1 /*
2  * Copyright (c) Intel Corp. 2007.
3  * All Rights Reserved.
4  *
5  * Intel funded Tungsten Graphics (http://www.tungstengraphics.com) to
6  * develop this driver.
7  *
8  * This file is part of the Vermilion Range fb driver.
9  * The Vermilion Range fb driver is free software;
10  * you can redistribute it and/or modify
11  * it under the terms of the GNU General Public License as published by
12  * the Free Software Foundation; either version 2 of the License, or
13  * (at your option) any later version.
14  *
15  * The Vermilion Range fb driver is distributed
16  * in the hope that it will be useful,
17  * but WITHOUT ANY WARRANTY; without even the implied warranty of
18  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
19  * GNU General Public License for more details.
20  *
21  * You should have received a copy of the GNU General Public License
22  * along with this driver; if not, write to the Free Software
23  * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
24  *
25  * Authors:
26  *   Thomas Hellström <thomas-at-tungstengraphics-dot-com>
27  *   Michel Dänzer <michel-at-tungstengraphics-dot-com>
28  *   Alan Hourihane <alanh-at-tungstengraphics-dot-com>
29  */
30 
31 #include <linux/module.h>
32 #include <linux/kernel.h>
33 #include <linux/errno.h>
34 #include <linux/string.h>
35 #include <linux/delay.h>
36 #include <linux/slab.h>
37 #include <linux/mm.h>
38 #include <linux/fb.h>
39 #include <linux/pci.h>
40 #include <asm/set_memory.h>
41 #include <asm/tlbflush.h>
42 #include <linux/mmzone.h>
43 
44 /* #define VERMILION_DEBUG */
45 
46 #include "vermilion.h"
47 
48 #define MODULE_NAME "vmlfb"
49 
50 #define VML_TOHW(_val, _width) ((((_val) << (_width)) + 0x7FFF - (_val)) >> 16)
51 
52 static struct mutex vml_mutex;
53 static struct list_head global_no_mode;
54 static struct list_head global_has_mode;
55 static struct fb_ops vmlfb_ops;
56 static struct vml_sys *subsys = NULL;
57 static char *vml_default_mode = "1024x768@60";
58 static const struct fb_videomode defaultmode = {
59 	NULL, 60, 1024, 768, 12896, 144, 24, 29, 3, 136, 6,
60 	0, FB_VMODE_NONINTERLACED
61 };
62 
63 static u32 vml_mem_requested = (10 * 1024 * 1024);
64 static u32 vml_mem_contig = (4 * 1024 * 1024);
65 static u32 vml_mem_min = (4 * 1024 * 1024);
66 
67 static u32 vml_clocks[] = {
68 	6750,
69 	13500,
70 	27000,
71 	29700,
72 	37125,
73 	54000,
74 	59400,
75 	74250,
76 	120000,
77 	148500
78 };
79 
80 static u32 vml_num_clocks = ARRAY_SIZE(vml_clocks);
81 
82 /*
83  * Allocate a contiguous vram area and make its linear kernel map
84  * uncached.
85  */
86 
87 static int vmlfb_alloc_vram_area(struct vram_area *va, unsigned max_order,
88 				 unsigned min_order)
89 {
90 	gfp_t flags;
91 	unsigned long i;
92 
93 	max_order++;
94 	do {
95 		/*
96 		 * Really try hard to get the needed memory.
97 		 * We need memory below the first 32MB, so we
98 		 * add the __GFP_DMA flag that guarantees that we are
99 		 * below the first 16MB.
100 		 */
101 
102 		flags = __GFP_DMA | __GFP_HIGH | __GFP_KSWAPD_RECLAIM;
103 		va->logical =
104 			 __get_free_pages(flags, --max_order);
105 	} while (va->logical == 0 && max_order > min_order);
106 
107 	if (!va->logical)
108 		return -ENOMEM;
109 
110 	va->phys = virt_to_phys((void *)va->logical);
111 	va->size = PAGE_SIZE << max_order;
112 	va->order = max_order;
113 
114 	/*
115 	 * It seems like __get_free_pages only ups the usage count
116 	 * of the first page. This doesn't work with fault mapping, so
117 	 * up the usage count once more (XXX: should use split_page or
118 	 * compound page).
119 	 */
120 
121 	memset((void *)va->logical, 0x00, va->size);
122 	for (i = va->logical; i < va->logical + va->size; i += PAGE_SIZE) {
123 		get_page(virt_to_page(i));
124 	}
125 
126 	/*
127 	 * Change caching policy of the linear kernel map to avoid
128 	 * mapping type conflicts with user-space mappings.
129 	 */
130 	set_pages_uc(virt_to_page(va->logical), va->size >> PAGE_SHIFT);
131 
132 	printk(KERN_DEBUG MODULE_NAME
133 	       ": Allocated %ld bytes vram area at 0x%08lx\n",
134 	       va->size, va->phys);
135 
136 	return 0;
137 }
138 
139 /*
140  * Free a contiguous vram area and reset its linear kernel map
141  * mapping type.
142  */
143 
144 static void vmlfb_free_vram_area(struct vram_area *va)
145 {
146 	unsigned long j;
147 
148 	if (va->logical) {
149 
150 		/*
151 		 * Reset the linear kernel map caching policy.
152 		 */
153 
154 		set_pages_wb(virt_to_page(va->logical),
155 				 va->size >> PAGE_SHIFT);
156 
157 		/*
158 		 * Decrease the usage count on the pages we've used
159 		 * to compensate for upping when allocating.
160 		 */
161 
162 		for (j = va->logical; j < va->logical + va->size;
163 		     j += PAGE_SIZE) {
164 			(void)put_page_testzero(virt_to_page(j));
165 		}
166 
167 		printk(KERN_DEBUG MODULE_NAME
168 		       ": Freeing %ld bytes vram area at 0x%08lx\n",
169 		       va->size, va->phys);
170 		free_pages(va->logical, va->order);
171 
172 		va->logical = 0;
173 	}
174 }
175 
176 /*
177  * Free allocated vram.
178  */
179 
180 static void vmlfb_free_vram(struct vml_info *vinfo)
181 {
182 	int i;
183 
184 	for (i = 0; i < vinfo->num_areas; ++i) {
185 		vmlfb_free_vram_area(&vinfo->vram[i]);
186 	}
187 	vinfo->num_areas = 0;
188 }
189 
190 /*
191  * Allocate vram. Currently we try to allocate contiguous areas from the
192  * __GFP_DMA zone and puzzle them together. A better approach would be to
193  * allocate one contiguous area for scanout and use one-page allocations for
194  * offscreen areas. This requires user-space and GPU virtual mappings.
195  */
196 
197 static int vmlfb_alloc_vram(struct vml_info *vinfo,
198 			    size_t requested,
199 			    size_t min_total, size_t min_contig)
200 {
201 	int i, j;
202 	int order;
203 	int contiguous;
204 	int err;
205 	struct vram_area *va;
206 	struct vram_area *va2;
207 
208 	vinfo->num_areas = 0;
209 	for (i = 0; i < VML_VRAM_AREAS; ++i) {
210 		va = &vinfo->vram[i];
211 		order = 0;
212 
213 		while (requested > (PAGE_SIZE << order) && order < MAX_ORDER)
214 			order++;
215 
216 		err = vmlfb_alloc_vram_area(va, order, 0);
217 
218 		if (err)
219 			break;
220 
221 		if (i == 0) {
222 			vinfo->vram_start = va->phys;
223 			vinfo->vram_logical = (void __iomem *) va->logical;
224 			vinfo->vram_contig_size = va->size;
225 			vinfo->num_areas = 1;
226 		} else {
227 			contiguous = 0;
228 
229 			for (j = 0; j < i; ++j) {
230 				va2 = &vinfo->vram[j];
231 				if (va->phys + va->size == va2->phys ||
232 				    va2->phys + va2->size == va->phys) {
233 					contiguous = 1;
234 					break;
235 				}
236 			}
237 
238 			if (contiguous) {
239 				vinfo->num_areas++;
240 				if (va->phys < vinfo->vram_start) {
241 					vinfo->vram_start = va->phys;
242 					vinfo->vram_logical =
243 						(void __iomem *)va->logical;
244 				}
245 				vinfo->vram_contig_size += va->size;
246 			} else {
247 				vmlfb_free_vram_area(va);
248 				break;
249 			}
250 		}
251 
252 		if (requested < va->size)
253 			break;
254 		else
255 			requested -= va->size;
256 	}
257 
258 	if (vinfo->vram_contig_size > min_total &&
259 	    vinfo->vram_contig_size > min_contig) {
260 
261 		printk(KERN_DEBUG MODULE_NAME
262 		       ": Contiguous vram: %ld bytes at physical 0x%08lx.\n",
263 		       (unsigned long)vinfo->vram_contig_size,
264 		       (unsigned long)vinfo->vram_start);
265 
266 		return 0;
267 	}
268 
269 	printk(KERN_ERR MODULE_NAME
270 	       ": Could not allocate requested minimal amount of vram.\n");
271 
272 	vmlfb_free_vram(vinfo);
273 
274 	return -ENOMEM;
275 }
276 
277 /*
278  * Find the GPU to use with our display controller.
279  */
280 
281 static int vmlfb_get_gpu(struct vml_par *par)
282 {
283 	mutex_lock(&vml_mutex);
284 
285 	par->gpu = pci_get_device(PCI_VENDOR_ID_INTEL, VML_DEVICE_GPU, NULL);
286 
287 	if (!par->gpu) {
288 		mutex_unlock(&vml_mutex);
289 		return -ENODEV;
290 	}
291 
292 	mutex_unlock(&vml_mutex);
293 
294 	if (pci_enable_device(par->gpu) < 0)
295 		return -ENODEV;
296 
297 	return 0;
298 }
299 
300 /*
301  * Find a contiguous vram area that contains a given offset from vram start.
302  */
303 static int vmlfb_vram_offset(struct vml_info *vinfo, unsigned long offset)
304 {
305 	unsigned long aoffset;
306 	unsigned i;
307 
308 	for (i = 0; i < vinfo->num_areas; ++i) {
309 		aoffset = offset - (vinfo->vram[i].phys - vinfo->vram_start);
310 
311 		if (aoffset < vinfo->vram[i].size) {
312 			return 0;
313 		}
314 	}
315 
316 	return -EINVAL;
317 }
318 
319 /*
320  * Remap the MMIO register spaces of the VDC and the GPU.
321  */
322 
323 static int vmlfb_enable_mmio(struct vml_par *par)
324 {
325 	int err;
326 
327 	par->vdc_mem_base = pci_resource_start(par->vdc, 0);
328 	par->vdc_mem_size = pci_resource_len(par->vdc, 0);
329 	if (!request_mem_region(par->vdc_mem_base, par->vdc_mem_size, "vmlfb")) {
330 		printk(KERN_ERR MODULE_NAME
331 		       ": Could not claim display controller MMIO.\n");
332 		return -EBUSY;
333 	}
334 	par->vdc_mem = ioremap_nocache(par->vdc_mem_base, par->vdc_mem_size);
335 	if (par->vdc_mem == NULL) {
336 		printk(KERN_ERR MODULE_NAME
337 		       ": Could not map display controller MMIO.\n");
338 		err = -ENOMEM;
339 		goto out_err_0;
340 	}
341 
342 	par->gpu_mem_base = pci_resource_start(par->gpu, 0);
343 	par->gpu_mem_size = pci_resource_len(par->gpu, 0);
344 	if (!request_mem_region(par->gpu_mem_base, par->gpu_mem_size, "vmlfb")) {
345 		printk(KERN_ERR MODULE_NAME ": Could not claim GPU MMIO.\n");
346 		err = -EBUSY;
347 		goto out_err_1;
348 	}
349 	par->gpu_mem = ioremap_nocache(par->gpu_mem_base, par->gpu_mem_size);
350 	if (par->gpu_mem == NULL) {
351 		printk(KERN_ERR MODULE_NAME ": Could not map GPU MMIO.\n");
352 		err = -ENOMEM;
353 		goto out_err_2;
354 	}
355 
356 	return 0;
357 
358 out_err_2:
359 	release_mem_region(par->gpu_mem_base, par->gpu_mem_size);
360 out_err_1:
361 	iounmap(par->vdc_mem);
362 out_err_0:
363 	release_mem_region(par->vdc_mem_base, par->vdc_mem_size);
364 	return err;
365 }
366 
367 /*
368  * Unmap the VDC and GPU register spaces.
369  */
370 
371 static void vmlfb_disable_mmio(struct vml_par *par)
372 {
373 	iounmap(par->gpu_mem);
374 	release_mem_region(par->gpu_mem_base, par->gpu_mem_size);
375 	iounmap(par->vdc_mem);
376 	release_mem_region(par->vdc_mem_base, par->vdc_mem_size);
377 }
378 
379 /*
380  * Release and uninit the VDC and GPU.
381  */
382 
383 static void vmlfb_release_devices(struct vml_par *par)
384 {
385 	if (atomic_dec_and_test(&par->refcount)) {
386 		pci_disable_device(par->gpu);
387 		pci_disable_device(par->vdc);
388 	}
389 }
390 
391 /*
392  * Free up allocated resources for a device.
393  */
394 
395 static void vml_pci_remove(struct pci_dev *dev)
396 {
397 	struct fb_info *info;
398 	struct vml_info *vinfo;
399 	struct vml_par *par;
400 
401 	info = pci_get_drvdata(dev);
402 	if (info) {
403 		vinfo = container_of(info, struct vml_info, info);
404 		par = vinfo->par;
405 		mutex_lock(&vml_mutex);
406 		unregister_framebuffer(info);
407 		fb_dealloc_cmap(&info->cmap);
408 		vmlfb_free_vram(vinfo);
409 		vmlfb_disable_mmio(par);
410 		vmlfb_release_devices(par);
411 		kfree(vinfo);
412 		kfree(par);
413 		mutex_unlock(&vml_mutex);
414 	}
415 }
416 
417 static void vmlfb_set_pref_pixel_format(struct fb_var_screeninfo *var)
418 {
419 	switch (var->bits_per_pixel) {
420 	case 16:
421 		var->blue.offset = 0;
422 		var->blue.length = 5;
423 		var->green.offset = 5;
424 		var->green.length = 5;
425 		var->red.offset = 10;
426 		var->red.length = 5;
427 		var->transp.offset = 15;
428 		var->transp.length = 1;
429 		break;
430 	case 32:
431 		var->blue.offset = 0;
432 		var->blue.length = 8;
433 		var->green.offset = 8;
434 		var->green.length = 8;
435 		var->red.offset = 16;
436 		var->red.length = 8;
437 		var->transp.offset = 24;
438 		var->transp.length = 0;
439 		break;
440 	default:
441 		break;
442 	}
443 
444 	var->blue.msb_right = var->green.msb_right =
445 	    var->red.msb_right = var->transp.msb_right = 0;
446 }
447 
448 /*
449  * Device initialization.
450  * We initialize one vml_par struct per device and one vml_info
451  * struct per pipe. Currently we have only one pipe.
452  */
453 
454 static int vml_pci_probe(struct pci_dev *dev, const struct pci_device_id *id)
455 {
456 	struct vml_info *vinfo;
457 	struct fb_info *info;
458 	struct vml_par *par;
459 	int err = 0;
460 
461 	par = kzalloc(sizeof(*par), GFP_KERNEL);
462 	if (par == NULL)
463 		return -ENOMEM;
464 
465 	vinfo = kzalloc(sizeof(*vinfo), GFP_KERNEL);
466 	if (vinfo == NULL) {
467 		err = -ENOMEM;
468 		goto out_err_0;
469 	}
470 
471 	vinfo->par = par;
472 	par->vdc = dev;
473 	atomic_set(&par->refcount, 1);
474 
475 	switch (id->device) {
476 	case VML_DEVICE_VDC:
477 		if ((err = vmlfb_get_gpu(par)))
478 			goto out_err_1;
479 		pci_set_drvdata(dev, &vinfo->info);
480 		break;
481 	default:
482 		err = -ENODEV;
483 		goto out_err_1;
484 	}
485 
486 	info = &vinfo->info;
487 	info->flags = FBINFO_DEFAULT | FBINFO_PARTIAL_PAN_OK;
488 
489 	err = vmlfb_enable_mmio(par);
490 	if (err)
491 		goto out_err_2;
492 
493 	err = vmlfb_alloc_vram(vinfo, vml_mem_requested,
494 			       vml_mem_contig, vml_mem_min);
495 	if (err)
496 		goto out_err_3;
497 
498 	strcpy(info->fix.id, "Vermilion Range");
499 	info->fix.mmio_start = 0;
500 	info->fix.mmio_len = 0;
501 	info->fix.smem_start = vinfo->vram_start;
502 	info->fix.smem_len = vinfo->vram_contig_size;
503 	info->fix.type = FB_TYPE_PACKED_PIXELS;
504 	info->fix.visual = FB_VISUAL_TRUECOLOR;
505 	info->fix.ypanstep = 1;
506 	info->fix.xpanstep = 1;
507 	info->fix.ywrapstep = 0;
508 	info->fix.accel = FB_ACCEL_NONE;
509 	info->screen_base = vinfo->vram_logical;
510 	info->pseudo_palette = vinfo->pseudo_palette;
511 	info->par = par;
512 	info->fbops = &vmlfb_ops;
513 	info->device = &dev->dev;
514 
515 	INIT_LIST_HEAD(&vinfo->head);
516 	vinfo->pipe_disabled = 1;
517 	vinfo->cur_blank_mode = FB_BLANK_UNBLANK;
518 
519 	info->var.grayscale = 0;
520 	info->var.bits_per_pixel = 16;
521 	vmlfb_set_pref_pixel_format(&info->var);
522 
523 	if (!fb_find_mode
524 	    (&info->var, info, vml_default_mode, NULL, 0, &defaultmode, 16)) {
525 		printk(KERN_ERR MODULE_NAME ": Could not find initial mode\n");
526 	}
527 
528 	if (fb_alloc_cmap(&info->cmap, 256, 1) < 0) {
529 		err = -ENOMEM;
530 		goto out_err_4;
531 	}
532 
533 	err = register_framebuffer(info);
534 	if (err) {
535 		printk(KERN_ERR MODULE_NAME ": Register framebuffer error.\n");
536 		goto out_err_5;
537 	}
538 
539 	printk("Initialized vmlfb\n");
540 
541 	return 0;
542 
543 out_err_5:
544 	fb_dealloc_cmap(&info->cmap);
545 out_err_4:
546 	vmlfb_free_vram(vinfo);
547 out_err_3:
548 	vmlfb_disable_mmio(par);
549 out_err_2:
550 	vmlfb_release_devices(par);
551 out_err_1:
552 	kfree(vinfo);
553 out_err_0:
554 	kfree(par);
555 	return err;
556 }
557 
558 static int vmlfb_open(struct fb_info *info, int user)
559 {
560 	/*
561 	 * Save registers here?
562 	 */
563 	return 0;
564 }
565 
566 static int vmlfb_release(struct fb_info *info, int user)
567 {
568 	/*
569 	 * Restore registers here.
570 	 */
571 
572 	return 0;
573 }
574 
575 static int vml_nearest_clock(int clock)
576 {
577 
578 	int i;
579 	int cur_index;
580 	int cur_diff;
581 	int diff;
582 
583 	cur_index = 0;
584 	cur_diff = clock - vml_clocks[0];
585 	cur_diff = (cur_diff < 0) ? -cur_diff : cur_diff;
586 	for (i = 1; i < vml_num_clocks; ++i) {
587 		diff = clock - vml_clocks[i];
588 		diff = (diff < 0) ? -diff : diff;
589 		if (diff < cur_diff) {
590 			cur_index = i;
591 			cur_diff = diff;
592 		}
593 	}
594 	return vml_clocks[cur_index];
595 }
596 
597 static int vmlfb_check_var_locked(struct fb_var_screeninfo *var,
598 				  struct vml_info *vinfo)
599 {
600 	u32 pitch;
601 	u64 mem;
602 	int nearest_clock;
603 	int clock;
604 	int clock_diff;
605 	struct fb_var_screeninfo v;
606 
607 	v = *var;
608 	clock = PICOS2KHZ(var->pixclock);
609 
610 	if (subsys && subsys->nearest_clock) {
611 		nearest_clock = subsys->nearest_clock(subsys, clock);
612 	} else {
613 		nearest_clock = vml_nearest_clock(clock);
614 	}
615 
616 	/*
617 	 * Accept a 20% diff.
618 	 */
619 
620 	clock_diff = nearest_clock - clock;
621 	clock_diff = (clock_diff < 0) ? -clock_diff : clock_diff;
622 	if (clock_diff > clock / 5) {
623 #if 0
624 		printk(KERN_DEBUG MODULE_NAME ": Diff failure. %d %d\n",clock_diff,clock);
625 #endif
626 		return -EINVAL;
627 	}
628 
629 	v.pixclock = KHZ2PICOS(nearest_clock);
630 
631 	if (var->xres > VML_MAX_XRES || var->yres > VML_MAX_YRES) {
632 		printk(KERN_DEBUG MODULE_NAME ": Resolution failure.\n");
633 		return -EINVAL;
634 	}
635 	if (var->xres_virtual > VML_MAX_XRES_VIRTUAL) {
636 		printk(KERN_DEBUG MODULE_NAME
637 		       ": Virtual resolution failure.\n");
638 		return -EINVAL;
639 	}
640 	switch (v.bits_per_pixel) {
641 	case 0 ... 16:
642 		v.bits_per_pixel = 16;
643 		break;
644 	case 17 ... 32:
645 		v.bits_per_pixel = 32;
646 		break;
647 	default:
648 		printk(KERN_DEBUG MODULE_NAME ": Invalid bpp: %d.\n",
649 		       var->bits_per_pixel);
650 		return -EINVAL;
651 	}
652 
653 	pitch = ALIGN((var->xres * var->bits_per_pixel) >> 3, 0x40);
654 	mem = (u64)pitch * var->yres_virtual;
655 	if (mem > vinfo->vram_contig_size) {
656 		return -ENOMEM;
657 	}
658 
659 	switch (v.bits_per_pixel) {
660 	case 16:
661 		if (var->blue.offset != 0 ||
662 		    var->blue.length != 5 ||
663 		    var->green.offset != 5 ||
664 		    var->green.length != 5 ||
665 		    var->red.offset != 10 ||
666 		    var->red.length != 5 ||
667 		    var->transp.offset != 15 || var->transp.length != 1) {
668 			vmlfb_set_pref_pixel_format(&v);
669 		}
670 		break;
671 	case 32:
672 		if (var->blue.offset != 0 ||
673 		    var->blue.length != 8 ||
674 		    var->green.offset != 8 ||
675 		    var->green.length != 8 ||
676 		    var->red.offset != 16 ||
677 		    var->red.length != 8 ||
678 		    (var->transp.length != 0 && var->transp.length != 8) ||
679 		    (var->transp.length == 8 && var->transp.offset != 24)) {
680 			vmlfb_set_pref_pixel_format(&v);
681 		}
682 		break;
683 	default:
684 		return -EINVAL;
685 	}
686 
687 	*var = v;
688 
689 	return 0;
690 }
691 
692 static int vmlfb_check_var(struct fb_var_screeninfo *var, struct fb_info *info)
693 {
694 	struct vml_info *vinfo = container_of(info, struct vml_info, info);
695 	int ret;
696 
697 	mutex_lock(&vml_mutex);
698 	ret = vmlfb_check_var_locked(var, vinfo);
699 	mutex_unlock(&vml_mutex);
700 
701 	return ret;
702 }
703 
704 static void vml_wait_vblank(struct vml_info *vinfo)
705 {
706 	/* Wait for vblank. For now, just wait for a 50Hz cycle (20ms)) */
707 	mdelay(20);
708 }
709 
710 static void vmlfb_disable_pipe(struct vml_info *vinfo)
711 {
712 	struct vml_par *par = vinfo->par;
713 
714 	/* Disable the MDVO pad */
715 	VML_WRITE32(par, VML_RCOMPSTAT, 0);
716 	while (!(VML_READ32(par, VML_RCOMPSTAT) & VML_MDVO_VDC_I_RCOMP)) ;
717 
718 	/* Disable display planes */
719 	VML_WRITE32(par, VML_DSPCCNTR,
720 		    VML_READ32(par, VML_DSPCCNTR) & ~VML_GFX_ENABLE);
721 	(void)VML_READ32(par, VML_DSPCCNTR);
722 	/* Wait for vblank for the disable to take effect */
723 	vml_wait_vblank(vinfo);
724 
725 	/* Next, disable display pipes */
726 	VML_WRITE32(par, VML_PIPEACONF, 0);
727 	(void)VML_READ32(par, VML_PIPEACONF);
728 
729 	vinfo->pipe_disabled = 1;
730 }
731 
732 #ifdef VERMILION_DEBUG
733 static void vml_dump_regs(struct vml_info *vinfo)
734 {
735 	struct vml_par *par = vinfo->par;
736 
737 	printk(KERN_DEBUG MODULE_NAME ": Modesetting register dump:\n");
738 	printk(KERN_DEBUG MODULE_NAME ": \tHTOTAL_A         : 0x%08x\n",
739 	       (unsigned)VML_READ32(par, VML_HTOTAL_A));
740 	printk(KERN_DEBUG MODULE_NAME ": \tHBLANK_A         : 0x%08x\n",
741 	       (unsigned)VML_READ32(par, VML_HBLANK_A));
742 	printk(KERN_DEBUG MODULE_NAME ": \tHSYNC_A          : 0x%08x\n",
743 	       (unsigned)VML_READ32(par, VML_HSYNC_A));
744 	printk(KERN_DEBUG MODULE_NAME ": \tVTOTAL_A         : 0x%08x\n",
745 	       (unsigned)VML_READ32(par, VML_VTOTAL_A));
746 	printk(KERN_DEBUG MODULE_NAME ": \tVBLANK_A         : 0x%08x\n",
747 	       (unsigned)VML_READ32(par, VML_VBLANK_A));
748 	printk(KERN_DEBUG MODULE_NAME ": \tVSYNC_A          : 0x%08x\n",
749 	       (unsigned)VML_READ32(par, VML_VSYNC_A));
750 	printk(KERN_DEBUG MODULE_NAME ": \tDSPCSTRIDE       : 0x%08x\n",
751 	       (unsigned)VML_READ32(par, VML_DSPCSTRIDE));
752 	printk(KERN_DEBUG MODULE_NAME ": \tDSPCSIZE         : 0x%08x\n",
753 	       (unsigned)VML_READ32(par, VML_DSPCSIZE));
754 	printk(KERN_DEBUG MODULE_NAME ": \tDSPCPOS          : 0x%08x\n",
755 	       (unsigned)VML_READ32(par, VML_DSPCPOS));
756 	printk(KERN_DEBUG MODULE_NAME ": \tDSPARB           : 0x%08x\n",
757 	       (unsigned)VML_READ32(par, VML_DSPARB));
758 	printk(KERN_DEBUG MODULE_NAME ": \tDSPCADDR         : 0x%08x\n",
759 	       (unsigned)VML_READ32(par, VML_DSPCADDR));
760 	printk(KERN_DEBUG MODULE_NAME ": \tBCLRPAT_A        : 0x%08x\n",
761 	       (unsigned)VML_READ32(par, VML_BCLRPAT_A));
762 	printk(KERN_DEBUG MODULE_NAME ": \tCANVSCLR_A       : 0x%08x\n",
763 	       (unsigned)VML_READ32(par, VML_CANVSCLR_A));
764 	printk(KERN_DEBUG MODULE_NAME ": \tPIPEASRC         : 0x%08x\n",
765 	       (unsigned)VML_READ32(par, VML_PIPEASRC));
766 	printk(KERN_DEBUG MODULE_NAME ": \tPIPEACONF        : 0x%08x\n",
767 	       (unsigned)VML_READ32(par, VML_PIPEACONF));
768 	printk(KERN_DEBUG MODULE_NAME ": \tDSPCCNTR         : 0x%08x\n",
769 	       (unsigned)VML_READ32(par, VML_DSPCCNTR));
770 	printk(KERN_DEBUG MODULE_NAME ": \tRCOMPSTAT        : 0x%08x\n",
771 	       (unsigned)VML_READ32(par, VML_RCOMPSTAT));
772 	printk(KERN_DEBUG MODULE_NAME ": End of modesetting register dump.\n");
773 }
774 #endif
775 
776 static int vmlfb_set_par_locked(struct vml_info *vinfo)
777 {
778 	struct vml_par *par = vinfo->par;
779 	struct fb_info *info = &vinfo->info;
780 	struct fb_var_screeninfo *var = &info->var;
781 	u32 htotal, hactive, hblank_start, hblank_end, hsync_start, hsync_end;
782 	u32 vtotal, vactive, vblank_start, vblank_end, vsync_start, vsync_end;
783 	u32 dspcntr;
784 	int clock;
785 
786 	vinfo->bytes_per_pixel = var->bits_per_pixel >> 3;
787 	vinfo->stride = ALIGN(var->xres_virtual * vinfo->bytes_per_pixel, 0x40);
788 	info->fix.line_length = vinfo->stride;
789 
790 	if (!subsys)
791 		return 0;
792 
793 	htotal =
794 	    var->xres + var->right_margin + var->hsync_len + var->left_margin;
795 	hactive = var->xres;
796 	hblank_start = var->xres;
797 	hblank_end = htotal;
798 	hsync_start = hactive + var->right_margin;
799 	hsync_end = hsync_start + var->hsync_len;
800 
801 	vtotal =
802 	    var->yres + var->lower_margin + var->vsync_len + var->upper_margin;
803 	vactive = var->yres;
804 	vblank_start = var->yres;
805 	vblank_end = vtotal;
806 	vsync_start = vactive + var->lower_margin;
807 	vsync_end = vsync_start + var->vsync_len;
808 
809 	dspcntr = VML_GFX_ENABLE | VML_GFX_GAMMABYPASS;
810 	clock = PICOS2KHZ(var->pixclock);
811 
812 	if (subsys->nearest_clock) {
813 		clock = subsys->nearest_clock(subsys, clock);
814 	} else {
815 		clock = vml_nearest_clock(clock);
816 	}
817 	printk(KERN_DEBUG MODULE_NAME
818 	       ": Set mode Hfreq : %d kHz, Vfreq : %d Hz.\n", clock / htotal,
819 	       ((clock / htotal) * 1000) / vtotal);
820 
821 	switch (var->bits_per_pixel) {
822 	case 16:
823 		dspcntr |= VML_GFX_ARGB1555;
824 		break;
825 	case 32:
826 		if (var->transp.length == 8)
827 			dspcntr |= VML_GFX_ARGB8888 | VML_GFX_ALPHAMULT;
828 		else
829 			dspcntr |= VML_GFX_RGB0888;
830 		break;
831 	default:
832 		return -EINVAL;
833 	}
834 
835 	vmlfb_disable_pipe(vinfo);
836 	mb();
837 
838 	if (subsys->set_clock)
839 		subsys->set_clock(subsys, clock);
840 	else
841 		return -EINVAL;
842 
843 	VML_WRITE32(par, VML_HTOTAL_A, ((htotal - 1) << 16) | (hactive - 1));
844 	VML_WRITE32(par, VML_HBLANK_A,
845 		    ((hblank_end - 1) << 16) | (hblank_start - 1));
846 	VML_WRITE32(par, VML_HSYNC_A,
847 		    ((hsync_end - 1) << 16) | (hsync_start - 1));
848 	VML_WRITE32(par, VML_VTOTAL_A, ((vtotal - 1) << 16) | (vactive - 1));
849 	VML_WRITE32(par, VML_VBLANK_A,
850 		    ((vblank_end - 1) << 16) | (vblank_start - 1));
851 	VML_WRITE32(par, VML_VSYNC_A,
852 		    ((vsync_end - 1) << 16) | (vsync_start - 1));
853 	VML_WRITE32(par, VML_DSPCSTRIDE, vinfo->stride);
854 	VML_WRITE32(par, VML_DSPCSIZE,
855 		    ((var->yres - 1) << 16) | (var->xres - 1));
856 	VML_WRITE32(par, VML_DSPCPOS, 0x00000000);
857 	VML_WRITE32(par, VML_DSPARB, VML_FIFO_DEFAULT);
858 	VML_WRITE32(par, VML_BCLRPAT_A, 0x00000000);
859 	VML_WRITE32(par, VML_CANVSCLR_A, 0x00000000);
860 	VML_WRITE32(par, VML_PIPEASRC,
861 		    ((var->xres - 1) << 16) | (var->yres - 1));
862 
863 	wmb();
864 	VML_WRITE32(par, VML_PIPEACONF, VML_PIPE_ENABLE);
865 	wmb();
866 	VML_WRITE32(par, VML_DSPCCNTR, dspcntr);
867 	wmb();
868 	VML_WRITE32(par, VML_DSPCADDR, (u32) vinfo->vram_start +
869 		    var->yoffset * vinfo->stride +
870 		    var->xoffset * vinfo->bytes_per_pixel);
871 
872 	VML_WRITE32(par, VML_RCOMPSTAT, VML_MDVO_PAD_ENABLE);
873 
874 	while (!(VML_READ32(par, VML_RCOMPSTAT) &
875 		 (VML_MDVO_VDC_I_RCOMP | VML_MDVO_PAD_ENABLE))) ;
876 
877 	vinfo->pipe_disabled = 0;
878 #ifdef VERMILION_DEBUG
879 	vml_dump_regs(vinfo);
880 #endif
881 
882 	return 0;
883 }
884 
885 static int vmlfb_set_par(struct fb_info *info)
886 {
887 	struct vml_info *vinfo = container_of(info, struct vml_info, info);
888 	int ret;
889 
890 	mutex_lock(&vml_mutex);
891 	list_move(&vinfo->head, (subsys) ? &global_has_mode : &global_no_mode);
892 	ret = vmlfb_set_par_locked(vinfo);
893 
894 	mutex_unlock(&vml_mutex);
895 	return ret;
896 }
897 
898 static int vmlfb_blank_locked(struct vml_info *vinfo)
899 {
900 	struct vml_par *par = vinfo->par;
901 	u32 cur = VML_READ32(par, VML_PIPEACONF);
902 
903 	switch (vinfo->cur_blank_mode) {
904 	case FB_BLANK_UNBLANK:
905 		if (vinfo->pipe_disabled) {
906 			vmlfb_set_par_locked(vinfo);
907 		}
908 		VML_WRITE32(par, VML_PIPEACONF, cur & ~VML_PIPE_FORCE_BORDER);
909 		(void)VML_READ32(par, VML_PIPEACONF);
910 		break;
911 	case FB_BLANK_NORMAL:
912 		if (vinfo->pipe_disabled) {
913 			vmlfb_set_par_locked(vinfo);
914 		}
915 		VML_WRITE32(par, VML_PIPEACONF, cur | VML_PIPE_FORCE_BORDER);
916 		(void)VML_READ32(par, VML_PIPEACONF);
917 		break;
918 	case FB_BLANK_VSYNC_SUSPEND:
919 	case FB_BLANK_HSYNC_SUSPEND:
920 		if (!vinfo->pipe_disabled) {
921 			vmlfb_disable_pipe(vinfo);
922 		}
923 		break;
924 	case FB_BLANK_POWERDOWN:
925 		if (!vinfo->pipe_disabled) {
926 			vmlfb_disable_pipe(vinfo);
927 		}
928 		break;
929 	default:
930 		return -EINVAL;
931 	}
932 
933 	return 0;
934 }
935 
936 static int vmlfb_blank(int blank_mode, struct fb_info *info)
937 {
938 	struct vml_info *vinfo = container_of(info, struct vml_info, info);
939 	int ret;
940 
941 	mutex_lock(&vml_mutex);
942 	vinfo->cur_blank_mode = blank_mode;
943 	ret = vmlfb_blank_locked(vinfo);
944 	mutex_unlock(&vml_mutex);
945 	return ret;
946 }
947 
948 static int vmlfb_pan_display(struct fb_var_screeninfo *var,
949 			     struct fb_info *info)
950 {
951 	struct vml_info *vinfo = container_of(info, struct vml_info, info);
952 	struct vml_par *par = vinfo->par;
953 
954 	mutex_lock(&vml_mutex);
955 	VML_WRITE32(par, VML_DSPCADDR, (u32) vinfo->vram_start +
956 		    var->yoffset * vinfo->stride +
957 		    var->xoffset * vinfo->bytes_per_pixel);
958 	(void)VML_READ32(par, VML_DSPCADDR);
959 	mutex_unlock(&vml_mutex);
960 
961 	return 0;
962 }
963 
964 static int vmlfb_setcolreg(u_int regno, u_int red, u_int green, u_int blue,
965 			   u_int transp, struct fb_info *info)
966 {
967 	u32 v;
968 
969 	if (regno >= 16)
970 		return -EINVAL;
971 
972 	if (info->var.grayscale) {
973 		red = green = blue = (red * 77 + green * 151 + blue * 28) >> 8;
974 	}
975 
976 	if (info->fix.visual != FB_VISUAL_TRUECOLOR)
977 		return -EINVAL;
978 
979 	red = VML_TOHW(red, info->var.red.length);
980 	blue = VML_TOHW(blue, info->var.blue.length);
981 	green = VML_TOHW(green, info->var.green.length);
982 	transp = VML_TOHW(transp, info->var.transp.length);
983 
984 	v = (red << info->var.red.offset) |
985 	    (green << info->var.green.offset) |
986 	    (blue << info->var.blue.offset) |
987 	    (transp << info->var.transp.offset);
988 
989 	switch (info->var.bits_per_pixel) {
990 	case 16:
991 		((u32 *) info->pseudo_palette)[regno] = v;
992 		break;
993 	case 24:
994 	case 32:
995 		((u32 *) info->pseudo_palette)[regno] = v;
996 		break;
997 	}
998 	return 0;
999 }
1000 
1001 static int vmlfb_mmap(struct fb_info *info, struct vm_area_struct *vma)
1002 {
1003 	struct vml_info *vinfo = container_of(info, struct vml_info, info);
1004 	unsigned long offset = vma->vm_pgoff << PAGE_SHIFT;
1005 	int ret;
1006 	unsigned long prot;
1007 
1008 	ret = vmlfb_vram_offset(vinfo, offset);
1009 	if (ret)
1010 		return -EINVAL;
1011 
1012 	prot = pgprot_val(vma->vm_page_prot) & ~_PAGE_CACHE_MASK;
1013 	pgprot_val(vma->vm_page_prot) =
1014 		prot | cachemode2protval(_PAGE_CACHE_MODE_UC_MINUS);
1015 
1016 	return vm_iomap_memory(vma, vinfo->vram_start,
1017 			vinfo->vram_contig_size);
1018 }
1019 
1020 static int vmlfb_sync(struct fb_info *info)
1021 {
1022 	return 0;
1023 }
1024 
1025 static int vmlfb_cursor(struct fb_info *info, struct fb_cursor *cursor)
1026 {
1027 	return -EINVAL;	/* just to force soft_cursor() call */
1028 }
1029 
1030 static struct fb_ops vmlfb_ops = {
1031 	.owner = THIS_MODULE,
1032 	.fb_open = vmlfb_open,
1033 	.fb_release = vmlfb_release,
1034 	.fb_check_var = vmlfb_check_var,
1035 	.fb_set_par = vmlfb_set_par,
1036 	.fb_blank = vmlfb_blank,
1037 	.fb_pan_display = vmlfb_pan_display,
1038 	.fb_fillrect = cfb_fillrect,
1039 	.fb_copyarea = cfb_copyarea,
1040 	.fb_imageblit = cfb_imageblit,
1041 	.fb_cursor = vmlfb_cursor,
1042 	.fb_sync = vmlfb_sync,
1043 	.fb_mmap = vmlfb_mmap,
1044 	.fb_setcolreg = vmlfb_setcolreg
1045 };
1046 
1047 static const struct pci_device_id vml_ids[] = {
1048 	{PCI_DEVICE(PCI_VENDOR_ID_INTEL, VML_DEVICE_VDC)},
1049 	{0}
1050 };
1051 
1052 static struct pci_driver vmlfb_pci_driver = {
1053 	.name = "vmlfb",
1054 	.id_table = vml_ids,
1055 	.probe = vml_pci_probe,
1056 	.remove = vml_pci_remove,
1057 };
1058 
1059 static void __exit vmlfb_cleanup(void)
1060 {
1061 	pci_unregister_driver(&vmlfb_pci_driver);
1062 }
1063 
1064 static int __init vmlfb_init(void)
1065 {
1066 
1067 #ifndef MODULE
1068 	char *option = NULL;
1069 
1070 	if (fb_get_options(MODULE_NAME, &option))
1071 		return -ENODEV;
1072 #endif
1073 
1074 	printk(KERN_DEBUG MODULE_NAME ": initializing\n");
1075 	mutex_init(&vml_mutex);
1076 	INIT_LIST_HEAD(&global_no_mode);
1077 	INIT_LIST_HEAD(&global_has_mode);
1078 
1079 	return pci_register_driver(&vmlfb_pci_driver);
1080 }
1081 
1082 int vmlfb_register_subsys(struct vml_sys *sys)
1083 {
1084 	struct vml_info *entry;
1085 	struct list_head *list;
1086 	u32 save_activate;
1087 
1088 	mutex_lock(&vml_mutex);
1089 	if (subsys != NULL) {
1090 		subsys->restore(subsys);
1091 	}
1092 	subsys = sys;
1093 	subsys->save(subsys);
1094 
1095 	/*
1096 	 * We need to restart list traversal for each item, since we
1097 	 * release the list mutex in the loop.
1098 	 */
1099 
1100 	list = global_no_mode.next;
1101 	while (list != &global_no_mode) {
1102 		list_del_init(list);
1103 		entry = list_entry(list, struct vml_info, head);
1104 
1105 		/*
1106 		 * First, try the current mode which might not be
1107 		 * completely validated with respect to the pixel clock.
1108 		 */
1109 
1110 		if (!vmlfb_check_var_locked(&entry->info.var, entry)) {
1111 			vmlfb_set_par_locked(entry);
1112 			list_add_tail(list, &global_has_mode);
1113 		} else {
1114 
1115 			/*
1116 			 * Didn't work. Try to find another mode,
1117 			 * that matches this subsys.
1118 			 */
1119 
1120 			mutex_unlock(&vml_mutex);
1121 			save_activate = entry->info.var.activate;
1122 			entry->info.var.bits_per_pixel = 16;
1123 			vmlfb_set_pref_pixel_format(&entry->info.var);
1124 			if (fb_find_mode(&entry->info.var,
1125 					 &entry->info,
1126 					 vml_default_mode, NULL, 0, NULL, 16)) {
1127 				entry->info.var.activate |=
1128 				    FB_ACTIVATE_FORCE | FB_ACTIVATE_NOW;
1129 				fb_set_var(&entry->info, &entry->info.var);
1130 			} else {
1131 				printk(KERN_ERR MODULE_NAME
1132 				       ": Sorry. no mode found for this subsys.\n");
1133 			}
1134 			entry->info.var.activate = save_activate;
1135 			mutex_lock(&vml_mutex);
1136 		}
1137 		vmlfb_blank_locked(entry);
1138 		list = global_no_mode.next;
1139 	}
1140 	mutex_unlock(&vml_mutex);
1141 
1142 	printk(KERN_DEBUG MODULE_NAME ": Registered %s subsystem.\n",
1143 				subsys->name ? subsys->name : "unknown");
1144 	return 0;
1145 }
1146 
1147 EXPORT_SYMBOL_GPL(vmlfb_register_subsys);
1148 
1149 void vmlfb_unregister_subsys(struct vml_sys *sys)
1150 {
1151 	struct vml_info *entry, *next;
1152 
1153 	mutex_lock(&vml_mutex);
1154 	if (subsys != sys) {
1155 		mutex_unlock(&vml_mutex);
1156 		return;
1157 	}
1158 	subsys->restore(subsys);
1159 	subsys = NULL;
1160 	list_for_each_entry_safe(entry, next, &global_has_mode, head) {
1161 		printk(KERN_DEBUG MODULE_NAME ": subsys disable pipe\n");
1162 		vmlfb_disable_pipe(entry);
1163 		list_move_tail(&entry->head, &global_no_mode);
1164 	}
1165 	mutex_unlock(&vml_mutex);
1166 }
1167 
1168 EXPORT_SYMBOL_GPL(vmlfb_unregister_subsys);
1169 
1170 module_init(vmlfb_init);
1171 module_exit(vmlfb_cleanup);
1172 
1173 MODULE_AUTHOR("Tungsten Graphics");
1174 MODULE_DESCRIPTION("Initialization of the Vermilion display devices");
1175 MODULE_VERSION("1.0.0");
1176 MODULE_LICENSE("GPL");
1177