xref: /openbmc/linux/drivers/video/fbdev/sa1100fb.c (revision e1f7c9ee)
1 /*
2  *  linux/drivers/video/sa1100fb.c
3  *
4  *  Copyright (C) 1999 Eric A. Thomas
5  *   Based on acornfb.c Copyright (C) Russell King.
6  *
7  * This file is subject to the terms and conditions of the GNU General Public
8  * License.  See the file COPYING in the main directory of this archive for
9  * more details.
10  *
11  *	        StrongARM 1100 LCD Controller Frame Buffer Driver
12  *
13  * Please direct your questions and comments on this driver to the following
14  * email address:
15  *
16  *	linux-arm-kernel@lists.arm.linux.org.uk
17  *
18  * Clean patches should be sent to the ARM Linux Patch System.  Please see the
19  * following web page for more information:
20  *
21  *	http://www.arm.linux.org.uk/developer/patches/info.shtml
22  *
23  * Thank you.
24  *
25  * Known problems:
26  *	- With the Neponset plugged into an Assabet, LCD powerdown
27  *	  doesn't work (LCD stays powered up).  Therefore we shouldn't
28  *	  blank the screen.
29  *	- We don't limit the CPU clock rate nor the mode selection
30  *	  according to the available SDRAM bandwidth.
31  *
32  * Other notes:
33  *	- Linear grayscale palettes and the kernel.
34  *	  Such code does not belong in the kernel.  The kernel frame buffer
35  *	  drivers do not expect a linear colourmap, but a colourmap based on
36  *	  the VT100 standard mapping.
37  *
38  *	  If your _userspace_ requires a linear colourmap, then the setup of
39  *	  such a colourmap belongs _in userspace_, not in the kernel.  Code
40  *	  to set the colourmap correctly from user space has been sent to
41  *	  David Neuer.  It's around 8 lines of C code, plus another 4 to
42  *	  detect if we are using grayscale.
43  *
44  *	- The following must never be specified in a panel definition:
45  *	     LCCR0_LtlEnd, LCCR3_PixClkDiv, LCCR3_VrtSnchL, LCCR3_HorSnchL
46  *
47  *	- The following should be specified:
48  *	     either LCCR0_Color or LCCR0_Mono
49  *	     either LCCR0_Sngl or LCCR0_Dual
50  *	     either LCCR0_Act or LCCR0_Pas
51  *	     either LCCR3_OutEnH or LCCD3_OutEnL
52  *	     either LCCR3_PixRsEdg or LCCR3_PixFlEdg
53  *	     either LCCR3_ACBsDiv or LCCR3_ACBsCntOff
54  *
55  * Code Status:
56  * 1999/04/01:
57  *	- Driver appears to be working for Brutus 320x200x8bpp mode.  Other
58  *	  resolutions are working, but only the 8bpp mode is supported.
59  *	  Changes need to be made to the palette encode and decode routines
60  *	  to support 4 and 16 bpp modes.
61  *	  Driver is not designed to be a module.  The FrameBuffer is statically
62  *	  allocated since dynamic allocation of a 300k buffer cannot be
63  *	  guaranteed.
64  *
65  * 1999/06/17:
66  *	- FrameBuffer memory is now allocated at run-time when the
67  *	  driver is initialized.
68  *
69  * 2000/04/10: Nicolas Pitre <nico@fluxnic.net>
70  *	- Big cleanup for dynamic selection of machine type at run time.
71  *
72  * 2000/07/19: Jamey Hicks <jamey@crl.dec.com>
73  *	- Support for Bitsy aka Compaq iPAQ H3600 added.
74  *
75  * 2000/08/07: Tak-Shing Chan <tchan.rd@idthk.com>
76  *	       Jeff Sutherland <jsutherland@accelent.com>
77  *	- Resolved an issue caused by a change made to the Assabet's PLD
78  *	  earlier this year which broke the framebuffer driver for newer
79  *	  Phase 4 Assabets.  Some other parameters were changed to optimize
80  *	  for the Sharp display.
81  *
82  * 2000/08/09: Kunihiko IMAI <imai@vasara.co.jp>
83  *	- XP860 support added
84  *
85  * 2000/08/19: Mark Huang <mhuang@livetoy.com>
86  *	- Allows standard options to be passed on the kernel command line
87  *	  for most common passive displays.
88  *
89  * 2000/08/29:
90  *	- s/save_flags_cli/local_irq_save/
91  *	- remove unneeded extra save_flags_cli in sa1100fb_enable_lcd_controller
92  *
93  * 2000/10/10: Erik Mouw <J.A.K.Mouw@its.tudelft.nl>
94  *	- Updated LART stuff. Fixed some minor bugs.
95  *
96  * 2000/10/30: Murphy Chen <murphy@mail.dialogue.com.tw>
97  *	- Pangolin support added
98  *
99  * 2000/10/31: Roman Jordan <jor@hoeft-wessel.de>
100  *	- Huw Webpanel support added
101  *
102  * 2000/11/23: Eric Peng <ericpeng@coventive.com>
103  *	- Freebird add
104  *
105  * 2001/02/07: Jamey Hicks <jamey.hicks@compaq.com>
106  *	       Cliff Brake <cbrake@accelent.com>
107  *	- Added PM callback
108  *
109  * 2001/05/26: <rmk@arm.linux.org.uk>
110  *	- Fix 16bpp so that (a) we use the right colours rather than some
111  *	  totally random colour depending on what was in page 0, and (b)
112  *	  we don't de-reference a NULL pointer.
113  *	- remove duplicated implementation of consistent_alloc()
114  *	- convert dma address types to dma_addr_t
115  *	- remove unused 'montype' stuff
116  *	- remove redundant zero inits of init_var after the initial
117  *	  memset.
118  *	- remove allow_modeset (acornfb idea does not belong here)
119  *
120  * 2001/05/28: <rmk@arm.linux.org.uk>
121  *	- massive cleanup - move machine dependent data into structures
122  *	- I've left various #warnings in - if you see one, and know
123  *	  the hardware concerned, please get in contact with me.
124  *
125  * 2001/05/31: <rmk@arm.linux.org.uk>
126  *	- Fix LCCR1 HSW value, fix all machine type specifications to
127  *	  keep values in line.  (Please check your machine type specs)
128  *
129  * 2001/06/10: <rmk@arm.linux.org.uk>
130  *	- Fiddle with the LCD controller from task context only; mainly
131  *	  so that we can run with interrupts on, and sleep.
132  *	- Convert #warnings into #errors.  No pain, no gain. ;)
133  *
134  * 2001/06/14: <rmk@arm.linux.org.uk>
135  *	- Make the palette BPS value for 12bpp come out correctly.
136  *	- Take notice of "greyscale" on any colour depth.
137  *	- Make truecolor visuals use the RGB channel encoding information.
138  *
139  * 2001/07/02: <rmk@arm.linux.org.uk>
140  *	- Fix colourmap problems.
141  *
142  * 2001/07/13: <abraham@2d3d.co.za>
143  *	- Added support for the ICP LCD-Kit01 on LART. This LCD is
144  *	  manufactured by Prime View, model no V16C6448AB
145  *
146  * 2001/07/23: <rmk@arm.linux.org.uk>
147  *	- Hand merge version from handhelds.org CVS tree.  See patch
148  *	  notes for 595/1 for more information.
149  *	- Drop 12bpp (it's 16bpp with different colour register mappings).
150  *	- This hardware can not do direct colour.  Therefore we don't
151  *	  support it.
152  *
153  * 2001/07/27: <rmk@arm.linux.org.uk>
154  *	- Halve YRES on dual scan LCDs.
155  *
156  * 2001/08/22: <rmk@arm.linux.org.uk>
157  *	- Add b/w iPAQ pixclock value.
158  *
159  * 2001/10/12: <rmk@arm.linux.org.uk>
160  *	- Add patch 681/1 and clean up stork definitions.
161  */
162 
163 #include <linux/module.h>
164 #include <linux/kernel.h>
165 #include <linux/sched.h>
166 #include <linux/errno.h>
167 #include <linux/string.h>
168 #include <linux/interrupt.h>
169 #include <linux/slab.h>
170 #include <linux/mm.h>
171 #include <linux/fb.h>
172 #include <linux/delay.h>
173 #include <linux/init.h>
174 #include <linux/ioport.h>
175 #include <linux/cpufreq.h>
176 #include <linux/gpio.h>
177 #include <linux/platform_device.h>
178 #include <linux/dma-mapping.h>
179 #include <linux/mutex.h>
180 #include <linux/io.h>
181 
182 #include <video/sa1100fb.h>
183 
184 #include <mach/hardware.h>
185 #include <asm/mach-types.h>
186 #include <mach/shannon.h>
187 
188 /*
189  * Complain if VAR is out of range.
190  */
191 #define DEBUG_VAR 1
192 
193 #include "sa1100fb.h"
194 
195 static const struct sa1100fb_rgb rgb_4 = {
196 	.red	= { .offset = 0,  .length = 4, },
197 	.green	= { .offset = 0,  .length = 4, },
198 	.blue	= { .offset = 0,  .length = 4, },
199 	.transp	= { .offset = 0,  .length = 0, },
200 };
201 
202 static const struct sa1100fb_rgb rgb_8 = {
203 	.red	= { .offset = 0,  .length = 8, },
204 	.green	= { .offset = 0,  .length = 8, },
205 	.blue	= { .offset = 0,  .length = 8, },
206 	.transp	= { .offset = 0,  .length = 0, },
207 };
208 
209 static const struct sa1100fb_rgb def_rgb_16 = {
210 	.red	= { .offset = 11, .length = 5, },
211 	.green	= { .offset = 5,  .length = 6, },
212 	.blue	= { .offset = 0,  .length = 5, },
213 	.transp	= { .offset = 0,  .length = 0, },
214 };
215 
216 
217 
218 static int sa1100fb_activate_var(struct fb_var_screeninfo *var, struct sa1100fb_info *);
219 static void set_ctrlr_state(struct sa1100fb_info *fbi, u_int state);
220 
221 static inline void sa1100fb_schedule_work(struct sa1100fb_info *fbi, u_int state)
222 {
223 	unsigned long flags;
224 
225 	local_irq_save(flags);
226 	/*
227 	 * We need to handle two requests being made at the same time.
228 	 * There are two important cases:
229 	 *  1. When we are changing VT (C_REENABLE) while unblanking (C_ENABLE)
230 	 *     We must perform the unblanking, which will do our REENABLE for us.
231 	 *  2. When we are blanking, but immediately unblank before we have
232 	 *     blanked.  We do the "REENABLE" thing here as well, just to be sure.
233 	 */
234 	if (fbi->task_state == C_ENABLE && state == C_REENABLE)
235 		state = (u_int) -1;
236 	if (fbi->task_state == C_DISABLE && state == C_ENABLE)
237 		state = C_REENABLE;
238 
239 	if (state != (u_int)-1) {
240 		fbi->task_state = state;
241 		schedule_work(&fbi->task);
242 	}
243 	local_irq_restore(flags);
244 }
245 
246 static inline u_int chan_to_field(u_int chan, struct fb_bitfield *bf)
247 {
248 	chan &= 0xffff;
249 	chan >>= 16 - bf->length;
250 	return chan << bf->offset;
251 }
252 
253 /*
254  * Convert bits-per-pixel to a hardware palette PBS value.
255  */
256 static inline u_int palette_pbs(struct fb_var_screeninfo *var)
257 {
258 	int ret = 0;
259 	switch (var->bits_per_pixel) {
260 	case 4:  ret = 0 << 12;	break;
261 	case 8:  ret = 1 << 12; break;
262 	case 16: ret = 2 << 12; break;
263 	}
264 	return ret;
265 }
266 
267 static int
268 sa1100fb_setpalettereg(u_int regno, u_int red, u_int green, u_int blue,
269 		       u_int trans, struct fb_info *info)
270 {
271 	struct sa1100fb_info *fbi =
272 		container_of(info, struct sa1100fb_info, fb);
273 	u_int val, ret = 1;
274 
275 	if (regno < fbi->palette_size) {
276 		val = ((red >> 4) & 0xf00);
277 		val |= ((green >> 8) & 0x0f0);
278 		val |= ((blue >> 12) & 0x00f);
279 
280 		if (regno == 0)
281 			val |= palette_pbs(&fbi->fb.var);
282 
283 		fbi->palette_cpu[regno] = val;
284 		ret = 0;
285 	}
286 	return ret;
287 }
288 
289 static int
290 sa1100fb_setcolreg(u_int regno, u_int red, u_int green, u_int blue,
291 		   u_int trans, struct fb_info *info)
292 {
293 	struct sa1100fb_info *fbi =
294 		container_of(info, struct sa1100fb_info, fb);
295 	unsigned int val;
296 	int ret = 1;
297 
298 	/*
299 	 * If inverse mode was selected, invert all the colours
300 	 * rather than the register number.  The register number
301 	 * is what you poke into the framebuffer to produce the
302 	 * colour you requested.
303 	 */
304 	if (fbi->inf->cmap_inverse) {
305 		red   = 0xffff - red;
306 		green = 0xffff - green;
307 		blue  = 0xffff - blue;
308 	}
309 
310 	/*
311 	 * If greyscale is true, then we convert the RGB value
312 	 * to greyscale no mater what visual we are using.
313 	 */
314 	if (fbi->fb.var.grayscale)
315 		red = green = blue = (19595 * red + 38470 * green +
316 					7471 * blue) >> 16;
317 
318 	switch (fbi->fb.fix.visual) {
319 	case FB_VISUAL_TRUECOLOR:
320 		/*
321 		 * 12 or 16-bit True Colour.  We encode the RGB value
322 		 * according to the RGB bitfield information.
323 		 */
324 		if (regno < 16) {
325 			u32 *pal = fbi->fb.pseudo_palette;
326 
327 			val  = chan_to_field(red, &fbi->fb.var.red);
328 			val |= chan_to_field(green, &fbi->fb.var.green);
329 			val |= chan_to_field(blue, &fbi->fb.var.blue);
330 
331 			pal[regno] = val;
332 			ret = 0;
333 		}
334 		break;
335 
336 	case FB_VISUAL_STATIC_PSEUDOCOLOR:
337 	case FB_VISUAL_PSEUDOCOLOR:
338 		ret = sa1100fb_setpalettereg(regno, red, green, blue, trans, info);
339 		break;
340 	}
341 
342 	return ret;
343 }
344 
345 #ifdef CONFIG_CPU_FREQ
346 /*
347  *  sa1100fb_display_dma_period()
348  *    Calculate the minimum period (in picoseconds) between two DMA
349  *    requests for the LCD controller.  If we hit this, it means we're
350  *    doing nothing but LCD DMA.
351  */
352 static inline unsigned int sa1100fb_display_dma_period(struct fb_var_screeninfo *var)
353 {
354 	/*
355 	 * Period = pixclock * bits_per_byte * bytes_per_transfer
356 	 *		/ memory_bits_per_pixel;
357 	 */
358 	return var->pixclock * 8 * 16 / var->bits_per_pixel;
359 }
360 #endif
361 
362 /*
363  *  sa1100fb_check_var():
364  *    Round up in the following order: bits_per_pixel, xres,
365  *    yres, xres_virtual, yres_virtual, xoffset, yoffset, grayscale,
366  *    bitfields, horizontal timing, vertical timing.
367  */
368 static int
369 sa1100fb_check_var(struct fb_var_screeninfo *var, struct fb_info *info)
370 {
371 	struct sa1100fb_info *fbi =
372 		container_of(info, struct sa1100fb_info, fb);
373 	int rgbidx;
374 
375 	if (var->xres < MIN_XRES)
376 		var->xres = MIN_XRES;
377 	if (var->yres < MIN_YRES)
378 		var->yres = MIN_YRES;
379 	if (var->xres > fbi->inf->xres)
380 		var->xres = fbi->inf->xres;
381 	if (var->yres > fbi->inf->yres)
382 		var->yres = fbi->inf->yres;
383 	var->xres_virtual = max(var->xres_virtual, var->xres);
384 	var->yres_virtual = max(var->yres_virtual, var->yres);
385 
386 	dev_dbg(fbi->dev, "var->bits_per_pixel=%d\n", var->bits_per_pixel);
387 	switch (var->bits_per_pixel) {
388 	case 4:
389 		rgbidx = RGB_4;
390 		break;
391 	case 8:
392 		rgbidx = RGB_8;
393 		break;
394 	case 16:
395 		rgbidx = RGB_16;
396 		break;
397 	default:
398 		return -EINVAL;
399 	}
400 
401 	/*
402 	 * Copy the RGB parameters for this display
403 	 * from the machine specific parameters.
404 	 */
405 	var->red    = fbi->rgb[rgbidx]->red;
406 	var->green  = fbi->rgb[rgbidx]->green;
407 	var->blue   = fbi->rgb[rgbidx]->blue;
408 	var->transp = fbi->rgb[rgbidx]->transp;
409 
410 	dev_dbg(fbi->dev, "RGBT length = %d:%d:%d:%d\n",
411 		var->red.length, var->green.length, var->blue.length,
412 		var->transp.length);
413 
414 	dev_dbg(fbi->dev, "RGBT offset = %d:%d:%d:%d\n",
415 		var->red.offset, var->green.offset, var->blue.offset,
416 		var->transp.offset);
417 
418 #ifdef CONFIG_CPU_FREQ
419 	dev_dbg(fbi->dev, "dma period = %d ps, clock = %d kHz\n",
420 		sa1100fb_display_dma_period(var),
421 		cpufreq_get(smp_processor_id()));
422 #endif
423 
424 	return 0;
425 }
426 
427 static void sa1100fb_set_visual(struct sa1100fb_info *fbi, u32 visual)
428 {
429 	if (fbi->inf->set_visual)
430 		fbi->inf->set_visual(visual);
431 }
432 
433 /*
434  * sa1100fb_set_par():
435  *	Set the user defined part of the display for the specified console
436  */
437 static int sa1100fb_set_par(struct fb_info *info)
438 {
439 	struct sa1100fb_info *fbi =
440 		container_of(info, struct sa1100fb_info, fb);
441 	struct fb_var_screeninfo *var = &info->var;
442 	unsigned long palette_mem_size;
443 
444 	dev_dbg(fbi->dev, "set_par\n");
445 
446 	if (var->bits_per_pixel == 16)
447 		fbi->fb.fix.visual = FB_VISUAL_TRUECOLOR;
448 	else if (!fbi->inf->cmap_static)
449 		fbi->fb.fix.visual = FB_VISUAL_PSEUDOCOLOR;
450 	else {
451 		/*
452 		 * Some people have weird ideas about wanting static
453 		 * pseudocolor maps.  I suspect their user space
454 		 * applications are broken.
455 		 */
456 		fbi->fb.fix.visual = FB_VISUAL_STATIC_PSEUDOCOLOR;
457 	}
458 
459 	fbi->fb.fix.line_length = var->xres_virtual *
460 				  var->bits_per_pixel / 8;
461 	fbi->palette_size = var->bits_per_pixel == 8 ? 256 : 16;
462 
463 	palette_mem_size = fbi->palette_size * sizeof(u16);
464 
465 	dev_dbg(fbi->dev, "palette_mem_size = 0x%08lx\n", palette_mem_size);
466 
467 	fbi->palette_cpu = (u16 *)(fbi->map_cpu + PAGE_SIZE - palette_mem_size);
468 	fbi->palette_dma = fbi->map_dma + PAGE_SIZE - palette_mem_size;
469 
470 	/*
471 	 * Set (any) board control register to handle new color depth
472 	 */
473 	sa1100fb_set_visual(fbi, fbi->fb.fix.visual);
474 	sa1100fb_activate_var(var, fbi);
475 
476 	return 0;
477 }
478 
479 #if 0
480 static int
481 sa1100fb_set_cmap(struct fb_cmap *cmap, int kspc, int con,
482 		  struct fb_info *info)
483 {
484 	struct sa1100fb_info *fbi = (struct sa1100fb_info *)info;
485 
486 	/*
487 	 * Make sure the user isn't doing something stupid.
488 	 */
489 	if (!kspc && (fbi->fb.var.bits_per_pixel == 16 || fbi->inf->cmap_static))
490 		return -EINVAL;
491 
492 	return gen_set_cmap(cmap, kspc, con, info);
493 }
494 #endif
495 
496 /*
497  * Formal definition of the VESA spec:
498  *  On
499  *  	This refers to the state of the display when it is in full operation
500  *  Stand-By
501  *  	This defines an optional operating state of minimal power reduction with
502  *  	the shortest recovery time
503  *  Suspend
504  *  	This refers to a level of power management in which substantial power
505  *  	reduction is achieved by the display.  The display can have a longer
506  *  	recovery time from this state than from the Stand-by state
507  *  Off
508  *  	This indicates that the display is consuming the lowest level of power
509  *  	and is non-operational. Recovery from this state may optionally require
510  *  	the user to manually power on the monitor
511  *
512  *  Now, the fbdev driver adds an additional state, (blank), where they
513  *  turn off the video (maybe by colormap tricks), but don't mess with the
514  *  video itself: think of it semantically between on and Stand-By.
515  *
516  *  So here's what we should do in our fbdev blank routine:
517  *
518  *  	VESA_NO_BLANKING (mode 0)	Video on,  front/back light on
519  *  	VESA_VSYNC_SUSPEND (mode 1)  	Video on,  front/back light off
520  *  	VESA_HSYNC_SUSPEND (mode 2)  	Video on,  front/back light off
521  *  	VESA_POWERDOWN (mode 3)		Video off, front/back light off
522  *
523  *  This will match the matrox implementation.
524  */
525 /*
526  * sa1100fb_blank():
527  *	Blank the display by setting all palette values to zero.  Note, the
528  * 	12 and 16 bpp modes don't really use the palette, so this will not
529  *      blank the display in all modes.
530  */
531 static int sa1100fb_blank(int blank, struct fb_info *info)
532 {
533 	struct sa1100fb_info *fbi =
534 		container_of(info, struct sa1100fb_info, fb);
535 	int i;
536 
537 	dev_dbg(fbi->dev, "sa1100fb_blank: blank=%d\n", blank);
538 
539 	switch (blank) {
540 	case FB_BLANK_POWERDOWN:
541 	case FB_BLANK_VSYNC_SUSPEND:
542 	case FB_BLANK_HSYNC_SUSPEND:
543 	case FB_BLANK_NORMAL:
544 		if (fbi->fb.fix.visual == FB_VISUAL_PSEUDOCOLOR ||
545 		    fbi->fb.fix.visual == FB_VISUAL_STATIC_PSEUDOCOLOR)
546 			for (i = 0; i < fbi->palette_size; i++)
547 				sa1100fb_setpalettereg(i, 0, 0, 0, 0, info);
548 		sa1100fb_schedule_work(fbi, C_DISABLE);
549 		break;
550 
551 	case FB_BLANK_UNBLANK:
552 		if (fbi->fb.fix.visual == FB_VISUAL_PSEUDOCOLOR ||
553 		    fbi->fb.fix.visual == FB_VISUAL_STATIC_PSEUDOCOLOR)
554 			fb_set_cmap(&fbi->fb.cmap, info);
555 		sa1100fb_schedule_work(fbi, C_ENABLE);
556 	}
557 	return 0;
558 }
559 
560 static int sa1100fb_mmap(struct fb_info *info,
561 			 struct vm_area_struct *vma)
562 {
563 	struct sa1100fb_info *fbi =
564 		container_of(info, struct sa1100fb_info, fb);
565 	unsigned long off = vma->vm_pgoff << PAGE_SHIFT;
566 
567 	if (off < info->fix.smem_len) {
568 		vma->vm_pgoff += 1; /* skip over the palette */
569 		return dma_mmap_writecombine(fbi->dev, vma, fbi->map_cpu,
570 					     fbi->map_dma, fbi->map_size);
571 	}
572 
573 	vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot);
574 
575 	return vm_iomap_memory(vma, info->fix.mmio_start, info->fix.mmio_len);
576 }
577 
578 static struct fb_ops sa1100fb_ops = {
579 	.owner		= THIS_MODULE,
580 	.fb_check_var	= sa1100fb_check_var,
581 	.fb_set_par	= sa1100fb_set_par,
582 //	.fb_set_cmap	= sa1100fb_set_cmap,
583 	.fb_setcolreg	= sa1100fb_setcolreg,
584 	.fb_fillrect	= cfb_fillrect,
585 	.fb_copyarea	= cfb_copyarea,
586 	.fb_imageblit	= cfb_imageblit,
587 	.fb_blank	= sa1100fb_blank,
588 	.fb_mmap	= sa1100fb_mmap,
589 };
590 
591 /*
592  * Calculate the PCD value from the clock rate (in picoseconds).
593  * We take account of the PPCR clock setting.
594  */
595 static inline unsigned int get_pcd(unsigned int pixclock, unsigned int cpuclock)
596 {
597 	unsigned int pcd = cpuclock / 100;
598 
599 	pcd *= pixclock;
600 	pcd /= 10000000;
601 
602 	return pcd + 1;	/* make up for integer math truncations */
603 }
604 
605 /*
606  * sa1100fb_activate_var():
607  *	Configures LCD Controller based on entries in var parameter.  Settings are
608  *	only written to the controller if changes were made.
609  */
610 static int sa1100fb_activate_var(struct fb_var_screeninfo *var, struct sa1100fb_info *fbi)
611 {
612 	struct sa1100fb_lcd_reg new_regs;
613 	u_int half_screen_size, yres, pcd;
614 	u_long flags;
615 
616 	dev_dbg(fbi->dev, "Configuring SA1100 LCD\n");
617 
618 	dev_dbg(fbi->dev, "var: xres=%d hslen=%d lm=%d rm=%d\n",
619 		var->xres, var->hsync_len,
620 		var->left_margin, var->right_margin);
621 	dev_dbg(fbi->dev, "var: yres=%d vslen=%d um=%d bm=%d\n",
622 		var->yres, var->vsync_len,
623 		var->upper_margin, var->lower_margin);
624 
625 #if DEBUG_VAR
626 	if (var->xres < 16        || var->xres > 1024)
627 		dev_err(fbi->dev, "%s: invalid xres %d\n",
628 			fbi->fb.fix.id, var->xres);
629 	if (var->hsync_len < 1    || var->hsync_len > 64)
630 		dev_err(fbi->dev, "%s: invalid hsync_len %d\n",
631 			fbi->fb.fix.id, var->hsync_len);
632 	if (var->left_margin < 1  || var->left_margin > 255)
633 		dev_err(fbi->dev, "%s: invalid left_margin %d\n",
634 			fbi->fb.fix.id, var->left_margin);
635 	if (var->right_margin < 1 || var->right_margin > 255)
636 		dev_err(fbi->dev, "%s: invalid right_margin %d\n",
637 			fbi->fb.fix.id, var->right_margin);
638 	if (var->yres < 1         || var->yres > 1024)
639 		dev_err(fbi->dev, "%s: invalid yres %d\n",
640 			fbi->fb.fix.id, var->yres);
641 	if (var->vsync_len < 1    || var->vsync_len > 64)
642 		dev_err(fbi->dev, "%s: invalid vsync_len %d\n",
643 			fbi->fb.fix.id, var->vsync_len);
644 	if (var->upper_margin < 0 || var->upper_margin > 255)
645 		dev_err(fbi->dev, "%s: invalid upper_margin %d\n",
646 			fbi->fb.fix.id, var->upper_margin);
647 	if (var->lower_margin < 0 || var->lower_margin > 255)
648 		dev_err(fbi->dev, "%s: invalid lower_margin %d\n",
649 			fbi->fb.fix.id, var->lower_margin);
650 #endif
651 
652 	new_regs.lccr0 = fbi->inf->lccr0 |
653 		LCCR0_LEN | LCCR0_LDM | LCCR0_BAM |
654 		LCCR0_ERM | LCCR0_LtlEnd | LCCR0_DMADel(0);
655 
656 	new_regs.lccr1 =
657 		LCCR1_DisWdth(var->xres) +
658 		LCCR1_HorSnchWdth(var->hsync_len) +
659 		LCCR1_BegLnDel(var->left_margin) +
660 		LCCR1_EndLnDel(var->right_margin);
661 
662 	/*
663 	 * If we have a dual scan LCD, then we need to halve
664 	 * the YRES parameter.
665 	 */
666 	yres = var->yres;
667 	if (fbi->inf->lccr0 & LCCR0_Dual)
668 		yres /= 2;
669 
670 	new_regs.lccr2 =
671 		LCCR2_DisHght(yres) +
672 		LCCR2_VrtSnchWdth(var->vsync_len) +
673 		LCCR2_BegFrmDel(var->upper_margin) +
674 		LCCR2_EndFrmDel(var->lower_margin);
675 
676 	pcd = get_pcd(var->pixclock, cpufreq_get(0));
677 	new_regs.lccr3 = LCCR3_PixClkDiv(pcd) | fbi->inf->lccr3 |
678 		(var->sync & FB_SYNC_HOR_HIGH_ACT ? LCCR3_HorSnchH : LCCR3_HorSnchL) |
679 		(var->sync & FB_SYNC_VERT_HIGH_ACT ? LCCR3_VrtSnchH : LCCR3_VrtSnchL);
680 
681 	dev_dbg(fbi->dev, "nlccr0 = 0x%08lx\n", new_regs.lccr0);
682 	dev_dbg(fbi->dev, "nlccr1 = 0x%08lx\n", new_regs.lccr1);
683 	dev_dbg(fbi->dev, "nlccr2 = 0x%08lx\n", new_regs.lccr2);
684 	dev_dbg(fbi->dev, "nlccr3 = 0x%08lx\n", new_regs.lccr3);
685 
686 	half_screen_size = var->bits_per_pixel;
687 	half_screen_size = half_screen_size * var->xres * var->yres / 16;
688 
689 	/* Update shadow copy atomically */
690 	local_irq_save(flags);
691 	fbi->dbar1 = fbi->palette_dma;
692 	fbi->dbar2 = fbi->screen_dma + half_screen_size;
693 
694 	fbi->reg_lccr0 = new_regs.lccr0;
695 	fbi->reg_lccr1 = new_regs.lccr1;
696 	fbi->reg_lccr2 = new_regs.lccr2;
697 	fbi->reg_lccr3 = new_regs.lccr3;
698 	local_irq_restore(flags);
699 
700 	/*
701 	 * Only update the registers if the controller is enabled
702 	 * and something has changed.
703 	 */
704 	if (readl_relaxed(fbi->base + LCCR0) != fbi->reg_lccr0 ||
705 	    readl_relaxed(fbi->base + LCCR1) != fbi->reg_lccr1 ||
706 	    readl_relaxed(fbi->base + LCCR2) != fbi->reg_lccr2 ||
707 	    readl_relaxed(fbi->base + LCCR3) != fbi->reg_lccr3 ||
708 	    readl_relaxed(fbi->base + DBAR1) != fbi->dbar1 ||
709 	    readl_relaxed(fbi->base + DBAR2) != fbi->dbar2)
710 		sa1100fb_schedule_work(fbi, C_REENABLE);
711 
712 	return 0;
713 }
714 
715 /*
716  * NOTE!  The following functions are purely helpers for set_ctrlr_state.
717  * Do not call them directly; set_ctrlr_state does the correct serialisation
718  * to ensure that things happen in the right way 100% of time time.
719  *	-- rmk
720  */
721 static inline void __sa1100fb_backlight_power(struct sa1100fb_info *fbi, int on)
722 {
723 	dev_dbg(fbi->dev, "backlight o%s\n", on ? "n" : "ff");
724 
725 	if (fbi->inf->backlight_power)
726 		fbi->inf->backlight_power(on);
727 }
728 
729 static inline void __sa1100fb_lcd_power(struct sa1100fb_info *fbi, int on)
730 {
731 	dev_dbg(fbi->dev, "LCD power o%s\n", on ? "n" : "ff");
732 
733 	if (fbi->inf->lcd_power)
734 		fbi->inf->lcd_power(on);
735 }
736 
737 static void sa1100fb_setup_gpio(struct sa1100fb_info *fbi)
738 {
739 	u_int mask = 0;
740 
741 	/*
742 	 * Enable GPIO<9:2> for LCD use if:
743 	 *  1. Active display, or
744 	 *  2. Color Dual Passive display
745 	 *
746 	 * see table 11.8 on page 11-27 in the SA1100 manual
747 	 *   -- Erik.
748 	 *
749 	 * SA1110 spec update nr. 25 says we can and should
750 	 * clear LDD15 to 12 for 4 or 8bpp modes with active
751 	 * panels.
752 	 */
753 	if ((fbi->reg_lccr0 & LCCR0_CMS) == LCCR0_Color &&
754 	    (fbi->reg_lccr0 & (LCCR0_Dual|LCCR0_Act)) != 0) {
755 		mask = GPIO_LDD11 | GPIO_LDD10 | GPIO_LDD9  | GPIO_LDD8;
756 
757 		if (fbi->fb.var.bits_per_pixel > 8 ||
758 		    (fbi->reg_lccr0 & (LCCR0_Dual|LCCR0_Act)) == LCCR0_Dual)
759 			mask |= GPIO_LDD15 | GPIO_LDD14 | GPIO_LDD13 | GPIO_LDD12;
760 
761 	}
762 
763 	if (mask) {
764 		unsigned long flags;
765 
766 		/*
767 		 * SA-1100 requires the GPIO direction register set
768 		 * appropriately for the alternate function.  Hence
769 		 * we set it here via bitmask rather than excessive
770 		 * fiddling via the GPIO subsystem - and even then
771 		 * we'll still have to deal with GAFR.
772 		 */
773 		local_irq_save(flags);
774 		GPDR |= mask;
775 		GAFR |= mask;
776 		local_irq_restore(flags);
777 	}
778 }
779 
780 static void sa1100fb_enable_controller(struct sa1100fb_info *fbi)
781 {
782 	dev_dbg(fbi->dev, "Enabling LCD controller\n");
783 
784 	/*
785 	 * Make sure the mode bits are present in the first palette entry
786 	 */
787 	fbi->palette_cpu[0] &= 0xcfff;
788 	fbi->palette_cpu[0] |= palette_pbs(&fbi->fb.var);
789 
790 	/* Sequence from 11.7.10 */
791 	writel_relaxed(fbi->reg_lccr3, fbi->base + LCCR3);
792 	writel_relaxed(fbi->reg_lccr2, fbi->base + LCCR2);
793 	writel_relaxed(fbi->reg_lccr1, fbi->base + LCCR1);
794 	writel_relaxed(fbi->reg_lccr0 & ~LCCR0_LEN, fbi->base + LCCR0);
795 	writel_relaxed(fbi->dbar1, fbi->base + DBAR1);
796 	writel_relaxed(fbi->dbar2, fbi->base + DBAR2);
797 	writel_relaxed(fbi->reg_lccr0 | LCCR0_LEN, fbi->base + LCCR0);
798 
799 	if (machine_is_shannon())
800 		gpio_set_value(SHANNON_GPIO_DISP_EN, 1);
801 
802 	dev_dbg(fbi->dev, "DBAR1: 0x%08x\n", readl_relaxed(fbi->base + DBAR1));
803 	dev_dbg(fbi->dev, "DBAR2: 0x%08x\n", readl_relaxed(fbi->base + DBAR2));
804 	dev_dbg(fbi->dev, "LCCR0: 0x%08x\n", readl_relaxed(fbi->base + LCCR0));
805 	dev_dbg(fbi->dev, "LCCR1: 0x%08x\n", readl_relaxed(fbi->base + LCCR1));
806 	dev_dbg(fbi->dev, "LCCR2: 0x%08x\n", readl_relaxed(fbi->base + LCCR2));
807 	dev_dbg(fbi->dev, "LCCR3: 0x%08x\n", readl_relaxed(fbi->base + LCCR3));
808 }
809 
810 static void sa1100fb_disable_controller(struct sa1100fb_info *fbi)
811 {
812 	DECLARE_WAITQUEUE(wait, current);
813 	u32 lccr0;
814 
815 	dev_dbg(fbi->dev, "Disabling LCD controller\n");
816 
817 	if (machine_is_shannon())
818 		gpio_set_value(SHANNON_GPIO_DISP_EN, 0);
819 
820 	set_current_state(TASK_UNINTERRUPTIBLE);
821 	add_wait_queue(&fbi->ctrlr_wait, &wait);
822 
823 	/* Clear LCD Status Register */
824 	writel_relaxed(~0, fbi->base + LCSR);
825 
826 	lccr0 = readl_relaxed(fbi->base + LCCR0);
827 	lccr0 &= ~LCCR0_LDM;	/* Enable LCD Disable Done Interrupt */
828 	writel_relaxed(lccr0, fbi->base + LCCR0);
829 	lccr0 &= ~LCCR0_LEN;	/* Disable LCD Controller */
830 	writel_relaxed(lccr0, fbi->base + LCCR0);
831 
832 	schedule_timeout(20 * HZ / 1000);
833 	remove_wait_queue(&fbi->ctrlr_wait, &wait);
834 }
835 
836 /*
837  *  sa1100fb_handle_irq: Handle 'LCD DONE' interrupts.
838  */
839 static irqreturn_t sa1100fb_handle_irq(int irq, void *dev_id)
840 {
841 	struct sa1100fb_info *fbi = dev_id;
842 	unsigned int lcsr = readl_relaxed(fbi->base + LCSR);
843 
844 	if (lcsr & LCSR_LDD) {
845 		u32 lccr0 = readl_relaxed(fbi->base + LCCR0) | LCCR0_LDM;
846 		writel_relaxed(lccr0, fbi->base + LCCR0);
847 		wake_up(&fbi->ctrlr_wait);
848 	}
849 
850 	writel_relaxed(lcsr, fbi->base + LCSR);
851 	return IRQ_HANDLED;
852 }
853 
854 /*
855  * This function must be called from task context only, since it will
856  * sleep when disabling the LCD controller, or if we get two contending
857  * processes trying to alter state.
858  */
859 static void set_ctrlr_state(struct sa1100fb_info *fbi, u_int state)
860 {
861 	u_int old_state;
862 
863 	mutex_lock(&fbi->ctrlr_lock);
864 
865 	old_state = fbi->state;
866 
867 	/*
868 	 * Hack around fbcon initialisation.
869 	 */
870 	if (old_state == C_STARTUP && state == C_REENABLE)
871 		state = C_ENABLE;
872 
873 	switch (state) {
874 	case C_DISABLE_CLKCHANGE:
875 		/*
876 		 * Disable controller for clock change.  If the
877 		 * controller is already disabled, then do nothing.
878 		 */
879 		if (old_state != C_DISABLE && old_state != C_DISABLE_PM) {
880 			fbi->state = state;
881 			sa1100fb_disable_controller(fbi);
882 		}
883 		break;
884 
885 	case C_DISABLE_PM:
886 	case C_DISABLE:
887 		/*
888 		 * Disable controller
889 		 */
890 		if (old_state != C_DISABLE) {
891 			fbi->state = state;
892 
893 			__sa1100fb_backlight_power(fbi, 0);
894 			if (old_state != C_DISABLE_CLKCHANGE)
895 				sa1100fb_disable_controller(fbi);
896 			__sa1100fb_lcd_power(fbi, 0);
897 		}
898 		break;
899 
900 	case C_ENABLE_CLKCHANGE:
901 		/*
902 		 * Enable the controller after clock change.  Only
903 		 * do this if we were disabled for the clock change.
904 		 */
905 		if (old_state == C_DISABLE_CLKCHANGE) {
906 			fbi->state = C_ENABLE;
907 			sa1100fb_enable_controller(fbi);
908 		}
909 		break;
910 
911 	case C_REENABLE:
912 		/*
913 		 * Re-enable the controller only if it was already
914 		 * enabled.  This is so we reprogram the control
915 		 * registers.
916 		 */
917 		if (old_state == C_ENABLE) {
918 			sa1100fb_disable_controller(fbi);
919 			sa1100fb_setup_gpio(fbi);
920 			sa1100fb_enable_controller(fbi);
921 		}
922 		break;
923 
924 	case C_ENABLE_PM:
925 		/*
926 		 * Re-enable the controller after PM.  This is not
927 		 * perfect - think about the case where we were doing
928 		 * a clock change, and we suspended half-way through.
929 		 */
930 		if (old_state != C_DISABLE_PM)
931 			break;
932 		/* fall through */
933 
934 	case C_ENABLE:
935 		/*
936 		 * Power up the LCD screen, enable controller, and
937 		 * turn on the backlight.
938 		 */
939 		if (old_state != C_ENABLE) {
940 			fbi->state = C_ENABLE;
941 			sa1100fb_setup_gpio(fbi);
942 			__sa1100fb_lcd_power(fbi, 1);
943 			sa1100fb_enable_controller(fbi);
944 			__sa1100fb_backlight_power(fbi, 1);
945 		}
946 		break;
947 	}
948 	mutex_unlock(&fbi->ctrlr_lock);
949 }
950 
951 /*
952  * Our LCD controller task (which is called when we blank or unblank)
953  * via keventd.
954  */
955 static void sa1100fb_task(struct work_struct *w)
956 {
957 	struct sa1100fb_info *fbi = container_of(w, struct sa1100fb_info, task);
958 	u_int state = xchg(&fbi->task_state, -1);
959 
960 	set_ctrlr_state(fbi, state);
961 }
962 
963 #ifdef CONFIG_CPU_FREQ
964 /*
965  * Calculate the minimum DMA period over all displays that we own.
966  * This, together with the SDRAM bandwidth defines the slowest CPU
967  * frequency that can be selected.
968  */
969 static unsigned int sa1100fb_min_dma_period(struct sa1100fb_info *fbi)
970 {
971 #if 0
972 	unsigned int min_period = (unsigned int)-1;
973 	int i;
974 
975 	for (i = 0; i < MAX_NR_CONSOLES; i++) {
976 		struct display *disp = &fb_display[i];
977 		unsigned int period;
978 
979 		/*
980 		 * Do we own this display?
981 		 */
982 		if (disp->fb_info != &fbi->fb)
983 			continue;
984 
985 		/*
986 		 * Ok, calculate its DMA period
987 		 */
988 		period = sa1100fb_display_dma_period(&disp->var);
989 		if (period < min_period)
990 			min_period = period;
991 	}
992 
993 	return min_period;
994 #else
995 	/*
996 	 * FIXME: we need to verify _all_ consoles.
997 	 */
998 	return sa1100fb_display_dma_period(&fbi->fb.var);
999 #endif
1000 }
1001 
1002 /*
1003  * CPU clock speed change handler.  We need to adjust the LCD timing
1004  * parameters when the CPU clock is adjusted by the power management
1005  * subsystem.
1006  */
1007 static int
1008 sa1100fb_freq_transition(struct notifier_block *nb, unsigned long val,
1009 			 void *data)
1010 {
1011 	struct sa1100fb_info *fbi = TO_INF(nb, freq_transition);
1012 	struct cpufreq_freqs *f = data;
1013 	u_int pcd;
1014 
1015 	switch (val) {
1016 	case CPUFREQ_PRECHANGE:
1017 		set_ctrlr_state(fbi, C_DISABLE_CLKCHANGE);
1018 		break;
1019 
1020 	case CPUFREQ_POSTCHANGE:
1021 		pcd = get_pcd(fbi->fb.var.pixclock, f->new);
1022 		fbi->reg_lccr3 = (fbi->reg_lccr3 & ~0xff) | LCCR3_PixClkDiv(pcd);
1023 		set_ctrlr_state(fbi, C_ENABLE_CLKCHANGE);
1024 		break;
1025 	}
1026 	return 0;
1027 }
1028 
1029 static int
1030 sa1100fb_freq_policy(struct notifier_block *nb, unsigned long val,
1031 		     void *data)
1032 {
1033 	struct sa1100fb_info *fbi = TO_INF(nb, freq_policy);
1034 	struct cpufreq_policy *policy = data;
1035 
1036 	switch (val) {
1037 	case CPUFREQ_ADJUST:
1038 	case CPUFREQ_INCOMPATIBLE:
1039 		dev_dbg(fbi->dev, "min dma period: %d ps, "
1040 			"new clock %d kHz\n", sa1100fb_min_dma_period(fbi),
1041 			policy->max);
1042 		/* todo: fill in min/max values */
1043 		break;
1044 	case CPUFREQ_NOTIFY:
1045 		do {} while(0);
1046 		/* todo: panic if min/max values aren't fulfilled
1047 		 * [can't really happen unless there's a bug in the
1048 		 * CPU policy verififcation process *
1049 		 */
1050 		break;
1051 	}
1052 	return 0;
1053 }
1054 #endif
1055 
1056 #ifdef CONFIG_PM
1057 /*
1058  * Power management hooks.  Note that we won't be called from IRQ context,
1059  * unlike the blank functions above, so we may sleep.
1060  */
1061 static int sa1100fb_suspend(struct platform_device *dev, pm_message_t state)
1062 {
1063 	struct sa1100fb_info *fbi = platform_get_drvdata(dev);
1064 
1065 	set_ctrlr_state(fbi, C_DISABLE_PM);
1066 	return 0;
1067 }
1068 
1069 static int sa1100fb_resume(struct platform_device *dev)
1070 {
1071 	struct sa1100fb_info *fbi = platform_get_drvdata(dev);
1072 
1073 	set_ctrlr_state(fbi, C_ENABLE_PM);
1074 	return 0;
1075 }
1076 #else
1077 #define sa1100fb_suspend	NULL
1078 #define sa1100fb_resume		NULL
1079 #endif
1080 
1081 /*
1082  * sa1100fb_map_video_memory():
1083  *      Allocates the DRAM memory for the frame buffer.  This buffer is
1084  *	remapped into a non-cached, non-buffered, memory region to
1085  *      allow palette and pixel writes to occur without flushing the
1086  *      cache.  Once this area is remapped, all virtual memory
1087  *      access to the video memory should occur at the new region.
1088  */
1089 static int sa1100fb_map_video_memory(struct sa1100fb_info *fbi)
1090 {
1091 	/*
1092 	 * We reserve one page for the palette, plus the size
1093 	 * of the framebuffer.
1094 	 */
1095 	fbi->map_size = PAGE_ALIGN(fbi->fb.fix.smem_len + PAGE_SIZE);
1096 	fbi->map_cpu = dma_alloc_writecombine(fbi->dev, fbi->map_size,
1097 					      &fbi->map_dma, GFP_KERNEL);
1098 
1099 	if (fbi->map_cpu) {
1100 		fbi->fb.screen_base = fbi->map_cpu + PAGE_SIZE;
1101 		fbi->screen_dma = fbi->map_dma + PAGE_SIZE;
1102 		/*
1103 		 * FIXME: this is actually the wrong thing to place in
1104 		 * smem_start.  But fbdev suffers from the problem that
1105 		 * it needs an API which doesn't exist (in this case,
1106 		 * dma_writecombine_mmap)
1107 		 */
1108 		fbi->fb.fix.smem_start = fbi->screen_dma;
1109 	}
1110 
1111 	return fbi->map_cpu ? 0 : -ENOMEM;
1112 }
1113 
1114 /* Fake monspecs to fill in fbinfo structure */
1115 static struct fb_monspecs monspecs = {
1116 	.hfmin	= 30000,
1117 	.hfmax	= 70000,
1118 	.vfmin	= 50,
1119 	.vfmax	= 65,
1120 };
1121 
1122 
1123 static struct sa1100fb_info *sa1100fb_init_fbinfo(struct device *dev)
1124 {
1125 	struct sa1100fb_mach_info *inf = dev_get_platdata(dev);
1126 	struct sa1100fb_info *fbi;
1127 	unsigned i;
1128 
1129 	fbi = kmalloc(sizeof(struct sa1100fb_info) + sizeof(u32) * 16,
1130 		      GFP_KERNEL);
1131 	if (!fbi)
1132 		return NULL;
1133 
1134 	memset(fbi, 0, sizeof(struct sa1100fb_info));
1135 	fbi->dev = dev;
1136 
1137 	strcpy(fbi->fb.fix.id, SA1100_NAME);
1138 
1139 	fbi->fb.fix.type	= FB_TYPE_PACKED_PIXELS;
1140 	fbi->fb.fix.type_aux	= 0;
1141 	fbi->fb.fix.xpanstep	= 0;
1142 	fbi->fb.fix.ypanstep	= 0;
1143 	fbi->fb.fix.ywrapstep	= 0;
1144 	fbi->fb.fix.accel	= FB_ACCEL_NONE;
1145 
1146 	fbi->fb.var.nonstd	= 0;
1147 	fbi->fb.var.activate	= FB_ACTIVATE_NOW;
1148 	fbi->fb.var.height	= -1;
1149 	fbi->fb.var.width	= -1;
1150 	fbi->fb.var.accel_flags	= 0;
1151 	fbi->fb.var.vmode	= FB_VMODE_NONINTERLACED;
1152 
1153 	fbi->fb.fbops		= &sa1100fb_ops;
1154 	fbi->fb.flags		= FBINFO_DEFAULT;
1155 	fbi->fb.monspecs	= monspecs;
1156 	fbi->fb.pseudo_palette	= (fbi + 1);
1157 
1158 	fbi->rgb[RGB_4]		= &rgb_4;
1159 	fbi->rgb[RGB_8]		= &rgb_8;
1160 	fbi->rgb[RGB_16]	= &def_rgb_16;
1161 
1162 	/*
1163 	 * People just don't seem to get this.  We don't support
1164 	 * anything but correct entries now, so panic if someone
1165 	 * does something stupid.
1166 	 */
1167 	if (inf->lccr3 & (LCCR3_VrtSnchL|LCCR3_HorSnchL|0xff) ||
1168 	    inf->pixclock == 0)
1169 		panic("sa1100fb error: invalid LCCR3 fields set or zero "
1170 			"pixclock.");
1171 
1172 	fbi->fb.var.xres		= inf->xres;
1173 	fbi->fb.var.xres_virtual	= inf->xres;
1174 	fbi->fb.var.yres		= inf->yres;
1175 	fbi->fb.var.yres_virtual	= inf->yres;
1176 	fbi->fb.var.bits_per_pixel	= inf->bpp;
1177 	fbi->fb.var.pixclock		= inf->pixclock;
1178 	fbi->fb.var.hsync_len		= inf->hsync_len;
1179 	fbi->fb.var.left_margin		= inf->left_margin;
1180 	fbi->fb.var.right_margin	= inf->right_margin;
1181 	fbi->fb.var.vsync_len		= inf->vsync_len;
1182 	fbi->fb.var.upper_margin	= inf->upper_margin;
1183 	fbi->fb.var.lower_margin	= inf->lower_margin;
1184 	fbi->fb.var.sync		= inf->sync;
1185 	fbi->fb.var.grayscale		= inf->cmap_greyscale;
1186 	fbi->state			= C_STARTUP;
1187 	fbi->task_state			= (u_char)-1;
1188 	fbi->fb.fix.smem_len		= inf->xres * inf->yres *
1189 					  inf->bpp / 8;
1190 	fbi->inf			= inf;
1191 
1192 	/* Copy the RGB bitfield overrides */
1193 	for (i = 0; i < NR_RGB; i++)
1194 		if (inf->rgb[i])
1195 			fbi->rgb[i] = inf->rgb[i];
1196 
1197 	init_waitqueue_head(&fbi->ctrlr_wait);
1198 	INIT_WORK(&fbi->task, sa1100fb_task);
1199 	mutex_init(&fbi->ctrlr_lock);
1200 
1201 	return fbi;
1202 }
1203 
1204 static int sa1100fb_probe(struct platform_device *pdev)
1205 {
1206 	struct sa1100fb_info *fbi;
1207 	struct resource *res;
1208 	int ret, irq;
1209 
1210 	if (!dev_get_platdata(&pdev->dev)) {
1211 		dev_err(&pdev->dev, "no platform LCD data\n");
1212 		return -EINVAL;
1213 	}
1214 
1215 	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1216 	irq = platform_get_irq(pdev, 0);
1217 	if (irq < 0 || !res)
1218 		return -EINVAL;
1219 
1220 	if (!request_mem_region(res->start, resource_size(res), "LCD"))
1221 		return -EBUSY;
1222 
1223 	fbi = sa1100fb_init_fbinfo(&pdev->dev);
1224 	ret = -ENOMEM;
1225 	if (!fbi)
1226 		goto failed;
1227 
1228 	fbi->base = ioremap(res->start, resource_size(res));
1229 	if (!fbi->base)
1230 		goto failed;
1231 
1232 	/* Initialize video memory */
1233 	ret = sa1100fb_map_video_memory(fbi);
1234 	if (ret)
1235 		goto failed;
1236 
1237 	ret = request_irq(irq, sa1100fb_handle_irq, 0, "LCD", fbi);
1238 	if (ret) {
1239 		dev_err(&pdev->dev, "request_irq failed: %d\n", ret);
1240 		goto failed;
1241 	}
1242 
1243 	if (machine_is_shannon()) {
1244 		ret = gpio_request_one(SHANNON_GPIO_DISP_EN,
1245 			GPIOF_OUT_INIT_LOW, "display enable");
1246 		if (ret)
1247 			goto err_free_irq;
1248 	}
1249 
1250 	/*
1251 	 * This makes sure that our colour bitfield
1252 	 * descriptors are correctly initialised.
1253 	 */
1254 	sa1100fb_check_var(&fbi->fb.var, &fbi->fb);
1255 
1256 	platform_set_drvdata(pdev, fbi);
1257 
1258 	ret = register_framebuffer(&fbi->fb);
1259 	if (ret < 0)
1260 		goto err_reg_fb;
1261 
1262 #ifdef CONFIG_CPU_FREQ
1263 	fbi->freq_transition.notifier_call = sa1100fb_freq_transition;
1264 	fbi->freq_policy.notifier_call = sa1100fb_freq_policy;
1265 	cpufreq_register_notifier(&fbi->freq_transition, CPUFREQ_TRANSITION_NOTIFIER);
1266 	cpufreq_register_notifier(&fbi->freq_policy, CPUFREQ_POLICY_NOTIFIER);
1267 #endif
1268 
1269 	/* This driver cannot be unloaded at the moment */
1270 	return 0;
1271 
1272  err_reg_fb:
1273 	if (machine_is_shannon())
1274 		gpio_free(SHANNON_GPIO_DISP_EN);
1275  err_free_irq:
1276 	free_irq(irq, fbi);
1277  failed:
1278 	if (fbi)
1279 		iounmap(fbi->base);
1280 	kfree(fbi);
1281 	release_mem_region(res->start, resource_size(res));
1282 	return ret;
1283 }
1284 
1285 static struct platform_driver sa1100fb_driver = {
1286 	.probe		= sa1100fb_probe,
1287 	.suspend	= sa1100fb_suspend,
1288 	.resume		= sa1100fb_resume,
1289 	.driver		= {
1290 		.name	= "sa11x0-fb",
1291 		.owner	= THIS_MODULE,
1292 	},
1293 };
1294 
1295 int __init sa1100fb_init(void)
1296 {
1297 	if (fb_get_options("sa1100fb", NULL))
1298 		return -ENODEV;
1299 
1300 	return platform_driver_register(&sa1100fb_driver);
1301 }
1302 
1303 int __init sa1100fb_setup(char *options)
1304 {
1305 #if 0
1306 	char *this_opt;
1307 
1308 	if (!options || !*options)
1309 		return 0;
1310 
1311 	while ((this_opt = strsep(&options, ",")) != NULL) {
1312 
1313 		if (!strncmp(this_opt, "bpp:", 4))
1314 			current_par.max_bpp =
1315 			    simple_strtoul(this_opt + 4, NULL, 0);
1316 
1317 		if (!strncmp(this_opt, "lccr0:", 6))
1318 			lcd_shadow.lccr0 =
1319 			    simple_strtoul(this_opt + 6, NULL, 0);
1320 		if (!strncmp(this_opt, "lccr1:", 6)) {
1321 			lcd_shadow.lccr1 =
1322 			    simple_strtoul(this_opt + 6, NULL, 0);
1323 			current_par.max_xres =
1324 			    (lcd_shadow.lccr1 & 0x3ff) + 16;
1325 		}
1326 		if (!strncmp(this_opt, "lccr2:", 6)) {
1327 			lcd_shadow.lccr2 =
1328 			    simple_strtoul(this_opt + 6, NULL, 0);
1329 			current_par.max_yres =
1330 			    (lcd_shadow.
1331 			     lccr0 & LCCR0_SDS) ? ((lcd_shadow.
1332 						    lccr2 & 0x3ff) +
1333 						   1) *
1334 			    2 : ((lcd_shadow.lccr2 & 0x3ff) + 1);
1335 		}
1336 		if (!strncmp(this_opt, "lccr3:", 6))
1337 			lcd_shadow.lccr3 =
1338 			    simple_strtoul(this_opt + 6, NULL, 0);
1339 	}
1340 #endif
1341 	return 0;
1342 }
1343 
1344 module_init(sa1100fb_init);
1345 MODULE_DESCRIPTION("StrongARM-1100/1110 framebuffer driver");
1346 MODULE_LICENSE("GPL");
1347