1 /* 2 * Freescale Hypervisor Management Driver 3 4 * Copyright (C) 2008-2011 Freescale Semiconductor, Inc. 5 * Author: Timur Tabi <timur@freescale.com> 6 * 7 * This file is licensed under the terms of the GNU General Public License 8 * version 2. This program is licensed "as is" without any warranty of any 9 * kind, whether express or implied. 10 * 11 * The Freescale hypervisor management driver provides several services to 12 * drivers and applications related to the Freescale hypervisor: 13 * 14 * 1. An ioctl interface for querying and managing partitions. 15 * 16 * 2. A file interface to reading incoming doorbells. 17 * 18 * 3. An interrupt handler for shutting down the partition upon receiving the 19 * shutdown doorbell from a manager partition. 20 * 21 * 4. A kernel interface for receiving callbacks when a managed partition 22 * shuts down. 23 */ 24 25 #include <linux/kernel.h> 26 #include <linux/module.h> 27 #include <linux/init.h> 28 #include <linux/types.h> 29 #include <linux/err.h> 30 #include <linux/fs.h> 31 #include <linux/miscdevice.h> 32 #include <linux/mm.h> 33 #include <linux/pagemap.h> 34 #include <linux/slab.h> 35 #include <linux/poll.h> 36 #include <linux/of.h> 37 #include <linux/of_irq.h> 38 #include <linux/reboot.h> 39 #include <linux/uaccess.h> 40 #include <linux/notifier.h> 41 #include <linux/interrupt.h> 42 43 #include <linux/io.h> 44 #include <asm/fsl_hcalls.h> 45 46 #include <linux/fsl_hypervisor.h> 47 48 static BLOCKING_NOTIFIER_HEAD(failover_subscribers); 49 50 /* 51 * Ioctl interface for FSL_HV_IOCTL_PARTITION_RESTART 52 * 53 * Restart a running partition 54 */ 55 static long ioctl_restart(struct fsl_hv_ioctl_restart __user *p) 56 { 57 struct fsl_hv_ioctl_restart param; 58 59 /* Get the parameters from the user */ 60 if (copy_from_user(¶m, p, sizeof(struct fsl_hv_ioctl_restart))) 61 return -EFAULT; 62 63 param.ret = fh_partition_restart(param.partition); 64 65 if (copy_to_user(&p->ret, ¶m.ret, sizeof(__u32))) 66 return -EFAULT; 67 68 return 0; 69 } 70 71 /* 72 * Ioctl interface for FSL_HV_IOCTL_PARTITION_STATUS 73 * 74 * Query the status of a partition 75 */ 76 static long ioctl_status(struct fsl_hv_ioctl_status __user *p) 77 { 78 struct fsl_hv_ioctl_status param; 79 u32 status; 80 81 /* Get the parameters from the user */ 82 if (copy_from_user(¶m, p, sizeof(struct fsl_hv_ioctl_status))) 83 return -EFAULT; 84 85 param.ret = fh_partition_get_status(param.partition, &status); 86 if (!param.ret) 87 param.status = status; 88 89 if (copy_to_user(p, ¶m, sizeof(struct fsl_hv_ioctl_status))) 90 return -EFAULT; 91 92 return 0; 93 } 94 95 /* 96 * Ioctl interface for FSL_HV_IOCTL_PARTITION_START 97 * 98 * Start a stopped partition. 99 */ 100 static long ioctl_start(struct fsl_hv_ioctl_start __user *p) 101 { 102 struct fsl_hv_ioctl_start param; 103 104 /* Get the parameters from the user */ 105 if (copy_from_user(¶m, p, sizeof(struct fsl_hv_ioctl_start))) 106 return -EFAULT; 107 108 param.ret = fh_partition_start(param.partition, param.entry_point, 109 param.load); 110 111 if (copy_to_user(&p->ret, ¶m.ret, sizeof(__u32))) 112 return -EFAULT; 113 114 return 0; 115 } 116 117 /* 118 * Ioctl interface for FSL_HV_IOCTL_PARTITION_STOP 119 * 120 * Stop a running partition 121 */ 122 static long ioctl_stop(struct fsl_hv_ioctl_stop __user *p) 123 { 124 struct fsl_hv_ioctl_stop param; 125 126 /* Get the parameters from the user */ 127 if (copy_from_user(¶m, p, sizeof(struct fsl_hv_ioctl_stop))) 128 return -EFAULT; 129 130 param.ret = fh_partition_stop(param.partition); 131 132 if (copy_to_user(&p->ret, ¶m.ret, sizeof(__u32))) 133 return -EFAULT; 134 135 return 0; 136 } 137 138 /* 139 * Ioctl interface for FSL_HV_IOCTL_MEMCPY 140 * 141 * The FH_MEMCPY hypercall takes an array of address/address/size structures 142 * to represent the data being copied. As a convenience to the user, this 143 * ioctl takes a user-create buffer and a pointer to a guest physically 144 * contiguous buffer in the remote partition, and creates the 145 * address/address/size array for the hypercall. 146 */ 147 static long ioctl_memcpy(struct fsl_hv_ioctl_memcpy __user *p) 148 { 149 struct fsl_hv_ioctl_memcpy param; 150 151 struct page **pages = NULL; 152 void *sg_list_unaligned = NULL; 153 struct fh_sg_list *sg_list = NULL; 154 155 unsigned int num_pages; 156 unsigned long lb_offset; /* Offset within a page of the local buffer */ 157 158 unsigned int i; 159 long ret = 0; 160 int num_pinned; /* return value from get_user_pages() */ 161 phys_addr_t remote_paddr; /* The next address in the remote buffer */ 162 uint32_t count; /* The number of bytes left to copy */ 163 164 /* Get the parameters from the user */ 165 if (copy_from_user(¶m, p, sizeof(struct fsl_hv_ioctl_memcpy))) 166 return -EFAULT; 167 168 /* 169 * One partition must be local, the other must be remote. In other 170 * words, if source and target are both -1, or are both not -1, then 171 * return an error. 172 */ 173 if ((param.source == -1) == (param.target == -1)) 174 return -EINVAL; 175 176 /* 177 * The array of pages returned by get_user_pages() covers only 178 * page-aligned memory. Since the user buffer is probably not 179 * page-aligned, we need to handle the discrepancy. 180 * 181 * We calculate the offset within a page of the S/G list, and make 182 * adjustments accordingly. This will result in a page list that looks 183 * like this: 184 * 185 * ---- <-- first page starts before the buffer 186 * | | 187 * |////|-> ---- 188 * |////| | | 189 * ---- | | 190 * | | 191 * ---- | | 192 * |////| | | 193 * |////| | | 194 * |////| | | 195 * ---- | | 196 * | | 197 * ---- | | 198 * |////| | | 199 * |////| | | 200 * |////| | | 201 * ---- | | 202 * | | 203 * ---- | | 204 * |////| | | 205 * |////|-> ---- 206 * | | <-- last page ends after the buffer 207 * ---- 208 * 209 * The distance between the start of the first page and the start of the 210 * buffer is lb_offset. The hashed (///) areas are the parts of the 211 * page list that contain the actual buffer. 212 * 213 * The advantage of this approach is that the number of pages is 214 * equal to the number of entries in the S/G list that we give to the 215 * hypervisor. 216 */ 217 lb_offset = param.local_vaddr & (PAGE_SIZE - 1); 218 num_pages = (param.count + lb_offset + PAGE_SIZE - 1) >> PAGE_SHIFT; 219 220 /* Allocate the buffers we need */ 221 222 /* 223 * 'pages' is an array of struct page pointers that's initialized by 224 * get_user_pages(). 225 */ 226 pages = kzalloc(num_pages * sizeof(struct page *), GFP_KERNEL); 227 if (!pages) { 228 pr_debug("fsl-hv: could not allocate page list\n"); 229 return -ENOMEM; 230 } 231 232 /* 233 * sg_list is the list of fh_sg_list objects that we pass to the 234 * hypervisor. 235 */ 236 sg_list_unaligned = kmalloc(num_pages * sizeof(struct fh_sg_list) + 237 sizeof(struct fh_sg_list) - 1, GFP_KERNEL); 238 if (!sg_list_unaligned) { 239 pr_debug("fsl-hv: could not allocate S/G list\n"); 240 ret = -ENOMEM; 241 goto exit; 242 } 243 sg_list = PTR_ALIGN(sg_list_unaligned, sizeof(struct fh_sg_list)); 244 245 /* Get the physical addresses of the source buffer */ 246 down_read(¤t->mm->mmap_sem); 247 num_pinned = get_user_pages(current, current->mm, 248 param.local_vaddr - lb_offset, num_pages, 249 (param.source == -1) ? READ : WRITE, 250 0, pages, NULL); 251 up_read(¤t->mm->mmap_sem); 252 253 if (num_pinned != num_pages) { 254 /* get_user_pages() failed */ 255 pr_debug("fsl-hv: could not lock source buffer\n"); 256 ret = (num_pinned < 0) ? num_pinned : -EFAULT; 257 goto exit; 258 } 259 260 /* 261 * Build the fh_sg_list[] array. The first page is special 262 * because it's misaligned. 263 */ 264 if (param.source == -1) { 265 sg_list[0].source = page_to_phys(pages[0]) + lb_offset; 266 sg_list[0].target = param.remote_paddr; 267 } else { 268 sg_list[0].source = param.remote_paddr; 269 sg_list[0].target = page_to_phys(pages[0]) + lb_offset; 270 } 271 sg_list[0].size = min_t(uint64_t, param.count, PAGE_SIZE - lb_offset); 272 273 remote_paddr = param.remote_paddr + sg_list[0].size; 274 count = param.count - sg_list[0].size; 275 276 for (i = 1; i < num_pages; i++) { 277 if (param.source == -1) { 278 /* local to remote */ 279 sg_list[i].source = page_to_phys(pages[i]); 280 sg_list[i].target = remote_paddr; 281 } else { 282 /* remote to local */ 283 sg_list[i].source = remote_paddr; 284 sg_list[i].target = page_to_phys(pages[i]); 285 } 286 sg_list[i].size = min_t(uint64_t, count, PAGE_SIZE); 287 288 remote_paddr += sg_list[i].size; 289 count -= sg_list[i].size; 290 } 291 292 param.ret = fh_partition_memcpy(param.source, param.target, 293 virt_to_phys(sg_list), num_pages); 294 295 exit: 296 if (pages) { 297 for (i = 0; i < num_pages; i++) 298 if (pages[i]) 299 put_page(pages[i]); 300 } 301 302 kfree(sg_list_unaligned); 303 kfree(pages); 304 305 if (!ret) 306 if (copy_to_user(&p->ret, ¶m.ret, sizeof(__u32))) 307 return -EFAULT; 308 309 return ret; 310 } 311 312 /* 313 * Ioctl interface for FSL_HV_IOCTL_DOORBELL 314 * 315 * Ring a doorbell 316 */ 317 static long ioctl_doorbell(struct fsl_hv_ioctl_doorbell __user *p) 318 { 319 struct fsl_hv_ioctl_doorbell param; 320 321 /* Get the parameters from the user. */ 322 if (copy_from_user(¶m, p, sizeof(struct fsl_hv_ioctl_doorbell))) 323 return -EFAULT; 324 325 param.ret = ev_doorbell_send(param.doorbell); 326 327 if (copy_to_user(&p->ret, ¶m.ret, sizeof(__u32))) 328 return -EFAULT; 329 330 return 0; 331 } 332 333 static long ioctl_dtprop(struct fsl_hv_ioctl_prop __user *p, int set) 334 { 335 struct fsl_hv_ioctl_prop param; 336 char __user *upath, *upropname; 337 void __user *upropval; 338 char *path = NULL, *propname = NULL; 339 void *propval = NULL; 340 int ret = 0; 341 342 /* Get the parameters from the user. */ 343 if (copy_from_user(¶m, p, sizeof(struct fsl_hv_ioctl_prop))) 344 return -EFAULT; 345 346 upath = (char __user *)(uintptr_t)param.path; 347 upropname = (char __user *)(uintptr_t)param.propname; 348 upropval = (void __user *)(uintptr_t)param.propval; 349 350 path = strndup_user(upath, FH_DTPROP_MAX_PATHLEN); 351 if (IS_ERR(path)) { 352 ret = PTR_ERR(path); 353 goto out; 354 } 355 356 propname = strndup_user(upropname, FH_DTPROP_MAX_PATHLEN); 357 if (IS_ERR(propname)) { 358 ret = PTR_ERR(propname); 359 goto out; 360 } 361 362 if (param.proplen > FH_DTPROP_MAX_PROPLEN) { 363 ret = -EINVAL; 364 goto out; 365 } 366 367 propval = kmalloc(param.proplen, GFP_KERNEL); 368 if (!propval) { 369 ret = -ENOMEM; 370 goto out; 371 } 372 373 if (set) { 374 if (copy_from_user(propval, upropval, param.proplen)) { 375 ret = -EFAULT; 376 goto out; 377 } 378 379 param.ret = fh_partition_set_dtprop(param.handle, 380 virt_to_phys(path), 381 virt_to_phys(propname), 382 virt_to_phys(propval), 383 param.proplen); 384 } else { 385 param.ret = fh_partition_get_dtprop(param.handle, 386 virt_to_phys(path), 387 virt_to_phys(propname), 388 virt_to_phys(propval), 389 ¶m.proplen); 390 391 if (param.ret == 0) { 392 if (copy_to_user(upropval, propval, param.proplen) || 393 put_user(param.proplen, &p->proplen)) { 394 ret = -EFAULT; 395 goto out; 396 } 397 } 398 } 399 400 if (put_user(param.ret, &p->ret)) 401 ret = -EFAULT; 402 403 out: 404 kfree(path); 405 kfree(propval); 406 kfree(propname); 407 408 return ret; 409 } 410 411 /* 412 * Ioctl main entry point 413 */ 414 static long fsl_hv_ioctl(struct file *file, unsigned int cmd, 415 unsigned long argaddr) 416 { 417 void __user *arg = (void __user *)argaddr; 418 long ret; 419 420 switch (cmd) { 421 case FSL_HV_IOCTL_PARTITION_RESTART: 422 ret = ioctl_restart(arg); 423 break; 424 case FSL_HV_IOCTL_PARTITION_GET_STATUS: 425 ret = ioctl_status(arg); 426 break; 427 case FSL_HV_IOCTL_PARTITION_START: 428 ret = ioctl_start(arg); 429 break; 430 case FSL_HV_IOCTL_PARTITION_STOP: 431 ret = ioctl_stop(arg); 432 break; 433 case FSL_HV_IOCTL_MEMCPY: 434 ret = ioctl_memcpy(arg); 435 break; 436 case FSL_HV_IOCTL_DOORBELL: 437 ret = ioctl_doorbell(arg); 438 break; 439 case FSL_HV_IOCTL_GETPROP: 440 ret = ioctl_dtprop(arg, 0); 441 break; 442 case FSL_HV_IOCTL_SETPROP: 443 ret = ioctl_dtprop(arg, 1); 444 break; 445 default: 446 pr_debug("fsl-hv: bad ioctl dir=%u type=%u cmd=%u size=%u\n", 447 _IOC_DIR(cmd), _IOC_TYPE(cmd), _IOC_NR(cmd), 448 _IOC_SIZE(cmd)); 449 return -ENOTTY; 450 } 451 452 return ret; 453 } 454 455 /* Linked list of processes that have us open */ 456 static struct list_head db_list; 457 458 /* spinlock for db_list */ 459 static DEFINE_SPINLOCK(db_list_lock); 460 461 /* The size of the doorbell event queue. This must be a power of two. */ 462 #define QSIZE 16 463 464 /* Returns the next head/tail pointer, wrapping around the queue if necessary */ 465 #define nextp(x) (((x) + 1) & (QSIZE - 1)) 466 467 /* Per-open data structure */ 468 struct doorbell_queue { 469 struct list_head list; 470 spinlock_t lock; 471 wait_queue_head_t wait; 472 unsigned int head; 473 unsigned int tail; 474 uint32_t q[QSIZE]; 475 }; 476 477 /* Linked list of ISRs that we registered */ 478 struct list_head isr_list; 479 480 /* Per-ISR data structure */ 481 struct doorbell_isr { 482 struct list_head list; 483 unsigned int irq; 484 uint32_t doorbell; /* The doorbell handle */ 485 uint32_t partition; /* The partition handle, if used */ 486 }; 487 488 /* 489 * Add a doorbell to all of the doorbell queues 490 */ 491 static void fsl_hv_queue_doorbell(uint32_t doorbell) 492 { 493 struct doorbell_queue *dbq; 494 unsigned long flags; 495 496 /* Prevent another core from modifying db_list */ 497 spin_lock_irqsave(&db_list_lock, flags); 498 499 list_for_each_entry(dbq, &db_list, list) { 500 if (dbq->head != nextp(dbq->tail)) { 501 dbq->q[dbq->tail] = doorbell; 502 /* 503 * This memory barrier eliminates the need to grab 504 * the spinlock for dbq. 505 */ 506 smp_wmb(); 507 dbq->tail = nextp(dbq->tail); 508 wake_up_interruptible(&dbq->wait); 509 } 510 } 511 512 spin_unlock_irqrestore(&db_list_lock, flags); 513 } 514 515 /* 516 * Interrupt handler for all doorbells 517 * 518 * We use the same interrupt handler for all doorbells. Whenever a doorbell 519 * is rung, and we receive an interrupt, we just put the handle for that 520 * doorbell (passed to us as *data) into all of the queues. 521 */ 522 static irqreturn_t fsl_hv_isr(int irq, void *data) 523 { 524 fsl_hv_queue_doorbell((uintptr_t) data); 525 526 return IRQ_HANDLED; 527 } 528 529 /* 530 * State change thread function 531 * 532 * The state change notification arrives in an interrupt, but we can't call 533 * blocking_notifier_call_chain() in an interrupt handler. We could call 534 * atomic_notifier_call_chain(), but that would require the clients' call-back 535 * function to run in interrupt context. Since we don't want to impose that 536 * restriction on the clients, we use a threaded IRQ to process the 537 * notification in kernel context. 538 */ 539 static irqreturn_t fsl_hv_state_change_thread(int irq, void *data) 540 { 541 struct doorbell_isr *dbisr = data; 542 543 blocking_notifier_call_chain(&failover_subscribers, dbisr->partition, 544 NULL); 545 546 return IRQ_HANDLED; 547 } 548 549 /* 550 * Interrupt handler for state-change doorbells 551 */ 552 static irqreturn_t fsl_hv_state_change_isr(int irq, void *data) 553 { 554 unsigned int status; 555 struct doorbell_isr *dbisr = data; 556 int ret; 557 558 /* It's still a doorbell, so add it to all the queues. */ 559 fsl_hv_queue_doorbell(dbisr->doorbell); 560 561 /* Determine the new state, and if it's stopped, notify the clients. */ 562 ret = fh_partition_get_status(dbisr->partition, &status); 563 if (!ret && (status == FH_PARTITION_STOPPED)) 564 return IRQ_WAKE_THREAD; 565 566 return IRQ_HANDLED; 567 } 568 569 /* 570 * Returns a bitmask indicating whether a read will block 571 */ 572 static unsigned int fsl_hv_poll(struct file *filp, struct poll_table_struct *p) 573 { 574 struct doorbell_queue *dbq = filp->private_data; 575 unsigned long flags; 576 unsigned int mask; 577 578 spin_lock_irqsave(&dbq->lock, flags); 579 580 poll_wait(filp, &dbq->wait, p); 581 mask = (dbq->head == dbq->tail) ? 0 : (POLLIN | POLLRDNORM); 582 583 spin_unlock_irqrestore(&dbq->lock, flags); 584 585 return mask; 586 } 587 588 /* 589 * Return the handles for any incoming doorbells 590 * 591 * If there are doorbell handles in the queue for this open instance, then 592 * return them to the caller as an array of 32-bit integers. Otherwise, 593 * block until there is at least one handle to return. 594 */ 595 static ssize_t fsl_hv_read(struct file *filp, char __user *buf, size_t len, 596 loff_t *off) 597 { 598 struct doorbell_queue *dbq = filp->private_data; 599 uint32_t __user *p = (uint32_t __user *) buf; /* for put_user() */ 600 unsigned long flags; 601 ssize_t count = 0; 602 603 /* Make sure we stop when the user buffer is full. */ 604 while (len >= sizeof(uint32_t)) { 605 uint32_t dbell; /* Local copy of doorbell queue data */ 606 607 spin_lock_irqsave(&dbq->lock, flags); 608 609 /* 610 * If the queue is empty, then either we're done or we need 611 * to block. If the application specified O_NONBLOCK, then 612 * we return the appropriate error code. 613 */ 614 if (dbq->head == dbq->tail) { 615 spin_unlock_irqrestore(&dbq->lock, flags); 616 if (count) 617 break; 618 if (filp->f_flags & O_NONBLOCK) 619 return -EAGAIN; 620 if (wait_event_interruptible(dbq->wait, 621 dbq->head != dbq->tail)) 622 return -ERESTARTSYS; 623 continue; 624 } 625 626 /* 627 * Even though we have an smp_wmb() in the ISR, the core 628 * might speculatively execute the "dbell = ..." below while 629 * it's evaluating the if-statement above. In that case, the 630 * value put into dbell could be stale if the core accepts the 631 * speculation. To prevent that, we need a read memory barrier 632 * here as well. 633 */ 634 smp_rmb(); 635 636 /* Copy the data to a temporary local buffer, because 637 * we can't call copy_to_user() from inside a spinlock 638 */ 639 dbell = dbq->q[dbq->head]; 640 dbq->head = nextp(dbq->head); 641 642 spin_unlock_irqrestore(&dbq->lock, flags); 643 644 if (put_user(dbell, p)) 645 return -EFAULT; 646 p++; 647 count += sizeof(uint32_t); 648 len -= sizeof(uint32_t); 649 } 650 651 return count; 652 } 653 654 /* 655 * Open the driver and prepare for reading doorbells. 656 * 657 * Every time an application opens the driver, we create a doorbell queue 658 * for that file handle. This queue is used for any incoming doorbells. 659 */ 660 static int fsl_hv_open(struct inode *inode, struct file *filp) 661 { 662 struct doorbell_queue *dbq; 663 unsigned long flags; 664 int ret = 0; 665 666 dbq = kzalloc(sizeof(struct doorbell_queue), GFP_KERNEL); 667 if (!dbq) { 668 pr_err("fsl-hv: out of memory\n"); 669 return -ENOMEM; 670 } 671 672 spin_lock_init(&dbq->lock); 673 init_waitqueue_head(&dbq->wait); 674 675 spin_lock_irqsave(&db_list_lock, flags); 676 list_add(&dbq->list, &db_list); 677 spin_unlock_irqrestore(&db_list_lock, flags); 678 679 filp->private_data = dbq; 680 681 return ret; 682 } 683 684 /* 685 * Close the driver 686 */ 687 static int fsl_hv_close(struct inode *inode, struct file *filp) 688 { 689 struct doorbell_queue *dbq = filp->private_data; 690 unsigned long flags; 691 692 int ret = 0; 693 694 spin_lock_irqsave(&db_list_lock, flags); 695 list_del(&dbq->list); 696 spin_unlock_irqrestore(&db_list_lock, flags); 697 698 kfree(dbq); 699 700 return ret; 701 } 702 703 static const struct file_operations fsl_hv_fops = { 704 .owner = THIS_MODULE, 705 .open = fsl_hv_open, 706 .release = fsl_hv_close, 707 .poll = fsl_hv_poll, 708 .read = fsl_hv_read, 709 .unlocked_ioctl = fsl_hv_ioctl, 710 .compat_ioctl = fsl_hv_ioctl, 711 }; 712 713 static struct miscdevice fsl_hv_misc_dev = { 714 MISC_DYNAMIC_MINOR, 715 "fsl-hv", 716 &fsl_hv_fops 717 }; 718 719 static irqreturn_t fsl_hv_shutdown_isr(int irq, void *data) 720 { 721 orderly_poweroff(false); 722 723 return IRQ_HANDLED; 724 } 725 726 /* 727 * Returns the handle of the parent of the given node 728 * 729 * The handle is the value of the 'hv-handle' property 730 */ 731 static int get_parent_handle(struct device_node *np) 732 { 733 struct device_node *parent; 734 const uint32_t *prop; 735 uint32_t handle; 736 int len; 737 738 parent = of_get_parent(np); 739 if (!parent) 740 /* It's not really possible for this to fail */ 741 return -ENODEV; 742 743 /* 744 * The proper name for the handle property is "hv-handle", but some 745 * older versions of the hypervisor used "reg". 746 */ 747 prop = of_get_property(parent, "hv-handle", &len); 748 if (!prop) 749 prop = of_get_property(parent, "reg", &len); 750 751 if (!prop || (len != sizeof(uint32_t))) { 752 /* This can happen only if the node is malformed */ 753 of_node_put(parent); 754 return -ENODEV; 755 } 756 757 handle = be32_to_cpup(prop); 758 of_node_put(parent); 759 760 return handle; 761 } 762 763 /* 764 * Register a callback for failover events 765 * 766 * This function is called by device drivers to register their callback 767 * functions for fail-over events. 768 */ 769 int fsl_hv_failover_register(struct notifier_block *nb) 770 { 771 return blocking_notifier_chain_register(&failover_subscribers, nb); 772 } 773 EXPORT_SYMBOL(fsl_hv_failover_register); 774 775 /* 776 * Unregister a callback for failover events 777 */ 778 int fsl_hv_failover_unregister(struct notifier_block *nb) 779 { 780 return blocking_notifier_chain_unregister(&failover_subscribers, nb); 781 } 782 EXPORT_SYMBOL(fsl_hv_failover_unregister); 783 784 /* 785 * Return TRUE if we're running under FSL hypervisor 786 * 787 * This function checks to see if we're running under the Freescale 788 * hypervisor, and returns zero if we're not, or non-zero if we are. 789 * 790 * First, it checks if MSR[GS]==1, which means we're running under some 791 * hypervisor. Then it checks if there is a hypervisor node in the device 792 * tree. Currently, that means there needs to be a node in the root called 793 * "hypervisor" and which has a property named "fsl,hv-version". 794 */ 795 static int has_fsl_hypervisor(void) 796 { 797 struct device_node *node; 798 int ret; 799 800 node = of_find_node_by_path("/hypervisor"); 801 if (!node) 802 return 0; 803 804 ret = of_find_property(node, "fsl,hv-version", NULL) != NULL; 805 806 of_node_put(node); 807 808 return ret; 809 } 810 811 /* 812 * Freescale hypervisor management driver init 813 * 814 * This function is called when this module is loaded. 815 * 816 * Register ourselves as a miscellaneous driver. This will register the 817 * fops structure and create the right sysfs entries for udev. 818 */ 819 static int __init fsl_hypervisor_init(void) 820 { 821 struct device_node *np; 822 struct doorbell_isr *dbisr, *n; 823 int ret; 824 825 pr_info("Freescale hypervisor management driver\n"); 826 827 if (!has_fsl_hypervisor()) { 828 pr_info("fsl-hv: no hypervisor found\n"); 829 return -ENODEV; 830 } 831 832 ret = misc_register(&fsl_hv_misc_dev); 833 if (ret) { 834 pr_err("fsl-hv: cannot register device\n"); 835 return ret; 836 } 837 838 INIT_LIST_HEAD(&db_list); 839 INIT_LIST_HEAD(&isr_list); 840 841 for_each_compatible_node(np, NULL, "epapr,hv-receive-doorbell") { 842 unsigned int irq; 843 const uint32_t *handle; 844 845 handle = of_get_property(np, "interrupts", NULL); 846 irq = irq_of_parse_and_map(np, 0); 847 if (!handle || (irq == NO_IRQ)) { 848 pr_err("fsl-hv: no 'interrupts' property in %s node\n", 849 np->full_name); 850 continue; 851 } 852 853 dbisr = kzalloc(sizeof(*dbisr), GFP_KERNEL); 854 if (!dbisr) 855 goto out_of_memory; 856 857 dbisr->irq = irq; 858 dbisr->doorbell = be32_to_cpup(handle); 859 860 if (of_device_is_compatible(np, "fsl,hv-shutdown-doorbell")) { 861 /* The shutdown doorbell gets its own ISR */ 862 ret = request_irq(irq, fsl_hv_shutdown_isr, 0, 863 np->name, NULL); 864 } else if (of_device_is_compatible(np, 865 "fsl,hv-state-change-doorbell")) { 866 /* 867 * The state change doorbell triggers a notification if 868 * the state of the managed partition changes to 869 * "stopped". We need a separate interrupt handler for 870 * that, and we also need to know the handle of the 871 * target partition, not just the handle of the 872 * doorbell. 873 */ 874 dbisr->partition = ret = get_parent_handle(np); 875 if (ret < 0) { 876 pr_err("fsl-hv: node %s has missing or " 877 "malformed parent\n", np->full_name); 878 kfree(dbisr); 879 continue; 880 } 881 ret = request_threaded_irq(irq, fsl_hv_state_change_isr, 882 fsl_hv_state_change_thread, 883 0, np->name, dbisr); 884 } else 885 ret = request_irq(irq, fsl_hv_isr, 0, np->name, dbisr); 886 887 if (ret < 0) { 888 pr_err("fsl-hv: could not request irq %u for node %s\n", 889 irq, np->full_name); 890 kfree(dbisr); 891 continue; 892 } 893 894 list_add(&dbisr->list, &isr_list); 895 896 pr_info("fsl-hv: registered handler for doorbell %u\n", 897 dbisr->doorbell); 898 } 899 900 return 0; 901 902 out_of_memory: 903 list_for_each_entry_safe(dbisr, n, &isr_list, list) { 904 free_irq(dbisr->irq, dbisr); 905 list_del(&dbisr->list); 906 kfree(dbisr); 907 } 908 909 misc_deregister(&fsl_hv_misc_dev); 910 911 return -ENOMEM; 912 } 913 914 /* 915 * Freescale hypervisor management driver termination 916 * 917 * This function is called when this driver is unloaded. 918 */ 919 static void __exit fsl_hypervisor_exit(void) 920 { 921 struct doorbell_isr *dbisr, *n; 922 923 list_for_each_entry_safe(dbisr, n, &isr_list, list) { 924 free_irq(dbisr->irq, dbisr); 925 list_del(&dbisr->list); 926 kfree(dbisr); 927 } 928 929 misc_deregister(&fsl_hv_misc_dev); 930 } 931 932 module_init(fsl_hypervisor_init); 933 module_exit(fsl_hypervisor_exit); 934 935 MODULE_AUTHOR("Timur Tabi <timur@freescale.com>"); 936 MODULE_DESCRIPTION("Freescale hypervisor management driver"); 937 MODULE_LICENSE("GPL v2"); 938