xref: /openbmc/linux/drivers/virt/fsl_hypervisor.c (revision 61c1f340bc809a1ca1e3c8794207a91cde1a7c78)
1 /*
2  * Freescale Hypervisor Management Driver
3 
4  * Copyright (C) 2008-2011 Freescale Semiconductor, Inc.
5  * Author: Timur Tabi <timur@freescale.com>
6  *
7  * This file is licensed under the terms of the GNU General Public License
8  * version 2.  This program is licensed "as is" without any warranty of any
9  * kind, whether express or implied.
10  *
11  * The Freescale hypervisor management driver provides several services to
12  * drivers and applications related to the Freescale hypervisor:
13  *
14  * 1. An ioctl interface for querying and managing partitions.
15  *
16  * 2. A file interface to reading incoming doorbells.
17  *
18  * 3. An interrupt handler for shutting down the partition upon receiving the
19  *    shutdown doorbell from a manager partition.
20  *
21  * 4. A kernel interface for receiving callbacks when a managed partition
22  *    shuts down.
23  */
24 
25 #include <linux/kernel.h>
26 #include <linux/module.h>
27 #include <linux/init.h>
28 #include <linux/types.h>
29 #include <linux/err.h>
30 #include <linux/fs.h>
31 #include <linux/miscdevice.h>
32 #include <linux/mm.h>
33 #include <linux/pagemap.h>
34 #include <linux/slab.h>
35 #include <linux/poll.h>
36 #include <linux/of.h>
37 #include <linux/of_irq.h>
38 #include <linux/reboot.h>
39 #include <linux/uaccess.h>
40 #include <linux/notifier.h>
41 #include <linux/interrupt.h>
42 
43 #include <linux/io.h>
44 #include <asm/fsl_hcalls.h>
45 
46 #include <linux/fsl_hypervisor.h>
47 
48 static BLOCKING_NOTIFIER_HEAD(failover_subscribers);
49 
50 /*
51  * Ioctl interface for FSL_HV_IOCTL_PARTITION_RESTART
52  *
53  * Restart a running partition
54  */
55 static long ioctl_restart(struct fsl_hv_ioctl_restart __user *p)
56 {
57 	struct fsl_hv_ioctl_restart param;
58 
59 	/* Get the parameters from the user */
60 	if (copy_from_user(&param, p, sizeof(struct fsl_hv_ioctl_restart)))
61 		return -EFAULT;
62 
63 	param.ret = fh_partition_restart(param.partition);
64 
65 	if (copy_to_user(&p->ret, &param.ret, sizeof(__u32)))
66 		return -EFAULT;
67 
68 	return 0;
69 }
70 
71 /*
72  * Ioctl interface for FSL_HV_IOCTL_PARTITION_STATUS
73  *
74  * Query the status of a partition
75  */
76 static long ioctl_status(struct fsl_hv_ioctl_status __user *p)
77 {
78 	struct fsl_hv_ioctl_status param;
79 	u32 status;
80 
81 	/* Get the parameters from the user */
82 	if (copy_from_user(&param, p, sizeof(struct fsl_hv_ioctl_status)))
83 		return -EFAULT;
84 
85 	param.ret = fh_partition_get_status(param.partition, &status);
86 	if (!param.ret)
87 		param.status = status;
88 
89 	if (copy_to_user(p, &param, sizeof(struct fsl_hv_ioctl_status)))
90 		return -EFAULT;
91 
92 	return 0;
93 }
94 
95 /*
96  * Ioctl interface for FSL_HV_IOCTL_PARTITION_START
97  *
98  * Start a stopped partition.
99  */
100 static long ioctl_start(struct fsl_hv_ioctl_start __user *p)
101 {
102 	struct fsl_hv_ioctl_start param;
103 
104 	/* Get the parameters from the user */
105 	if (copy_from_user(&param, p, sizeof(struct fsl_hv_ioctl_start)))
106 		return -EFAULT;
107 
108 	param.ret = fh_partition_start(param.partition, param.entry_point,
109 				       param.load);
110 
111 	if (copy_to_user(&p->ret, &param.ret, sizeof(__u32)))
112 		return -EFAULT;
113 
114 	return 0;
115 }
116 
117 /*
118  * Ioctl interface for FSL_HV_IOCTL_PARTITION_STOP
119  *
120  * Stop a running partition
121  */
122 static long ioctl_stop(struct fsl_hv_ioctl_stop __user *p)
123 {
124 	struct fsl_hv_ioctl_stop param;
125 
126 	/* Get the parameters from the user */
127 	if (copy_from_user(&param, p, sizeof(struct fsl_hv_ioctl_stop)))
128 		return -EFAULT;
129 
130 	param.ret = fh_partition_stop(param.partition);
131 
132 	if (copy_to_user(&p->ret, &param.ret, sizeof(__u32)))
133 		return -EFAULT;
134 
135 	return 0;
136 }
137 
138 /*
139  * Ioctl interface for FSL_HV_IOCTL_MEMCPY
140  *
141  * The FH_MEMCPY hypercall takes an array of address/address/size structures
142  * to represent the data being copied.  As a convenience to the user, this
143  * ioctl takes a user-create buffer and a pointer to a guest physically
144  * contiguous buffer in the remote partition, and creates the
145  * address/address/size array for the hypercall.
146  */
147 static long ioctl_memcpy(struct fsl_hv_ioctl_memcpy __user *p)
148 {
149 	struct fsl_hv_ioctl_memcpy param;
150 
151 	struct page **pages = NULL;
152 	void *sg_list_unaligned = NULL;
153 	struct fh_sg_list *sg_list = NULL;
154 
155 	unsigned int num_pages;
156 	unsigned long lb_offset; /* Offset within a page of the local buffer */
157 
158 	unsigned int i;
159 	long ret = 0;
160 	int num_pinned = 0; /* return value from get_user_pages_fast() */
161 	phys_addr_t remote_paddr; /* The next address in the remote buffer */
162 	uint32_t count; /* The number of bytes left to copy */
163 
164 	/* Get the parameters from the user */
165 	if (copy_from_user(&param, p, sizeof(struct fsl_hv_ioctl_memcpy)))
166 		return -EFAULT;
167 
168 	/*
169 	 * One partition must be local, the other must be remote.  In other
170 	 * words, if source and target are both -1, or are both not -1, then
171 	 * return an error.
172 	 */
173 	if ((param.source == -1) == (param.target == -1))
174 		return -EINVAL;
175 
176 	/*
177 	 * The array of pages returned by get_user_pages_fast() covers only
178 	 * page-aligned memory.  Since the user buffer is probably not
179 	 * page-aligned, we need to handle the discrepancy.
180 	 *
181 	 * We calculate the offset within a page of the S/G list, and make
182 	 * adjustments accordingly.  This will result in a page list that looks
183 	 * like this:
184 	 *
185 	 *      ----    <-- first page starts before the buffer
186 	 *     |    |
187 	 *     |////|-> ----
188 	 *     |////|  |    |
189 	 *      ----   |    |
190 	 *             |    |
191 	 *      ----   |    |
192 	 *     |////|  |    |
193 	 *     |////|  |    |
194 	 *     |////|  |    |
195 	 *      ----   |    |
196 	 *             |    |
197 	 *      ----   |    |
198 	 *     |////|  |    |
199 	 *     |////|  |    |
200 	 *     |////|  |    |
201 	 *      ----   |    |
202 	 *             |    |
203 	 *      ----   |    |
204 	 *     |////|  |    |
205 	 *     |////|-> ----
206 	 *     |    |   <-- last page ends after the buffer
207 	 *      ----
208 	 *
209 	 * The distance between the start of the first page and the start of the
210 	 * buffer is lb_offset.  The hashed (///) areas are the parts of the
211 	 * page list that contain the actual buffer.
212 	 *
213 	 * The advantage of this approach is that the number of pages is
214 	 * equal to the number of entries in the S/G list that we give to the
215 	 * hypervisor.
216 	 */
217 	lb_offset = param.local_vaddr & (PAGE_SIZE - 1);
218 	if (param.count == 0 ||
219 	    param.count > U64_MAX - lb_offset - PAGE_SIZE + 1)
220 		return -EINVAL;
221 	num_pages = (param.count + lb_offset + PAGE_SIZE - 1) >> PAGE_SHIFT;
222 
223 	/* Allocate the buffers we need */
224 
225 	/*
226 	 * 'pages' is an array of struct page pointers that's initialized by
227 	 * get_user_pages_fast().
228 	 */
229 	pages = kcalloc(num_pages, sizeof(struct page *), GFP_KERNEL);
230 	if (!pages) {
231 		pr_debug("fsl-hv: could not allocate page list\n");
232 		return -ENOMEM;
233 	}
234 
235 	/*
236 	 * sg_list is the list of fh_sg_list objects that we pass to the
237 	 * hypervisor.
238 	 */
239 	sg_list_unaligned = kmalloc(num_pages * sizeof(struct fh_sg_list) +
240 		sizeof(struct fh_sg_list) - 1, GFP_KERNEL);
241 	if (!sg_list_unaligned) {
242 		pr_debug("fsl-hv: could not allocate S/G list\n");
243 		ret = -ENOMEM;
244 		goto free_pages;
245 	}
246 	sg_list = PTR_ALIGN(sg_list_unaligned, sizeof(struct fh_sg_list));
247 
248 	/* Get the physical addresses of the source buffer */
249 	num_pinned = get_user_pages_fast(param.local_vaddr - lb_offset,
250 		num_pages, param.source != -1 ? FOLL_WRITE : 0, pages);
251 
252 	if (num_pinned != num_pages) {
253 		pr_debug("fsl-hv: could not lock source buffer\n");
254 		ret = (num_pinned < 0) ? num_pinned : -EFAULT;
255 		goto exit;
256 	}
257 
258 	/*
259 	 * Build the fh_sg_list[] array.  The first page is special
260 	 * because it's misaligned.
261 	 */
262 	if (param.source == -1) {
263 		sg_list[0].source = page_to_phys(pages[0]) + lb_offset;
264 		sg_list[0].target = param.remote_paddr;
265 	} else {
266 		sg_list[0].source = param.remote_paddr;
267 		sg_list[0].target = page_to_phys(pages[0]) + lb_offset;
268 	}
269 	sg_list[0].size = min_t(uint64_t, param.count, PAGE_SIZE - lb_offset);
270 
271 	remote_paddr = param.remote_paddr + sg_list[0].size;
272 	count = param.count - sg_list[0].size;
273 
274 	for (i = 1; i < num_pages; i++) {
275 		if (param.source == -1) {
276 			/* local to remote */
277 			sg_list[i].source = page_to_phys(pages[i]);
278 			sg_list[i].target = remote_paddr;
279 		} else {
280 			/* remote to local */
281 			sg_list[i].source = remote_paddr;
282 			sg_list[i].target = page_to_phys(pages[i]);
283 		}
284 		sg_list[i].size = min_t(uint64_t, count, PAGE_SIZE);
285 
286 		remote_paddr += sg_list[i].size;
287 		count -= sg_list[i].size;
288 	}
289 
290 	param.ret = fh_partition_memcpy(param.source, param.target,
291 		virt_to_phys(sg_list), num_pages);
292 
293 exit:
294 	if (pages && (num_pinned > 0)) {
295 		for (i = 0; i < num_pinned; i++)
296 			put_page(pages[i]);
297 	}
298 
299 	kfree(sg_list_unaligned);
300 free_pages:
301 	kfree(pages);
302 
303 	if (!ret)
304 		if (copy_to_user(&p->ret, &param.ret, sizeof(__u32)))
305 			return -EFAULT;
306 
307 	return ret;
308 }
309 
310 /*
311  * Ioctl interface for FSL_HV_IOCTL_DOORBELL
312  *
313  * Ring a doorbell
314  */
315 static long ioctl_doorbell(struct fsl_hv_ioctl_doorbell __user *p)
316 {
317 	struct fsl_hv_ioctl_doorbell param;
318 
319 	/* Get the parameters from the user. */
320 	if (copy_from_user(&param, p, sizeof(struct fsl_hv_ioctl_doorbell)))
321 		return -EFAULT;
322 
323 	param.ret = ev_doorbell_send(param.doorbell);
324 
325 	if (copy_to_user(&p->ret, &param.ret, sizeof(__u32)))
326 		return -EFAULT;
327 
328 	return 0;
329 }
330 
331 static long ioctl_dtprop(struct fsl_hv_ioctl_prop __user *p, int set)
332 {
333 	struct fsl_hv_ioctl_prop param;
334 	char __user *upath, *upropname;
335 	void __user *upropval;
336 	char *path, *propname;
337 	void *propval;
338 	int ret = 0;
339 
340 	/* Get the parameters from the user. */
341 	if (copy_from_user(&param, p, sizeof(struct fsl_hv_ioctl_prop)))
342 		return -EFAULT;
343 
344 	upath = (char __user *)(uintptr_t)param.path;
345 	upropname = (char __user *)(uintptr_t)param.propname;
346 	upropval = (void __user *)(uintptr_t)param.propval;
347 
348 	path = strndup_user(upath, FH_DTPROP_MAX_PATHLEN);
349 	if (IS_ERR(path))
350 		return PTR_ERR(path);
351 
352 	propname = strndup_user(upropname, FH_DTPROP_MAX_PATHLEN);
353 	if (IS_ERR(propname)) {
354 		ret = PTR_ERR(propname);
355 		goto err_free_path;
356 	}
357 
358 	if (param.proplen > FH_DTPROP_MAX_PROPLEN) {
359 		ret = -EINVAL;
360 		goto err_free_propname;
361 	}
362 
363 	propval = kmalloc(param.proplen, GFP_KERNEL);
364 	if (!propval) {
365 		ret = -ENOMEM;
366 		goto err_free_propname;
367 	}
368 
369 	if (set) {
370 		if (copy_from_user(propval, upropval, param.proplen)) {
371 			ret = -EFAULT;
372 			goto err_free_propval;
373 		}
374 
375 		param.ret = fh_partition_set_dtprop(param.handle,
376 						    virt_to_phys(path),
377 						    virt_to_phys(propname),
378 						    virt_to_phys(propval),
379 						    param.proplen);
380 	} else {
381 		param.ret = fh_partition_get_dtprop(param.handle,
382 						    virt_to_phys(path),
383 						    virt_to_phys(propname),
384 						    virt_to_phys(propval),
385 						    &param.proplen);
386 
387 		if (param.ret == 0) {
388 			if (copy_to_user(upropval, propval, param.proplen) ||
389 			    put_user(param.proplen, &p->proplen)) {
390 				ret = -EFAULT;
391 				goto err_free_propval;
392 			}
393 		}
394 	}
395 
396 	if (put_user(param.ret, &p->ret))
397 		ret = -EFAULT;
398 
399 err_free_propval:
400 	kfree(propval);
401 err_free_propname:
402 	kfree(propname);
403 err_free_path:
404 	kfree(path);
405 
406 	return ret;
407 }
408 
409 /*
410  * Ioctl main entry point
411  */
412 static long fsl_hv_ioctl(struct file *file, unsigned int cmd,
413 			 unsigned long argaddr)
414 {
415 	void __user *arg = (void __user *)argaddr;
416 	long ret;
417 
418 	switch (cmd) {
419 	case FSL_HV_IOCTL_PARTITION_RESTART:
420 		ret = ioctl_restart(arg);
421 		break;
422 	case FSL_HV_IOCTL_PARTITION_GET_STATUS:
423 		ret = ioctl_status(arg);
424 		break;
425 	case FSL_HV_IOCTL_PARTITION_START:
426 		ret = ioctl_start(arg);
427 		break;
428 	case FSL_HV_IOCTL_PARTITION_STOP:
429 		ret = ioctl_stop(arg);
430 		break;
431 	case FSL_HV_IOCTL_MEMCPY:
432 		ret = ioctl_memcpy(arg);
433 		break;
434 	case FSL_HV_IOCTL_DOORBELL:
435 		ret = ioctl_doorbell(arg);
436 		break;
437 	case FSL_HV_IOCTL_GETPROP:
438 		ret = ioctl_dtprop(arg, 0);
439 		break;
440 	case FSL_HV_IOCTL_SETPROP:
441 		ret = ioctl_dtprop(arg, 1);
442 		break;
443 	default:
444 		pr_debug("fsl-hv: bad ioctl dir=%u type=%u cmd=%u size=%u\n",
445 			 _IOC_DIR(cmd), _IOC_TYPE(cmd), _IOC_NR(cmd),
446 			 _IOC_SIZE(cmd));
447 		return -ENOTTY;
448 	}
449 
450 	return ret;
451 }
452 
453 /* Linked list of processes that have us open */
454 static struct list_head db_list;
455 
456 /* spinlock for db_list */
457 static DEFINE_SPINLOCK(db_list_lock);
458 
459 /* The size of the doorbell event queue.  This must be a power of two. */
460 #define QSIZE	16
461 
462 /* Returns the next head/tail pointer, wrapping around the queue if necessary */
463 #define nextp(x) (((x) + 1) & (QSIZE - 1))
464 
465 /* Per-open data structure */
466 struct doorbell_queue {
467 	struct list_head list;
468 	spinlock_t lock;
469 	wait_queue_head_t wait;
470 	unsigned int head;
471 	unsigned int tail;
472 	uint32_t q[QSIZE];
473 };
474 
475 /* Linked list of ISRs that we registered */
476 struct list_head isr_list;
477 
478 /* Per-ISR data structure */
479 struct doorbell_isr {
480 	struct list_head list;
481 	unsigned int irq;
482 	uint32_t doorbell;	/* The doorbell handle */
483 	uint32_t partition;	/* The partition handle, if used */
484 };
485 
486 /*
487  * Add a doorbell to all of the doorbell queues
488  */
489 static void fsl_hv_queue_doorbell(uint32_t doorbell)
490 {
491 	struct doorbell_queue *dbq;
492 	unsigned long flags;
493 
494 	/* Prevent another core from modifying db_list */
495 	spin_lock_irqsave(&db_list_lock, flags);
496 
497 	list_for_each_entry(dbq, &db_list, list) {
498 		if (dbq->head != nextp(dbq->tail)) {
499 			dbq->q[dbq->tail] = doorbell;
500 			/*
501 			 * This memory barrier eliminates the need to grab
502 			 * the spinlock for dbq.
503 			 */
504 			smp_wmb();
505 			dbq->tail = nextp(dbq->tail);
506 			wake_up_interruptible(&dbq->wait);
507 		}
508 	}
509 
510 	spin_unlock_irqrestore(&db_list_lock, flags);
511 }
512 
513 /*
514  * Interrupt handler for all doorbells
515  *
516  * We use the same interrupt handler for all doorbells.  Whenever a doorbell
517  * is rung, and we receive an interrupt, we just put the handle for that
518  * doorbell (passed to us as *data) into all of the queues.
519  */
520 static irqreturn_t fsl_hv_isr(int irq, void *data)
521 {
522 	fsl_hv_queue_doorbell((uintptr_t) data);
523 
524 	return IRQ_HANDLED;
525 }
526 
527 /*
528  * State change thread function
529  *
530  * The state change notification arrives in an interrupt, but we can't call
531  * blocking_notifier_call_chain() in an interrupt handler.  We could call
532  * atomic_notifier_call_chain(), but that would require the clients' call-back
533  * function to run in interrupt context.  Since we don't want to impose that
534  * restriction on the clients, we use a threaded IRQ to process the
535  * notification in kernel context.
536  */
537 static irqreturn_t fsl_hv_state_change_thread(int irq, void *data)
538 {
539 	struct doorbell_isr *dbisr = data;
540 
541 	blocking_notifier_call_chain(&failover_subscribers, dbisr->partition,
542 				     NULL);
543 
544 	return IRQ_HANDLED;
545 }
546 
547 /*
548  * Interrupt handler for state-change doorbells
549  */
550 static irqreturn_t fsl_hv_state_change_isr(int irq, void *data)
551 {
552 	unsigned int status;
553 	struct doorbell_isr *dbisr = data;
554 	int ret;
555 
556 	/* It's still a doorbell, so add it to all the queues. */
557 	fsl_hv_queue_doorbell(dbisr->doorbell);
558 
559 	/* Determine the new state, and if it's stopped, notify the clients. */
560 	ret = fh_partition_get_status(dbisr->partition, &status);
561 	if (!ret && (status == FH_PARTITION_STOPPED))
562 		return IRQ_WAKE_THREAD;
563 
564 	return IRQ_HANDLED;
565 }
566 
567 /*
568  * Returns a bitmask indicating whether a read will block
569  */
570 static __poll_t fsl_hv_poll(struct file *filp, struct poll_table_struct *p)
571 {
572 	struct doorbell_queue *dbq = filp->private_data;
573 	unsigned long flags;
574 	__poll_t mask;
575 
576 	spin_lock_irqsave(&dbq->lock, flags);
577 
578 	poll_wait(filp, &dbq->wait, p);
579 	mask = (dbq->head == dbq->tail) ? 0 : (EPOLLIN | EPOLLRDNORM);
580 
581 	spin_unlock_irqrestore(&dbq->lock, flags);
582 
583 	return mask;
584 }
585 
586 /*
587  * Return the handles for any incoming doorbells
588  *
589  * If there are doorbell handles in the queue for this open instance, then
590  * return them to the caller as an array of 32-bit integers.  Otherwise,
591  * block until there is at least one handle to return.
592  */
593 static ssize_t fsl_hv_read(struct file *filp, char __user *buf, size_t len,
594 			   loff_t *off)
595 {
596 	struct doorbell_queue *dbq = filp->private_data;
597 	uint32_t __user *p = (uint32_t __user *) buf; /* for put_user() */
598 	unsigned long flags;
599 	ssize_t count = 0;
600 
601 	/* Make sure we stop when the user buffer is full. */
602 	while (len >= sizeof(uint32_t)) {
603 		uint32_t dbell;	/* Local copy of doorbell queue data */
604 
605 		spin_lock_irqsave(&dbq->lock, flags);
606 
607 		/*
608 		 * If the queue is empty, then either we're done or we need
609 		 * to block.  If the application specified O_NONBLOCK, then
610 		 * we return the appropriate error code.
611 		 */
612 		if (dbq->head == dbq->tail) {
613 			spin_unlock_irqrestore(&dbq->lock, flags);
614 			if (count)
615 				break;
616 			if (filp->f_flags & O_NONBLOCK)
617 				return -EAGAIN;
618 			if (wait_event_interruptible(dbq->wait,
619 						     dbq->head != dbq->tail))
620 				return -ERESTARTSYS;
621 			continue;
622 		}
623 
624 		/*
625 		 * Even though we have an smp_wmb() in the ISR, the core
626 		 * might speculatively execute the "dbell = ..." below while
627 		 * it's evaluating the if-statement above.  In that case, the
628 		 * value put into dbell could be stale if the core accepts the
629 		 * speculation. To prevent that, we need a read memory barrier
630 		 * here as well.
631 		 */
632 		smp_rmb();
633 
634 		/* Copy the data to a temporary local buffer, because
635 		 * we can't call copy_to_user() from inside a spinlock
636 		 */
637 		dbell = dbq->q[dbq->head];
638 		dbq->head = nextp(dbq->head);
639 
640 		spin_unlock_irqrestore(&dbq->lock, flags);
641 
642 		if (put_user(dbell, p))
643 			return -EFAULT;
644 		p++;
645 		count += sizeof(uint32_t);
646 		len -= sizeof(uint32_t);
647 	}
648 
649 	return count;
650 }
651 
652 /*
653  * Open the driver and prepare for reading doorbells.
654  *
655  * Every time an application opens the driver, we create a doorbell queue
656  * for that file handle.  This queue is used for any incoming doorbells.
657  */
658 static int fsl_hv_open(struct inode *inode, struct file *filp)
659 {
660 	struct doorbell_queue *dbq;
661 	unsigned long flags;
662 
663 	dbq = kzalloc(sizeof(struct doorbell_queue), GFP_KERNEL);
664 	if (!dbq) {
665 		pr_err("fsl-hv: out of memory\n");
666 		return -ENOMEM;
667 	}
668 
669 	spin_lock_init(&dbq->lock);
670 	init_waitqueue_head(&dbq->wait);
671 
672 	spin_lock_irqsave(&db_list_lock, flags);
673 	list_add(&dbq->list, &db_list);
674 	spin_unlock_irqrestore(&db_list_lock, flags);
675 
676 	filp->private_data = dbq;
677 
678 	return 0;
679 }
680 
681 /*
682  * Close the driver
683  */
684 static int fsl_hv_close(struct inode *inode, struct file *filp)
685 {
686 	struct doorbell_queue *dbq = filp->private_data;
687 	unsigned long flags;
688 
689 	spin_lock_irqsave(&db_list_lock, flags);
690 	list_del(&dbq->list);
691 	spin_unlock_irqrestore(&db_list_lock, flags);
692 
693 	kfree(dbq);
694 
695 	return 0;
696 }
697 
698 static const struct file_operations fsl_hv_fops = {
699 	.owner = THIS_MODULE,
700 	.open = fsl_hv_open,
701 	.release = fsl_hv_close,
702 	.poll = fsl_hv_poll,
703 	.read = fsl_hv_read,
704 	.unlocked_ioctl = fsl_hv_ioctl,
705 	.compat_ioctl = compat_ptr_ioctl,
706 };
707 
708 static struct miscdevice fsl_hv_misc_dev = {
709 	MISC_DYNAMIC_MINOR,
710 	"fsl-hv",
711 	&fsl_hv_fops
712 };
713 
714 static irqreturn_t fsl_hv_shutdown_isr(int irq, void *data)
715 {
716 	orderly_poweroff(false);
717 
718 	return IRQ_HANDLED;
719 }
720 
721 /*
722  * Returns the handle of the parent of the given node
723  *
724  * The handle is the value of the 'hv-handle' property
725  */
726 static int get_parent_handle(struct device_node *np)
727 {
728 	struct device_node *parent;
729 	const uint32_t *prop;
730 	uint32_t handle;
731 	int len;
732 
733 	parent = of_get_parent(np);
734 	if (!parent)
735 		/* It's not really possible for this to fail */
736 		return -ENODEV;
737 
738 	/*
739 	 * The proper name for the handle property is "hv-handle", but some
740 	 * older versions of the hypervisor used "reg".
741 	 */
742 	prop = of_get_property(parent, "hv-handle", &len);
743 	if (!prop)
744 		prop = of_get_property(parent, "reg", &len);
745 
746 	if (!prop || (len != sizeof(uint32_t))) {
747 		/* This can happen only if the node is malformed */
748 		of_node_put(parent);
749 		return -ENODEV;
750 	}
751 
752 	handle = be32_to_cpup(prop);
753 	of_node_put(parent);
754 
755 	return handle;
756 }
757 
758 /*
759  * Register a callback for failover events
760  *
761  * This function is called by device drivers to register their callback
762  * functions for fail-over events.
763  */
764 int fsl_hv_failover_register(struct notifier_block *nb)
765 {
766 	return blocking_notifier_chain_register(&failover_subscribers, nb);
767 }
768 EXPORT_SYMBOL(fsl_hv_failover_register);
769 
770 /*
771  * Unregister a callback for failover events
772  */
773 int fsl_hv_failover_unregister(struct notifier_block *nb)
774 {
775 	return blocking_notifier_chain_unregister(&failover_subscribers, nb);
776 }
777 EXPORT_SYMBOL(fsl_hv_failover_unregister);
778 
779 /*
780  * Return TRUE if we're running under FSL hypervisor
781  *
782  * This function checks to see if we're running under the Freescale
783  * hypervisor, and returns zero if we're not, or non-zero if we are.
784  *
785  * First, it checks if MSR[GS]==1, which means we're running under some
786  * hypervisor.  Then it checks if there is a hypervisor node in the device
787  * tree.  Currently, that means there needs to be a node in the root called
788  * "hypervisor" and which has a property named "fsl,hv-version".
789  */
790 static int has_fsl_hypervisor(void)
791 {
792 	struct device_node *node;
793 	int ret;
794 
795 	node = of_find_node_by_path("/hypervisor");
796 	if (!node)
797 		return 0;
798 
799 	ret = of_find_property(node, "fsl,hv-version", NULL) != NULL;
800 
801 	of_node_put(node);
802 
803 	return ret;
804 }
805 
806 /*
807  * Freescale hypervisor management driver init
808  *
809  * This function is called when this module is loaded.
810  *
811  * Register ourselves as a miscellaneous driver.  This will register the
812  * fops structure and create the right sysfs entries for udev.
813  */
814 static int __init fsl_hypervisor_init(void)
815 {
816 	struct device_node *np;
817 	struct doorbell_isr *dbisr, *n;
818 	int ret;
819 
820 	pr_info("Freescale hypervisor management driver\n");
821 
822 	if (!has_fsl_hypervisor()) {
823 		pr_info("fsl-hv: no hypervisor found\n");
824 		return -ENODEV;
825 	}
826 
827 	ret = misc_register(&fsl_hv_misc_dev);
828 	if (ret) {
829 		pr_err("fsl-hv: cannot register device\n");
830 		return ret;
831 	}
832 
833 	INIT_LIST_HEAD(&db_list);
834 	INIT_LIST_HEAD(&isr_list);
835 
836 	for_each_compatible_node(np, NULL, "epapr,hv-receive-doorbell") {
837 		unsigned int irq;
838 		const uint32_t *handle;
839 
840 		handle = of_get_property(np, "interrupts", NULL);
841 		irq = irq_of_parse_and_map(np, 0);
842 		if (!handle || (irq == NO_IRQ)) {
843 			pr_err("fsl-hv: no 'interrupts' property in %pOF node\n",
844 				np);
845 			continue;
846 		}
847 
848 		dbisr = kzalloc(sizeof(*dbisr), GFP_KERNEL);
849 		if (!dbisr)
850 			goto out_of_memory;
851 
852 		dbisr->irq = irq;
853 		dbisr->doorbell = be32_to_cpup(handle);
854 
855 		if (of_device_is_compatible(np, "fsl,hv-shutdown-doorbell")) {
856 			/* The shutdown doorbell gets its own ISR */
857 			ret = request_irq(irq, fsl_hv_shutdown_isr, 0,
858 					  np->name, NULL);
859 		} else if (of_device_is_compatible(np,
860 			"fsl,hv-state-change-doorbell")) {
861 			/*
862 			 * The state change doorbell triggers a notification if
863 			 * the state of the managed partition changes to
864 			 * "stopped". We need a separate interrupt handler for
865 			 * that, and we also need to know the handle of the
866 			 * target partition, not just the handle of the
867 			 * doorbell.
868 			 */
869 			dbisr->partition = ret = get_parent_handle(np);
870 			if (ret < 0) {
871 				pr_err("fsl-hv: node %pOF has missing or "
872 				       "malformed parent\n", np);
873 				kfree(dbisr);
874 				continue;
875 			}
876 			ret = request_threaded_irq(irq, fsl_hv_state_change_isr,
877 						   fsl_hv_state_change_thread,
878 						   0, np->name, dbisr);
879 		} else
880 			ret = request_irq(irq, fsl_hv_isr, 0, np->name, dbisr);
881 
882 		if (ret < 0) {
883 			pr_err("fsl-hv: could not request irq %u for node %pOF\n",
884 			       irq, np);
885 			kfree(dbisr);
886 			continue;
887 		}
888 
889 		list_add(&dbisr->list, &isr_list);
890 
891 		pr_info("fsl-hv: registered handler for doorbell %u\n",
892 			dbisr->doorbell);
893 	}
894 
895 	return 0;
896 
897 out_of_memory:
898 	list_for_each_entry_safe(dbisr, n, &isr_list, list) {
899 		free_irq(dbisr->irq, dbisr);
900 		list_del(&dbisr->list);
901 		kfree(dbisr);
902 	}
903 
904 	misc_deregister(&fsl_hv_misc_dev);
905 
906 	return -ENOMEM;
907 }
908 
909 /*
910  * Freescale hypervisor management driver termination
911  *
912  * This function is called when this driver is unloaded.
913  */
914 static void __exit fsl_hypervisor_exit(void)
915 {
916 	struct doorbell_isr *dbisr, *n;
917 
918 	list_for_each_entry_safe(dbisr, n, &isr_list, list) {
919 		free_irq(dbisr->irq, dbisr);
920 		list_del(&dbisr->list);
921 		kfree(dbisr);
922 	}
923 
924 	misc_deregister(&fsl_hv_misc_dev);
925 }
926 
927 module_init(fsl_hypervisor_init);
928 module_exit(fsl_hypervisor_exit);
929 
930 MODULE_AUTHOR("Timur Tabi <timur@freescale.com>");
931 MODULE_DESCRIPTION("Freescale hypervisor management driver");
932 MODULE_LICENSE("GPL v2");
933