1 /* 2 * linux/drivers/video/sa1100fb.c 3 * 4 * Copyright (C) 1999 Eric A. Thomas 5 * Based on acornfb.c Copyright (C) Russell King. 6 * 7 * This file is subject to the terms and conditions of the GNU General Public 8 * License. See the file COPYING in the main directory of this archive for 9 * more details. 10 * 11 * StrongARM 1100 LCD Controller Frame Buffer Driver 12 * 13 * Please direct your questions and comments on this driver to the following 14 * email address: 15 * 16 * linux-arm-kernel@lists.arm.linux.org.uk 17 * 18 * Clean patches should be sent to the ARM Linux Patch System. Please see the 19 * following web page for more information: 20 * 21 * http://www.arm.linux.org.uk/developer/patches/info.shtml 22 * 23 * Thank you. 24 * 25 * Known problems: 26 * - With the Neponset plugged into an Assabet, LCD powerdown 27 * doesn't work (LCD stays powered up). Therefore we shouldn't 28 * blank the screen. 29 * - We don't limit the CPU clock rate nor the mode selection 30 * according to the available SDRAM bandwidth. 31 * 32 * Other notes: 33 * - Linear grayscale palettes and the kernel. 34 * Such code does not belong in the kernel. The kernel frame buffer 35 * drivers do not expect a linear colourmap, but a colourmap based on 36 * the VT100 standard mapping. 37 * 38 * If your _userspace_ requires a linear colourmap, then the setup of 39 * such a colourmap belongs _in userspace_, not in the kernel. Code 40 * to set the colourmap correctly from user space has been sent to 41 * David Neuer. It's around 8 lines of C code, plus another 4 to 42 * detect if we are using grayscale. 43 * 44 * - The following must never be specified in a panel definition: 45 * LCCR0_LtlEnd, LCCR3_PixClkDiv, LCCR3_VrtSnchL, LCCR3_HorSnchL 46 * 47 * - The following should be specified: 48 * either LCCR0_Color or LCCR0_Mono 49 * either LCCR0_Sngl or LCCR0_Dual 50 * either LCCR0_Act or LCCR0_Pas 51 * either LCCR3_OutEnH or LCCD3_OutEnL 52 * either LCCR3_PixRsEdg or LCCR3_PixFlEdg 53 * either LCCR3_ACBsDiv or LCCR3_ACBsCntOff 54 * 55 * Code Status: 56 * 1999/04/01: 57 * - Driver appears to be working for Brutus 320x200x8bpp mode. Other 58 * resolutions are working, but only the 8bpp mode is supported. 59 * Changes need to be made to the palette encode and decode routines 60 * to support 4 and 16 bpp modes. 61 * Driver is not designed to be a module. The FrameBuffer is statically 62 * allocated since dynamic allocation of a 300k buffer cannot be 63 * guaranteed. 64 * 65 * 1999/06/17: 66 * - FrameBuffer memory is now allocated at run-time when the 67 * driver is initialized. 68 * 69 * 2000/04/10: Nicolas Pitre <nico@fluxnic.net> 70 * - Big cleanup for dynamic selection of machine type at run time. 71 * 72 * 2000/07/19: Jamey Hicks <jamey@crl.dec.com> 73 * - Support for Bitsy aka Compaq iPAQ H3600 added. 74 * 75 * 2000/08/07: Tak-Shing Chan <tchan.rd@idthk.com> 76 * Jeff Sutherland <jsutherland@accelent.com> 77 * - Resolved an issue caused by a change made to the Assabet's PLD 78 * earlier this year which broke the framebuffer driver for newer 79 * Phase 4 Assabets. Some other parameters were changed to optimize 80 * for the Sharp display. 81 * 82 * 2000/08/09: Kunihiko IMAI <imai@vasara.co.jp> 83 * - XP860 support added 84 * 85 * 2000/08/19: Mark Huang <mhuang@livetoy.com> 86 * - Allows standard options to be passed on the kernel command line 87 * for most common passive displays. 88 * 89 * 2000/08/29: 90 * - s/save_flags_cli/local_irq_save/ 91 * - remove unneeded extra save_flags_cli in sa1100fb_enable_lcd_controller 92 * 93 * 2000/10/10: Erik Mouw <J.A.K.Mouw@its.tudelft.nl> 94 * - Updated LART stuff. Fixed some minor bugs. 95 * 96 * 2000/10/30: Murphy Chen <murphy@mail.dialogue.com.tw> 97 * - Pangolin support added 98 * 99 * 2000/10/31: Roman Jordan <jor@hoeft-wessel.de> 100 * - Huw Webpanel support added 101 * 102 * 2000/11/23: Eric Peng <ericpeng@coventive.com> 103 * - Freebird add 104 * 105 * 2001/02/07: Jamey Hicks <jamey.hicks@compaq.com> 106 * Cliff Brake <cbrake@accelent.com> 107 * - Added PM callback 108 * 109 * 2001/05/26: <rmk@arm.linux.org.uk> 110 * - Fix 16bpp so that (a) we use the right colours rather than some 111 * totally random colour depending on what was in page 0, and (b) 112 * we don't de-reference a NULL pointer. 113 * - remove duplicated implementation of consistent_alloc() 114 * - convert dma address types to dma_addr_t 115 * - remove unused 'montype' stuff 116 * - remove redundant zero inits of init_var after the initial 117 * memset. 118 * - remove allow_modeset (acornfb idea does not belong here) 119 * 120 * 2001/05/28: <rmk@arm.linux.org.uk> 121 * - massive cleanup - move machine dependent data into structures 122 * - I've left various #warnings in - if you see one, and know 123 * the hardware concerned, please get in contact with me. 124 * 125 * 2001/05/31: <rmk@arm.linux.org.uk> 126 * - Fix LCCR1 HSW value, fix all machine type specifications to 127 * keep values in line. (Please check your machine type specs) 128 * 129 * 2001/06/10: <rmk@arm.linux.org.uk> 130 * - Fiddle with the LCD controller from task context only; mainly 131 * so that we can run with interrupts on, and sleep. 132 * - Convert #warnings into #errors. No pain, no gain. ;) 133 * 134 * 2001/06/14: <rmk@arm.linux.org.uk> 135 * - Make the palette BPS value for 12bpp come out correctly. 136 * - Take notice of "greyscale" on any colour depth. 137 * - Make truecolor visuals use the RGB channel encoding information. 138 * 139 * 2001/07/02: <rmk@arm.linux.org.uk> 140 * - Fix colourmap problems. 141 * 142 * 2001/07/13: <abraham@2d3d.co.za> 143 * - Added support for the ICP LCD-Kit01 on LART. This LCD is 144 * manufactured by Prime View, model no V16C6448AB 145 * 146 * 2001/07/23: <rmk@arm.linux.org.uk> 147 * - Hand merge version from handhelds.org CVS tree. See patch 148 * notes for 595/1 for more information. 149 * - Drop 12bpp (it's 16bpp with different colour register mappings). 150 * - This hardware can not do direct colour. Therefore we don't 151 * support it. 152 * 153 * 2001/07/27: <rmk@arm.linux.org.uk> 154 * - Halve YRES on dual scan LCDs. 155 * 156 * 2001/08/22: <rmk@arm.linux.org.uk> 157 * - Add b/w iPAQ pixclock value. 158 * 159 * 2001/10/12: <rmk@arm.linux.org.uk> 160 * - Add patch 681/1 and clean up stork definitions. 161 */ 162 163 #include <linux/module.h> 164 #include <linux/kernel.h> 165 #include <linux/sched.h> 166 #include <linux/errno.h> 167 #include <linux/string.h> 168 #include <linux/interrupt.h> 169 #include <linux/slab.h> 170 #include <linux/mm.h> 171 #include <linux/fb.h> 172 #include <linux/delay.h> 173 #include <linux/init.h> 174 #include <linux/ioport.h> 175 #include <linux/cpufreq.h> 176 #include <linux/gpio.h> 177 #include <linux/platform_device.h> 178 #include <linux/dma-mapping.h> 179 #include <linux/mutex.h> 180 #include <linux/io.h> 181 #include <linux/clk.h> 182 183 #include <video/sa1100fb.h> 184 185 #include <mach/hardware.h> 186 #include <asm/mach-types.h> 187 #include <mach/shannon.h> 188 189 /* 190 * Complain if VAR is out of range. 191 */ 192 #define DEBUG_VAR 1 193 194 #include "sa1100fb.h" 195 196 static const struct sa1100fb_rgb rgb_4 = { 197 .red = { .offset = 0, .length = 4, }, 198 .green = { .offset = 0, .length = 4, }, 199 .blue = { .offset = 0, .length = 4, }, 200 .transp = { .offset = 0, .length = 0, }, 201 }; 202 203 static const struct sa1100fb_rgb rgb_8 = { 204 .red = { .offset = 0, .length = 8, }, 205 .green = { .offset = 0, .length = 8, }, 206 .blue = { .offset = 0, .length = 8, }, 207 .transp = { .offset = 0, .length = 0, }, 208 }; 209 210 static const struct sa1100fb_rgb def_rgb_16 = { 211 .red = { .offset = 11, .length = 5, }, 212 .green = { .offset = 5, .length = 6, }, 213 .blue = { .offset = 0, .length = 5, }, 214 .transp = { .offset = 0, .length = 0, }, 215 }; 216 217 218 219 static int sa1100fb_activate_var(struct fb_var_screeninfo *var, struct sa1100fb_info *); 220 static void set_ctrlr_state(struct sa1100fb_info *fbi, u_int state); 221 222 static inline void sa1100fb_schedule_work(struct sa1100fb_info *fbi, u_int state) 223 { 224 unsigned long flags; 225 226 local_irq_save(flags); 227 /* 228 * We need to handle two requests being made at the same time. 229 * There are two important cases: 230 * 1. When we are changing VT (C_REENABLE) while unblanking (C_ENABLE) 231 * We must perform the unblanking, which will do our REENABLE for us. 232 * 2. When we are blanking, but immediately unblank before we have 233 * blanked. We do the "REENABLE" thing here as well, just to be sure. 234 */ 235 if (fbi->task_state == C_ENABLE && state == C_REENABLE) 236 state = (u_int) -1; 237 if (fbi->task_state == C_DISABLE && state == C_ENABLE) 238 state = C_REENABLE; 239 240 if (state != (u_int)-1) { 241 fbi->task_state = state; 242 schedule_work(&fbi->task); 243 } 244 local_irq_restore(flags); 245 } 246 247 static inline u_int chan_to_field(u_int chan, struct fb_bitfield *bf) 248 { 249 chan &= 0xffff; 250 chan >>= 16 - bf->length; 251 return chan << bf->offset; 252 } 253 254 /* 255 * Convert bits-per-pixel to a hardware palette PBS value. 256 */ 257 static inline u_int palette_pbs(struct fb_var_screeninfo *var) 258 { 259 int ret = 0; 260 switch (var->bits_per_pixel) { 261 case 4: ret = 0 << 12; break; 262 case 8: ret = 1 << 12; break; 263 case 16: ret = 2 << 12; break; 264 } 265 return ret; 266 } 267 268 static int 269 sa1100fb_setpalettereg(u_int regno, u_int red, u_int green, u_int blue, 270 u_int trans, struct fb_info *info) 271 { 272 struct sa1100fb_info *fbi = 273 container_of(info, struct sa1100fb_info, fb); 274 u_int val, ret = 1; 275 276 if (regno < fbi->palette_size) { 277 val = ((red >> 4) & 0xf00); 278 val |= ((green >> 8) & 0x0f0); 279 val |= ((blue >> 12) & 0x00f); 280 281 if (regno == 0) 282 val |= palette_pbs(&fbi->fb.var); 283 284 fbi->palette_cpu[regno] = val; 285 ret = 0; 286 } 287 return ret; 288 } 289 290 static int 291 sa1100fb_setcolreg(u_int regno, u_int red, u_int green, u_int blue, 292 u_int trans, struct fb_info *info) 293 { 294 struct sa1100fb_info *fbi = 295 container_of(info, struct sa1100fb_info, fb); 296 unsigned int val; 297 int ret = 1; 298 299 /* 300 * If inverse mode was selected, invert all the colours 301 * rather than the register number. The register number 302 * is what you poke into the framebuffer to produce the 303 * colour you requested. 304 */ 305 if (fbi->inf->cmap_inverse) { 306 red = 0xffff - red; 307 green = 0xffff - green; 308 blue = 0xffff - blue; 309 } 310 311 /* 312 * If greyscale is true, then we convert the RGB value 313 * to greyscale no mater what visual we are using. 314 */ 315 if (fbi->fb.var.grayscale) 316 red = green = blue = (19595 * red + 38470 * green + 317 7471 * blue) >> 16; 318 319 switch (fbi->fb.fix.visual) { 320 case FB_VISUAL_TRUECOLOR: 321 /* 322 * 12 or 16-bit True Colour. We encode the RGB value 323 * according to the RGB bitfield information. 324 */ 325 if (regno < 16) { 326 val = chan_to_field(red, &fbi->fb.var.red); 327 val |= chan_to_field(green, &fbi->fb.var.green); 328 val |= chan_to_field(blue, &fbi->fb.var.blue); 329 330 fbi->pseudo_palette[regno] = val; 331 ret = 0; 332 } 333 break; 334 335 case FB_VISUAL_STATIC_PSEUDOCOLOR: 336 case FB_VISUAL_PSEUDOCOLOR: 337 ret = sa1100fb_setpalettereg(regno, red, green, blue, trans, info); 338 break; 339 } 340 341 return ret; 342 } 343 344 #ifdef CONFIG_CPU_FREQ 345 /* 346 * sa1100fb_display_dma_period() 347 * Calculate the minimum period (in picoseconds) between two DMA 348 * requests for the LCD controller. If we hit this, it means we're 349 * doing nothing but LCD DMA. 350 */ 351 static inline unsigned int sa1100fb_display_dma_period(struct fb_var_screeninfo *var) 352 { 353 /* 354 * Period = pixclock * bits_per_byte * bytes_per_transfer 355 * / memory_bits_per_pixel; 356 */ 357 return var->pixclock * 8 * 16 / var->bits_per_pixel; 358 } 359 #endif 360 361 /* 362 * sa1100fb_check_var(): 363 * Round up in the following order: bits_per_pixel, xres, 364 * yres, xres_virtual, yres_virtual, xoffset, yoffset, grayscale, 365 * bitfields, horizontal timing, vertical timing. 366 */ 367 static int 368 sa1100fb_check_var(struct fb_var_screeninfo *var, struct fb_info *info) 369 { 370 struct sa1100fb_info *fbi = 371 container_of(info, struct sa1100fb_info, fb); 372 int rgbidx; 373 374 if (var->xres < MIN_XRES) 375 var->xres = MIN_XRES; 376 if (var->yres < MIN_YRES) 377 var->yres = MIN_YRES; 378 if (var->xres > fbi->inf->xres) 379 var->xres = fbi->inf->xres; 380 if (var->yres > fbi->inf->yres) 381 var->yres = fbi->inf->yres; 382 var->xres_virtual = max(var->xres_virtual, var->xres); 383 var->yres_virtual = max(var->yres_virtual, var->yres); 384 385 dev_dbg(fbi->dev, "var->bits_per_pixel=%d\n", var->bits_per_pixel); 386 switch (var->bits_per_pixel) { 387 case 4: 388 rgbidx = RGB_4; 389 break; 390 case 8: 391 rgbidx = RGB_8; 392 break; 393 case 16: 394 rgbidx = RGB_16; 395 break; 396 default: 397 return -EINVAL; 398 } 399 400 /* 401 * Copy the RGB parameters for this display 402 * from the machine specific parameters. 403 */ 404 var->red = fbi->rgb[rgbidx]->red; 405 var->green = fbi->rgb[rgbidx]->green; 406 var->blue = fbi->rgb[rgbidx]->blue; 407 var->transp = fbi->rgb[rgbidx]->transp; 408 409 dev_dbg(fbi->dev, "RGBT length = %d:%d:%d:%d\n", 410 var->red.length, var->green.length, var->blue.length, 411 var->transp.length); 412 413 dev_dbg(fbi->dev, "RGBT offset = %d:%d:%d:%d\n", 414 var->red.offset, var->green.offset, var->blue.offset, 415 var->transp.offset); 416 417 #ifdef CONFIG_CPU_FREQ 418 dev_dbg(fbi->dev, "dma period = %d ps, clock = %ld kHz\n", 419 sa1100fb_display_dma_period(var), 420 clk_get_rate(fbi->clk) / 1000); 421 #endif 422 423 return 0; 424 } 425 426 static void sa1100fb_set_visual(struct sa1100fb_info *fbi, u32 visual) 427 { 428 if (fbi->inf->set_visual) 429 fbi->inf->set_visual(visual); 430 } 431 432 /* 433 * sa1100fb_set_par(): 434 * Set the user defined part of the display for the specified console 435 */ 436 static int sa1100fb_set_par(struct fb_info *info) 437 { 438 struct sa1100fb_info *fbi = 439 container_of(info, struct sa1100fb_info, fb); 440 struct fb_var_screeninfo *var = &info->var; 441 unsigned long palette_mem_size; 442 443 dev_dbg(fbi->dev, "set_par\n"); 444 445 if (var->bits_per_pixel == 16) 446 fbi->fb.fix.visual = FB_VISUAL_TRUECOLOR; 447 else if (!fbi->inf->cmap_static) 448 fbi->fb.fix.visual = FB_VISUAL_PSEUDOCOLOR; 449 else { 450 /* 451 * Some people have weird ideas about wanting static 452 * pseudocolor maps. I suspect their user space 453 * applications are broken. 454 */ 455 fbi->fb.fix.visual = FB_VISUAL_STATIC_PSEUDOCOLOR; 456 } 457 458 fbi->fb.fix.line_length = var->xres_virtual * 459 var->bits_per_pixel / 8; 460 fbi->palette_size = var->bits_per_pixel == 8 ? 256 : 16; 461 462 palette_mem_size = fbi->palette_size * sizeof(u16); 463 464 dev_dbg(fbi->dev, "palette_mem_size = 0x%08lx\n", palette_mem_size); 465 466 fbi->palette_cpu = (u16 *)(fbi->map_cpu + PAGE_SIZE - palette_mem_size); 467 fbi->palette_dma = fbi->map_dma + PAGE_SIZE - palette_mem_size; 468 469 /* 470 * Set (any) board control register to handle new color depth 471 */ 472 sa1100fb_set_visual(fbi, fbi->fb.fix.visual); 473 sa1100fb_activate_var(var, fbi); 474 475 return 0; 476 } 477 478 #if 0 479 static int 480 sa1100fb_set_cmap(struct fb_cmap *cmap, int kspc, int con, 481 struct fb_info *info) 482 { 483 struct sa1100fb_info *fbi = (struct sa1100fb_info *)info; 484 485 /* 486 * Make sure the user isn't doing something stupid. 487 */ 488 if (!kspc && (fbi->fb.var.bits_per_pixel == 16 || fbi->inf->cmap_static)) 489 return -EINVAL; 490 491 return gen_set_cmap(cmap, kspc, con, info); 492 } 493 #endif 494 495 /* 496 * Formal definition of the VESA spec: 497 * On 498 * This refers to the state of the display when it is in full operation 499 * Stand-By 500 * This defines an optional operating state of minimal power reduction with 501 * the shortest recovery time 502 * Suspend 503 * This refers to a level of power management in which substantial power 504 * reduction is achieved by the display. The display can have a longer 505 * recovery time from this state than from the Stand-by state 506 * Off 507 * This indicates that the display is consuming the lowest level of power 508 * and is non-operational. Recovery from this state may optionally require 509 * the user to manually power on the monitor 510 * 511 * Now, the fbdev driver adds an additional state, (blank), where they 512 * turn off the video (maybe by colormap tricks), but don't mess with the 513 * video itself: think of it semantically between on and Stand-By. 514 * 515 * So here's what we should do in our fbdev blank routine: 516 * 517 * VESA_NO_BLANKING (mode 0) Video on, front/back light on 518 * VESA_VSYNC_SUSPEND (mode 1) Video on, front/back light off 519 * VESA_HSYNC_SUSPEND (mode 2) Video on, front/back light off 520 * VESA_POWERDOWN (mode 3) Video off, front/back light off 521 * 522 * This will match the matrox implementation. 523 */ 524 /* 525 * sa1100fb_blank(): 526 * Blank the display by setting all palette values to zero. Note, the 527 * 12 and 16 bpp modes don't really use the palette, so this will not 528 * blank the display in all modes. 529 */ 530 static int sa1100fb_blank(int blank, struct fb_info *info) 531 { 532 struct sa1100fb_info *fbi = 533 container_of(info, struct sa1100fb_info, fb); 534 int i; 535 536 dev_dbg(fbi->dev, "sa1100fb_blank: blank=%d\n", blank); 537 538 switch (blank) { 539 case FB_BLANK_POWERDOWN: 540 case FB_BLANK_VSYNC_SUSPEND: 541 case FB_BLANK_HSYNC_SUSPEND: 542 case FB_BLANK_NORMAL: 543 if (fbi->fb.fix.visual == FB_VISUAL_PSEUDOCOLOR || 544 fbi->fb.fix.visual == FB_VISUAL_STATIC_PSEUDOCOLOR) 545 for (i = 0; i < fbi->palette_size; i++) 546 sa1100fb_setpalettereg(i, 0, 0, 0, 0, info); 547 sa1100fb_schedule_work(fbi, C_DISABLE); 548 break; 549 550 case FB_BLANK_UNBLANK: 551 if (fbi->fb.fix.visual == FB_VISUAL_PSEUDOCOLOR || 552 fbi->fb.fix.visual == FB_VISUAL_STATIC_PSEUDOCOLOR) 553 fb_set_cmap(&fbi->fb.cmap, info); 554 sa1100fb_schedule_work(fbi, C_ENABLE); 555 } 556 return 0; 557 } 558 559 static int sa1100fb_mmap(struct fb_info *info, 560 struct vm_area_struct *vma) 561 { 562 struct sa1100fb_info *fbi = 563 container_of(info, struct sa1100fb_info, fb); 564 unsigned long off = vma->vm_pgoff << PAGE_SHIFT; 565 566 if (off < info->fix.smem_len) { 567 vma->vm_pgoff += 1; /* skip over the palette */ 568 return dma_mmap_wc(fbi->dev, vma, fbi->map_cpu, fbi->map_dma, 569 fbi->map_size); 570 } 571 572 vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot); 573 574 return vm_iomap_memory(vma, info->fix.mmio_start, info->fix.mmio_len); 575 } 576 577 static struct fb_ops sa1100fb_ops = { 578 .owner = THIS_MODULE, 579 .fb_check_var = sa1100fb_check_var, 580 .fb_set_par = sa1100fb_set_par, 581 // .fb_set_cmap = sa1100fb_set_cmap, 582 .fb_setcolreg = sa1100fb_setcolreg, 583 .fb_fillrect = cfb_fillrect, 584 .fb_copyarea = cfb_copyarea, 585 .fb_imageblit = cfb_imageblit, 586 .fb_blank = sa1100fb_blank, 587 .fb_mmap = sa1100fb_mmap, 588 }; 589 590 /* 591 * Calculate the PCD value from the clock rate (in picoseconds). 592 * We take account of the PPCR clock setting. 593 */ 594 static inline unsigned int get_pcd(struct sa1100fb_info *fbi, 595 unsigned int pixclock) 596 { 597 unsigned int pcd = clk_get_rate(fbi->clk) / 100 / 1000; 598 599 pcd *= pixclock; 600 pcd /= 10000000; 601 602 return pcd + 1; /* make up for integer math truncations */ 603 } 604 605 /* 606 * sa1100fb_activate_var(): 607 * Configures LCD Controller based on entries in var parameter. Settings are 608 * only written to the controller if changes were made. 609 */ 610 static int sa1100fb_activate_var(struct fb_var_screeninfo *var, struct sa1100fb_info *fbi) 611 { 612 struct sa1100fb_lcd_reg new_regs; 613 u_int half_screen_size, yres, pcd; 614 u_long flags; 615 616 dev_dbg(fbi->dev, "Configuring SA1100 LCD\n"); 617 618 dev_dbg(fbi->dev, "var: xres=%d hslen=%d lm=%d rm=%d\n", 619 var->xres, var->hsync_len, 620 var->left_margin, var->right_margin); 621 dev_dbg(fbi->dev, "var: yres=%d vslen=%d um=%d bm=%d\n", 622 var->yres, var->vsync_len, 623 var->upper_margin, var->lower_margin); 624 625 #if DEBUG_VAR 626 if (var->xres < 16 || var->xres > 1024) 627 dev_err(fbi->dev, "%s: invalid xres %d\n", 628 fbi->fb.fix.id, var->xres); 629 if (var->hsync_len < 1 || var->hsync_len > 64) 630 dev_err(fbi->dev, "%s: invalid hsync_len %d\n", 631 fbi->fb.fix.id, var->hsync_len); 632 if (var->left_margin < 1 || var->left_margin > 255) 633 dev_err(fbi->dev, "%s: invalid left_margin %d\n", 634 fbi->fb.fix.id, var->left_margin); 635 if (var->right_margin < 1 || var->right_margin > 255) 636 dev_err(fbi->dev, "%s: invalid right_margin %d\n", 637 fbi->fb.fix.id, var->right_margin); 638 if (var->yres < 1 || var->yres > 1024) 639 dev_err(fbi->dev, "%s: invalid yres %d\n", 640 fbi->fb.fix.id, var->yres); 641 if (var->vsync_len < 1 || var->vsync_len > 64) 642 dev_err(fbi->dev, "%s: invalid vsync_len %d\n", 643 fbi->fb.fix.id, var->vsync_len); 644 if (var->upper_margin < 0 || var->upper_margin > 255) 645 dev_err(fbi->dev, "%s: invalid upper_margin %d\n", 646 fbi->fb.fix.id, var->upper_margin); 647 if (var->lower_margin < 0 || var->lower_margin > 255) 648 dev_err(fbi->dev, "%s: invalid lower_margin %d\n", 649 fbi->fb.fix.id, var->lower_margin); 650 #endif 651 652 new_regs.lccr0 = fbi->inf->lccr0 | 653 LCCR0_LEN | LCCR0_LDM | LCCR0_BAM | 654 LCCR0_ERM | LCCR0_LtlEnd | LCCR0_DMADel(0); 655 656 new_regs.lccr1 = 657 LCCR1_DisWdth(var->xres) + 658 LCCR1_HorSnchWdth(var->hsync_len) + 659 LCCR1_BegLnDel(var->left_margin) + 660 LCCR1_EndLnDel(var->right_margin); 661 662 /* 663 * If we have a dual scan LCD, then we need to halve 664 * the YRES parameter. 665 */ 666 yres = var->yres; 667 if (fbi->inf->lccr0 & LCCR0_Dual) 668 yres /= 2; 669 670 new_regs.lccr2 = 671 LCCR2_DisHght(yres) + 672 LCCR2_VrtSnchWdth(var->vsync_len) + 673 LCCR2_BegFrmDel(var->upper_margin) + 674 LCCR2_EndFrmDel(var->lower_margin); 675 676 pcd = get_pcd(fbi, var->pixclock); 677 new_regs.lccr3 = LCCR3_PixClkDiv(pcd) | fbi->inf->lccr3 | 678 (var->sync & FB_SYNC_HOR_HIGH_ACT ? LCCR3_HorSnchH : LCCR3_HorSnchL) | 679 (var->sync & FB_SYNC_VERT_HIGH_ACT ? LCCR3_VrtSnchH : LCCR3_VrtSnchL); 680 681 dev_dbg(fbi->dev, "nlccr0 = 0x%08lx\n", new_regs.lccr0); 682 dev_dbg(fbi->dev, "nlccr1 = 0x%08lx\n", new_regs.lccr1); 683 dev_dbg(fbi->dev, "nlccr2 = 0x%08lx\n", new_regs.lccr2); 684 dev_dbg(fbi->dev, "nlccr3 = 0x%08lx\n", new_regs.lccr3); 685 686 half_screen_size = var->bits_per_pixel; 687 half_screen_size = half_screen_size * var->xres * var->yres / 16; 688 689 /* Update shadow copy atomically */ 690 local_irq_save(flags); 691 fbi->dbar1 = fbi->palette_dma; 692 fbi->dbar2 = fbi->screen_dma + half_screen_size; 693 694 fbi->reg_lccr0 = new_regs.lccr0; 695 fbi->reg_lccr1 = new_regs.lccr1; 696 fbi->reg_lccr2 = new_regs.lccr2; 697 fbi->reg_lccr3 = new_regs.lccr3; 698 local_irq_restore(flags); 699 700 /* 701 * Only update the registers if the controller is enabled 702 * and something has changed. 703 */ 704 if (readl_relaxed(fbi->base + LCCR0) != fbi->reg_lccr0 || 705 readl_relaxed(fbi->base + LCCR1) != fbi->reg_lccr1 || 706 readl_relaxed(fbi->base + LCCR2) != fbi->reg_lccr2 || 707 readl_relaxed(fbi->base + LCCR3) != fbi->reg_lccr3 || 708 readl_relaxed(fbi->base + DBAR1) != fbi->dbar1 || 709 readl_relaxed(fbi->base + DBAR2) != fbi->dbar2) 710 sa1100fb_schedule_work(fbi, C_REENABLE); 711 712 return 0; 713 } 714 715 /* 716 * NOTE! The following functions are purely helpers for set_ctrlr_state. 717 * Do not call them directly; set_ctrlr_state does the correct serialisation 718 * to ensure that things happen in the right way 100% of time time. 719 * -- rmk 720 */ 721 static inline void __sa1100fb_backlight_power(struct sa1100fb_info *fbi, int on) 722 { 723 dev_dbg(fbi->dev, "backlight o%s\n", on ? "n" : "ff"); 724 725 if (fbi->inf->backlight_power) 726 fbi->inf->backlight_power(on); 727 } 728 729 static inline void __sa1100fb_lcd_power(struct sa1100fb_info *fbi, int on) 730 { 731 dev_dbg(fbi->dev, "LCD power o%s\n", on ? "n" : "ff"); 732 733 if (fbi->inf->lcd_power) 734 fbi->inf->lcd_power(on); 735 } 736 737 static void sa1100fb_setup_gpio(struct sa1100fb_info *fbi) 738 { 739 u_int mask = 0; 740 741 /* 742 * Enable GPIO<9:2> for LCD use if: 743 * 1. Active display, or 744 * 2. Color Dual Passive display 745 * 746 * see table 11.8 on page 11-27 in the SA1100 manual 747 * -- Erik. 748 * 749 * SA1110 spec update nr. 25 says we can and should 750 * clear LDD15 to 12 for 4 or 8bpp modes with active 751 * panels. 752 */ 753 if ((fbi->reg_lccr0 & LCCR0_CMS) == LCCR0_Color && 754 (fbi->reg_lccr0 & (LCCR0_Dual|LCCR0_Act)) != 0) { 755 mask = GPIO_LDD11 | GPIO_LDD10 | GPIO_LDD9 | GPIO_LDD8; 756 757 if (fbi->fb.var.bits_per_pixel > 8 || 758 (fbi->reg_lccr0 & (LCCR0_Dual|LCCR0_Act)) == LCCR0_Dual) 759 mask |= GPIO_LDD15 | GPIO_LDD14 | GPIO_LDD13 | GPIO_LDD12; 760 761 } 762 763 if (mask) { 764 unsigned long flags; 765 766 /* 767 * SA-1100 requires the GPIO direction register set 768 * appropriately for the alternate function. Hence 769 * we set it here via bitmask rather than excessive 770 * fiddling via the GPIO subsystem - and even then 771 * we'll still have to deal with GAFR. 772 */ 773 local_irq_save(flags); 774 GPDR |= mask; 775 GAFR |= mask; 776 local_irq_restore(flags); 777 } 778 } 779 780 static void sa1100fb_enable_controller(struct sa1100fb_info *fbi) 781 { 782 dev_dbg(fbi->dev, "Enabling LCD controller\n"); 783 784 /* 785 * Make sure the mode bits are present in the first palette entry 786 */ 787 fbi->palette_cpu[0] &= 0xcfff; 788 fbi->palette_cpu[0] |= palette_pbs(&fbi->fb.var); 789 790 /* enable LCD controller clock */ 791 clk_prepare_enable(fbi->clk); 792 793 /* Sequence from 11.7.10 */ 794 writel_relaxed(fbi->reg_lccr3, fbi->base + LCCR3); 795 writel_relaxed(fbi->reg_lccr2, fbi->base + LCCR2); 796 writel_relaxed(fbi->reg_lccr1, fbi->base + LCCR1); 797 writel_relaxed(fbi->reg_lccr0 & ~LCCR0_LEN, fbi->base + LCCR0); 798 writel_relaxed(fbi->dbar1, fbi->base + DBAR1); 799 writel_relaxed(fbi->dbar2, fbi->base + DBAR2); 800 writel_relaxed(fbi->reg_lccr0 | LCCR0_LEN, fbi->base + LCCR0); 801 802 if (machine_is_shannon()) 803 gpio_set_value(SHANNON_GPIO_DISP_EN, 1); 804 805 dev_dbg(fbi->dev, "DBAR1: 0x%08x\n", readl_relaxed(fbi->base + DBAR1)); 806 dev_dbg(fbi->dev, "DBAR2: 0x%08x\n", readl_relaxed(fbi->base + DBAR2)); 807 dev_dbg(fbi->dev, "LCCR0: 0x%08x\n", readl_relaxed(fbi->base + LCCR0)); 808 dev_dbg(fbi->dev, "LCCR1: 0x%08x\n", readl_relaxed(fbi->base + LCCR1)); 809 dev_dbg(fbi->dev, "LCCR2: 0x%08x\n", readl_relaxed(fbi->base + LCCR2)); 810 dev_dbg(fbi->dev, "LCCR3: 0x%08x\n", readl_relaxed(fbi->base + LCCR3)); 811 } 812 813 static void sa1100fb_disable_controller(struct sa1100fb_info *fbi) 814 { 815 DECLARE_WAITQUEUE(wait, current); 816 u32 lccr0; 817 818 dev_dbg(fbi->dev, "Disabling LCD controller\n"); 819 820 if (machine_is_shannon()) 821 gpio_set_value(SHANNON_GPIO_DISP_EN, 0); 822 823 set_current_state(TASK_UNINTERRUPTIBLE); 824 add_wait_queue(&fbi->ctrlr_wait, &wait); 825 826 /* Clear LCD Status Register */ 827 writel_relaxed(~0, fbi->base + LCSR); 828 829 lccr0 = readl_relaxed(fbi->base + LCCR0); 830 lccr0 &= ~LCCR0_LDM; /* Enable LCD Disable Done Interrupt */ 831 writel_relaxed(lccr0, fbi->base + LCCR0); 832 lccr0 &= ~LCCR0_LEN; /* Disable LCD Controller */ 833 writel_relaxed(lccr0, fbi->base + LCCR0); 834 835 schedule_timeout(20 * HZ / 1000); 836 remove_wait_queue(&fbi->ctrlr_wait, &wait); 837 838 /* disable LCD controller clock */ 839 clk_disable_unprepare(fbi->clk); 840 } 841 842 /* 843 * sa1100fb_handle_irq: Handle 'LCD DONE' interrupts. 844 */ 845 static irqreturn_t sa1100fb_handle_irq(int irq, void *dev_id) 846 { 847 struct sa1100fb_info *fbi = dev_id; 848 unsigned int lcsr = readl_relaxed(fbi->base + LCSR); 849 850 if (lcsr & LCSR_LDD) { 851 u32 lccr0 = readl_relaxed(fbi->base + LCCR0) | LCCR0_LDM; 852 writel_relaxed(lccr0, fbi->base + LCCR0); 853 wake_up(&fbi->ctrlr_wait); 854 } 855 856 writel_relaxed(lcsr, fbi->base + LCSR); 857 return IRQ_HANDLED; 858 } 859 860 /* 861 * This function must be called from task context only, since it will 862 * sleep when disabling the LCD controller, or if we get two contending 863 * processes trying to alter state. 864 */ 865 static void set_ctrlr_state(struct sa1100fb_info *fbi, u_int state) 866 { 867 u_int old_state; 868 869 mutex_lock(&fbi->ctrlr_lock); 870 871 old_state = fbi->state; 872 873 /* 874 * Hack around fbcon initialisation. 875 */ 876 if (old_state == C_STARTUP && state == C_REENABLE) 877 state = C_ENABLE; 878 879 switch (state) { 880 case C_DISABLE_CLKCHANGE: 881 /* 882 * Disable controller for clock change. If the 883 * controller is already disabled, then do nothing. 884 */ 885 if (old_state != C_DISABLE && old_state != C_DISABLE_PM) { 886 fbi->state = state; 887 sa1100fb_disable_controller(fbi); 888 } 889 break; 890 891 case C_DISABLE_PM: 892 case C_DISABLE: 893 /* 894 * Disable controller 895 */ 896 if (old_state != C_DISABLE) { 897 fbi->state = state; 898 899 __sa1100fb_backlight_power(fbi, 0); 900 if (old_state != C_DISABLE_CLKCHANGE) 901 sa1100fb_disable_controller(fbi); 902 __sa1100fb_lcd_power(fbi, 0); 903 } 904 break; 905 906 case C_ENABLE_CLKCHANGE: 907 /* 908 * Enable the controller after clock change. Only 909 * do this if we were disabled for the clock change. 910 */ 911 if (old_state == C_DISABLE_CLKCHANGE) { 912 fbi->state = C_ENABLE; 913 sa1100fb_enable_controller(fbi); 914 } 915 break; 916 917 case C_REENABLE: 918 /* 919 * Re-enable the controller only if it was already 920 * enabled. This is so we reprogram the control 921 * registers. 922 */ 923 if (old_state == C_ENABLE) { 924 sa1100fb_disable_controller(fbi); 925 sa1100fb_setup_gpio(fbi); 926 sa1100fb_enable_controller(fbi); 927 } 928 break; 929 930 case C_ENABLE_PM: 931 /* 932 * Re-enable the controller after PM. This is not 933 * perfect - think about the case where we were doing 934 * a clock change, and we suspended half-way through. 935 */ 936 if (old_state != C_DISABLE_PM) 937 break; 938 /* fall through */ 939 940 case C_ENABLE: 941 /* 942 * Power up the LCD screen, enable controller, and 943 * turn on the backlight. 944 */ 945 if (old_state != C_ENABLE) { 946 fbi->state = C_ENABLE; 947 sa1100fb_setup_gpio(fbi); 948 __sa1100fb_lcd_power(fbi, 1); 949 sa1100fb_enable_controller(fbi); 950 __sa1100fb_backlight_power(fbi, 1); 951 } 952 break; 953 } 954 mutex_unlock(&fbi->ctrlr_lock); 955 } 956 957 /* 958 * Our LCD controller task (which is called when we blank or unblank) 959 * via keventd. 960 */ 961 static void sa1100fb_task(struct work_struct *w) 962 { 963 struct sa1100fb_info *fbi = container_of(w, struct sa1100fb_info, task); 964 u_int state = xchg(&fbi->task_state, -1); 965 966 set_ctrlr_state(fbi, state); 967 } 968 969 #ifdef CONFIG_CPU_FREQ 970 /* 971 * Calculate the minimum DMA period over all displays that we own. 972 * This, together with the SDRAM bandwidth defines the slowest CPU 973 * frequency that can be selected. 974 */ 975 static unsigned int sa1100fb_min_dma_period(struct sa1100fb_info *fbi) 976 { 977 /* 978 * FIXME: we need to verify _all_ consoles. 979 */ 980 return sa1100fb_display_dma_period(&fbi->fb.var); 981 } 982 983 /* 984 * CPU clock speed change handler. We need to adjust the LCD timing 985 * parameters when the CPU clock is adjusted by the power management 986 * subsystem. 987 */ 988 static int 989 sa1100fb_freq_transition(struct notifier_block *nb, unsigned long val, 990 void *data) 991 { 992 struct sa1100fb_info *fbi = TO_INF(nb, freq_transition); 993 u_int pcd; 994 995 switch (val) { 996 case CPUFREQ_PRECHANGE: 997 set_ctrlr_state(fbi, C_DISABLE_CLKCHANGE); 998 break; 999 1000 case CPUFREQ_POSTCHANGE: 1001 pcd = get_pcd(fbi, fbi->fb.var.pixclock); 1002 fbi->reg_lccr3 = (fbi->reg_lccr3 & ~0xff) | LCCR3_PixClkDiv(pcd); 1003 set_ctrlr_state(fbi, C_ENABLE_CLKCHANGE); 1004 break; 1005 } 1006 return 0; 1007 } 1008 #endif 1009 1010 #ifdef CONFIG_PM 1011 /* 1012 * Power management hooks. Note that we won't be called from IRQ context, 1013 * unlike the blank functions above, so we may sleep. 1014 */ 1015 static int sa1100fb_suspend(struct platform_device *dev, pm_message_t state) 1016 { 1017 struct sa1100fb_info *fbi = platform_get_drvdata(dev); 1018 1019 set_ctrlr_state(fbi, C_DISABLE_PM); 1020 return 0; 1021 } 1022 1023 static int sa1100fb_resume(struct platform_device *dev) 1024 { 1025 struct sa1100fb_info *fbi = platform_get_drvdata(dev); 1026 1027 set_ctrlr_state(fbi, C_ENABLE_PM); 1028 return 0; 1029 } 1030 #else 1031 #define sa1100fb_suspend NULL 1032 #define sa1100fb_resume NULL 1033 #endif 1034 1035 /* 1036 * sa1100fb_map_video_memory(): 1037 * Allocates the DRAM memory for the frame buffer. This buffer is 1038 * remapped into a non-cached, non-buffered, memory region to 1039 * allow palette and pixel writes to occur without flushing the 1040 * cache. Once this area is remapped, all virtual memory 1041 * access to the video memory should occur at the new region. 1042 */ 1043 static int sa1100fb_map_video_memory(struct sa1100fb_info *fbi) 1044 { 1045 /* 1046 * We reserve one page for the palette, plus the size 1047 * of the framebuffer. 1048 */ 1049 fbi->map_size = PAGE_ALIGN(fbi->fb.fix.smem_len + PAGE_SIZE); 1050 fbi->map_cpu = dma_alloc_wc(fbi->dev, fbi->map_size, &fbi->map_dma, 1051 GFP_KERNEL); 1052 1053 if (fbi->map_cpu) { 1054 fbi->fb.screen_base = fbi->map_cpu + PAGE_SIZE; 1055 fbi->screen_dma = fbi->map_dma + PAGE_SIZE; 1056 /* 1057 * FIXME: this is actually the wrong thing to place in 1058 * smem_start. But fbdev suffers from the problem that 1059 * it needs an API which doesn't exist (in this case, 1060 * dma_writecombine_mmap) 1061 */ 1062 fbi->fb.fix.smem_start = fbi->screen_dma; 1063 } 1064 1065 return fbi->map_cpu ? 0 : -ENOMEM; 1066 } 1067 1068 /* Fake monspecs to fill in fbinfo structure */ 1069 static struct fb_monspecs monspecs = { 1070 .hfmin = 30000, 1071 .hfmax = 70000, 1072 .vfmin = 50, 1073 .vfmax = 65, 1074 }; 1075 1076 1077 static struct sa1100fb_info *sa1100fb_init_fbinfo(struct device *dev) 1078 { 1079 struct sa1100fb_mach_info *inf = dev_get_platdata(dev); 1080 struct sa1100fb_info *fbi; 1081 unsigned i; 1082 1083 fbi = devm_kzalloc(dev, sizeof(struct sa1100fb_info), GFP_KERNEL); 1084 if (!fbi) 1085 return NULL; 1086 1087 fbi->dev = dev; 1088 1089 strcpy(fbi->fb.fix.id, SA1100_NAME); 1090 1091 fbi->fb.fix.type = FB_TYPE_PACKED_PIXELS; 1092 fbi->fb.fix.type_aux = 0; 1093 fbi->fb.fix.xpanstep = 0; 1094 fbi->fb.fix.ypanstep = 0; 1095 fbi->fb.fix.ywrapstep = 0; 1096 fbi->fb.fix.accel = FB_ACCEL_NONE; 1097 1098 fbi->fb.var.nonstd = 0; 1099 fbi->fb.var.activate = FB_ACTIVATE_NOW; 1100 fbi->fb.var.height = -1; 1101 fbi->fb.var.width = -1; 1102 fbi->fb.var.accel_flags = 0; 1103 fbi->fb.var.vmode = FB_VMODE_NONINTERLACED; 1104 1105 fbi->fb.fbops = &sa1100fb_ops; 1106 fbi->fb.flags = FBINFO_DEFAULT; 1107 fbi->fb.monspecs = monspecs; 1108 fbi->fb.pseudo_palette = fbi->pseudo_palette; 1109 1110 fbi->rgb[RGB_4] = &rgb_4; 1111 fbi->rgb[RGB_8] = &rgb_8; 1112 fbi->rgb[RGB_16] = &def_rgb_16; 1113 1114 /* 1115 * People just don't seem to get this. We don't support 1116 * anything but correct entries now, so panic if someone 1117 * does something stupid. 1118 */ 1119 if (inf->lccr3 & (LCCR3_VrtSnchL|LCCR3_HorSnchL|0xff) || 1120 inf->pixclock == 0) 1121 panic("sa1100fb error: invalid LCCR3 fields set or zero " 1122 "pixclock."); 1123 1124 fbi->fb.var.xres = inf->xres; 1125 fbi->fb.var.xres_virtual = inf->xres; 1126 fbi->fb.var.yres = inf->yres; 1127 fbi->fb.var.yres_virtual = inf->yres; 1128 fbi->fb.var.bits_per_pixel = inf->bpp; 1129 fbi->fb.var.pixclock = inf->pixclock; 1130 fbi->fb.var.hsync_len = inf->hsync_len; 1131 fbi->fb.var.left_margin = inf->left_margin; 1132 fbi->fb.var.right_margin = inf->right_margin; 1133 fbi->fb.var.vsync_len = inf->vsync_len; 1134 fbi->fb.var.upper_margin = inf->upper_margin; 1135 fbi->fb.var.lower_margin = inf->lower_margin; 1136 fbi->fb.var.sync = inf->sync; 1137 fbi->fb.var.grayscale = inf->cmap_greyscale; 1138 fbi->state = C_STARTUP; 1139 fbi->task_state = (u_char)-1; 1140 fbi->fb.fix.smem_len = inf->xres * inf->yres * 1141 inf->bpp / 8; 1142 fbi->inf = inf; 1143 1144 /* Copy the RGB bitfield overrides */ 1145 for (i = 0; i < NR_RGB; i++) 1146 if (inf->rgb[i]) 1147 fbi->rgb[i] = inf->rgb[i]; 1148 1149 init_waitqueue_head(&fbi->ctrlr_wait); 1150 INIT_WORK(&fbi->task, sa1100fb_task); 1151 mutex_init(&fbi->ctrlr_lock); 1152 1153 return fbi; 1154 } 1155 1156 static int sa1100fb_probe(struct platform_device *pdev) 1157 { 1158 struct sa1100fb_info *fbi; 1159 struct resource *res; 1160 int ret, irq; 1161 1162 if (!dev_get_platdata(&pdev->dev)) { 1163 dev_err(&pdev->dev, "no platform LCD data\n"); 1164 return -EINVAL; 1165 } 1166 1167 irq = platform_get_irq(pdev, 0); 1168 if (irq < 0) 1169 return -EINVAL; 1170 1171 fbi = sa1100fb_init_fbinfo(&pdev->dev); 1172 if (!fbi) 1173 return -ENOMEM; 1174 1175 res = platform_get_resource(pdev, IORESOURCE_MEM, 0); 1176 fbi->base = devm_ioremap_resource(&pdev->dev, res); 1177 if (IS_ERR(fbi->base)) 1178 return PTR_ERR(fbi->base); 1179 1180 fbi->clk = devm_clk_get(&pdev->dev, NULL); 1181 if (IS_ERR(fbi->clk)) 1182 return PTR_ERR(fbi->clk); 1183 1184 ret = devm_request_irq(&pdev->dev, irq, sa1100fb_handle_irq, 0, 1185 "LCD", fbi); 1186 if (ret) { 1187 dev_err(&pdev->dev, "request_irq failed: %d\n", ret); 1188 return ret; 1189 } 1190 1191 if (machine_is_shannon()) { 1192 ret = devm_gpio_request_one(&pdev->dev, SHANNON_GPIO_DISP_EN, 1193 GPIOF_OUT_INIT_LOW, "display enable"); 1194 if (ret) 1195 return ret; 1196 } 1197 1198 /* Initialize video memory */ 1199 ret = sa1100fb_map_video_memory(fbi); 1200 if (ret) 1201 return ret; 1202 1203 /* 1204 * This makes sure that our colour bitfield 1205 * descriptors are correctly initialised. 1206 */ 1207 sa1100fb_check_var(&fbi->fb.var, &fbi->fb); 1208 1209 platform_set_drvdata(pdev, fbi); 1210 1211 ret = register_framebuffer(&fbi->fb); 1212 if (ret < 0) { 1213 dma_free_wc(fbi->dev, fbi->map_size, fbi->map_cpu, 1214 fbi->map_dma); 1215 return ret; 1216 } 1217 1218 #ifdef CONFIG_CPU_FREQ 1219 fbi->freq_transition.notifier_call = sa1100fb_freq_transition; 1220 cpufreq_register_notifier(&fbi->freq_transition, CPUFREQ_TRANSITION_NOTIFIER); 1221 #endif 1222 1223 /* This driver cannot be unloaded at the moment */ 1224 return 0; 1225 } 1226 1227 static struct platform_driver sa1100fb_driver = { 1228 .probe = sa1100fb_probe, 1229 .suspend = sa1100fb_suspend, 1230 .resume = sa1100fb_resume, 1231 .driver = { 1232 .name = "sa11x0-fb", 1233 }, 1234 }; 1235 1236 int __init sa1100fb_init(void) 1237 { 1238 if (fb_get_options("sa1100fb", NULL)) 1239 return -ENODEV; 1240 1241 return platform_driver_register(&sa1100fb_driver); 1242 } 1243 1244 int __init sa1100fb_setup(char *options) 1245 { 1246 #if 0 1247 char *this_opt; 1248 1249 if (!options || !*options) 1250 return 0; 1251 1252 while ((this_opt = strsep(&options, ",")) != NULL) { 1253 1254 if (!strncmp(this_opt, "bpp:", 4)) 1255 current_par.max_bpp = 1256 simple_strtoul(this_opt + 4, NULL, 0); 1257 1258 if (!strncmp(this_opt, "lccr0:", 6)) 1259 lcd_shadow.lccr0 = 1260 simple_strtoul(this_opt + 6, NULL, 0); 1261 if (!strncmp(this_opt, "lccr1:", 6)) { 1262 lcd_shadow.lccr1 = 1263 simple_strtoul(this_opt + 6, NULL, 0); 1264 current_par.max_xres = 1265 (lcd_shadow.lccr1 & 0x3ff) + 16; 1266 } 1267 if (!strncmp(this_opt, "lccr2:", 6)) { 1268 lcd_shadow.lccr2 = 1269 simple_strtoul(this_opt + 6, NULL, 0); 1270 current_par.max_yres = 1271 (lcd_shadow. 1272 lccr0 & LCCR0_SDS) ? ((lcd_shadow. 1273 lccr2 & 0x3ff) + 1274 1) * 1275 2 : ((lcd_shadow.lccr2 & 0x3ff) + 1); 1276 } 1277 if (!strncmp(this_opt, "lccr3:", 6)) 1278 lcd_shadow.lccr3 = 1279 simple_strtoul(this_opt + 6, NULL, 0); 1280 } 1281 #endif 1282 return 0; 1283 } 1284 1285 module_init(sa1100fb_init); 1286 MODULE_DESCRIPTION("StrongARM-1100/1110 framebuffer driver"); 1287 MODULE_LICENSE("GPL"); 1288