xref: /openbmc/linux/drivers/video/fbdev/via/via-core.c (revision afb46f79)
1 /*
2  * Copyright 1998-2009 VIA Technologies, Inc. All Rights Reserved.
3  * Copyright 2001-2008 S3 Graphics, Inc. All Rights Reserved.
4  * Copyright 2009 Jonathan Corbet <corbet@lwn.net>
5  */
6 
7 /*
8  * Core code for the Via multifunction framebuffer device.
9  */
10 #include <linux/via-core.h>
11 #include <linux/via_i2c.h>
12 #include <linux/via-gpio.h>
13 #include "global.h"
14 
15 #include <linux/module.h>
16 #include <linux/interrupt.h>
17 #include <linux/platform_device.h>
18 #include <linux/list.h>
19 #include <linux/pm.h>
20 #include <asm/olpc.h>
21 
22 /*
23  * The default port config.
24  */
25 static struct via_port_cfg adap_configs[] = {
26 	[VIA_PORT_26]	= { VIA_PORT_I2C,  VIA_MODE_I2C, VIASR, 0x26 },
27 	[VIA_PORT_31]	= { VIA_PORT_I2C,  VIA_MODE_I2C, VIASR, 0x31 },
28 	[VIA_PORT_25]	= { VIA_PORT_GPIO, VIA_MODE_GPIO, VIASR, 0x25 },
29 	[VIA_PORT_2C]	= { VIA_PORT_GPIO, VIA_MODE_I2C, VIASR, 0x2c },
30 	[VIA_PORT_3D]	= { VIA_PORT_GPIO, VIA_MODE_GPIO, VIASR, 0x3d },
31 	{ 0, 0, 0, 0 }
32 };
33 
34 /*
35  * The OLPC XO-1.5 puts the camera power and reset lines onto
36  * GPIO 2C.
37  */
38 static struct via_port_cfg olpc_adap_configs[] = {
39 	[VIA_PORT_26]	= { VIA_PORT_I2C,  VIA_MODE_I2C, VIASR, 0x26 },
40 	[VIA_PORT_31]	= { VIA_PORT_I2C,  VIA_MODE_I2C, VIASR, 0x31 },
41 	[VIA_PORT_25]	= { VIA_PORT_GPIO, VIA_MODE_GPIO, VIASR, 0x25 },
42 	[VIA_PORT_2C]	= { VIA_PORT_GPIO, VIA_MODE_GPIO, VIASR, 0x2c },
43 	[VIA_PORT_3D]	= { VIA_PORT_GPIO, VIA_MODE_GPIO, VIASR, 0x3d },
44 	{ 0, 0, 0, 0 }
45 };
46 
47 /*
48  * We currently only support one viafb device (will there ever be
49  * more than one?), so just declare it globally here.
50  */
51 static struct viafb_dev global_dev;
52 
53 
54 /*
55  * Basic register access; spinlock required.
56  */
57 static inline void viafb_mmio_write(int reg, u32 v)
58 {
59 	iowrite32(v, global_dev.engine_mmio + reg);
60 }
61 
62 static inline int viafb_mmio_read(int reg)
63 {
64 	return ioread32(global_dev.engine_mmio + reg);
65 }
66 
67 /* ---------------------------------------------------------------------- */
68 /*
69  * Interrupt management.  We have a single IRQ line for a lot of
70  * different functions, so we need to share it.  The design here
71  * is that we don't want to reimplement the shared IRQ code here;
72  * we also want to avoid having contention for a single handler thread.
73  * So each subdev driver which needs interrupts just requests
74  * them directly from the kernel.  We just have what's needed for
75  * overall access to the interrupt control register.
76  */
77 
78 /*
79  * Which interrupts are enabled now?
80  */
81 static u32 viafb_enabled_ints;
82 
83 static void viafb_int_init(void)
84 {
85 	viafb_enabled_ints = 0;
86 
87 	viafb_mmio_write(VDE_INTERRUPT, 0);
88 }
89 
90 /*
91  * Allow subdevs to ask for specific interrupts to be enabled.  These
92  * functions must be called with reg_lock held
93  */
94 void viafb_irq_enable(u32 mask)
95 {
96 	viafb_enabled_ints |= mask;
97 	viafb_mmio_write(VDE_INTERRUPT, viafb_enabled_ints | VDE_I_ENABLE);
98 }
99 EXPORT_SYMBOL_GPL(viafb_irq_enable);
100 
101 void viafb_irq_disable(u32 mask)
102 {
103 	viafb_enabled_ints &= ~mask;
104 	if (viafb_enabled_ints == 0)
105 		viafb_mmio_write(VDE_INTERRUPT, 0);  /* Disable entirely */
106 	else
107 		viafb_mmio_write(VDE_INTERRUPT,
108 				viafb_enabled_ints | VDE_I_ENABLE);
109 }
110 EXPORT_SYMBOL_GPL(viafb_irq_disable);
111 
112 /* ---------------------------------------------------------------------- */
113 /*
114  * Currently, the camera driver is the only user of the DMA code, so we
115  * only compile it in if the camera driver is being built.  Chances are,
116  * most viafb systems will not need to have this extra code for a while.
117  * As soon as another user comes long, the ifdef can be removed.
118  */
119 #if defined(CONFIG_VIDEO_VIA_CAMERA) || defined(CONFIG_VIDEO_VIA_CAMERA_MODULE)
120 /*
121  * Access to the DMA engine.  This currently provides what the camera
122  * driver needs (i.e. outgoing only) but is easily expandable if need
123  * be.
124  */
125 
126 /*
127  * There are four DMA channels in the vx855.  For now, we only
128  * use one of them, though.  Most of the time, the DMA channel
129  * will be idle, so we keep the IRQ handler unregistered except
130  * when some subsystem has indicated an interest.
131  */
132 static int viafb_dma_users;
133 static DECLARE_COMPLETION(viafb_dma_completion);
134 /*
135  * This mutex protects viafb_dma_users and our global interrupt
136  * registration state; it also serializes access to the DMA
137  * engine.
138  */
139 static DEFINE_MUTEX(viafb_dma_lock);
140 
141 /*
142  * The VX855 DMA descriptor (used for s/g transfers) looks
143  * like this.
144  */
145 struct viafb_vx855_dma_descr {
146 	u32	addr_low;	/* Low part of phys addr */
147 	u32	addr_high;	/* High 12 bits of addr */
148 	u32	fb_offset;	/* Offset into FB memory */
149 	u32	seg_size;	/* Size, 16-byte units */
150 	u32	tile_mode;	/* "tile mode" setting */
151 	u32	next_desc_low;	/* Next descriptor addr */
152 	u32	next_desc_high;
153 	u32	pad;		/* Fill out to 64 bytes */
154 };
155 
156 /*
157  * Flags added to the "next descriptor low" pointers
158  */
159 #define VIAFB_DMA_MAGIC		0x01  /* ??? Just has to be there */
160 #define VIAFB_DMA_FINAL_SEGMENT 0x02  /* Final segment */
161 
162 /*
163  * The completion IRQ handler.
164  */
165 static irqreturn_t viafb_dma_irq(int irq, void *data)
166 {
167 	int csr;
168 	irqreturn_t ret = IRQ_NONE;
169 
170 	spin_lock(&global_dev.reg_lock);
171 	csr = viafb_mmio_read(VDMA_CSR0);
172 	if (csr & VDMA_C_DONE) {
173 		viafb_mmio_write(VDMA_CSR0, VDMA_C_DONE);
174 		complete(&viafb_dma_completion);
175 		ret = IRQ_HANDLED;
176 	}
177 	spin_unlock(&global_dev.reg_lock);
178 	return ret;
179 }
180 
181 /*
182  * Indicate a need for DMA functionality.
183  */
184 int viafb_request_dma(void)
185 {
186 	int ret = 0;
187 
188 	/*
189 	 * Only VX855 is supported currently.
190 	 */
191 	if (global_dev.chip_type != UNICHROME_VX855)
192 		return -ENODEV;
193 	/*
194 	 * Note the new user and set up our interrupt handler
195 	 * if need be.
196 	 */
197 	mutex_lock(&viafb_dma_lock);
198 	viafb_dma_users++;
199 	if (viafb_dma_users == 1) {
200 		ret = request_irq(global_dev.pdev->irq, viafb_dma_irq,
201 				IRQF_SHARED, "via-dma", &viafb_dma_users);
202 		if (ret)
203 			viafb_dma_users--;
204 		else
205 			viafb_irq_enable(VDE_I_DMA0TDEN);
206 	}
207 	mutex_unlock(&viafb_dma_lock);
208 	return ret;
209 }
210 EXPORT_SYMBOL_GPL(viafb_request_dma);
211 
212 void viafb_release_dma(void)
213 {
214 	mutex_lock(&viafb_dma_lock);
215 	viafb_dma_users--;
216 	if (viafb_dma_users == 0) {
217 		viafb_irq_disable(VDE_I_DMA0TDEN);
218 		free_irq(global_dev.pdev->irq, &viafb_dma_users);
219 	}
220 	mutex_unlock(&viafb_dma_lock);
221 }
222 EXPORT_SYMBOL_GPL(viafb_release_dma);
223 
224 
225 #if 0
226 /*
227  * Copy a single buffer from FB memory, synchronously.  This code works
228  * but is not currently used.
229  */
230 void viafb_dma_copy_out(unsigned int offset, dma_addr_t paddr, int len)
231 {
232 	unsigned long flags;
233 	int csr;
234 
235 	mutex_lock(&viafb_dma_lock);
236 	init_completion(&viafb_dma_completion);
237 	/*
238 	 * Program the controller.
239 	 */
240 	spin_lock_irqsave(&global_dev.reg_lock, flags);
241 	viafb_mmio_write(VDMA_CSR0, VDMA_C_ENABLE|VDMA_C_DONE);
242 	/* Enable ints; must happen after CSR0 write! */
243 	viafb_mmio_write(VDMA_MR0, VDMA_MR_TDIE);
244 	viafb_mmio_write(VDMA_MARL0, (int) (paddr & 0xfffffff0));
245 	viafb_mmio_write(VDMA_MARH0, (int) ((paddr >> 28) & 0xfff));
246 	/* Data sheet suggests DAR0 should be <<4, but it lies */
247 	viafb_mmio_write(VDMA_DAR0, offset);
248 	viafb_mmio_write(VDMA_DQWCR0, len >> 4);
249 	viafb_mmio_write(VDMA_TMR0, 0);
250 	viafb_mmio_write(VDMA_DPRL0, 0);
251 	viafb_mmio_write(VDMA_DPRH0, 0);
252 	viafb_mmio_write(VDMA_PMR0, 0);
253 	csr = viafb_mmio_read(VDMA_CSR0);
254 	viafb_mmio_write(VDMA_CSR0, VDMA_C_ENABLE|VDMA_C_START);
255 	spin_unlock_irqrestore(&global_dev.reg_lock, flags);
256 	/*
257 	 * Now we just wait until the interrupt handler says
258 	 * we're done.
259 	 */
260 	wait_for_completion_interruptible(&viafb_dma_completion);
261 	viafb_mmio_write(VDMA_MR0, 0); /* Reset int enable */
262 	mutex_unlock(&viafb_dma_lock);
263 }
264 EXPORT_SYMBOL_GPL(viafb_dma_copy_out);
265 #endif
266 
267 /*
268  * Do a scatter/gather DMA copy from FB memory.  You must have done
269  * a successful call to viafb_request_dma() first.
270  */
271 int viafb_dma_copy_out_sg(unsigned int offset, struct scatterlist *sg, int nsg)
272 {
273 	struct viafb_vx855_dma_descr *descr;
274 	void *descrpages;
275 	dma_addr_t descr_handle;
276 	unsigned long flags;
277 	int i;
278 	struct scatterlist *sgentry;
279 	dma_addr_t nextdesc;
280 
281 	/*
282 	 * Get a place to put the descriptors.
283 	 */
284 	descrpages = dma_alloc_coherent(&global_dev.pdev->dev,
285 			nsg*sizeof(struct viafb_vx855_dma_descr),
286 			&descr_handle, GFP_KERNEL);
287 	if (descrpages == NULL) {
288 		dev_err(&global_dev.pdev->dev, "Unable to get descr page.\n");
289 		return -ENOMEM;
290 	}
291 	mutex_lock(&viafb_dma_lock);
292 	/*
293 	 * Fill them in.
294 	 */
295 	descr = descrpages;
296 	nextdesc = descr_handle + sizeof(struct viafb_vx855_dma_descr);
297 	for_each_sg(sg, sgentry, nsg, i) {
298 		dma_addr_t paddr = sg_dma_address(sgentry);
299 		descr->addr_low = paddr & 0xfffffff0;
300 		descr->addr_high = ((u64) paddr >> 32) & 0x0fff;
301 		descr->fb_offset = offset;
302 		descr->seg_size = sg_dma_len(sgentry) >> 4;
303 		descr->tile_mode = 0;
304 		descr->next_desc_low = (nextdesc&0xfffffff0) | VIAFB_DMA_MAGIC;
305 		descr->next_desc_high = ((u64) nextdesc >> 32) & 0x0fff;
306 		descr->pad = 0xffffffff;  /* VIA driver does this */
307 		offset += sg_dma_len(sgentry);
308 		nextdesc += sizeof(struct viafb_vx855_dma_descr);
309 		descr++;
310 	}
311 	descr[-1].next_desc_low = VIAFB_DMA_FINAL_SEGMENT|VIAFB_DMA_MAGIC;
312 	/*
313 	 * Program the engine.
314 	 */
315 	spin_lock_irqsave(&global_dev.reg_lock, flags);
316 	init_completion(&viafb_dma_completion);
317 	viafb_mmio_write(VDMA_DQWCR0, 0);
318 	viafb_mmio_write(VDMA_CSR0, VDMA_C_ENABLE|VDMA_C_DONE);
319 	viafb_mmio_write(VDMA_MR0, VDMA_MR_TDIE | VDMA_MR_CHAIN);
320 	viafb_mmio_write(VDMA_DPRL0, descr_handle | VIAFB_DMA_MAGIC);
321 	viafb_mmio_write(VDMA_DPRH0,
322 			(((u64)descr_handle >> 32) & 0x0fff) | 0xf0000);
323 	(void) viafb_mmio_read(VDMA_CSR0);
324 	viafb_mmio_write(VDMA_CSR0, VDMA_C_ENABLE|VDMA_C_START);
325 	spin_unlock_irqrestore(&global_dev.reg_lock, flags);
326 	/*
327 	 * Now we just wait until the interrupt handler says
328 	 * we're done.  Except that, actually, we need to wait a little
329 	 * longer: the interrupts seem to jump the gun a little and we
330 	 * get corrupted frames sometimes.
331 	 */
332 	wait_for_completion_timeout(&viafb_dma_completion, 1);
333 	msleep(1);
334 	if ((viafb_mmio_read(VDMA_CSR0)&VDMA_C_DONE) == 0)
335 		printk(KERN_ERR "VIA DMA timeout!\n");
336 	/*
337 	 * Clean up and we're done.
338 	 */
339 	viafb_mmio_write(VDMA_CSR0, VDMA_C_DONE);
340 	viafb_mmio_write(VDMA_MR0, 0); /* Reset int enable */
341 	mutex_unlock(&viafb_dma_lock);
342 	dma_free_coherent(&global_dev.pdev->dev,
343 			nsg*sizeof(struct viafb_vx855_dma_descr), descrpages,
344 			descr_handle);
345 	return 0;
346 }
347 EXPORT_SYMBOL_GPL(viafb_dma_copy_out_sg);
348 #endif /* CONFIG_VIDEO_VIA_CAMERA */
349 
350 /* ---------------------------------------------------------------------- */
351 /*
352  * Figure out how big our framebuffer memory is.  Kind of ugly,
353  * but evidently we can't trust the information found in the
354  * fbdev configuration area.
355  */
356 static u16 via_function3[] = {
357 	CLE266_FUNCTION3, KM400_FUNCTION3, CN400_FUNCTION3, CN700_FUNCTION3,
358 	CX700_FUNCTION3, KM800_FUNCTION3, KM890_FUNCTION3, P4M890_FUNCTION3,
359 	P4M900_FUNCTION3, VX800_FUNCTION3, VX855_FUNCTION3, VX900_FUNCTION3,
360 };
361 
362 /* Get the BIOS-configured framebuffer size from PCI configuration space
363  * of function 3 in the respective chipset */
364 static int viafb_get_fb_size_from_pci(int chip_type)
365 {
366 	int i;
367 	u8 offset = 0;
368 	u32 FBSize;
369 	u32 VideoMemSize;
370 
371 	/* search for the "FUNCTION3" device in this chipset */
372 	for (i = 0; i < ARRAY_SIZE(via_function3); i++) {
373 		struct pci_dev *pdev;
374 
375 		pdev = pci_get_device(PCI_VENDOR_ID_VIA, via_function3[i],
376 				      NULL);
377 		if (!pdev)
378 			continue;
379 
380 		DEBUG_MSG(KERN_INFO "Device ID = %x\n", pdev->device);
381 
382 		switch (pdev->device) {
383 		case CLE266_FUNCTION3:
384 		case KM400_FUNCTION3:
385 			offset = 0xE0;
386 			break;
387 		case CN400_FUNCTION3:
388 		case CN700_FUNCTION3:
389 		case CX700_FUNCTION3:
390 		case KM800_FUNCTION3:
391 		case KM890_FUNCTION3:
392 		case P4M890_FUNCTION3:
393 		case P4M900_FUNCTION3:
394 		case VX800_FUNCTION3:
395 		case VX855_FUNCTION3:
396 		case VX900_FUNCTION3:
397 		/*case CN750_FUNCTION3: */
398 			offset = 0xA0;
399 			break;
400 		}
401 
402 		if (!offset)
403 			break;
404 
405 		pci_read_config_dword(pdev, offset, &FBSize);
406 		pci_dev_put(pdev);
407 	}
408 
409 	if (!offset) {
410 		printk(KERN_ERR "cannot determine framebuffer size\n");
411 		return -EIO;
412 	}
413 
414 	FBSize = FBSize & 0x00007000;
415 	DEBUG_MSG(KERN_INFO "FB Size = %x\n", FBSize);
416 
417 	if (chip_type < UNICHROME_CX700) {
418 		switch (FBSize) {
419 		case 0x00004000:
420 			VideoMemSize = (16 << 20);	/*16M */
421 			break;
422 
423 		case 0x00005000:
424 			VideoMemSize = (32 << 20);	/*32M */
425 			break;
426 
427 		case 0x00006000:
428 			VideoMemSize = (64 << 20);	/*64M */
429 			break;
430 
431 		default:
432 			VideoMemSize = (32 << 20);	/*32M */
433 			break;
434 		}
435 	} else {
436 		switch (FBSize) {
437 		case 0x00001000:
438 			VideoMemSize = (8 << 20);	/*8M */
439 			break;
440 
441 		case 0x00002000:
442 			VideoMemSize = (16 << 20);	/*16M */
443 			break;
444 
445 		case 0x00003000:
446 			VideoMemSize = (32 << 20);	/*32M */
447 			break;
448 
449 		case 0x00004000:
450 			VideoMemSize = (64 << 20);	/*64M */
451 			break;
452 
453 		case 0x00005000:
454 			VideoMemSize = (128 << 20);	/*128M */
455 			break;
456 
457 		case 0x00006000:
458 			VideoMemSize = (256 << 20);	/*256M */
459 			break;
460 
461 		case 0x00007000:	/* Only on VX855/875 */
462 			VideoMemSize = (512 << 20);	/*512M */
463 			break;
464 
465 		default:
466 			VideoMemSize = (32 << 20);	/*32M */
467 			break;
468 		}
469 	}
470 
471 	return VideoMemSize;
472 }
473 
474 
475 /*
476  * Figure out and map our MMIO regions.
477  */
478 static int via_pci_setup_mmio(struct viafb_dev *vdev)
479 {
480 	int ret;
481 	/*
482 	 * Hook up to the device registers.  Note that we soldier
483 	 * on if it fails; the framebuffer can operate (without
484 	 * acceleration) without this region.
485 	 */
486 	vdev->engine_start = pci_resource_start(vdev->pdev, 1);
487 	vdev->engine_len = pci_resource_len(vdev->pdev, 1);
488 	vdev->engine_mmio = ioremap_nocache(vdev->engine_start,
489 			vdev->engine_len);
490 	if (vdev->engine_mmio == NULL)
491 		dev_err(&vdev->pdev->dev,
492 				"Unable to map engine MMIO; operation will be "
493 				"slow and crippled.\n");
494 	/*
495 	 * Map in framebuffer memory.  For now, failure here is
496 	 * fatal.  Unfortunately, in the absence of significant
497 	 * vmalloc space, failure here is also entirely plausible.
498 	 * Eventually we want to move away from mapping this
499 	 * entire region.
500 	 */
501 	if (vdev->chip_type == UNICHROME_VX900)
502 		vdev->fbmem_start = pci_resource_start(vdev->pdev, 2);
503 	else
504 		vdev->fbmem_start = pci_resource_start(vdev->pdev, 0);
505 	ret = vdev->fbmem_len = viafb_get_fb_size_from_pci(vdev->chip_type);
506 	if (ret < 0)
507 		goto out_unmap;
508 
509 	/* try to map less memory on failure, 8 MB should be still enough */
510 	for (; vdev->fbmem_len >= 8 << 20; vdev->fbmem_len /= 2) {
511 		vdev->fbmem = ioremap_wc(vdev->fbmem_start, vdev->fbmem_len);
512 		if (vdev->fbmem)
513 			break;
514 	}
515 
516 	if (vdev->fbmem == NULL) {
517 		ret = -ENOMEM;
518 		goto out_unmap;
519 	}
520 	return 0;
521 out_unmap:
522 	iounmap(vdev->engine_mmio);
523 	return ret;
524 }
525 
526 static void via_pci_teardown_mmio(struct viafb_dev *vdev)
527 {
528 	iounmap(vdev->fbmem);
529 	iounmap(vdev->engine_mmio);
530 }
531 
532 /*
533  * Create our subsidiary devices.
534  */
535 static struct viafb_subdev_info {
536 	char *name;
537 	struct platform_device *platdev;
538 } viafb_subdevs[] = {
539 	{
540 		.name = "viafb-gpio",
541 	},
542 	{
543 		.name = "viafb-i2c",
544 	},
545 #if defined(CONFIG_VIDEO_VIA_CAMERA) || defined(CONFIG_VIDEO_VIA_CAMERA_MODULE)
546 	{
547 		.name = "viafb-camera",
548 	},
549 #endif
550 };
551 #define N_SUBDEVS ARRAY_SIZE(viafb_subdevs)
552 
553 static int via_create_subdev(struct viafb_dev *vdev,
554 			     struct viafb_subdev_info *info)
555 {
556 	int ret;
557 
558 	info->platdev = platform_device_alloc(info->name, -1);
559 	if (!info->platdev) {
560 		dev_err(&vdev->pdev->dev, "Unable to allocate pdev %s\n",
561 			info->name);
562 		return -ENOMEM;
563 	}
564 	info->platdev->dev.parent = &vdev->pdev->dev;
565 	info->platdev->dev.platform_data = vdev;
566 	ret = platform_device_add(info->platdev);
567 	if (ret) {
568 		dev_err(&vdev->pdev->dev, "Unable to add pdev %s\n",
569 				info->name);
570 		platform_device_put(info->platdev);
571 		info->platdev = NULL;
572 	}
573 	return ret;
574 }
575 
576 static int via_setup_subdevs(struct viafb_dev *vdev)
577 {
578 	int i;
579 
580 	/*
581 	 * Ignore return values.  Even if some of the devices
582 	 * fail to be created, we'll still be able to use some
583 	 * of the rest.
584 	 */
585 	for (i = 0; i < N_SUBDEVS; i++)
586 		via_create_subdev(vdev, viafb_subdevs + i);
587 	return 0;
588 }
589 
590 static void via_teardown_subdevs(void)
591 {
592 	int i;
593 
594 	for (i = 0; i < N_SUBDEVS; i++)
595 		if (viafb_subdevs[i].platdev) {
596 			viafb_subdevs[i].platdev->dev.platform_data = NULL;
597 			platform_device_unregister(viafb_subdevs[i].platdev);
598 		}
599 }
600 
601 /*
602  * Power management functions
603  */
604 #ifdef CONFIG_PM
605 static LIST_HEAD(viafb_pm_hooks);
606 static DEFINE_MUTEX(viafb_pm_hooks_lock);
607 
608 void viafb_pm_register(struct viafb_pm_hooks *hooks)
609 {
610 	INIT_LIST_HEAD(&hooks->list);
611 
612 	mutex_lock(&viafb_pm_hooks_lock);
613 	list_add_tail(&hooks->list, &viafb_pm_hooks);
614 	mutex_unlock(&viafb_pm_hooks_lock);
615 }
616 EXPORT_SYMBOL_GPL(viafb_pm_register);
617 
618 void viafb_pm_unregister(struct viafb_pm_hooks *hooks)
619 {
620 	mutex_lock(&viafb_pm_hooks_lock);
621 	list_del(&hooks->list);
622 	mutex_unlock(&viafb_pm_hooks_lock);
623 }
624 EXPORT_SYMBOL_GPL(viafb_pm_unregister);
625 
626 static int via_suspend(struct pci_dev *pdev, pm_message_t state)
627 {
628 	struct viafb_pm_hooks *hooks;
629 
630 	if (state.event != PM_EVENT_SUSPEND)
631 		return 0;
632 	/*
633 	 * "I've occasionally hit a few drivers that caused suspend
634 	 * failures, and each and every time it was a driver bug, and
635 	 * the right thing to do was to just ignore the error and suspend
636 	 * anyway - returning an error code and trying to undo the suspend
637 	 * is not what anybody ever really wants, even if our model
638 	 *_allows_ for it."
639 	 * -- Linus Torvalds, Dec. 7, 2009
640 	 */
641 	mutex_lock(&viafb_pm_hooks_lock);
642 	list_for_each_entry_reverse(hooks, &viafb_pm_hooks, list)
643 		hooks->suspend(hooks->private);
644 	mutex_unlock(&viafb_pm_hooks_lock);
645 
646 	pci_save_state(pdev);
647 	pci_disable_device(pdev);
648 	pci_set_power_state(pdev, pci_choose_state(pdev, state));
649 	return 0;
650 }
651 
652 static int via_resume(struct pci_dev *pdev)
653 {
654 	struct viafb_pm_hooks *hooks;
655 
656 	/* Get the bus side powered up */
657 	pci_set_power_state(pdev, PCI_D0);
658 	pci_restore_state(pdev);
659 	if (pci_enable_device(pdev))
660 		return 0;
661 
662 	pci_set_master(pdev);
663 
664 	/* Now bring back any subdevs */
665 	mutex_lock(&viafb_pm_hooks_lock);
666 	list_for_each_entry(hooks, &viafb_pm_hooks, list)
667 		hooks->resume(hooks->private);
668 	mutex_unlock(&viafb_pm_hooks_lock);
669 
670 	return 0;
671 }
672 #endif /* CONFIG_PM */
673 
674 static int via_pci_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
675 {
676 	int ret;
677 
678 	ret = pci_enable_device(pdev);
679 	if (ret)
680 		return ret;
681 
682 	/*
683 	 * Global device initialization.
684 	 */
685 	memset(&global_dev, 0, sizeof(global_dev));
686 	global_dev.pdev = pdev;
687 	global_dev.chip_type = ent->driver_data;
688 	global_dev.port_cfg = adap_configs;
689 	if (machine_is_olpc())
690 		global_dev.port_cfg = olpc_adap_configs;
691 
692 	spin_lock_init(&global_dev.reg_lock);
693 	ret = via_pci_setup_mmio(&global_dev);
694 	if (ret)
695 		goto out_disable;
696 	/*
697 	 * Set up interrupts and create our subdevices.  Continue even if
698 	 * some things fail.
699 	 */
700 	viafb_int_init();
701 	via_setup_subdevs(&global_dev);
702 	/*
703 	 * Set up the framebuffer device
704 	 */
705 	ret = via_fb_pci_probe(&global_dev);
706 	if (ret)
707 		goto out_subdevs;
708 	return 0;
709 
710 out_subdevs:
711 	via_teardown_subdevs();
712 	via_pci_teardown_mmio(&global_dev);
713 out_disable:
714 	pci_disable_device(pdev);
715 	return ret;
716 }
717 
718 static void via_pci_remove(struct pci_dev *pdev)
719 {
720 	via_teardown_subdevs();
721 	via_fb_pci_remove(pdev);
722 	via_pci_teardown_mmio(&global_dev);
723 	pci_disable_device(pdev);
724 }
725 
726 
727 static struct pci_device_id via_pci_table[] = {
728 	{ PCI_DEVICE(PCI_VENDOR_ID_VIA, UNICHROME_CLE266_DID),
729 	  .driver_data = UNICHROME_CLE266 },
730 	{ PCI_DEVICE(PCI_VENDOR_ID_VIA, UNICHROME_K400_DID),
731 	  .driver_data = UNICHROME_K400 },
732 	{ PCI_DEVICE(PCI_VENDOR_ID_VIA, UNICHROME_K800_DID),
733 	  .driver_data = UNICHROME_K800 },
734 	{ PCI_DEVICE(PCI_VENDOR_ID_VIA, UNICHROME_PM800_DID),
735 	  .driver_data = UNICHROME_PM800 },
736 	{ PCI_DEVICE(PCI_VENDOR_ID_VIA, UNICHROME_CN700_DID),
737 	  .driver_data = UNICHROME_CN700 },
738 	{ PCI_DEVICE(PCI_VENDOR_ID_VIA, UNICHROME_CX700_DID),
739 	  .driver_data = UNICHROME_CX700 },
740 	{ PCI_DEVICE(PCI_VENDOR_ID_VIA, UNICHROME_CN750_DID),
741 	  .driver_data = UNICHROME_CN750 },
742 	{ PCI_DEVICE(PCI_VENDOR_ID_VIA, UNICHROME_K8M890_DID),
743 	  .driver_data = UNICHROME_K8M890 },
744 	{ PCI_DEVICE(PCI_VENDOR_ID_VIA, UNICHROME_P4M890_DID),
745 	  .driver_data = UNICHROME_P4M890 },
746 	{ PCI_DEVICE(PCI_VENDOR_ID_VIA, UNICHROME_P4M900_DID),
747 	  .driver_data = UNICHROME_P4M900 },
748 	{ PCI_DEVICE(PCI_VENDOR_ID_VIA, UNICHROME_VX800_DID),
749 	  .driver_data = UNICHROME_VX800 },
750 	{ PCI_DEVICE(PCI_VENDOR_ID_VIA, UNICHROME_VX855_DID),
751 	  .driver_data = UNICHROME_VX855 },
752 	{ PCI_DEVICE(PCI_VENDOR_ID_VIA, UNICHROME_VX900_DID),
753 	  .driver_data = UNICHROME_VX900 },
754 	{ }
755 };
756 MODULE_DEVICE_TABLE(pci, via_pci_table);
757 
758 static struct pci_driver via_driver = {
759 	.name		= "viafb",
760 	.id_table	= via_pci_table,
761 	.probe		= via_pci_probe,
762 	.remove		= via_pci_remove,
763 #ifdef CONFIG_PM
764 	.suspend	= via_suspend,
765 	.resume		= via_resume,
766 #endif
767 };
768 
769 static int __init via_core_init(void)
770 {
771 	int ret;
772 
773 	ret = viafb_init();
774 	if (ret)
775 		return ret;
776 	viafb_i2c_init();
777 	viafb_gpio_init();
778 	return pci_register_driver(&via_driver);
779 }
780 
781 static void __exit via_core_exit(void)
782 {
783 	pci_unregister_driver(&via_driver);
784 	viafb_gpio_exit();
785 	viafb_i2c_exit();
786 	viafb_exit();
787 }
788 
789 module_init(via_core_init);
790 module_exit(via_core_exit);
791