1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * Copyright (c) Intel Corp. 2007. 4 * All Rights Reserved. 5 * 6 * Intel funded Tungsten Graphics (http://www.tungstengraphics.com) to 7 * develop this driver. 8 * 9 * This file is part of the Vermilion Range fb driver. 10 * 11 * Authors: 12 * Thomas Hellström <thomas-at-tungstengraphics-dot-com> 13 * Michel Dänzer <michel-at-tungstengraphics-dot-com> 14 * Alan Hourihane <alanh-at-tungstengraphics-dot-com> 15 */ 16 17 #include <linux/aperture.h> 18 #include <linux/module.h> 19 #include <linux/kernel.h> 20 #include <linux/errno.h> 21 #include <linux/string.h> 22 #include <linux/delay.h> 23 #include <linux/slab.h> 24 #include <linux/mm.h> 25 #include <linux/fb.h> 26 #include <linux/pci.h> 27 #include <asm/set_memory.h> 28 #include <asm/tlbflush.h> 29 #include <linux/mmzone.h> 30 31 /* #define VERMILION_DEBUG */ 32 33 #include "vermilion.h" 34 35 #define MODULE_NAME "vmlfb" 36 37 #define VML_TOHW(_val, _width) ((((_val) << (_width)) + 0x7FFF - (_val)) >> 16) 38 39 static struct mutex vml_mutex; 40 static struct list_head global_no_mode; 41 static struct list_head global_has_mode; 42 static struct fb_ops vmlfb_ops; 43 static struct vml_sys *subsys = NULL; 44 static char *vml_default_mode = "1024x768@60"; 45 static const struct fb_videomode defaultmode = { 46 NULL, 60, 1024, 768, 12896, 144, 24, 29, 3, 136, 6, 47 0, FB_VMODE_NONINTERLACED 48 }; 49 50 static u32 vml_mem_requested = (10 * 1024 * 1024); 51 static u32 vml_mem_contig = (4 * 1024 * 1024); 52 static u32 vml_mem_min = (4 * 1024 * 1024); 53 54 static u32 vml_clocks[] = { 55 6750, 56 13500, 57 27000, 58 29700, 59 37125, 60 54000, 61 59400, 62 74250, 63 120000, 64 148500 65 }; 66 67 static u32 vml_num_clocks = ARRAY_SIZE(vml_clocks); 68 69 /* 70 * Allocate a contiguous vram area and make its linear kernel map 71 * uncached. 72 */ 73 74 static int vmlfb_alloc_vram_area(struct vram_area *va, unsigned max_order, 75 unsigned min_order) 76 { 77 gfp_t flags; 78 unsigned long i; 79 80 max_order++; 81 do { 82 /* 83 * Really try hard to get the needed memory. 84 * We need memory below the first 32MB, so we 85 * add the __GFP_DMA flag that guarantees that we are 86 * below the first 16MB. 87 */ 88 89 flags = __GFP_DMA | __GFP_HIGH | __GFP_KSWAPD_RECLAIM; 90 va->logical = 91 __get_free_pages(flags, --max_order); 92 } while (va->logical == 0 && max_order > min_order); 93 94 if (!va->logical) 95 return -ENOMEM; 96 97 va->phys = virt_to_phys((void *)va->logical); 98 va->size = PAGE_SIZE << max_order; 99 va->order = max_order; 100 101 /* 102 * It seems like __get_free_pages only ups the usage count 103 * of the first page. This doesn't work with fault mapping, so 104 * up the usage count once more (XXX: should use split_page or 105 * compound page). 106 */ 107 108 memset((void *)va->logical, 0x00, va->size); 109 for (i = va->logical; i < va->logical + va->size; i += PAGE_SIZE) { 110 get_page(virt_to_page(i)); 111 } 112 113 /* 114 * Change caching policy of the linear kernel map to avoid 115 * mapping type conflicts with user-space mappings. 116 */ 117 set_pages_uc(virt_to_page(va->logical), va->size >> PAGE_SHIFT); 118 119 printk(KERN_DEBUG MODULE_NAME 120 ": Allocated %ld bytes vram area at 0x%08lx\n", 121 va->size, va->phys); 122 123 return 0; 124 } 125 126 /* 127 * Free a contiguous vram area and reset its linear kernel map 128 * mapping type. 129 */ 130 131 static void vmlfb_free_vram_area(struct vram_area *va) 132 { 133 unsigned long j; 134 135 if (va->logical) { 136 137 /* 138 * Reset the linear kernel map caching policy. 139 */ 140 141 set_pages_wb(virt_to_page(va->logical), 142 va->size >> PAGE_SHIFT); 143 144 /* 145 * Decrease the usage count on the pages we've used 146 * to compensate for upping when allocating. 147 */ 148 149 for (j = va->logical; j < va->logical + va->size; 150 j += PAGE_SIZE) { 151 (void)put_page_testzero(virt_to_page(j)); 152 } 153 154 printk(KERN_DEBUG MODULE_NAME 155 ": Freeing %ld bytes vram area at 0x%08lx\n", 156 va->size, va->phys); 157 free_pages(va->logical, va->order); 158 159 va->logical = 0; 160 } 161 } 162 163 /* 164 * Free allocated vram. 165 */ 166 167 static void vmlfb_free_vram(struct vml_info *vinfo) 168 { 169 int i; 170 171 for (i = 0; i < vinfo->num_areas; ++i) { 172 vmlfb_free_vram_area(&vinfo->vram[i]); 173 } 174 vinfo->num_areas = 0; 175 } 176 177 /* 178 * Allocate vram. Currently we try to allocate contiguous areas from the 179 * __GFP_DMA zone and puzzle them together. A better approach would be to 180 * allocate one contiguous area for scanout and use one-page allocations for 181 * offscreen areas. This requires user-space and GPU virtual mappings. 182 */ 183 184 static int vmlfb_alloc_vram(struct vml_info *vinfo, 185 size_t requested, 186 size_t min_total, size_t min_contig) 187 { 188 int i, j; 189 int order; 190 int contiguous; 191 int err; 192 struct vram_area *va; 193 struct vram_area *va2; 194 195 vinfo->num_areas = 0; 196 for (i = 0; i < VML_VRAM_AREAS; ++i) { 197 va = &vinfo->vram[i]; 198 order = 0; 199 200 while (requested > (PAGE_SIZE << order) && order < MAX_ORDER) 201 order++; 202 203 err = vmlfb_alloc_vram_area(va, order, 0); 204 205 if (err) 206 break; 207 208 if (i == 0) { 209 vinfo->vram_start = va->phys; 210 vinfo->vram_logical = (void __iomem *) va->logical; 211 vinfo->vram_contig_size = va->size; 212 vinfo->num_areas = 1; 213 } else { 214 contiguous = 0; 215 216 for (j = 0; j < i; ++j) { 217 va2 = &vinfo->vram[j]; 218 if (va->phys + va->size == va2->phys || 219 va2->phys + va2->size == va->phys) { 220 contiguous = 1; 221 break; 222 } 223 } 224 225 if (contiguous) { 226 vinfo->num_areas++; 227 if (va->phys < vinfo->vram_start) { 228 vinfo->vram_start = va->phys; 229 vinfo->vram_logical = 230 (void __iomem *)va->logical; 231 } 232 vinfo->vram_contig_size += va->size; 233 } else { 234 vmlfb_free_vram_area(va); 235 break; 236 } 237 } 238 239 if (requested < va->size) 240 break; 241 else 242 requested -= va->size; 243 } 244 245 if (vinfo->vram_contig_size > min_total && 246 vinfo->vram_contig_size > min_contig) { 247 248 printk(KERN_DEBUG MODULE_NAME 249 ": Contiguous vram: %ld bytes at physical 0x%08lx.\n", 250 (unsigned long)vinfo->vram_contig_size, 251 (unsigned long)vinfo->vram_start); 252 253 return 0; 254 } 255 256 printk(KERN_ERR MODULE_NAME 257 ": Could not allocate requested minimal amount of vram.\n"); 258 259 vmlfb_free_vram(vinfo); 260 261 return -ENOMEM; 262 } 263 264 /* 265 * Find the GPU to use with our display controller. 266 */ 267 268 static int vmlfb_get_gpu(struct vml_par *par) 269 { 270 mutex_lock(&vml_mutex); 271 272 par->gpu = pci_get_device(PCI_VENDOR_ID_INTEL, VML_DEVICE_GPU, NULL); 273 274 if (!par->gpu) { 275 mutex_unlock(&vml_mutex); 276 return -ENODEV; 277 } 278 279 mutex_unlock(&vml_mutex); 280 281 if (pci_enable_device(par->gpu) < 0) 282 return -ENODEV; 283 284 return 0; 285 } 286 287 /* 288 * Find a contiguous vram area that contains a given offset from vram start. 289 */ 290 static int vmlfb_vram_offset(struct vml_info *vinfo, unsigned long offset) 291 { 292 unsigned long aoffset; 293 unsigned i; 294 295 for (i = 0; i < vinfo->num_areas; ++i) { 296 aoffset = offset - (vinfo->vram[i].phys - vinfo->vram_start); 297 298 if (aoffset < vinfo->vram[i].size) { 299 return 0; 300 } 301 } 302 303 return -EINVAL; 304 } 305 306 /* 307 * Remap the MMIO register spaces of the VDC and the GPU. 308 */ 309 310 static int vmlfb_enable_mmio(struct vml_par *par) 311 { 312 int err; 313 314 par->vdc_mem_base = pci_resource_start(par->vdc, 0); 315 par->vdc_mem_size = pci_resource_len(par->vdc, 0); 316 if (!request_mem_region(par->vdc_mem_base, par->vdc_mem_size, "vmlfb")) { 317 printk(KERN_ERR MODULE_NAME 318 ": Could not claim display controller MMIO.\n"); 319 return -EBUSY; 320 } 321 par->vdc_mem = ioremap(par->vdc_mem_base, par->vdc_mem_size); 322 if (par->vdc_mem == NULL) { 323 printk(KERN_ERR MODULE_NAME 324 ": Could not map display controller MMIO.\n"); 325 err = -ENOMEM; 326 goto out_err_0; 327 } 328 329 par->gpu_mem_base = pci_resource_start(par->gpu, 0); 330 par->gpu_mem_size = pci_resource_len(par->gpu, 0); 331 if (!request_mem_region(par->gpu_mem_base, par->gpu_mem_size, "vmlfb")) { 332 printk(KERN_ERR MODULE_NAME ": Could not claim GPU MMIO.\n"); 333 err = -EBUSY; 334 goto out_err_1; 335 } 336 par->gpu_mem = ioremap(par->gpu_mem_base, par->gpu_mem_size); 337 if (par->gpu_mem == NULL) { 338 printk(KERN_ERR MODULE_NAME ": Could not map GPU MMIO.\n"); 339 err = -ENOMEM; 340 goto out_err_2; 341 } 342 343 return 0; 344 345 out_err_2: 346 release_mem_region(par->gpu_mem_base, par->gpu_mem_size); 347 out_err_1: 348 iounmap(par->vdc_mem); 349 out_err_0: 350 release_mem_region(par->vdc_mem_base, par->vdc_mem_size); 351 return err; 352 } 353 354 /* 355 * Unmap the VDC and GPU register spaces. 356 */ 357 358 static void vmlfb_disable_mmio(struct vml_par *par) 359 { 360 iounmap(par->gpu_mem); 361 release_mem_region(par->gpu_mem_base, par->gpu_mem_size); 362 iounmap(par->vdc_mem); 363 release_mem_region(par->vdc_mem_base, par->vdc_mem_size); 364 } 365 366 /* 367 * Release and uninit the VDC and GPU. 368 */ 369 370 static void vmlfb_release_devices(struct vml_par *par) 371 { 372 if (atomic_dec_and_test(&par->refcount)) { 373 pci_disable_device(par->gpu); 374 pci_disable_device(par->vdc); 375 } 376 } 377 378 /* 379 * Free up allocated resources for a device. 380 */ 381 382 static void vml_pci_remove(struct pci_dev *dev) 383 { 384 struct fb_info *info; 385 struct vml_info *vinfo; 386 struct vml_par *par; 387 388 info = pci_get_drvdata(dev); 389 if (info) { 390 vinfo = container_of(info, struct vml_info, info); 391 par = vinfo->par; 392 mutex_lock(&vml_mutex); 393 unregister_framebuffer(info); 394 fb_dealloc_cmap(&info->cmap); 395 vmlfb_free_vram(vinfo); 396 vmlfb_disable_mmio(par); 397 vmlfb_release_devices(par); 398 kfree(vinfo); 399 kfree(par); 400 mutex_unlock(&vml_mutex); 401 } 402 } 403 404 static void vmlfb_set_pref_pixel_format(struct fb_var_screeninfo *var) 405 { 406 switch (var->bits_per_pixel) { 407 case 16: 408 var->blue.offset = 0; 409 var->blue.length = 5; 410 var->green.offset = 5; 411 var->green.length = 5; 412 var->red.offset = 10; 413 var->red.length = 5; 414 var->transp.offset = 15; 415 var->transp.length = 1; 416 break; 417 case 32: 418 var->blue.offset = 0; 419 var->blue.length = 8; 420 var->green.offset = 8; 421 var->green.length = 8; 422 var->red.offset = 16; 423 var->red.length = 8; 424 var->transp.offset = 24; 425 var->transp.length = 0; 426 break; 427 default: 428 break; 429 } 430 431 var->blue.msb_right = var->green.msb_right = 432 var->red.msb_right = var->transp.msb_right = 0; 433 } 434 435 /* 436 * Device initialization. 437 * We initialize one vml_par struct per device and one vml_info 438 * struct per pipe. Currently we have only one pipe. 439 */ 440 441 static int vml_pci_probe(struct pci_dev *dev, const struct pci_device_id *id) 442 { 443 struct vml_info *vinfo; 444 struct fb_info *info; 445 struct vml_par *par; 446 int err; 447 448 err = aperture_remove_conflicting_pci_devices(dev, "vmlfb"); 449 if (err) 450 return err; 451 452 par = kzalloc(sizeof(*par), GFP_KERNEL); 453 if (par == NULL) 454 return -ENOMEM; 455 456 vinfo = kzalloc(sizeof(*vinfo), GFP_KERNEL); 457 if (vinfo == NULL) { 458 err = -ENOMEM; 459 goto out_err_0; 460 } 461 462 vinfo->par = par; 463 par->vdc = dev; 464 atomic_set(&par->refcount, 1); 465 466 switch (id->device) { 467 case VML_DEVICE_VDC: 468 if ((err = vmlfb_get_gpu(par))) 469 goto out_err_1; 470 pci_set_drvdata(dev, &vinfo->info); 471 break; 472 default: 473 err = -ENODEV; 474 goto out_err_1; 475 } 476 477 info = &vinfo->info; 478 info->flags = FBINFO_DEFAULT | FBINFO_PARTIAL_PAN_OK; 479 480 err = vmlfb_enable_mmio(par); 481 if (err) 482 goto out_err_2; 483 484 err = vmlfb_alloc_vram(vinfo, vml_mem_requested, 485 vml_mem_contig, vml_mem_min); 486 if (err) 487 goto out_err_3; 488 489 strcpy(info->fix.id, "Vermilion Range"); 490 info->fix.mmio_start = 0; 491 info->fix.mmio_len = 0; 492 info->fix.smem_start = vinfo->vram_start; 493 info->fix.smem_len = vinfo->vram_contig_size; 494 info->fix.type = FB_TYPE_PACKED_PIXELS; 495 info->fix.visual = FB_VISUAL_TRUECOLOR; 496 info->fix.ypanstep = 1; 497 info->fix.xpanstep = 1; 498 info->fix.ywrapstep = 0; 499 info->fix.accel = FB_ACCEL_NONE; 500 info->screen_base = vinfo->vram_logical; 501 info->pseudo_palette = vinfo->pseudo_palette; 502 info->par = par; 503 info->fbops = &vmlfb_ops; 504 info->device = &dev->dev; 505 506 INIT_LIST_HEAD(&vinfo->head); 507 vinfo->pipe_disabled = 1; 508 vinfo->cur_blank_mode = FB_BLANK_UNBLANK; 509 510 info->var.grayscale = 0; 511 info->var.bits_per_pixel = 16; 512 vmlfb_set_pref_pixel_format(&info->var); 513 514 if (!fb_find_mode 515 (&info->var, info, vml_default_mode, NULL, 0, &defaultmode, 16)) { 516 printk(KERN_ERR MODULE_NAME ": Could not find initial mode\n"); 517 } 518 519 if (fb_alloc_cmap(&info->cmap, 256, 1) < 0) { 520 err = -ENOMEM; 521 goto out_err_4; 522 } 523 524 err = register_framebuffer(info); 525 if (err) { 526 printk(KERN_ERR MODULE_NAME ": Register framebuffer error.\n"); 527 goto out_err_5; 528 } 529 530 printk("Initialized vmlfb\n"); 531 532 return 0; 533 534 out_err_5: 535 fb_dealloc_cmap(&info->cmap); 536 out_err_4: 537 vmlfb_free_vram(vinfo); 538 out_err_3: 539 vmlfb_disable_mmio(par); 540 out_err_2: 541 vmlfb_release_devices(par); 542 out_err_1: 543 kfree(vinfo); 544 out_err_0: 545 kfree(par); 546 return err; 547 } 548 549 static int vmlfb_open(struct fb_info *info, int user) 550 { 551 /* 552 * Save registers here? 553 */ 554 return 0; 555 } 556 557 static int vmlfb_release(struct fb_info *info, int user) 558 { 559 /* 560 * Restore registers here. 561 */ 562 563 return 0; 564 } 565 566 static int vml_nearest_clock(int clock) 567 { 568 569 int i; 570 int cur_index; 571 int cur_diff; 572 int diff; 573 574 cur_index = 0; 575 cur_diff = clock - vml_clocks[0]; 576 cur_diff = (cur_diff < 0) ? -cur_diff : cur_diff; 577 for (i = 1; i < vml_num_clocks; ++i) { 578 diff = clock - vml_clocks[i]; 579 diff = (diff < 0) ? -diff : diff; 580 if (diff < cur_diff) { 581 cur_index = i; 582 cur_diff = diff; 583 } 584 } 585 return vml_clocks[cur_index]; 586 } 587 588 static int vmlfb_check_var_locked(struct fb_var_screeninfo *var, 589 struct vml_info *vinfo) 590 { 591 u32 pitch; 592 u64 mem; 593 int nearest_clock; 594 int clock; 595 int clock_diff; 596 struct fb_var_screeninfo v; 597 598 v = *var; 599 clock = PICOS2KHZ(var->pixclock); 600 601 if (subsys && subsys->nearest_clock) { 602 nearest_clock = subsys->nearest_clock(subsys, clock); 603 } else { 604 nearest_clock = vml_nearest_clock(clock); 605 } 606 607 /* 608 * Accept a 20% diff. 609 */ 610 611 clock_diff = nearest_clock - clock; 612 clock_diff = (clock_diff < 0) ? -clock_diff : clock_diff; 613 if (clock_diff > clock / 5) { 614 #if 0 615 printk(KERN_DEBUG MODULE_NAME ": Diff failure. %d %d\n",clock_diff,clock); 616 #endif 617 return -EINVAL; 618 } 619 620 v.pixclock = KHZ2PICOS(nearest_clock); 621 622 if (var->xres > VML_MAX_XRES || var->yres > VML_MAX_YRES) { 623 printk(KERN_DEBUG MODULE_NAME ": Resolution failure.\n"); 624 return -EINVAL; 625 } 626 if (var->xres_virtual > VML_MAX_XRES_VIRTUAL) { 627 printk(KERN_DEBUG MODULE_NAME 628 ": Virtual resolution failure.\n"); 629 return -EINVAL; 630 } 631 switch (v.bits_per_pixel) { 632 case 0 ... 16: 633 v.bits_per_pixel = 16; 634 break; 635 case 17 ... 32: 636 v.bits_per_pixel = 32; 637 break; 638 default: 639 printk(KERN_DEBUG MODULE_NAME ": Invalid bpp: %d.\n", 640 var->bits_per_pixel); 641 return -EINVAL; 642 } 643 644 pitch = ALIGN((var->xres * var->bits_per_pixel) >> 3, 0x40); 645 mem = (u64)pitch * var->yres_virtual; 646 if (mem > vinfo->vram_contig_size) { 647 return -ENOMEM; 648 } 649 650 switch (v.bits_per_pixel) { 651 case 16: 652 if (var->blue.offset != 0 || 653 var->blue.length != 5 || 654 var->green.offset != 5 || 655 var->green.length != 5 || 656 var->red.offset != 10 || 657 var->red.length != 5 || 658 var->transp.offset != 15 || var->transp.length != 1) { 659 vmlfb_set_pref_pixel_format(&v); 660 } 661 break; 662 case 32: 663 if (var->blue.offset != 0 || 664 var->blue.length != 8 || 665 var->green.offset != 8 || 666 var->green.length != 8 || 667 var->red.offset != 16 || 668 var->red.length != 8 || 669 (var->transp.length != 0 && var->transp.length != 8) || 670 (var->transp.length == 8 && var->transp.offset != 24)) { 671 vmlfb_set_pref_pixel_format(&v); 672 } 673 break; 674 default: 675 return -EINVAL; 676 } 677 678 *var = v; 679 680 return 0; 681 } 682 683 static int vmlfb_check_var(struct fb_var_screeninfo *var, struct fb_info *info) 684 { 685 struct vml_info *vinfo = container_of(info, struct vml_info, info); 686 int ret; 687 688 mutex_lock(&vml_mutex); 689 ret = vmlfb_check_var_locked(var, vinfo); 690 mutex_unlock(&vml_mutex); 691 692 return ret; 693 } 694 695 static void vml_wait_vblank(struct vml_info *vinfo) 696 { 697 /* Wait for vblank. For now, just wait for a 50Hz cycle (20ms)) */ 698 mdelay(20); 699 } 700 701 static void vmlfb_disable_pipe(struct vml_info *vinfo) 702 { 703 struct vml_par *par = vinfo->par; 704 705 /* Disable the MDVO pad */ 706 VML_WRITE32(par, VML_RCOMPSTAT, 0); 707 while (!(VML_READ32(par, VML_RCOMPSTAT) & VML_MDVO_VDC_I_RCOMP)) ; 708 709 /* Disable display planes */ 710 VML_WRITE32(par, VML_DSPCCNTR, 711 VML_READ32(par, VML_DSPCCNTR) & ~VML_GFX_ENABLE); 712 (void)VML_READ32(par, VML_DSPCCNTR); 713 /* Wait for vblank for the disable to take effect */ 714 vml_wait_vblank(vinfo); 715 716 /* Next, disable display pipes */ 717 VML_WRITE32(par, VML_PIPEACONF, 0); 718 (void)VML_READ32(par, VML_PIPEACONF); 719 720 vinfo->pipe_disabled = 1; 721 } 722 723 #ifdef VERMILION_DEBUG 724 static void vml_dump_regs(struct vml_info *vinfo) 725 { 726 struct vml_par *par = vinfo->par; 727 728 printk(KERN_DEBUG MODULE_NAME ": Modesetting register dump:\n"); 729 printk(KERN_DEBUG MODULE_NAME ": \tHTOTAL_A : 0x%08x\n", 730 (unsigned)VML_READ32(par, VML_HTOTAL_A)); 731 printk(KERN_DEBUG MODULE_NAME ": \tHBLANK_A : 0x%08x\n", 732 (unsigned)VML_READ32(par, VML_HBLANK_A)); 733 printk(KERN_DEBUG MODULE_NAME ": \tHSYNC_A : 0x%08x\n", 734 (unsigned)VML_READ32(par, VML_HSYNC_A)); 735 printk(KERN_DEBUG MODULE_NAME ": \tVTOTAL_A : 0x%08x\n", 736 (unsigned)VML_READ32(par, VML_VTOTAL_A)); 737 printk(KERN_DEBUG MODULE_NAME ": \tVBLANK_A : 0x%08x\n", 738 (unsigned)VML_READ32(par, VML_VBLANK_A)); 739 printk(KERN_DEBUG MODULE_NAME ": \tVSYNC_A : 0x%08x\n", 740 (unsigned)VML_READ32(par, VML_VSYNC_A)); 741 printk(KERN_DEBUG MODULE_NAME ": \tDSPCSTRIDE : 0x%08x\n", 742 (unsigned)VML_READ32(par, VML_DSPCSTRIDE)); 743 printk(KERN_DEBUG MODULE_NAME ": \tDSPCSIZE : 0x%08x\n", 744 (unsigned)VML_READ32(par, VML_DSPCSIZE)); 745 printk(KERN_DEBUG MODULE_NAME ": \tDSPCPOS : 0x%08x\n", 746 (unsigned)VML_READ32(par, VML_DSPCPOS)); 747 printk(KERN_DEBUG MODULE_NAME ": \tDSPARB : 0x%08x\n", 748 (unsigned)VML_READ32(par, VML_DSPARB)); 749 printk(KERN_DEBUG MODULE_NAME ": \tDSPCADDR : 0x%08x\n", 750 (unsigned)VML_READ32(par, VML_DSPCADDR)); 751 printk(KERN_DEBUG MODULE_NAME ": \tBCLRPAT_A : 0x%08x\n", 752 (unsigned)VML_READ32(par, VML_BCLRPAT_A)); 753 printk(KERN_DEBUG MODULE_NAME ": \tCANVSCLR_A : 0x%08x\n", 754 (unsigned)VML_READ32(par, VML_CANVSCLR_A)); 755 printk(KERN_DEBUG MODULE_NAME ": \tPIPEASRC : 0x%08x\n", 756 (unsigned)VML_READ32(par, VML_PIPEASRC)); 757 printk(KERN_DEBUG MODULE_NAME ": \tPIPEACONF : 0x%08x\n", 758 (unsigned)VML_READ32(par, VML_PIPEACONF)); 759 printk(KERN_DEBUG MODULE_NAME ": \tDSPCCNTR : 0x%08x\n", 760 (unsigned)VML_READ32(par, VML_DSPCCNTR)); 761 printk(KERN_DEBUG MODULE_NAME ": \tRCOMPSTAT : 0x%08x\n", 762 (unsigned)VML_READ32(par, VML_RCOMPSTAT)); 763 printk(KERN_DEBUG MODULE_NAME ": End of modesetting register dump.\n"); 764 } 765 #endif 766 767 static int vmlfb_set_par_locked(struct vml_info *vinfo) 768 { 769 struct vml_par *par = vinfo->par; 770 struct fb_info *info = &vinfo->info; 771 struct fb_var_screeninfo *var = &info->var; 772 u32 htotal, hactive, hblank_start, hblank_end, hsync_start, hsync_end; 773 u32 vtotal, vactive, vblank_start, vblank_end, vsync_start, vsync_end; 774 u32 dspcntr; 775 int clock; 776 777 vinfo->bytes_per_pixel = var->bits_per_pixel >> 3; 778 vinfo->stride = ALIGN(var->xres_virtual * vinfo->bytes_per_pixel, 0x40); 779 info->fix.line_length = vinfo->stride; 780 781 if (!subsys) 782 return 0; 783 784 htotal = 785 var->xres + var->right_margin + var->hsync_len + var->left_margin; 786 hactive = var->xres; 787 hblank_start = var->xres; 788 hblank_end = htotal; 789 hsync_start = hactive + var->right_margin; 790 hsync_end = hsync_start + var->hsync_len; 791 792 vtotal = 793 var->yres + var->lower_margin + var->vsync_len + var->upper_margin; 794 vactive = var->yres; 795 vblank_start = var->yres; 796 vblank_end = vtotal; 797 vsync_start = vactive + var->lower_margin; 798 vsync_end = vsync_start + var->vsync_len; 799 800 dspcntr = VML_GFX_ENABLE | VML_GFX_GAMMABYPASS; 801 clock = PICOS2KHZ(var->pixclock); 802 803 if (subsys->nearest_clock) { 804 clock = subsys->nearest_clock(subsys, clock); 805 } else { 806 clock = vml_nearest_clock(clock); 807 } 808 printk(KERN_DEBUG MODULE_NAME 809 ": Set mode Hfreq : %d kHz, Vfreq : %d Hz.\n", clock / htotal, 810 ((clock / htotal) * 1000) / vtotal); 811 812 switch (var->bits_per_pixel) { 813 case 16: 814 dspcntr |= VML_GFX_ARGB1555; 815 break; 816 case 32: 817 if (var->transp.length == 8) 818 dspcntr |= VML_GFX_ARGB8888 | VML_GFX_ALPHAMULT; 819 else 820 dspcntr |= VML_GFX_RGB0888; 821 break; 822 default: 823 return -EINVAL; 824 } 825 826 vmlfb_disable_pipe(vinfo); 827 mb(); 828 829 if (subsys->set_clock) 830 subsys->set_clock(subsys, clock); 831 else 832 return -EINVAL; 833 834 VML_WRITE32(par, VML_HTOTAL_A, ((htotal - 1) << 16) | (hactive - 1)); 835 VML_WRITE32(par, VML_HBLANK_A, 836 ((hblank_end - 1) << 16) | (hblank_start - 1)); 837 VML_WRITE32(par, VML_HSYNC_A, 838 ((hsync_end - 1) << 16) | (hsync_start - 1)); 839 VML_WRITE32(par, VML_VTOTAL_A, ((vtotal - 1) << 16) | (vactive - 1)); 840 VML_WRITE32(par, VML_VBLANK_A, 841 ((vblank_end - 1) << 16) | (vblank_start - 1)); 842 VML_WRITE32(par, VML_VSYNC_A, 843 ((vsync_end - 1) << 16) | (vsync_start - 1)); 844 VML_WRITE32(par, VML_DSPCSTRIDE, vinfo->stride); 845 VML_WRITE32(par, VML_DSPCSIZE, 846 ((var->yres - 1) << 16) | (var->xres - 1)); 847 VML_WRITE32(par, VML_DSPCPOS, 0x00000000); 848 VML_WRITE32(par, VML_DSPARB, VML_FIFO_DEFAULT); 849 VML_WRITE32(par, VML_BCLRPAT_A, 0x00000000); 850 VML_WRITE32(par, VML_CANVSCLR_A, 0x00000000); 851 VML_WRITE32(par, VML_PIPEASRC, 852 ((var->xres - 1) << 16) | (var->yres - 1)); 853 854 wmb(); 855 VML_WRITE32(par, VML_PIPEACONF, VML_PIPE_ENABLE); 856 wmb(); 857 VML_WRITE32(par, VML_DSPCCNTR, dspcntr); 858 wmb(); 859 VML_WRITE32(par, VML_DSPCADDR, (u32) vinfo->vram_start + 860 var->yoffset * vinfo->stride + 861 var->xoffset * vinfo->bytes_per_pixel); 862 863 VML_WRITE32(par, VML_RCOMPSTAT, VML_MDVO_PAD_ENABLE); 864 865 while (!(VML_READ32(par, VML_RCOMPSTAT) & 866 (VML_MDVO_VDC_I_RCOMP | VML_MDVO_PAD_ENABLE))) ; 867 868 vinfo->pipe_disabled = 0; 869 #ifdef VERMILION_DEBUG 870 vml_dump_regs(vinfo); 871 #endif 872 873 return 0; 874 } 875 876 static int vmlfb_set_par(struct fb_info *info) 877 { 878 struct vml_info *vinfo = container_of(info, struct vml_info, info); 879 int ret; 880 881 mutex_lock(&vml_mutex); 882 list_move(&vinfo->head, (subsys) ? &global_has_mode : &global_no_mode); 883 ret = vmlfb_set_par_locked(vinfo); 884 885 mutex_unlock(&vml_mutex); 886 return ret; 887 } 888 889 static int vmlfb_blank_locked(struct vml_info *vinfo) 890 { 891 struct vml_par *par = vinfo->par; 892 u32 cur = VML_READ32(par, VML_PIPEACONF); 893 894 switch (vinfo->cur_blank_mode) { 895 case FB_BLANK_UNBLANK: 896 if (vinfo->pipe_disabled) { 897 vmlfb_set_par_locked(vinfo); 898 } 899 VML_WRITE32(par, VML_PIPEACONF, cur & ~VML_PIPE_FORCE_BORDER); 900 (void)VML_READ32(par, VML_PIPEACONF); 901 break; 902 case FB_BLANK_NORMAL: 903 if (vinfo->pipe_disabled) { 904 vmlfb_set_par_locked(vinfo); 905 } 906 VML_WRITE32(par, VML_PIPEACONF, cur | VML_PIPE_FORCE_BORDER); 907 (void)VML_READ32(par, VML_PIPEACONF); 908 break; 909 case FB_BLANK_VSYNC_SUSPEND: 910 case FB_BLANK_HSYNC_SUSPEND: 911 if (!vinfo->pipe_disabled) { 912 vmlfb_disable_pipe(vinfo); 913 } 914 break; 915 case FB_BLANK_POWERDOWN: 916 if (!vinfo->pipe_disabled) { 917 vmlfb_disable_pipe(vinfo); 918 } 919 break; 920 default: 921 return -EINVAL; 922 } 923 924 return 0; 925 } 926 927 static int vmlfb_blank(int blank_mode, struct fb_info *info) 928 { 929 struct vml_info *vinfo = container_of(info, struct vml_info, info); 930 int ret; 931 932 mutex_lock(&vml_mutex); 933 vinfo->cur_blank_mode = blank_mode; 934 ret = vmlfb_blank_locked(vinfo); 935 mutex_unlock(&vml_mutex); 936 return ret; 937 } 938 939 static int vmlfb_pan_display(struct fb_var_screeninfo *var, 940 struct fb_info *info) 941 { 942 struct vml_info *vinfo = container_of(info, struct vml_info, info); 943 struct vml_par *par = vinfo->par; 944 945 mutex_lock(&vml_mutex); 946 VML_WRITE32(par, VML_DSPCADDR, (u32) vinfo->vram_start + 947 var->yoffset * vinfo->stride + 948 var->xoffset * vinfo->bytes_per_pixel); 949 (void)VML_READ32(par, VML_DSPCADDR); 950 mutex_unlock(&vml_mutex); 951 952 return 0; 953 } 954 955 static int vmlfb_setcolreg(u_int regno, u_int red, u_int green, u_int blue, 956 u_int transp, struct fb_info *info) 957 { 958 u32 v; 959 960 if (regno >= 16) 961 return -EINVAL; 962 963 if (info->var.grayscale) { 964 red = green = blue = (red * 77 + green * 151 + blue * 28) >> 8; 965 } 966 967 if (info->fix.visual != FB_VISUAL_TRUECOLOR) 968 return -EINVAL; 969 970 red = VML_TOHW(red, info->var.red.length); 971 blue = VML_TOHW(blue, info->var.blue.length); 972 green = VML_TOHW(green, info->var.green.length); 973 transp = VML_TOHW(transp, info->var.transp.length); 974 975 v = (red << info->var.red.offset) | 976 (green << info->var.green.offset) | 977 (blue << info->var.blue.offset) | 978 (transp << info->var.transp.offset); 979 980 switch (info->var.bits_per_pixel) { 981 case 16: 982 ((u32 *) info->pseudo_palette)[regno] = v; 983 break; 984 case 24: 985 case 32: 986 ((u32 *) info->pseudo_palette)[regno] = v; 987 break; 988 } 989 return 0; 990 } 991 992 static int vmlfb_mmap(struct fb_info *info, struct vm_area_struct *vma) 993 { 994 struct vml_info *vinfo = container_of(info, struct vml_info, info); 995 unsigned long offset = vma->vm_pgoff << PAGE_SHIFT; 996 int ret; 997 unsigned long prot; 998 999 ret = vmlfb_vram_offset(vinfo, offset); 1000 if (ret) 1001 return -EINVAL; 1002 1003 prot = pgprot_val(vma->vm_page_prot) & ~_PAGE_CACHE_MASK; 1004 pgprot_val(vma->vm_page_prot) = 1005 prot | cachemode2protval(_PAGE_CACHE_MODE_UC_MINUS); 1006 1007 return vm_iomap_memory(vma, vinfo->vram_start, 1008 vinfo->vram_contig_size); 1009 } 1010 1011 static int vmlfb_sync(struct fb_info *info) 1012 { 1013 return 0; 1014 } 1015 1016 static int vmlfb_cursor(struct fb_info *info, struct fb_cursor *cursor) 1017 { 1018 return -EINVAL; /* just to force soft_cursor() call */ 1019 } 1020 1021 static struct fb_ops vmlfb_ops = { 1022 .owner = THIS_MODULE, 1023 .fb_open = vmlfb_open, 1024 .fb_release = vmlfb_release, 1025 .fb_check_var = vmlfb_check_var, 1026 .fb_set_par = vmlfb_set_par, 1027 .fb_blank = vmlfb_blank, 1028 .fb_pan_display = vmlfb_pan_display, 1029 .fb_fillrect = cfb_fillrect, 1030 .fb_copyarea = cfb_copyarea, 1031 .fb_imageblit = cfb_imageblit, 1032 .fb_cursor = vmlfb_cursor, 1033 .fb_sync = vmlfb_sync, 1034 .fb_mmap = vmlfb_mmap, 1035 .fb_setcolreg = vmlfb_setcolreg 1036 }; 1037 1038 static const struct pci_device_id vml_ids[] = { 1039 {PCI_DEVICE(PCI_VENDOR_ID_INTEL, VML_DEVICE_VDC)}, 1040 {0} 1041 }; 1042 1043 static struct pci_driver vmlfb_pci_driver = { 1044 .name = "vmlfb", 1045 .id_table = vml_ids, 1046 .probe = vml_pci_probe, 1047 .remove = vml_pci_remove, 1048 }; 1049 1050 static void __exit vmlfb_cleanup(void) 1051 { 1052 pci_unregister_driver(&vmlfb_pci_driver); 1053 } 1054 1055 static int __init vmlfb_init(void) 1056 { 1057 1058 #ifndef MODULE 1059 char *option = NULL; 1060 1061 if (fb_get_options(MODULE_NAME, &option)) 1062 return -ENODEV; 1063 #endif 1064 1065 printk(KERN_DEBUG MODULE_NAME ": initializing\n"); 1066 mutex_init(&vml_mutex); 1067 INIT_LIST_HEAD(&global_no_mode); 1068 INIT_LIST_HEAD(&global_has_mode); 1069 1070 return pci_register_driver(&vmlfb_pci_driver); 1071 } 1072 1073 int vmlfb_register_subsys(struct vml_sys *sys) 1074 { 1075 struct vml_info *entry; 1076 struct list_head *list; 1077 u32 save_activate; 1078 1079 mutex_lock(&vml_mutex); 1080 if (subsys != NULL) { 1081 subsys->restore(subsys); 1082 } 1083 subsys = sys; 1084 subsys->save(subsys); 1085 1086 /* 1087 * We need to restart list traversal for each item, since we 1088 * release the list mutex in the loop. 1089 */ 1090 1091 list = global_no_mode.next; 1092 while (list != &global_no_mode) { 1093 list_del_init(list); 1094 entry = list_entry(list, struct vml_info, head); 1095 1096 /* 1097 * First, try the current mode which might not be 1098 * completely validated with respect to the pixel clock. 1099 */ 1100 1101 if (!vmlfb_check_var_locked(&entry->info.var, entry)) { 1102 vmlfb_set_par_locked(entry); 1103 list_add_tail(list, &global_has_mode); 1104 } else { 1105 1106 /* 1107 * Didn't work. Try to find another mode, 1108 * that matches this subsys. 1109 */ 1110 1111 mutex_unlock(&vml_mutex); 1112 save_activate = entry->info.var.activate; 1113 entry->info.var.bits_per_pixel = 16; 1114 vmlfb_set_pref_pixel_format(&entry->info.var); 1115 if (fb_find_mode(&entry->info.var, 1116 &entry->info, 1117 vml_default_mode, NULL, 0, NULL, 16)) { 1118 entry->info.var.activate |= 1119 FB_ACTIVATE_FORCE | FB_ACTIVATE_NOW; 1120 fb_set_var(&entry->info, &entry->info.var); 1121 } else { 1122 printk(KERN_ERR MODULE_NAME 1123 ": Sorry. no mode found for this subsys.\n"); 1124 } 1125 entry->info.var.activate = save_activate; 1126 mutex_lock(&vml_mutex); 1127 } 1128 vmlfb_blank_locked(entry); 1129 list = global_no_mode.next; 1130 } 1131 mutex_unlock(&vml_mutex); 1132 1133 printk(KERN_DEBUG MODULE_NAME ": Registered %s subsystem.\n", 1134 subsys->name ? subsys->name : "unknown"); 1135 return 0; 1136 } 1137 1138 EXPORT_SYMBOL_GPL(vmlfb_register_subsys); 1139 1140 void vmlfb_unregister_subsys(struct vml_sys *sys) 1141 { 1142 struct vml_info *entry, *next; 1143 1144 mutex_lock(&vml_mutex); 1145 if (subsys != sys) { 1146 mutex_unlock(&vml_mutex); 1147 return; 1148 } 1149 subsys->restore(subsys); 1150 subsys = NULL; 1151 list_for_each_entry_safe(entry, next, &global_has_mode, head) { 1152 printk(KERN_DEBUG MODULE_NAME ": subsys disable pipe\n"); 1153 vmlfb_disable_pipe(entry); 1154 list_move_tail(&entry->head, &global_no_mode); 1155 } 1156 mutex_unlock(&vml_mutex); 1157 } 1158 1159 EXPORT_SYMBOL_GPL(vmlfb_unregister_subsys); 1160 1161 module_init(vmlfb_init); 1162 module_exit(vmlfb_cleanup); 1163 1164 MODULE_AUTHOR("Tungsten Graphics"); 1165 MODULE_DESCRIPTION("Initialization of the Vermilion display devices"); 1166 MODULE_VERSION("1.0.0"); 1167 MODULE_LICENSE("GPL"); 1168