 /* remote to local */ 279 sg_list[i].source = remote_paddr; 280 sg_list[i].target = page_to_phys(pages[i]); 281 } 282 sg_list[i].size = min_t(uint64_t, count, PAGE_SIZE); 283 284 remote_paddr += sg_list[i].size; 285 count -= sg_list[i].size; 286 } 287 288 param.ret = fh_partition_memcpy(param.source, param.target, 289 virt_to_phys(sg_list), num_pages); 290 291 exit: 292 if (pages) { 293 for (i = 0; i < num_pages; i++) 294 if (pages[i]) 295 put_page(pages[i]); 296 } 297 298 kfree(sg_list_unaligned); 299 kfree(pages); 300 301 if (!ret) 302 if (copy_to_user(&p->ret, ¶m.ret, sizeof(__u32))) 303 return -EFAULT; 304 305 return ret; 306 } 307 308 /* 309 * Ioctl interface for FSL_HV_IOCTL_DOORBELL 310 * 311 * Ring a doorbell 312 */ 313 static long ioctl_doorbell(struct fsl_hv_ioctl_doorbell __user *p) 314 { 315 struct fsl_hv_ioctl_doorbell param; 316 317 /* Get the parameters from the user. */ 318 if (copy_from_user(¶m, p, sizeof(struct fsl_hv_ioctl_doorbell))) 319 return -EFAULT; 320 321 param.ret = ev_doorbell_send(param.doorbell); 322 323 if (copy_to_user(&p->ret, ¶m.ret, sizeof(__u32))) 324 return -EFAULT; 325 326 return 0; 327 } 328 329 static long ioctl_dtprop(struct fsl_hv_ioctl_prop __user *p, int set) 330 { 331 struct fsl_hv_ioctl_prop param; 332 char __user *upath, *upropname; 333 void __user *upropval; 334 char *path = NULL, *propname = NULL; 335 void *propval = NULL; 336 int ret = 0; 337 338 /* Get the parameters from the user. */ 339 if (copy_from_user(¶m, p, sizeof(struct fsl_hv_ioctl_prop))) 340 return -EFAULT; 341 342 upath = (char __user *)(uintptr_t)param.path; 343 upropname = (char __user *)(uintptr_t)param.propname; 344 upropval = (void __user *)(uintptr_t)param.propval; 345 346 path = strndup_user(upath, FH_DTPROP_MAX_PATHLEN); 347 if (IS_ERR(path)) { 348 ret = PTR_ERR(path); 349 goto out; 350 } 351 352 propname = strndup_user(upropname, FH_DTPROP_MAX_PATHLEN); 353 if (IS_ERR(propname)) { 354 ret = PTR_ERR(propname); 355 goto out; 356 } 357 358 if (param.proplen > FH_DTPROP_MAX_PROPLEN) { 359 ret = -EINVAL; 360 goto out; 361 } 362 363 propval = kmalloc(param.proplen, GFP_KERNEL); 364 if (!propval) { 365 ret = -ENOMEM; 366 goto out; 367 } 368 369 if (set) { 370 if (copy_from_user(propval, upropval, param.proplen)) { 371 ret = -EFAULT; 372 goto out; 373 } 374 375 param.ret = fh_partition_set_dtprop(param.handle, 376 virt_to_phys(path), 377 virt_to_phys(propname), 378 virt_to_phys(propval), 379 param.proplen); 380 } else { 381 param.ret = fh_partition_get_dtprop(param.handle, 382 virt_to_phys(path), 383 virt_to_phys(propname), 384 virt_to_phys(propval), 385 ¶m.proplen); 386 387 if (param.ret == 0) { 388 if (copy_to_user(upropval, propval, param.proplen) || 389 put_user(param.proplen, &p->proplen)) { 390 ret = -EFAULT; 391 goto out; 392 } 393 } 394 } 395 396 if (put_user(param.ret, &p->ret)) 397 ret = -EFAULT; 398 399 out: 400 kfree(path); 401 kfree(propval); 402 kfree(propname); 403 404 return ret; 405 } 406 407 /* 408 * Ioctl main entry point 409 */ 410 static long fsl_hv_ioctl(struct file *file, unsigned int cmd, 411 unsigned long argaddr) 412 { 413 void __user *arg = (void __user *)argaddr; 414 long ret; 415 416 switch (cmd) { 417 case FSL_HV_IOCTL_PARTITION_RESTART: 418 ret = ioctl_restart(arg); 419 break; 420 case FSL_HV_IOCTL_PARTITION_GET_STATUS: 421 ret = ioctl_status(arg); 422 break; 423 case FSL_HV_IOCTL_PARTITION_START: 424 ret = ioctl_start(arg); 425 break; 426 case FSL_HV_IOCTL_PARTITION_STOP: 427 ret = ioctl_stop(arg); 428 break; 429 case FSL_HV_IOCTL_MEMCPY: 430 ret = ioctl_memcpy(arg); 431 break; 432 case FSL_HV_IOCTL_DOORBELL: 433 ret = ioctl_doorbell(arg); 434 break; 435 case FSL_HV_IOCTL_GETPROP: 436 ret = ioctl_dtprop(arg, 0); 437 break; 438 case FSL_HV_IOCTL_SETPROP: 439 ret = ioctl_dtprop(arg, 1); 440 break; 441 default: 442 pr_debug("fsl-hv: bad ioctl dir=%u type=%u cmd=%u size=%u\n", 443 _IOC_DIR(cmd), _IOC_TYPE(cmd), _IOC_NR(cmd), 444 _IOC_SIZE(cmd)); 445 return -ENOTTY; 446 } 447 448 return ret; 449 } 450 451 /* Linked list of processes that have us open */ 452 static struct list_head db_list; 453 454 /* spinlock for db_list */ 455 static DEFINE_SPINLOCK(db_list_lock); 456 457 /* The size of the doorbell event queue. This must be a power of two. */ 458 #define QSIZE 16 459 460 /* Returns the next head/tail pointer, wrapping around the queue if necessary */ 461 #define nextp(x) (((x) + 1) & (QSIZE - 1)) 462 463 /* Per-open data structure */ 464 struct doorbell_queue { 465 struct list_head list; 466 spinlock_t lock; 467 wait_queue_head_t wait; 468 unsigned int head; 469 unsigned int tail; 470 uint32_t q[QSIZE]; 471 }; 472 473 /* Linked list of ISRs that we registered */ 474 struct list_head isr_list; 475 476 /* Per-ISR data structure */ 477 struct doorbell_isr { 478 struct list_head list; 479 unsigned int irq; 480 uint32_t doorbell; /* The doorbell handle */ 481 uint32_t partition; /* The partition handle, if used */ 482 }; 483 484 /* 485 * Add a doorbell to all of the doorbell queues 486 */ 487 static void fsl_hv_queue_doorbell(uint32_t doorbell) 488 { 489 struct doorbell_queue *dbq; 490 unsigned long flags; 491 492 /* Prevent another core from modifying db_list */ 493 spin_lock_irqsave(&db_list_lock, flags); 494 495 list_for_each_entry(dbq, &db_list, list) { 496 if (dbq->head != nextp(dbq->tail)) { 497 dbq->q[dbq->tail] = doorbell; 498 /* 499 * This memory barrier eliminates the need to grab 500 * the spinlock for dbq. 501 */ 502 smp_wmb(); 503 dbq->tail = nextp(dbq->tail); 504 wake_up_interruptible(&dbq->wait); 505 } 506 } 507 508 spin_unlock_irqrestore(&db_list_lock, flags); 509 } 510 511 /* 512 * Interrupt handler for all doorbells 513 * 514 * We use the same interrupt handler for all doorbells. Whenever a doorbell 515 * is rung, and we receive an interrupt, we just put the handle for that 516 * doorbell (passed to us as *data) into all of the queues. 517 */ 518 static irqreturn_t fsl_hv_isr(int irq, void *data) 519 { 520 fsl_hv_queue_doorbell((uintptr_t) data); 521 522 return IRQ_HANDLED; 523 } 524 525 /* 526 * State change thread function 527 * 528 * The state change notification arrives in an interrupt, but we can't call 529 * blocking_notifier_call_chain() in an interrupt handler. We could call 530 * atomic_notifier_call_chain(), but that would require the clients' call-back 531 * function to run in interrupt context. Since we don't want to impose that 532 * restriction on the clients, we use a threaded IRQ to process the 533 * notification in kernel context. 534 */ 535 static irqreturn_t fsl_hv_state_change_thread(int irq, void *data) 536 { 537 struct doorbell_isr *dbisr = data; 538 539 blocking_notifier_call_chain(&failover_subscribers, dbisr->partition, 540 NULL); 541 542 return IRQ_HANDLED; 543 } 544 545 /* 546 * Interrupt handler for state-change doorbells 547 */ 548 static irqreturn_t fsl_hv_state_change_isr(int irq, void *data) 549 { 550 unsigned int status; 551 struct doorbell_isr *dbisr = data; 552 int ret; 553 554 /* It's still a doorbell, so add it to all the queues. */ 555 fsl_hv_queue_doorbell(dbisr->doorbell); 556 557 /* Determine the new state, and if it's stopped, notify the clients. */ 558 ret = fh_partition_get_status(dbisr->partition, &status); 559 if (!ret && (status == FH_PARTITION_STOPPED)) 560 return IRQ_WAKE_THREAD; 561 562 return IRQ_HANDLED; 563 } 564 565 /* 566 * Returns a bitmask indicating whether a read will block 567 */ 568 static __poll_t fsl_hv_poll(struct file *filp, struct poll_table_struct *p) 569 { 570 struct doorbell_queue *dbq = filp->private_data; 571 unsigned long flags; 572 __poll_t mask; 573 574 spin_lock_irqsave(&dbq->lock, flags); 575 576 poll_wait(filp, &dbq->wait, p); 577 mask = (dbq->head == dbq->tail) ? 0 : (EPOLLIN | EPOLLRDNORM); 578 579 spin_unlock_irqrestore(&dbq->lock, flags); 580 581 return mask; 582 } 583 584 /* 585 * Return the handles for any incoming doorbells 586 * 587 * If there are doorbell handles in the queue for this open instance, then 588 * return them to the caller as an array of 32-bit integers. Otherwise, 589 * block until there is at least one handle to return. 590 */ 591 static ssize_t fsl_hv_read(struct file *filp, char __user *buf, size_t len, 592 loff_t *off) 593 { 594 struct doorbell_queue *dbq = filp->private_data; 595 uint32_t __user *p = (uint32_t __user *) buf; /* for put_user() */ 596 unsigned long flags; 597 ssize_t count = 0; 598 599 /* Make sure we stop when the user buffer is full. */ 600 while (len >= sizeof(uint32_t)) { 601 uint32_t dbell; /* Local copy of doorbell queue data */ 602 603 spin_lock_irqsave(&dbq->lock, flags); 604 605 /* 606 * If the queue is empty, then either we're done or we need 607 * to block. If the application specified O_NONBLOCK, then 608 * we return the appropriate error code. 609 */ 610 if (dbq->head == dbq->tail) { 611 spin_unlock_irqrestore(&dbq->lock, flags); 612 if (count) 613 break; 614 if (filp->f_flags & O_NONBLOCK) 615 return -EAGAIN; 616 if (wait_event_interruptible(dbq->wait, 617 dbq->head != dbq->tail)) 618 return -ERESTARTSYS; 619 continue; 620 } 621 622 /* 623 * Even though we have an smp_wmb() in the ISR, the core 624 * might speculatively execute the "dbell = ..." below while 625 * it's evaluating the if-statement above. In that case, the 626 * value put into dbell could be stale if the core accepts the 627 * speculation. To prevent that, we need a read memory barrier 628 * here as well. 629 */ 630 smp_rmb(); 631 632 /* Copy the data to a temporary local buffer, because 633 * we can't call copy_to_user() from inside a spinlock 634 */ 635 dbell = dbq->q[dbq->head]; 636 dbq->head = nextp(dbq->head); 637 638 spin_unlock_irqrestore(&dbq->lock, flags); 639 640 if (put_user(dbell, p)) 641 return -EFAULT; 642 p++; 643 count += sizeof(uint32_t); 644 len -= sizeof(uint32_t); 645 } 646 647 return count; 648 } 649 650 /* 651 * Open the driver and prepare for reading doorbells. 652 * 653 * Every time an application opens the driver, we create a doorbell queue 654 * for that file handle. This queue is used for any incoming doorbells. 655 */ 656 static int fsl_hv_open(struct inode *inode, struct file *filp) 657 { 658 struct doorbell_queue *dbq; 659 unsigned long flags; 660 int ret = 0; 661 662 dbq = kzalloc(sizeof(struct doorbell_queue), GFP_KERNEL); 663 if (!dbq) { 664 pr_err("fsl-hv: out of memory\n"); 665 return -ENOMEM; 666 } 667 668 spin_lock_init(&dbq->lock); 669 init_waitqueue_head(&dbq->wait); 670 671 spin_lock_irqsave(&db_list_lock, flags); 672 list_add(&dbq->list, &db_list); 673 spin_unlock_irqrestore(&db_list_lock, flags); 674 675 filp->private_data = dbq; 676 677 return ret; 678 } 679 680 /* 681 * Close the driver 682 */ 683 static int fsl_hv_close(struct inode *inode, struct file *filp) 684 { 685 struct doorbell_queue *dbq = filp->private_data; 686 unsigned long flags; 687 688 int ret = 0; 689 690 spin_lock_irqsave(&db_list_lock, flags); 691 list_del(&dbq->list); 692 spin_unlock_irqrestore(&db_list_lock, flags); 693 694 kfree(dbq); 695 696 return ret; 697 } 698 699 static const struct file_operations fsl_hv_fops = { 700 .owner = THIS_MODULE, 701 .open = fsl_hv_open, 702 .release = fsl_hv_close, 703 .poll = fsl_hv_poll, 704 .read = fsl_hv_read, 705 .unlocked_ioctl = fsl_hv_ioctl, 706 .compat_ioctl = fsl_hv_ioctl, 707 }; 708 709 static struct miscdevice fsl_hv_misc_dev = { 710 MISC_DYNAMIC_MINOR, 711 "fsl-hv", 712 &fsl_hv_fops 713 }; 714 715 static irqreturn_t fsl_hv_shutdown_isr(int irq, void *data) 716 { 717 orderly_poweroff(false); 718 719 return IRQ_HANDLED; 720 } 721 722 /* 723 * Returns the handle of the parent of the given node 724 * 725 * The handle is the value of the 'hv-handle' property 726 */ 727 static int get_parent_handle(struct device_node *np) 728 { 729 struct device_node *parent; 730 const uint32_t *prop; 731 uint32_t handle; 732 int len; 733 734 parent = of_get_parent(np); 735 if (!parent) 736 /* It's not really possible for this to fail */ 737 return -ENODEV; 738 739 /* 740 * The proper name for the handle property is "hv-handle", but some 741 * older versions of the hypervisor used "reg". 742 */ 743 prop = of_get_property(parent, "hv-handle", &len); 744 if (!prop) 745 prop = of_get_property(parent, "reg", &len); 746 747 if (!prop || (len != sizeof(uint32_t))) { 748 /* This can happen only if the node is malformed */ 749 of_node_put(parent); 750 return -ENODEV; 751 } 752 753 handle = be32_to_cpup(prop); 754 of_node_put(parent); 755 756 return handle; 757 } 758 759 /* 760 * Register a callback for failover events 761 * 762 * This function is called by device drivers to register their callback 763 * functions for fail-over events. 764 */ 765 int fsl_hv_failover_register(struct notifier_block *nb) 766 { 767 return blocking_notifier_chain_register(&failover_subscribers, nb); 768 } 769 EXPORT_SYMBOL(fsl_hv_failover_register); 770 771 /* 772 * Unregister a callback for failover events 773 */ 774 int fsl_hv_failover_unregister(struct notifier_block *nb) 775 { 776 return blocking_notifier_chain_unregister(&failover_subscribers, nb); 777 } 778 EXPORT_SYMBOL(fsl_hv_failover_unregister); 779 780 /* 781 * Return TRUE if we're running under FSL hypervisor 782 * 783 * This function checks to see if we're running under the Freescale 784 * hypervisor, and returns zero if we're not, or non-zero if we are. 785 * 786 * First, it checks if MSR[GS]==1, which means we're running under some 787 * hypervisor. Then it checks if there is a hypervisor node in the device 788 * tree. Currently, that means there needs to be a node in the root called 789 * "hypervisor" and which has a property named "fsl,hv-version". 790 */ 791 static int has_fsl_hypervisor(void) 792 { 793 struct device_node *node; 794 int ret; 795 796 node = of_find_node_by_path("/hypervisor"); 797 if (!node) 798 return 0; 799 800 ret = of_find_property(node, "fsl,hv-version", NULL) != NULL; 801 802 of_node_put(node); 803 804 return ret; 805 } 806 807 /* 808 * Freescale hypervisor management driver init 809 * 810 * This function is called when this module is loaded. 811 * 812 * Register ourselves as a miscellaneous driver. This will register the 813 * fops structure and create the right sysfs entries for udev. 814 */ 815 static int __init fsl_hypervisor_init(void) 816 { 817 struct device_node *np; 818 struct doorbell_isr *dbisr, *n; 819 int ret; 820 821 pr_info("Freescale hypervisor management driver\n"); 822 823 if (!has_fsl_hypervisor()) { 824 pr_info("fsl-hv: no hypervisor found\n"); 825 return -ENODEV; 826 } 827 828 ret = misc_register(&fsl_hv_misc_dev); 829 if (ret) { 830 pr_err("fsl-hv: cannot register device\n"); 831 return ret; 832 } 833 834 INIT_LIST_HEAD(&db_list); 835 INIT_LIST_HEAD(&isr_list); 836 837 for_each_compatible_node(np, NULL, "epapr,hv-receive-doorbell") { 838 unsigned int irq; 839 const uint32_t *handle; 840 841 handle = of_get_property(np, "interrupts", NULL); 842 irq = irq_of_parse_and_map(np, 0); 843 if (!handle || (irq == NO_IRQ)) { 844 pr_err("fsl-hv: no 'interrupts' property in %pOF node\n", 845 np); 846 continue; 847 } 848 849 dbisr = kzalloc(sizeof(*dbisr), GFP_KERNEL); 850 if (!dbisr) 851 goto out_of_memory; 852 853 dbisr->irq = irq; 854 dbisr->doorbell = be32_to_cpup(handle); 855 856 if (of_device_is_compatible(np, "fsl,hv-shutdown-doorbell")) { 857 /* The shutdown doorbell gets its own ISR */ 858 ret = request_irq(irq, fsl_hv_shutdown_isr, 0, 859 np->name, NULL); 860 } else if (of_device_is_compatible(np, 861 "fsl,hv-state-change-doorbell")) { 862 /* 863 * The state change doorbell triggers a notification if 864 * the state of the managed partition changes to 865 * "stopped". We need a separate interrupt handler for 866 * that, and we also need to know the handle of the 867 * target partition, not just the handle of the 868 * doorbell. 869 */ 870 dbisr->partition = ret = get_parent_handle(np); 871 if (ret < 0) { 872 pr_err("fsl-hv: node %pOF has missing or " 873 "malformed parent\n", np); 874 kfree(dbisr); 875 continue; 876 } 877 ret = request_threaded_irq(irq, fsl_hv_state_change_isr, 878 fsl_hv_state_change_thread, 879 0, np->name, dbisr); 880 } else 881 ret = request_irq(irq, fsl_hv_isr, 0, np->name, dbisr); 882 883 if (ret < 0) { 884 pr_err("fsl-hv: could not request irq %u for node %pOF\n", 885 irq, np); 886 kfree(dbisr); 887 continue; 888 } 889 890 list_add(&dbisr->list, &isr_list); 891 892 pr_info("fsl-hv: registered handler for doorbell %u\n", 893 dbisr->doorbell); 894 } 895 896 return 0; 897 898 out_of_memory: 899 list_for_each_entry_safe(dbisr, n, &isr_list, list) { 900 free_irq(dbisr->irq, dbisr); 901 list_del(&dbisr->list); 902 kfree(dbisr); 903 } 904 905 misc_deregister(&fsl_hv_misc_dev); 906 907 return -ENOMEM; 908 } 909 910 /* 911 * Freescale hypervisor management driver termination 912 * 913 * This function is called when this driver is unloaded. 914 */ 915 static void __exit fsl_hypervisor_exit(void) 916 { 917 struct doorbell_isr *dbisr, *n; 918 919 list_for_each_entry_safe(dbisr, n, &isr_list, list) { 920 free_irq(dbisr->irq, dbisr); 921 list_del(&dbisr->list); 922 kfree(dbisr); 923 } 924 925 misc_deregister(&fsl_hv_misc_dev); 926 } 927 928 module_init(fsl_hypervisor_init); 929 module_exit(fsl_hypervisor_exit); 930 931 MODULE_AUTHOR("Timur Tabi <timur@freescale.com>"); 932 MODULE_DESCRIPTION("Freescale hypervisor management driver"); 933 MODULE_LICENSE("GPL v2"); 934