xref: /openbmc/linux/drivers/video/fbdev/pxafb.c (revision dea54fba)
1 /*
2  *  linux/drivers/video/pxafb.c
3  *
4  *  Copyright (C) 1999 Eric A. Thomas.
5  *  Copyright (C) 2004 Jean-Frederic Clere.
6  *  Copyright (C) 2004 Ian Campbell.
7  *  Copyright (C) 2004 Jeff Lackey.
8  *   Based on sa1100fb.c Copyright (C) 1999 Eric A. Thomas
9  *  which in turn is
10  *   Based on acornfb.c Copyright (C) Russell King.
11  *
12  * This file is subject to the terms and conditions of the GNU General Public
13  * License.  See the file COPYING in the main directory of this archive for
14  * more details.
15  *
16  *	        Intel PXA250/210 LCD Controller Frame Buffer Driver
17  *
18  * Please direct your questions and comments on this driver to the following
19  * email address:
20  *
21  *	linux-arm-kernel@lists.arm.linux.org.uk
22  *
23  * Add support for overlay1 and overlay2 based on pxafb_overlay.c:
24  *
25  *   Copyright (C) 2004, Intel Corporation
26  *
27  *     2003/08/27: <yu.tang@intel.com>
28  *     2004/03/10: <stanley.cai@intel.com>
29  *     2004/10/28: <yan.yin@intel.com>
30  *
31  *   Copyright (C) 2006-2008 Marvell International Ltd.
32  *   All Rights Reserved
33  */
34 
35 #include <linux/module.h>
36 #include <linux/moduleparam.h>
37 #include <linux/kernel.h>
38 #include <linux/sched.h>
39 #include <linux/errno.h>
40 #include <linux/string.h>
41 #include <linux/interrupt.h>
42 #include <linux/slab.h>
43 #include <linux/mm.h>
44 #include <linux/fb.h>
45 #include <linux/delay.h>
46 #include <linux/init.h>
47 #include <linux/ioport.h>
48 #include <linux/cpufreq.h>
49 #include <linux/platform_device.h>
50 #include <linux/dma-mapping.h>
51 #include <linux/clk.h>
52 #include <linux/err.h>
53 #include <linux/completion.h>
54 #include <linux/mutex.h>
55 #include <linux/kthread.h>
56 #include <linux/freezer.h>
57 #include <linux/console.h>
58 #include <linux/of_graph.h>
59 #include <video/of_display_timing.h>
60 #include <video/videomode.h>
61 
62 #include <mach/hardware.h>
63 #include <asm/io.h>
64 #include <asm/irq.h>
65 #include <asm/div64.h>
66 #include <mach/bitfield.h>
67 #include <linux/platform_data/video-pxafb.h>
68 
69 /*
70  * Complain if VAR is out of range.
71  */
72 #define DEBUG_VAR 1
73 
74 #include "pxafb.h"
75 
76 /* Bits which should not be set in machine configuration structures */
77 #define LCCR0_INVALID_CONFIG_MASK	(LCCR0_OUM | LCCR0_BM | LCCR0_QDM |\
78 					 LCCR0_DIS | LCCR0_EFM | LCCR0_IUM |\
79 					 LCCR0_SFM | LCCR0_LDM | LCCR0_ENB)
80 
81 #define LCCR3_INVALID_CONFIG_MASK	(LCCR3_HSP | LCCR3_VSP |\
82 					 LCCR3_PCD | LCCR3_BPP(0xf))
83 
84 static int pxafb_activate_var(struct fb_var_screeninfo *var,
85 				struct pxafb_info *);
86 static void set_ctrlr_state(struct pxafb_info *fbi, u_int state);
87 static void setup_base_frame(struct pxafb_info *fbi,
88                              struct fb_var_screeninfo *var, int branch);
89 static int setup_frame_dma(struct pxafb_info *fbi, int dma, int pal,
90 			   unsigned long offset, size_t size);
91 
92 static unsigned long video_mem_size = 0;
93 
94 static inline unsigned long
95 lcd_readl(struct pxafb_info *fbi, unsigned int off)
96 {
97 	return __raw_readl(fbi->mmio_base + off);
98 }
99 
100 static inline void
101 lcd_writel(struct pxafb_info *fbi, unsigned int off, unsigned long val)
102 {
103 	__raw_writel(val, fbi->mmio_base + off);
104 }
105 
106 static inline void pxafb_schedule_work(struct pxafb_info *fbi, u_int state)
107 {
108 	unsigned long flags;
109 
110 	local_irq_save(flags);
111 	/*
112 	 * We need to handle two requests being made at the same time.
113 	 * There are two important cases:
114 	 *  1. When we are changing VT (C_REENABLE) while unblanking
115 	 *     (C_ENABLE) We must perform the unblanking, which will
116 	 *     do our REENABLE for us.
117 	 *  2. When we are blanking, but immediately unblank before
118 	 *     we have blanked.  We do the "REENABLE" thing here as
119 	 *     well, just to be sure.
120 	 */
121 	if (fbi->task_state == C_ENABLE && state == C_REENABLE)
122 		state = (u_int) -1;
123 	if (fbi->task_state == C_DISABLE && state == C_ENABLE)
124 		state = C_REENABLE;
125 
126 	if (state != (u_int)-1) {
127 		fbi->task_state = state;
128 		schedule_work(&fbi->task);
129 	}
130 	local_irq_restore(flags);
131 }
132 
133 static inline u_int chan_to_field(u_int chan, struct fb_bitfield *bf)
134 {
135 	chan &= 0xffff;
136 	chan >>= 16 - bf->length;
137 	return chan << bf->offset;
138 }
139 
140 static int
141 pxafb_setpalettereg(u_int regno, u_int red, u_int green, u_int blue,
142 		       u_int trans, struct fb_info *info)
143 {
144 	struct pxafb_info *fbi = container_of(info, struct pxafb_info, fb);
145 	u_int val;
146 
147 	if (regno >= fbi->palette_size)
148 		return 1;
149 
150 	if (fbi->fb.var.grayscale) {
151 		fbi->palette_cpu[regno] = ((blue >> 8) & 0x00ff);
152 		return 0;
153 	}
154 
155 	switch (fbi->lccr4 & LCCR4_PAL_FOR_MASK) {
156 	case LCCR4_PAL_FOR_0:
157 		val  = ((red   >>  0) & 0xf800);
158 		val |= ((green >>  5) & 0x07e0);
159 		val |= ((blue  >> 11) & 0x001f);
160 		fbi->palette_cpu[regno] = val;
161 		break;
162 	case LCCR4_PAL_FOR_1:
163 		val  = ((red   << 8) & 0x00f80000);
164 		val |= ((green >> 0) & 0x0000fc00);
165 		val |= ((blue  >> 8) & 0x000000f8);
166 		((u32 *)(fbi->palette_cpu))[regno] = val;
167 		break;
168 	case LCCR4_PAL_FOR_2:
169 		val  = ((red   << 8) & 0x00fc0000);
170 		val |= ((green >> 0) & 0x0000fc00);
171 		val |= ((blue  >> 8) & 0x000000fc);
172 		((u32 *)(fbi->palette_cpu))[regno] = val;
173 		break;
174 	case LCCR4_PAL_FOR_3:
175 		val  = ((red   << 8) & 0x00ff0000);
176 		val |= ((green >> 0) & 0x0000ff00);
177 		val |= ((blue  >> 8) & 0x000000ff);
178 		((u32 *)(fbi->palette_cpu))[regno] = val;
179 		break;
180 	}
181 
182 	return 0;
183 }
184 
185 static int
186 pxafb_setcolreg(u_int regno, u_int red, u_int green, u_int blue,
187 		   u_int trans, struct fb_info *info)
188 {
189 	struct pxafb_info *fbi = container_of(info, struct pxafb_info, fb);
190 	unsigned int val;
191 	int ret = 1;
192 
193 	/*
194 	 * If inverse mode was selected, invert all the colours
195 	 * rather than the register number.  The register number
196 	 * is what you poke into the framebuffer to produce the
197 	 * colour you requested.
198 	 */
199 	if (fbi->cmap_inverse) {
200 		red   = 0xffff - red;
201 		green = 0xffff - green;
202 		blue  = 0xffff - blue;
203 	}
204 
205 	/*
206 	 * If greyscale is true, then we convert the RGB value
207 	 * to greyscale no matter what visual we are using.
208 	 */
209 	if (fbi->fb.var.grayscale)
210 		red = green = blue = (19595 * red + 38470 * green +
211 					7471 * blue) >> 16;
212 
213 	switch (fbi->fb.fix.visual) {
214 	case FB_VISUAL_TRUECOLOR:
215 		/*
216 		 * 16-bit True Colour.  We encode the RGB value
217 		 * according to the RGB bitfield information.
218 		 */
219 		if (regno < 16) {
220 			u32 *pal = fbi->fb.pseudo_palette;
221 
222 			val  = chan_to_field(red, &fbi->fb.var.red);
223 			val |= chan_to_field(green, &fbi->fb.var.green);
224 			val |= chan_to_field(blue, &fbi->fb.var.blue);
225 
226 			pal[regno] = val;
227 			ret = 0;
228 		}
229 		break;
230 
231 	case FB_VISUAL_STATIC_PSEUDOCOLOR:
232 	case FB_VISUAL_PSEUDOCOLOR:
233 		ret = pxafb_setpalettereg(regno, red, green, blue, trans, info);
234 		break;
235 	}
236 
237 	return ret;
238 }
239 
240 /* calculate pixel depth, transparency bit included, >=16bpp formats _only_ */
241 static inline int var_to_depth(struct fb_var_screeninfo *var)
242 {
243 	return var->red.length + var->green.length +
244 		var->blue.length + var->transp.length;
245 }
246 
247 /* calculate 4-bit BPP value for LCCR3 and OVLxC1 */
248 static int pxafb_var_to_bpp(struct fb_var_screeninfo *var)
249 {
250 	int bpp = -EINVAL;
251 
252 	switch (var->bits_per_pixel) {
253 	case 1:  bpp = 0; break;
254 	case 2:  bpp = 1; break;
255 	case 4:  bpp = 2; break;
256 	case 8:  bpp = 3; break;
257 	case 16: bpp = 4; break;
258 	case 24:
259 		switch (var_to_depth(var)) {
260 		case 18: bpp = 6; break; /* 18-bits/pixel packed */
261 		case 19: bpp = 8; break; /* 19-bits/pixel packed */
262 		case 24: bpp = 9; break;
263 		}
264 		break;
265 	case 32:
266 		switch (var_to_depth(var)) {
267 		case 18: bpp = 5; break; /* 18-bits/pixel unpacked */
268 		case 19: bpp = 7; break; /* 19-bits/pixel unpacked */
269 		case 25: bpp = 10; break;
270 		}
271 		break;
272 	}
273 	return bpp;
274 }
275 
276 /*
277  *  pxafb_var_to_lccr3():
278  *    Convert a bits per pixel value to the correct bit pattern for LCCR3
279  *
280  *  NOTE: for PXA27x with overlays support, the LCCR3_PDFOR_x bits have an
281  *  implication of the acutal use of transparency bit,  which we handle it
282  *  here separatedly. See PXA27x Developer's Manual, Section <<7.4.6 Pixel
283  *  Formats>> for the valid combination of PDFOR, PAL_FOR for various BPP.
284  *
285  *  Transparency for palette pixel formats is not supported at the moment.
286  */
287 static uint32_t pxafb_var_to_lccr3(struct fb_var_screeninfo *var)
288 {
289 	int bpp = pxafb_var_to_bpp(var);
290 	uint32_t lccr3;
291 
292 	if (bpp < 0)
293 		return 0;
294 
295 	lccr3 = LCCR3_BPP(bpp);
296 
297 	switch (var_to_depth(var)) {
298 	case 16: lccr3 |= var->transp.length ? LCCR3_PDFOR_3 : 0; break;
299 	case 18: lccr3 |= LCCR3_PDFOR_3; break;
300 	case 24: lccr3 |= var->transp.length ? LCCR3_PDFOR_2 : LCCR3_PDFOR_3;
301 		 break;
302 	case 19:
303 	case 25: lccr3 |= LCCR3_PDFOR_0; break;
304 	}
305 	return lccr3;
306 }
307 
308 #define SET_PIXFMT(v, r, g, b, t)				\
309 ({								\
310 	(v)->transp.offset = (t) ? (r) + (g) + (b) : 0;		\
311 	(v)->transp.length = (t) ? (t) : 0;			\
312 	(v)->blue.length   = (b); (v)->blue.offset = 0;		\
313 	(v)->green.length  = (g); (v)->green.offset = (b);	\
314 	(v)->red.length    = (r); (v)->red.offset = (b) + (g);	\
315 })
316 
317 /* set the RGBT bitfields of fb_var_screeninf according to
318  * var->bits_per_pixel and given depth
319  */
320 static void pxafb_set_pixfmt(struct fb_var_screeninfo *var, int depth)
321 {
322 	if (depth == 0)
323 		depth = var->bits_per_pixel;
324 
325 	if (var->bits_per_pixel < 16) {
326 		/* indexed pixel formats */
327 		var->red.offset    = 0; var->red.length    = 8;
328 		var->green.offset  = 0; var->green.length  = 8;
329 		var->blue.offset   = 0; var->blue.length   = 8;
330 		var->transp.offset = 0; var->transp.length = 8;
331 	}
332 
333 	switch (depth) {
334 	case 16: var->transp.length ?
335 		 SET_PIXFMT(var, 5, 5, 5, 1) :		/* RGBT555 */
336 		 SET_PIXFMT(var, 5, 6, 5, 0); break;	/* RGB565 */
337 	case 18: SET_PIXFMT(var, 6, 6, 6, 0); break;	/* RGB666 */
338 	case 19: SET_PIXFMT(var, 6, 6, 6, 1); break;	/* RGBT666 */
339 	case 24: var->transp.length ?
340 		 SET_PIXFMT(var, 8, 8, 7, 1) :		/* RGBT887 */
341 		 SET_PIXFMT(var, 8, 8, 8, 0); break;	/* RGB888 */
342 	case 25: SET_PIXFMT(var, 8, 8, 8, 1); break;	/* RGBT888 */
343 	}
344 }
345 
346 #ifdef CONFIG_CPU_FREQ
347 /*
348  *  pxafb_display_dma_period()
349  *    Calculate the minimum period (in picoseconds) between two DMA
350  *    requests for the LCD controller.  If we hit this, it means we're
351  *    doing nothing but LCD DMA.
352  */
353 static unsigned int pxafb_display_dma_period(struct fb_var_screeninfo *var)
354 {
355 	/*
356 	 * Period = pixclock * bits_per_byte * bytes_per_transfer
357 	 *              / memory_bits_per_pixel;
358 	 */
359 	return var->pixclock * 8 * 16 / var->bits_per_pixel;
360 }
361 #endif
362 
363 /*
364  * Select the smallest mode that allows the desired resolution to be
365  * displayed. If desired parameters can be rounded up.
366  */
367 static struct pxafb_mode_info *pxafb_getmode(struct pxafb_mach_info *mach,
368 					     struct fb_var_screeninfo *var)
369 {
370 	struct pxafb_mode_info *mode = NULL;
371 	struct pxafb_mode_info *modelist = mach->modes;
372 	unsigned int best_x = 0xffffffff, best_y = 0xffffffff;
373 	unsigned int i;
374 
375 	for (i = 0; i < mach->num_modes; i++) {
376 		if (modelist[i].xres >= var->xres &&
377 		    modelist[i].yres >= var->yres &&
378 		    modelist[i].xres < best_x &&
379 		    modelist[i].yres < best_y &&
380 		    modelist[i].bpp >= var->bits_per_pixel) {
381 			best_x = modelist[i].xres;
382 			best_y = modelist[i].yres;
383 			mode = &modelist[i];
384 		}
385 	}
386 
387 	return mode;
388 }
389 
390 static void pxafb_setmode(struct fb_var_screeninfo *var,
391 			  struct pxafb_mode_info *mode)
392 {
393 	var->xres		= mode->xres;
394 	var->yres		= mode->yres;
395 	var->bits_per_pixel	= mode->bpp;
396 	var->pixclock		= mode->pixclock;
397 	var->hsync_len		= mode->hsync_len;
398 	var->left_margin	= mode->left_margin;
399 	var->right_margin	= mode->right_margin;
400 	var->vsync_len		= mode->vsync_len;
401 	var->upper_margin	= mode->upper_margin;
402 	var->lower_margin	= mode->lower_margin;
403 	var->sync		= mode->sync;
404 	var->grayscale		= mode->cmap_greyscale;
405 	var->transp.length	= mode->transparency;
406 
407 	/* set the initial RGBA bitfields */
408 	pxafb_set_pixfmt(var, mode->depth);
409 }
410 
411 static int pxafb_adjust_timing(struct pxafb_info *fbi,
412 			       struct fb_var_screeninfo *var)
413 {
414 	int line_length;
415 
416 	var->xres = max_t(int, var->xres, MIN_XRES);
417 	var->yres = max_t(int, var->yres, MIN_YRES);
418 
419 	if (!(fbi->lccr0 & LCCR0_LCDT)) {
420 		clamp_val(var->hsync_len, 1, 64);
421 		clamp_val(var->vsync_len, 1, 64);
422 		clamp_val(var->left_margin,  1, 255);
423 		clamp_val(var->right_margin, 1, 255);
424 		clamp_val(var->upper_margin, 1, 255);
425 		clamp_val(var->lower_margin, 1, 255);
426 	}
427 
428 	/* make sure each line is aligned on word boundary */
429 	line_length = var->xres * var->bits_per_pixel / 8;
430 	line_length = ALIGN(line_length, 4);
431 	var->xres = line_length * 8 / var->bits_per_pixel;
432 
433 	/* we don't support xpan, force xres_virtual to be equal to xres */
434 	var->xres_virtual = var->xres;
435 
436 	if (var->accel_flags & FB_ACCELF_TEXT)
437 		var->yres_virtual = fbi->fb.fix.smem_len / line_length;
438 	else
439 		var->yres_virtual = max(var->yres_virtual, var->yres);
440 
441 	/* check for limits */
442 	if (var->xres > MAX_XRES || var->yres > MAX_YRES)
443 		return -EINVAL;
444 
445 	if (var->yres > var->yres_virtual)
446 		return -EINVAL;
447 
448 	return 0;
449 }
450 
451 /*
452  *  pxafb_check_var():
453  *    Get the video params out of 'var'. If a value doesn't fit, round it up,
454  *    if it's too big, return -EINVAL.
455  *
456  *    Round up in the following order: bits_per_pixel, xres,
457  *    yres, xres_virtual, yres_virtual, xoffset, yoffset, grayscale,
458  *    bitfields, horizontal timing, vertical timing.
459  */
460 static int pxafb_check_var(struct fb_var_screeninfo *var, struct fb_info *info)
461 {
462 	struct pxafb_info *fbi = container_of(info, struct pxafb_info, fb);
463 	struct pxafb_mach_info *inf = fbi->inf;
464 	int err;
465 
466 	if (inf->fixed_modes) {
467 		struct pxafb_mode_info *mode;
468 
469 		mode = pxafb_getmode(inf, var);
470 		if (!mode)
471 			return -EINVAL;
472 		pxafb_setmode(var, mode);
473 	}
474 
475 	/* do a test conversion to BPP fields to check the color formats */
476 	err = pxafb_var_to_bpp(var);
477 	if (err < 0)
478 		return err;
479 
480 	pxafb_set_pixfmt(var, var_to_depth(var));
481 
482 	err = pxafb_adjust_timing(fbi, var);
483 	if (err)
484 		return err;
485 
486 #ifdef CONFIG_CPU_FREQ
487 	pr_debug("pxafb: dma period = %d ps\n",
488 		 pxafb_display_dma_period(var));
489 #endif
490 
491 	return 0;
492 }
493 
494 /*
495  * pxafb_set_par():
496  *	Set the user defined part of the display for the specified console
497  */
498 static int pxafb_set_par(struct fb_info *info)
499 {
500 	struct pxafb_info *fbi = container_of(info, struct pxafb_info, fb);
501 	struct fb_var_screeninfo *var = &info->var;
502 
503 	if (var->bits_per_pixel >= 16)
504 		fbi->fb.fix.visual = FB_VISUAL_TRUECOLOR;
505 	else if (!fbi->cmap_static)
506 		fbi->fb.fix.visual = FB_VISUAL_PSEUDOCOLOR;
507 	else {
508 		/*
509 		 * Some people have weird ideas about wanting static
510 		 * pseudocolor maps.  I suspect their user space
511 		 * applications are broken.
512 		 */
513 		fbi->fb.fix.visual = FB_VISUAL_STATIC_PSEUDOCOLOR;
514 	}
515 
516 	fbi->fb.fix.line_length = var->xres_virtual *
517 				  var->bits_per_pixel / 8;
518 	if (var->bits_per_pixel >= 16)
519 		fbi->palette_size = 0;
520 	else
521 		fbi->palette_size = var->bits_per_pixel == 1 ?
522 					4 : 1 << var->bits_per_pixel;
523 
524 	fbi->palette_cpu = (u16 *)&fbi->dma_buff->palette[0];
525 
526 	if (fbi->fb.var.bits_per_pixel >= 16)
527 		fb_dealloc_cmap(&fbi->fb.cmap);
528 	else
529 		fb_alloc_cmap(&fbi->fb.cmap, 1<<fbi->fb.var.bits_per_pixel, 0);
530 
531 	pxafb_activate_var(var, fbi);
532 
533 	return 0;
534 }
535 
536 static int pxafb_pan_display(struct fb_var_screeninfo *var,
537 			     struct fb_info *info)
538 {
539 	struct pxafb_info *fbi = container_of(info, struct pxafb_info, fb);
540 	struct fb_var_screeninfo newvar;
541 	int dma = DMA_MAX + DMA_BASE;
542 
543 	if (fbi->state != C_ENABLE)
544 		return 0;
545 
546 	/* Only take .xoffset, .yoffset and .vmode & FB_VMODE_YWRAP from what
547 	 * was passed in and copy the rest from the old screeninfo.
548 	 */
549 	memcpy(&newvar, &fbi->fb.var, sizeof(newvar));
550 	newvar.xoffset = var->xoffset;
551 	newvar.yoffset = var->yoffset;
552 	newvar.vmode &= ~FB_VMODE_YWRAP;
553 	newvar.vmode |= var->vmode & FB_VMODE_YWRAP;
554 
555 	setup_base_frame(fbi, &newvar, 1);
556 
557 	if (fbi->lccr0 & LCCR0_SDS)
558 		lcd_writel(fbi, FBR1, fbi->fdadr[dma + 1] | 0x1);
559 
560 	lcd_writel(fbi, FBR0, fbi->fdadr[dma] | 0x1);
561 	return 0;
562 }
563 
564 /*
565  * pxafb_blank():
566  *	Blank the display by setting all palette values to zero.  Note, the
567  * 	16 bpp mode does not really use the palette, so this will not
568  *      blank the display in all modes.
569  */
570 static int pxafb_blank(int blank, struct fb_info *info)
571 {
572 	struct pxafb_info *fbi = container_of(info, struct pxafb_info, fb);
573 	int i;
574 
575 	switch (blank) {
576 	case FB_BLANK_POWERDOWN:
577 	case FB_BLANK_VSYNC_SUSPEND:
578 	case FB_BLANK_HSYNC_SUSPEND:
579 	case FB_BLANK_NORMAL:
580 		if (fbi->fb.fix.visual == FB_VISUAL_PSEUDOCOLOR ||
581 		    fbi->fb.fix.visual == FB_VISUAL_STATIC_PSEUDOCOLOR)
582 			for (i = 0; i < fbi->palette_size; i++)
583 				pxafb_setpalettereg(i, 0, 0, 0, 0, info);
584 
585 		pxafb_schedule_work(fbi, C_DISABLE);
586 		/* TODO if (pxafb_blank_helper) pxafb_blank_helper(blank); */
587 		break;
588 
589 	case FB_BLANK_UNBLANK:
590 		/* TODO if (pxafb_blank_helper) pxafb_blank_helper(blank); */
591 		if (fbi->fb.fix.visual == FB_VISUAL_PSEUDOCOLOR ||
592 		    fbi->fb.fix.visual == FB_VISUAL_STATIC_PSEUDOCOLOR)
593 			fb_set_cmap(&fbi->fb.cmap, info);
594 		pxafb_schedule_work(fbi, C_ENABLE);
595 	}
596 	return 0;
597 }
598 
599 static struct fb_ops pxafb_ops = {
600 	.owner		= THIS_MODULE,
601 	.fb_check_var	= pxafb_check_var,
602 	.fb_set_par	= pxafb_set_par,
603 	.fb_pan_display	= pxafb_pan_display,
604 	.fb_setcolreg	= pxafb_setcolreg,
605 	.fb_fillrect	= cfb_fillrect,
606 	.fb_copyarea	= cfb_copyarea,
607 	.fb_imageblit	= cfb_imageblit,
608 	.fb_blank	= pxafb_blank,
609 };
610 
611 #ifdef CONFIG_FB_PXA_OVERLAY
612 static void overlay1fb_setup(struct pxafb_layer *ofb)
613 {
614 	int size = ofb->fb.fix.line_length * ofb->fb.var.yres_virtual;
615 	unsigned long start = ofb->video_mem_phys;
616 	setup_frame_dma(ofb->fbi, DMA_OV1, PAL_NONE, start, size);
617 }
618 
619 /* Depending on the enable status of overlay1/2, the DMA should be
620  * updated from FDADRx (when disabled) or FBRx (when enabled).
621  */
622 static void overlay1fb_enable(struct pxafb_layer *ofb)
623 {
624 	int enabled = lcd_readl(ofb->fbi, OVL1C1) & OVLxC1_OEN;
625 	uint32_t fdadr1 = ofb->fbi->fdadr[DMA_OV1] | (enabled ? 0x1 : 0);
626 
627 	lcd_writel(ofb->fbi, enabled ? FBR1 : FDADR1, fdadr1);
628 	lcd_writel(ofb->fbi, OVL1C2, ofb->control[1]);
629 	lcd_writel(ofb->fbi, OVL1C1, ofb->control[0] | OVLxC1_OEN);
630 }
631 
632 static void overlay1fb_disable(struct pxafb_layer *ofb)
633 {
634 	uint32_t lccr5;
635 
636 	if (!(lcd_readl(ofb->fbi, OVL1C1) & OVLxC1_OEN))
637 		return;
638 
639 	lccr5 = lcd_readl(ofb->fbi, LCCR5);
640 
641 	lcd_writel(ofb->fbi, OVL1C1, ofb->control[0] & ~OVLxC1_OEN);
642 
643 	lcd_writel(ofb->fbi, LCSR1, LCSR1_BS(1));
644 	lcd_writel(ofb->fbi, LCCR5, lccr5 & ~LCSR1_BS(1));
645 	lcd_writel(ofb->fbi, FBR1, ofb->fbi->fdadr[DMA_OV1] | 0x3);
646 
647 	if (wait_for_completion_timeout(&ofb->branch_done, 1 * HZ) == 0)
648 		pr_warn("%s: timeout disabling overlay1\n", __func__);
649 
650 	lcd_writel(ofb->fbi, LCCR5, lccr5);
651 }
652 
653 static void overlay2fb_setup(struct pxafb_layer *ofb)
654 {
655 	int size, div = 1, pfor = NONSTD_TO_PFOR(ofb->fb.var.nonstd);
656 	unsigned long start[3] = { ofb->video_mem_phys, 0, 0 };
657 
658 	if (pfor == OVERLAY_FORMAT_RGB || pfor == OVERLAY_FORMAT_YUV444_PACKED) {
659 		size = ofb->fb.fix.line_length * ofb->fb.var.yres_virtual;
660 		setup_frame_dma(ofb->fbi, DMA_OV2_Y, -1, start[0], size);
661 	} else {
662 		size = ofb->fb.var.xres_virtual * ofb->fb.var.yres_virtual;
663 		switch (pfor) {
664 		case OVERLAY_FORMAT_YUV444_PLANAR: div = 1; break;
665 		case OVERLAY_FORMAT_YUV422_PLANAR: div = 2; break;
666 		case OVERLAY_FORMAT_YUV420_PLANAR: div = 4; break;
667 		}
668 		start[1] = start[0] + size;
669 		start[2] = start[1] + size / div;
670 		setup_frame_dma(ofb->fbi, DMA_OV2_Y,  -1, start[0], size);
671 		setup_frame_dma(ofb->fbi, DMA_OV2_Cb, -1, start[1], size / div);
672 		setup_frame_dma(ofb->fbi, DMA_OV2_Cr, -1, start[2], size / div);
673 	}
674 }
675 
676 static void overlay2fb_enable(struct pxafb_layer *ofb)
677 {
678 	int pfor = NONSTD_TO_PFOR(ofb->fb.var.nonstd);
679 	int enabled = lcd_readl(ofb->fbi, OVL2C1) & OVLxC1_OEN;
680 	uint32_t fdadr2 = ofb->fbi->fdadr[DMA_OV2_Y]  | (enabled ? 0x1 : 0);
681 	uint32_t fdadr3 = ofb->fbi->fdadr[DMA_OV2_Cb] | (enabled ? 0x1 : 0);
682 	uint32_t fdadr4 = ofb->fbi->fdadr[DMA_OV2_Cr] | (enabled ? 0x1 : 0);
683 
684 	if (pfor == OVERLAY_FORMAT_RGB || pfor == OVERLAY_FORMAT_YUV444_PACKED)
685 		lcd_writel(ofb->fbi, enabled ? FBR2 : FDADR2, fdadr2);
686 	else {
687 		lcd_writel(ofb->fbi, enabled ? FBR2 : FDADR2, fdadr2);
688 		lcd_writel(ofb->fbi, enabled ? FBR3 : FDADR3, fdadr3);
689 		lcd_writel(ofb->fbi, enabled ? FBR4 : FDADR4, fdadr4);
690 	}
691 	lcd_writel(ofb->fbi, OVL2C2, ofb->control[1]);
692 	lcd_writel(ofb->fbi, OVL2C1, ofb->control[0] | OVLxC1_OEN);
693 }
694 
695 static void overlay2fb_disable(struct pxafb_layer *ofb)
696 {
697 	uint32_t lccr5;
698 
699 	if (!(lcd_readl(ofb->fbi, OVL2C1) & OVLxC1_OEN))
700 		return;
701 
702 	lccr5 = lcd_readl(ofb->fbi, LCCR5);
703 
704 	lcd_writel(ofb->fbi, OVL2C1, ofb->control[0] & ~OVLxC1_OEN);
705 
706 	lcd_writel(ofb->fbi, LCSR1, LCSR1_BS(2));
707 	lcd_writel(ofb->fbi, LCCR5, lccr5 & ~LCSR1_BS(2));
708 	lcd_writel(ofb->fbi, FBR2, ofb->fbi->fdadr[DMA_OV2_Y]  | 0x3);
709 	lcd_writel(ofb->fbi, FBR3, ofb->fbi->fdadr[DMA_OV2_Cb] | 0x3);
710 	lcd_writel(ofb->fbi, FBR4, ofb->fbi->fdadr[DMA_OV2_Cr] | 0x3);
711 
712 	if (wait_for_completion_timeout(&ofb->branch_done, 1 * HZ) == 0)
713 		pr_warn("%s: timeout disabling overlay2\n", __func__);
714 }
715 
716 static struct pxafb_layer_ops ofb_ops[] = {
717 	[0] = {
718 		.enable		= overlay1fb_enable,
719 		.disable	= overlay1fb_disable,
720 		.setup		= overlay1fb_setup,
721 	},
722 	[1] = {
723 		.enable		= overlay2fb_enable,
724 		.disable	= overlay2fb_disable,
725 		.setup		= overlay2fb_setup,
726 	},
727 };
728 
729 static int overlayfb_open(struct fb_info *info, int user)
730 {
731 	struct pxafb_layer *ofb = container_of(info, struct pxafb_layer, fb);
732 
733 	/* no support for framebuffer console on overlay */
734 	if (user == 0)
735 		return -ENODEV;
736 
737 	if (ofb->usage++ == 0) {
738 		/* unblank the base framebuffer */
739 		console_lock();
740 		fb_blank(&ofb->fbi->fb, FB_BLANK_UNBLANK);
741 		console_unlock();
742 	}
743 
744 	return 0;
745 }
746 
747 static int overlayfb_release(struct fb_info *info, int user)
748 {
749 	struct pxafb_layer *ofb = container_of(info, struct pxafb_layer, fb);
750 
751 	if (ofb->usage == 1) {
752 		ofb->ops->disable(ofb);
753 		ofb->fb.var.height	= -1;
754 		ofb->fb.var.width	= -1;
755 		ofb->fb.var.xres = ofb->fb.var.xres_virtual = 0;
756 		ofb->fb.var.yres = ofb->fb.var.yres_virtual = 0;
757 
758 		ofb->usage--;
759 	}
760 	return 0;
761 }
762 
763 static int overlayfb_check_var(struct fb_var_screeninfo *var,
764 			       struct fb_info *info)
765 {
766 	struct pxafb_layer *ofb = container_of(info, struct pxafb_layer, fb);
767 	struct fb_var_screeninfo *base_var = &ofb->fbi->fb.var;
768 	int xpos, ypos, pfor, bpp;
769 
770 	xpos = NONSTD_TO_XPOS(var->nonstd);
771 	ypos = NONSTD_TO_YPOS(var->nonstd);
772 	pfor = NONSTD_TO_PFOR(var->nonstd);
773 
774 	bpp = pxafb_var_to_bpp(var);
775 	if (bpp < 0)
776 		return -EINVAL;
777 
778 	/* no support for YUV format on overlay1 */
779 	if (ofb->id == OVERLAY1 && pfor != 0)
780 		return -EINVAL;
781 
782 	/* for YUV packed formats, bpp = 'minimum bpp of YUV components' */
783 	switch (pfor) {
784 	case OVERLAY_FORMAT_RGB:
785 		bpp = pxafb_var_to_bpp(var);
786 		if (bpp < 0)
787 			return -EINVAL;
788 
789 		pxafb_set_pixfmt(var, var_to_depth(var));
790 		break;
791 	case OVERLAY_FORMAT_YUV444_PACKED: bpp = 24; break;
792 	case OVERLAY_FORMAT_YUV444_PLANAR: bpp = 8; break;
793 	case OVERLAY_FORMAT_YUV422_PLANAR: bpp = 4; break;
794 	case OVERLAY_FORMAT_YUV420_PLANAR: bpp = 2; break;
795 	default:
796 		return -EINVAL;
797 	}
798 
799 	/* each line must start at a 32-bit word boundary */
800 	if ((xpos * bpp) % 32)
801 		return -EINVAL;
802 
803 	/* xres must align on 32-bit word boundary */
804 	var->xres = roundup(var->xres * bpp, 32) / bpp;
805 
806 	if ((xpos + var->xres > base_var->xres) ||
807 	    (ypos + var->yres > base_var->yres))
808 		return -EINVAL;
809 
810 	var->xres_virtual = var->xres;
811 	var->yres_virtual = max(var->yres, var->yres_virtual);
812 	return 0;
813 }
814 
815 static int overlayfb_check_video_memory(struct pxafb_layer *ofb)
816 {
817 	struct fb_var_screeninfo *var = &ofb->fb.var;
818 	int pfor = NONSTD_TO_PFOR(var->nonstd);
819 	int size, bpp = 0;
820 
821 	switch (pfor) {
822 	case OVERLAY_FORMAT_RGB: bpp = var->bits_per_pixel; break;
823 	case OVERLAY_FORMAT_YUV444_PACKED: bpp = 24; break;
824 	case OVERLAY_FORMAT_YUV444_PLANAR: bpp = 24; break;
825 	case OVERLAY_FORMAT_YUV422_PLANAR: bpp = 16; break;
826 	case OVERLAY_FORMAT_YUV420_PLANAR: bpp = 12; break;
827 	}
828 
829 	ofb->fb.fix.line_length = var->xres_virtual * bpp / 8;
830 
831 	size = PAGE_ALIGN(ofb->fb.fix.line_length * var->yres_virtual);
832 
833 	if (ofb->video_mem) {
834 		if (ofb->video_mem_size >= size)
835 			return 0;
836 	}
837 	return -EINVAL;
838 }
839 
840 static int overlayfb_set_par(struct fb_info *info)
841 {
842 	struct pxafb_layer *ofb = container_of(info, struct pxafb_layer, fb);
843 	struct fb_var_screeninfo *var = &info->var;
844 	int xpos, ypos, pfor, bpp, ret;
845 
846 	ret = overlayfb_check_video_memory(ofb);
847 	if (ret)
848 		return ret;
849 
850 	bpp  = pxafb_var_to_bpp(var);
851 	xpos = NONSTD_TO_XPOS(var->nonstd);
852 	ypos = NONSTD_TO_YPOS(var->nonstd);
853 	pfor = NONSTD_TO_PFOR(var->nonstd);
854 
855 	ofb->control[0] = OVLxC1_PPL(var->xres) | OVLxC1_LPO(var->yres) |
856 			  OVLxC1_BPP(bpp);
857 	ofb->control[1] = OVLxC2_XPOS(xpos) | OVLxC2_YPOS(ypos);
858 
859 	if (ofb->id == OVERLAY2)
860 		ofb->control[1] |= OVL2C2_PFOR(pfor);
861 
862 	ofb->ops->setup(ofb);
863 	ofb->ops->enable(ofb);
864 	return 0;
865 }
866 
867 static struct fb_ops overlay_fb_ops = {
868 	.owner			= THIS_MODULE,
869 	.fb_open		= overlayfb_open,
870 	.fb_release		= overlayfb_release,
871 	.fb_check_var 		= overlayfb_check_var,
872 	.fb_set_par		= overlayfb_set_par,
873 };
874 
875 static void init_pxafb_overlay(struct pxafb_info *fbi, struct pxafb_layer *ofb,
876 			       int id)
877 {
878 	sprintf(ofb->fb.fix.id, "overlay%d", id + 1);
879 
880 	ofb->fb.fix.type		= FB_TYPE_PACKED_PIXELS;
881 	ofb->fb.fix.xpanstep		= 0;
882 	ofb->fb.fix.ypanstep		= 1;
883 
884 	ofb->fb.var.activate		= FB_ACTIVATE_NOW;
885 	ofb->fb.var.height		= -1;
886 	ofb->fb.var.width		= -1;
887 	ofb->fb.var.vmode		= FB_VMODE_NONINTERLACED;
888 
889 	ofb->fb.fbops			= &overlay_fb_ops;
890 	ofb->fb.flags			= FBINFO_FLAG_DEFAULT;
891 	ofb->fb.node			= -1;
892 	ofb->fb.pseudo_palette		= NULL;
893 
894 	ofb->id = id;
895 	ofb->ops = &ofb_ops[id];
896 	ofb->usage = 0;
897 	ofb->fbi = fbi;
898 	init_completion(&ofb->branch_done);
899 }
900 
901 static inline int pxafb_overlay_supported(void)
902 {
903 	if (cpu_is_pxa27x() || cpu_is_pxa3xx())
904 		return 1;
905 
906 	return 0;
907 }
908 
909 static int pxafb_overlay_map_video_memory(struct pxafb_info *pxafb,
910 					  struct pxafb_layer *ofb)
911 {
912 	/* We assume that user will use at most video_mem_size for overlay fb,
913 	 * anyway, it's useless to use 16bpp main plane and 24bpp overlay
914 	 */
915 	ofb->video_mem = alloc_pages_exact(PAGE_ALIGN(pxafb->video_mem_size),
916 		GFP_KERNEL | __GFP_ZERO);
917 	if (ofb->video_mem == NULL)
918 		return -ENOMEM;
919 
920 	ofb->video_mem_phys = virt_to_phys(ofb->video_mem);
921 	ofb->video_mem_size = PAGE_ALIGN(pxafb->video_mem_size);
922 
923 	mutex_lock(&ofb->fb.mm_lock);
924 	ofb->fb.fix.smem_start	= ofb->video_mem_phys;
925 	ofb->fb.fix.smem_len	= pxafb->video_mem_size;
926 	mutex_unlock(&ofb->fb.mm_lock);
927 
928 	ofb->fb.screen_base	= ofb->video_mem;
929 
930 	return 0;
931 }
932 
933 static void pxafb_overlay_init(struct pxafb_info *fbi)
934 {
935 	int i, ret;
936 
937 	if (!pxafb_overlay_supported())
938 		return;
939 
940 	for (i = 0; i < 2; i++) {
941 		struct pxafb_layer *ofb = &fbi->overlay[i];
942 		init_pxafb_overlay(fbi, ofb, i);
943 		ret = register_framebuffer(&ofb->fb);
944 		if (ret) {
945 			dev_err(fbi->dev, "failed to register overlay %d\n", i);
946 			continue;
947 		}
948 		ret = pxafb_overlay_map_video_memory(fbi, ofb);
949 		if (ret) {
950 			dev_err(fbi->dev,
951 				"failed to map video memory for overlay %d\n",
952 				i);
953 			unregister_framebuffer(&ofb->fb);
954 			continue;
955 		}
956 		ofb->registered = 1;
957 	}
958 
959 	/* mask all IU/BS/EOF/SOF interrupts */
960 	lcd_writel(fbi, LCCR5, ~0);
961 
962 	pr_info("PXA Overlay driver loaded successfully!\n");
963 }
964 
965 static void pxafb_overlay_exit(struct pxafb_info *fbi)
966 {
967 	int i;
968 
969 	if (!pxafb_overlay_supported())
970 		return;
971 
972 	for (i = 0; i < 2; i++) {
973 		struct pxafb_layer *ofb = &fbi->overlay[i];
974 		if (ofb->registered) {
975 			if (ofb->video_mem)
976 				free_pages_exact(ofb->video_mem,
977 					ofb->video_mem_size);
978 			unregister_framebuffer(&ofb->fb);
979 		}
980 	}
981 }
982 #else
983 static inline void pxafb_overlay_init(struct pxafb_info *fbi) {}
984 static inline void pxafb_overlay_exit(struct pxafb_info *fbi) {}
985 #endif /* CONFIG_FB_PXA_OVERLAY */
986 
987 /*
988  * Calculate the PCD value from the clock rate (in picoseconds).
989  * We take account of the PPCR clock setting.
990  * From PXA Developer's Manual:
991  *
992  *   PixelClock =      LCLK
993  *                -------------
994  *                2 ( PCD + 1 )
995  *
996  *   PCD =      LCLK
997  *         ------------- - 1
998  *         2(PixelClock)
999  *
1000  * Where:
1001  *   LCLK = LCD/Memory Clock
1002  *   PCD = LCCR3[7:0]
1003  *
1004  * PixelClock here is in Hz while the pixclock argument given is the
1005  * period in picoseconds. Hence PixelClock = 1 / ( pixclock * 10^-12 )
1006  *
1007  * The function get_lclk_frequency_10khz returns LCLK in units of
1008  * 10khz. Calling the result of this function lclk gives us the
1009  * following
1010  *
1011  *    PCD = (lclk * 10^4 ) * ( pixclock * 10^-12 )
1012  *          -------------------------------------- - 1
1013  *                          2
1014  *
1015  * Factoring the 10^4 and 10^-12 out gives 10^-8 == 1 / 100000000 as used below.
1016  */
1017 static inline unsigned int get_pcd(struct pxafb_info *fbi,
1018 				   unsigned int pixclock)
1019 {
1020 	unsigned long long pcd;
1021 
1022 	/* FIXME: Need to take into account Double Pixel Clock mode
1023 	 * (DPC) bit? or perhaps set it based on the various clock
1024 	 * speeds */
1025 	pcd = (unsigned long long)(clk_get_rate(fbi->clk) / 10000);
1026 	pcd *= pixclock;
1027 	do_div(pcd, 100000000 * 2);
1028 	/* no need for this, since we should subtract 1 anyway. they cancel */
1029 	/* pcd += 1; */ /* make up for integer math truncations */
1030 	return (unsigned int)pcd;
1031 }
1032 
1033 /*
1034  * Some touchscreens need hsync information from the video driver to
1035  * function correctly. We export it here.  Note that 'hsync_time' and
1036  * the value returned from pxafb_get_hsync_time() is the *reciprocal*
1037  * of the hsync period in seconds.
1038  */
1039 static inline void set_hsync_time(struct pxafb_info *fbi, unsigned int pcd)
1040 {
1041 	unsigned long htime;
1042 
1043 	if ((pcd == 0) || (fbi->fb.var.hsync_len == 0)) {
1044 		fbi->hsync_time = 0;
1045 		return;
1046 	}
1047 
1048 	htime = clk_get_rate(fbi->clk) / (pcd * fbi->fb.var.hsync_len);
1049 
1050 	fbi->hsync_time = htime;
1051 }
1052 
1053 unsigned long pxafb_get_hsync_time(struct device *dev)
1054 {
1055 	struct pxafb_info *fbi = dev_get_drvdata(dev);
1056 
1057 	/* If display is blanked/suspended, hsync isn't active */
1058 	if (!fbi || (fbi->state != C_ENABLE))
1059 		return 0;
1060 
1061 	return fbi->hsync_time;
1062 }
1063 EXPORT_SYMBOL(pxafb_get_hsync_time);
1064 
1065 static int setup_frame_dma(struct pxafb_info *fbi, int dma, int pal,
1066 			   unsigned long start, size_t size)
1067 {
1068 	struct pxafb_dma_descriptor *dma_desc, *pal_desc;
1069 	unsigned int dma_desc_off, pal_desc_off;
1070 
1071 	if (dma < 0 || dma >= DMA_MAX * 2)
1072 		return -EINVAL;
1073 
1074 	dma_desc = &fbi->dma_buff->dma_desc[dma];
1075 	dma_desc_off = offsetof(struct pxafb_dma_buff, dma_desc[dma]);
1076 
1077 	dma_desc->fsadr = start;
1078 	dma_desc->fidr  = 0;
1079 	dma_desc->ldcmd = size;
1080 
1081 	if (pal < 0 || pal >= PAL_MAX * 2) {
1082 		dma_desc->fdadr = fbi->dma_buff_phys + dma_desc_off;
1083 		fbi->fdadr[dma] = fbi->dma_buff_phys + dma_desc_off;
1084 	} else {
1085 		pal_desc = &fbi->dma_buff->pal_desc[pal];
1086 		pal_desc_off = offsetof(struct pxafb_dma_buff, pal_desc[pal]);
1087 
1088 		pal_desc->fsadr = fbi->dma_buff_phys + pal * PALETTE_SIZE;
1089 		pal_desc->fidr  = 0;
1090 
1091 		if ((fbi->lccr4 & LCCR4_PAL_FOR_MASK) == LCCR4_PAL_FOR_0)
1092 			pal_desc->ldcmd = fbi->palette_size * sizeof(u16);
1093 		else
1094 			pal_desc->ldcmd = fbi->palette_size * sizeof(u32);
1095 
1096 		pal_desc->ldcmd |= LDCMD_PAL;
1097 
1098 		/* flip back and forth between palette and frame buffer */
1099 		pal_desc->fdadr = fbi->dma_buff_phys + dma_desc_off;
1100 		dma_desc->fdadr = fbi->dma_buff_phys + pal_desc_off;
1101 		fbi->fdadr[dma] = fbi->dma_buff_phys + dma_desc_off;
1102 	}
1103 
1104 	return 0;
1105 }
1106 
1107 static void setup_base_frame(struct pxafb_info *fbi,
1108                              struct fb_var_screeninfo *var,
1109                              int branch)
1110 {
1111 	struct fb_fix_screeninfo *fix = &fbi->fb.fix;
1112 	int nbytes, dma, pal, bpp = var->bits_per_pixel;
1113 	unsigned long offset;
1114 
1115 	dma = DMA_BASE + (branch ? DMA_MAX : 0);
1116 	pal = (bpp >= 16) ? PAL_NONE : PAL_BASE + (branch ? PAL_MAX : 0);
1117 
1118 	nbytes = fix->line_length * var->yres;
1119 	offset = fix->line_length * var->yoffset + fbi->video_mem_phys;
1120 
1121 	if (fbi->lccr0 & LCCR0_SDS) {
1122 		nbytes = nbytes / 2;
1123 		setup_frame_dma(fbi, dma + 1, PAL_NONE, offset + nbytes, nbytes);
1124 	}
1125 
1126 	setup_frame_dma(fbi, dma, pal, offset, nbytes);
1127 }
1128 
1129 #ifdef CONFIG_FB_PXA_SMARTPANEL
1130 static int setup_smart_dma(struct pxafb_info *fbi)
1131 {
1132 	struct pxafb_dma_descriptor *dma_desc;
1133 	unsigned long dma_desc_off, cmd_buff_off;
1134 
1135 	dma_desc = &fbi->dma_buff->dma_desc[DMA_CMD];
1136 	dma_desc_off = offsetof(struct pxafb_dma_buff, dma_desc[DMA_CMD]);
1137 	cmd_buff_off = offsetof(struct pxafb_dma_buff, cmd_buff);
1138 
1139 	dma_desc->fdadr = fbi->dma_buff_phys + dma_desc_off;
1140 	dma_desc->fsadr = fbi->dma_buff_phys + cmd_buff_off;
1141 	dma_desc->fidr  = 0;
1142 	dma_desc->ldcmd = fbi->n_smart_cmds * sizeof(uint16_t);
1143 
1144 	fbi->fdadr[DMA_CMD] = dma_desc->fdadr;
1145 	return 0;
1146 }
1147 
1148 int pxafb_smart_flush(struct fb_info *info)
1149 {
1150 	struct pxafb_info *fbi = container_of(info, struct pxafb_info, fb);
1151 	uint32_t prsr;
1152 	int ret = 0;
1153 
1154 	/* disable controller until all registers are set up */
1155 	lcd_writel(fbi, LCCR0, fbi->reg_lccr0 & ~LCCR0_ENB);
1156 
1157 	/* 1. make it an even number of commands to align on 32-bit boundary
1158 	 * 2. add the interrupt command to the end of the chain so we can
1159 	 *    keep track of the end of the transfer
1160 	 */
1161 
1162 	while (fbi->n_smart_cmds & 1)
1163 		fbi->smart_cmds[fbi->n_smart_cmds++] = SMART_CMD_NOOP;
1164 
1165 	fbi->smart_cmds[fbi->n_smart_cmds++] = SMART_CMD_INTERRUPT;
1166 	fbi->smart_cmds[fbi->n_smart_cmds++] = SMART_CMD_WAIT_FOR_VSYNC;
1167 	setup_smart_dma(fbi);
1168 
1169 	/* continue to execute next command */
1170 	prsr = lcd_readl(fbi, PRSR) | PRSR_ST_OK | PRSR_CON_NT;
1171 	lcd_writel(fbi, PRSR, prsr);
1172 
1173 	/* stop the processor in case it executed "wait for sync" cmd */
1174 	lcd_writel(fbi, CMDCR, 0x0001);
1175 
1176 	/* don't send interrupts for fifo underruns on channel 6 */
1177 	lcd_writel(fbi, LCCR5, LCCR5_IUM(6));
1178 
1179 	lcd_writel(fbi, LCCR1, fbi->reg_lccr1);
1180 	lcd_writel(fbi, LCCR2, fbi->reg_lccr2);
1181 	lcd_writel(fbi, LCCR3, fbi->reg_lccr3);
1182 	lcd_writel(fbi, LCCR4, fbi->reg_lccr4);
1183 	lcd_writel(fbi, FDADR0, fbi->fdadr[0]);
1184 	lcd_writel(fbi, FDADR6, fbi->fdadr[6]);
1185 
1186 	/* begin sending */
1187 	lcd_writel(fbi, LCCR0, fbi->reg_lccr0 | LCCR0_ENB);
1188 
1189 	if (wait_for_completion_timeout(&fbi->command_done, HZ/2) == 0) {
1190 		pr_warn("%s: timeout waiting for command done\n", __func__);
1191 		ret = -ETIMEDOUT;
1192 	}
1193 
1194 	/* quick disable */
1195 	prsr = lcd_readl(fbi, PRSR) & ~(PRSR_ST_OK | PRSR_CON_NT);
1196 	lcd_writel(fbi, PRSR, prsr);
1197 	lcd_writel(fbi, LCCR0, fbi->reg_lccr0 & ~LCCR0_ENB);
1198 	lcd_writel(fbi, FDADR6, 0);
1199 	fbi->n_smart_cmds = 0;
1200 	return ret;
1201 }
1202 
1203 int pxafb_smart_queue(struct fb_info *info, uint16_t *cmds, int n_cmds)
1204 {
1205 	int i;
1206 	struct pxafb_info *fbi = container_of(info, struct pxafb_info, fb);
1207 
1208 	for (i = 0; i < n_cmds; i++, cmds++) {
1209 		/* if it is a software delay, flush and delay */
1210 		if ((*cmds & 0xff00) == SMART_CMD_DELAY) {
1211 			pxafb_smart_flush(info);
1212 			mdelay(*cmds & 0xff);
1213 			continue;
1214 		}
1215 
1216 		/* leave 2 commands for INTERRUPT and WAIT_FOR_SYNC */
1217 		if (fbi->n_smart_cmds == CMD_BUFF_SIZE - 8)
1218 			pxafb_smart_flush(info);
1219 
1220 		fbi->smart_cmds[fbi->n_smart_cmds++] = *cmds;
1221 	}
1222 
1223 	return 0;
1224 }
1225 
1226 static unsigned int __smart_timing(unsigned time_ns, unsigned long lcd_clk)
1227 {
1228 	unsigned int t = (time_ns * (lcd_clk / 1000000) / 1000);
1229 	return (t == 0) ? 1 : t;
1230 }
1231 
1232 static void setup_smart_timing(struct pxafb_info *fbi,
1233 				struct fb_var_screeninfo *var)
1234 {
1235 	struct pxafb_mach_info *inf = fbi->inf;
1236 	struct pxafb_mode_info *mode = &inf->modes[0];
1237 	unsigned long lclk = clk_get_rate(fbi->clk);
1238 	unsigned t1, t2, t3, t4;
1239 
1240 	t1 = max(mode->a0csrd_set_hld, mode->a0cswr_set_hld);
1241 	t2 = max(mode->rd_pulse_width, mode->wr_pulse_width);
1242 	t3 = mode->op_hold_time;
1243 	t4 = mode->cmd_inh_time;
1244 
1245 	fbi->reg_lccr1 =
1246 		LCCR1_DisWdth(var->xres) |
1247 		LCCR1_BegLnDel(__smart_timing(t1, lclk)) |
1248 		LCCR1_EndLnDel(__smart_timing(t2, lclk)) |
1249 		LCCR1_HorSnchWdth(__smart_timing(t3, lclk));
1250 
1251 	fbi->reg_lccr2 = LCCR2_DisHght(var->yres);
1252 	fbi->reg_lccr3 = fbi->lccr3 | LCCR3_PixClkDiv(__smart_timing(t4, lclk));
1253 	fbi->reg_lccr3 |= (var->sync & FB_SYNC_HOR_HIGH_ACT) ? LCCR3_HSP : 0;
1254 	fbi->reg_lccr3 |= (var->sync & FB_SYNC_VERT_HIGH_ACT) ? LCCR3_VSP : 0;
1255 
1256 	/* FIXME: make this configurable */
1257 	fbi->reg_cmdcr = 1;
1258 }
1259 
1260 static int pxafb_smart_thread(void *arg)
1261 {
1262 	struct pxafb_info *fbi = arg;
1263 	struct pxafb_mach_info *inf = fbi->inf;
1264 
1265 	if (!inf->smart_update) {
1266 		pr_err("%s: not properly initialized, thread terminated\n",
1267 				__func__);
1268 		return -EINVAL;
1269 	}
1270 
1271 	pr_debug("%s(): task starting\n", __func__);
1272 
1273 	set_freezable();
1274 	while (!kthread_should_stop()) {
1275 
1276 		if (try_to_freeze())
1277 			continue;
1278 
1279 		mutex_lock(&fbi->ctrlr_lock);
1280 
1281 		if (fbi->state == C_ENABLE) {
1282 			inf->smart_update(&fbi->fb);
1283 			complete(&fbi->refresh_done);
1284 		}
1285 
1286 		mutex_unlock(&fbi->ctrlr_lock);
1287 
1288 		set_current_state(TASK_INTERRUPTIBLE);
1289 		schedule_timeout(msecs_to_jiffies(30));
1290 	}
1291 
1292 	pr_debug("%s(): task ending\n", __func__);
1293 	return 0;
1294 }
1295 
1296 static int pxafb_smart_init(struct pxafb_info *fbi)
1297 {
1298 	if (!(fbi->lccr0 & LCCR0_LCDT))
1299 		return 0;
1300 
1301 	fbi->smart_cmds = (uint16_t *) fbi->dma_buff->cmd_buff;
1302 	fbi->n_smart_cmds = 0;
1303 
1304 	init_completion(&fbi->command_done);
1305 	init_completion(&fbi->refresh_done);
1306 
1307 	fbi->smart_thread = kthread_run(pxafb_smart_thread, fbi,
1308 					"lcd_refresh");
1309 	if (IS_ERR(fbi->smart_thread)) {
1310 		pr_err("%s: unable to create kernel thread\n", __func__);
1311 		return PTR_ERR(fbi->smart_thread);
1312 	}
1313 
1314 	return 0;
1315 }
1316 #else
1317 static inline int pxafb_smart_init(struct pxafb_info *fbi) { return 0; }
1318 #endif /* CONFIG_FB_PXA_SMARTPANEL */
1319 
1320 static void setup_parallel_timing(struct pxafb_info *fbi,
1321 				  struct fb_var_screeninfo *var)
1322 {
1323 	unsigned int lines_per_panel, pcd = get_pcd(fbi, var->pixclock);
1324 
1325 	fbi->reg_lccr1 =
1326 		LCCR1_DisWdth(var->xres) +
1327 		LCCR1_HorSnchWdth(var->hsync_len) +
1328 		LCCR1_BegLnDel(var->left_margin) +
1329 		LCCR1_EndLnDel(var->right_margin);
1330 
1331 	/*
1332 	 * If we have a dual scan LCD, we need to halve
1333 	 * the YRES parameter.
1334 	 */
1335 	lines_per_panel = var->yres;
1336 	if ((fbi->lccr0 & LCCR0_SDS) == LCCR0_Dual)
1337 		lines_per_panel /= 2;
1338 
1339 	fbi->reg_lccr2 =
1340 		LCCR2_DisHght(lines_per_panel) +
1341 		LCCR2_VrtSnchWdth(var->vsync_len) +
1342 		LCCR2_BegFrmDel(var->upper_margin) +
1343 		LCCR2_EndFrmDel(var->lower_margin);
1344 
1345 	fbi->reg_lccr3 = fbi->lccr3 |
1346 		(var->sync & FB_SYNC_HOR_HIGH_ACT ?
1347 		 LCCR3_HorSnchH : LCCR3_HorSnchL) |
1348 		(var->sync & FB_SYNC_VERT_HIGH_ACT ?
1349 		 LCCR3_VrtSnchH : LCCR3_VrtSnchL);
1350 
1351 	if (pcd) {
1352 		fbi->reg_lccr3 |= LCCR3_PixClkDiv(pcd);
1353 		set_hsync_time(fbi, pcd);
1354 	}
1355 }
1356 
1357 /*
1358  * pxafb_activate_var():
1359  *	Configures LCD Controller based on entries in var parameter.
1360  *	Settings are only written to the controller if changes were made.
1361  */
1362 static int pxafb_activate_var(struct fb_var_screeninfo *var,
1363 			      struct pxafb_info *fbi)
1364 {
1365 	u_long flags;
1366 
1367 	/* Update shadow copy atomically */
1368 	local_irq_save(flags);
1369 
1370 #ifdef CONFIG_FB_PXA_SMARTPANEL
1371 	if (fbi->lccr0 & LCCR0_LCDT)
1372 		setup_smart_timing(fbi, var);
1373 	else
1374 #endif
1375 		setup_parallel_timing(fbi, var);
1376 
1377 	setup_base_frame(fbi, var, 0);
1378 
1379 	fbi->reg_lccr0 = fbi->lccr0 |
1380 		(LCCR0_LDM | LCCR0_SFM | LCCR0_IUM | LCCR0_EFM |
1381 		 LCCR0_QDM | LCCR0_BM  | LCCR0_OUM);
1382 
1383 	fbi->reg_lccr3 |= pxafb_var_to_lccr3(var);
1384 
1385 	fbi->reg_lccr4 = lcd_readl(fbi, LCCR4) & ~LCCR4_PAL_FOR_MASK;
1386 	fbi->reg_lccr4 |= (fbi->lccr4 & LCCR4_PAL_FOR_MASK);
1387 	local_irq_restore(flags);
1388 
1389 	/*
1390 	 * Only update the registers if the controller is enabled
1391 	 * and something has changed.
1392 	 */
1393 	if ((lcd_readl(fbi, LCCR0) != fbi->reg_lccr0) ||
1394 	    (lcd_readl(fbi, LCCR1) != fbi->reg_lccr1) ||
1395 	    (lcd_readl(fbi, LCCR2) != fbi->reg_lccr2) ||
1396 	    (lcd_readl(fbi, LCCR3) != fbi->reg_lccr3) ||
1397 	    (lcd_readl(fbi, LCCR4) != fbi->reg_lccr4) ||
1398 	    (lcd_readl(fbi, FDADR0) != fbi->fdadr[0]) ||
1399 	    ((fbi->lccr0 & LCCR0_SDS) &&
1400 	    (lcd_readl(fbi, FDADR1) != fbi->fdadr[1])))
1401 		pxafb_schedule_work(fbi, C_REENABLE);
1402 
1403 	return 0;
1404 }
1405 
1406 /*
1407  * NOTE!  The following functions are purely helpers for set_ctrlr_state.
1408  * Do not call them directly; set_ctrlr_state does the correct serialisation
1409  * to ensure that things happen in the right way 100% of time time.
1410  *	-- rmk
1411  */
1412 static inline void __pxafb_backlight_power(struct pxafb_info *fbi, int on)
1413 {
1414 	pr_debug("pxafb: backlight o%s\n", on ? "n" : "ff");
1415 
1416 	if (fbi->backlight_power)
1417 		fbi->backlight_power(on);
1418 }
1419 
1420 static inline void __pxafb_lcd_power(struct pxafb_info *fbi, int on)
1421 {
1422 	pr_debug("pxafb: LCD power o%s\n", on ? "n" : "ff");
1423 
1424 	if (fbi->lcd_power)
1425 		fbi->lcd_power(on, &fbi->fb.var);
1426 }
1427 
1428 static void pxafb_enable_controller(struct pxafb_info *fbi)
1429 {
1430 	pr_debug("pxafb: Enabling LCD controller\n");
1431 	pr_debug("fdadr0 0x%08x\n", (unsigned int) fbi->fdadr[0]);
1432 	pr_debug("fdadr1 0x%08x\n", (unsigned int) fbi->fdadr[1]);
1433 	pr_debug("reg_lccr0 0x%08x\n", (unsigned int) fbi->reg_lccr0);
1434 	pr_debug("reg_lccr1 0x%08x\n", (unsigned int) fbi->reg_lccr1);
1435 	pr_debug("reg_lccr2 0x%08x\n", (unsigned int) fbi->reg_lccr2);
1436 	pr_debug("reg_lccr3 0x%08x\n", (unsigned int) fbi->reg_lccr3);
1437 
1438 	/* enable LCD controller clock */
1439 	if (clk_prepare_enable(fbi->clk)) {
1440 		pr_err("%s: Failed to prepare clock\n", __func__);
1441 		return;
1442 	}
1443 
1444 	if (fbi->lccr0 & LCCR0_LCDT)
1445 		return;
1446 
1447 	/* Sequence from 11.7.10 */
1448 	lcd_writel(fbi, LCCR4, fbi->reg_lccr4);
1449 	lcd_writel(fbi, LCCR3, fbi->reg_lccr3);
1450 	lcd_writel(fbi, LCCR2, fbi->reg_lccr2);
1451 	lcd_writel(fbi, LCCR1, fbi->reg_lccr1);
1452 	lcd_writel(fbi, LCCR0, fbi->reg_lccr0 & ~LCCR0_ENB);
1453 
1454 	lcd_writel(fbi, FDADR0, fbi->fdadr[0]);
1455 	if (fbi->lccr0 & LCCR0_SDS)
1456 		lcd_writel(fbi, FDADR1, fbi->fdadr[1]);
1457 	lcd_writel(fbi, LCCR0, fbi->reg_lccr0 | LCCR0_ENB);
1458 }
1459 
1460 static void pxafb_disable_controller(struct pxafb_info *fbi)
1461 {
1462 	uint32_t lccr0;
1463 
1464 #ifdef CONFIG_FB_PXA_SMARTPANEL
1465 	if (fbi->lccr0 & LCCR0_LCDT) {
1466 		wait_for_completion_timeout(&fbi->refresh_done,
1467 				msecs_to_jiffies(200));
1468 		return;
1469 	}
1470 #endif
1471 
1472 	/* Clear LCD Status Register */
1473 	lcd_writel(fbi, LCSR, 0xffffffff);
1474 
1475 	lccr0 = lcd_readl(fbi, LCCR0) & ~LCCR0_LDM;
1476 	lcd_writel(fbi, LCCR0, lccr0);
1477 	lcd_writel(fbi, LCCR0, lccr0 | LCCR0_DIS);
1478 
1479 	wait_for_completion_timeout(&fbi->disable_done, msecs_to_jiffies(200));
1480 
1481 	/* disable LCD controller clock */
1482 	clk_disable_unprepare(fbi->clk);
1483 }
1484 
1485 /*
1486  *  pxafb_handle_irq: Handle 'LCD DONE' interrupts.
1487  */
1488 static irqreturn_t pxafb_handle_irq(int irq, void *dev_id)
1489 {
1490 	struct pxafb_info *fbi = dev_id;
1491 	unsigned int lccr0, lcsr;
1492 
1493 	lcsr = lcd_readl(fbi, LCSR);
1494 	if (lcsr & LCSR_LDD) {
1495 		lccr0 = lcd_readl(fbi, LCCR0);
1496 		lcd_writel(fbi, LCCR0, lccr0 | LCCR0_LDM);
1497 		complete(&fbi->disable_done);
1498 	}
1499 
1500 #ifdef CONFIG_FB_PXA_SMARTPANEL
1501 	if (lcsr & LCSR_CMD_INT)
1502 		complete(&fbi->command_done);
1503 #endif
1504 	lcd_writel(fbi, LCSR, lcsr);
1505 
1506 #ifdef CONFIG_FB_PXA_OVERLAY
1507 	{
1508 		unsigned int lcsr1 = lcd_readl(fbi, LCSR1);
1509 		if (lcsr1 & LCSR1_BS(1))
1510 			complete(&fbi->overlay[0].branch_done);
1511 
1512 		if (lcsr1 & LCSR1_BS(2))
1513 			complete(&fbi->overlay[1].branch_done);
1514 
1515 		lcd_writel(fbi, LCSR1, lcsr1);
1516 	}
1517 #endif
1518 	return IRQ_HANDLED;
1519 }
1520 
1521 /*
1522  * This function must be called from task context only, since it will
1523  * sleep when disabling the LCD controller, or if we get two contending
1524  * processes trying to alter state.
1525  */
1526 static void set_ctrlr_state(struct pxafb_info *fbi, u_int state)
1527 {
1528 	u_int old_state;
1529 
1530 	mutex_lock(&fbi->ctrlr_lock);
1531 
1532 	old_state = fbi->state;
1533 
1534 	/*
1535 	 * Hack around fbcon initialisation.
1536 	 */
1537 	if (old_state == C_STARTUP && state == C_REENABLE)
1538 		state = C_ENABLE;
1539 
1540 	switch (state) {
1541 	case C_DISABLE_CLKCHANGE:
1542 		/*
1543 		 * Disable controller for clock change.  If the
1544 		 * controller is already disabled, then do nothing.
1545 		 */
1546 		if (old_state != C_DISABLE && old_state != C_DISABLE_PM) {
1547 			fbi->state = state;
1548 			/* TODO __pxafb_lcd_power(fbi, 0); */
1549 			pxafb_disable_controller(fbi);
1550 		}
1551 		break;
1552 
1553 	case C_DISABLE_PM:
1554 	case C_DISABLE:
1555 		/*
1556 		 * Disable controller
1557 		 */
1558 		if (old_state != C_DISABLE) {
1559 			fbi->state = state;
1560 			__pxafb_backlight_power(fbi, 0);
1561 			__pxafb_lcd_power(fbi, 0);
1562 			if (old_state != C_DISABLE_CLKCHANGE)
1563 				pxafb_disable_controller(fbi);
1564 		}
1565 		break;
1566 
1567 	case C_ENABLE_CLKCHANGE:
1568 		/*
1569 		 * Enable the controller after clock change.  Only
1570 		 * do this if we were disabled for the clock change.
1571 		 */
1572 		if (old_state == C_DISABLE_CLKCHANGE) {
1573 			fbi->state = C_ENABLE;
1574 			pxafb_enable_controller(fbi);
1575 			/* TODO __pxafb_lcd_power(fbi, 1); */
1576 		}
1577 		break;
1578 
1579 	case C_REENABLE:
1580 		/*
1581 		 * Re-enable the controller only if it was already
1582 		 * enabled.  This is so we reprogram the control
1583 		 * registers.
1584 		 */
1585 		if (old_state == C_ENABLE) {
1586 			__pxafb_lcd_power(fbi, 0);
1587 			pxafb_disable_controller(fbi);
1588 			pxafb_enable_controller(fbi);
1589 			__pxafb_lcd_power(fbi, 1);
1590 		}
1591 		break;
1592 
1593 	case C_ENABLE_PM:
1594 		/*
1595 		 * Re-enable the controller after PM.  This is not
1596 		 * perfect - think about the case where we were doing
1597 		 * a clock change, and we suspended half-way through.
1598 		 */
1599 		if (old_state != C_DISABLE_PM)
1600 			break;
1601 		/* fall through */
1602 
1603 	case C_ENABLE:
1604 		/*
1605 		 * Power up the LCD screen, enable controller, and
1606 		 * turn on the backlight.
1607 		 */
1608 		if (old_state != C_ENABLE) {
1609 			fbi->state = C_ENABLE;
1610 			pxafb_enable_controller(fbi);
1611 			__pxafb_lcd_power(fbi, 1);
1612 			__pxafb_backlight_power(fbi, 1);
1613 		}
1614 		break;
1615 	}
1616 	mutex_unlock(&fbi->ctrlr_lock);
1617 }
1618 
1619 /*
1620  * Our LCD controller task (which is called when we blank or unblank)
1621  * via keventd.
1622  */
1623 static void pxafb_task(struct work_struct *work)
1624 {
1625 	struct pxafb_info *fbi =
1626 		container_of(work, struct pxafb_info, task);
1627 	u_int state = xchg(&fbi->task_state, -1);
1628 
1629 	set_ctrlr_state(fbi, state);
1630 }
1631 
1632 #ifdef CONFIG_CPU_FREQ
1633 /*
1634  * CPU clock speed change handler.  We need to adjust the LCD timing
1635  * parameters when the CPU clock is adjusted by the power management
1636  * subsystem.
1637  *
1638  * TODO: Determine why f->new != 10*get_lclk_frequency_10khz()
1639  */
1640 static int
1641 pxafb_freq_transition(struct notifier_block *nb, unsigned long val, void *data)
1642 {
1643 	struct pxafb_info *fbi = TO_INF(nb, freq_transition);
1644 	/* TODO struct cpufreq_freqs *f = data; */
1645 	u_int pcd;
1646 
1647 	switch (val) {
1648 	case CPUFREQ_PRECHANGE:
1649 #ifdef CONFIG_FB_PXA_OVERLAY
1650 		if (!(fbi->overlay[0].usage || fbi->overlay[1].usage))
1651 #endif
1652 			set_ctrlr_state(fbi, C_DISABLE_CLKCHANGE);
1653 		break;
1654 
1655 	case CPUFREQ_POSTCHANGE:
1656 		pcd = get_pcd(fbi, fbi->fb.var.pixclock);
1657 		set_hsync_time(fbi, pcd);
1658 		fbi->reg_lccr3 = (fbi->reg_lccr3 & ~0xff) |
1659 				  LCCR3_PixClkDiv(pcd);
1660 		set_ctrlr_state(fbi, C_ENABLE_CLKCHANGE);
1661 		break;
1662 	}
1663 	return 0;
1664 }
1665 
1666 static int
1667 pxafb_freq_policy(struct notifier_block *nb, unsigned long val, void *data)
1668 {
1669 	struct pxafb_info *fbi = TO_INF(nb, freq_policy);
1670 	struct fb_var_screeninfo *var = &fbi->fb.var;
1671 	struct cpufreq_policy *policy = data;
1672 
1673 	switch (val) {
1674 	case CPUFREQ_ADJUST:
1675 		pr_debug("min dma period: %d ps, "
1676 			"new clock %d kHz\n", pxafb_display_dma_period(var),
1677 			policy->max);
1678 		/* TODO: fill in min/max values */
1679 		break;
1680 	}
1681 	return 0;
1682 }
1683 #endif
1684 
1685 #ifdef CONFIG_PM
1686 /*
1687  * Power management hooks.  Note that we won't be called from IRQ context,
1688  * unlike the blank functions above, so we may sleep.
1689  */
1690 static int pxafb_suspend(struct device *dev)
1691 {
1692 	struct pxafb_info *fbi = dev_get_drvdata(dev);
1693 
1694 	set_ctrlr_state(fbi, C_DISABLE_PM);
1695 	return 0;
1696 }
1697 
1698 static int pxafb_resume(struct device *dev)
1699 {
1700 	struct pxafb_info *fbi = dev_get_drvdata(dev);
1701 
1702 	set_ctrlr_state(fbi, C_ENABLE_PM);
1703 	return 0;
1704 }
1705 
1706 static const struct dev_pm_ops pxafb_pm_ops = {
1707 	.suspend	= pxafb_suspend,
1708 	.resume		= pxafb_resume,
1709 };
1710 #endif
1711 
1712 static int pxafb_init_video_memory(struct pxafb_info *fbi)
1713 {
1714 	int size = PAGE_ALIGN(fbi->video_mem_size);
1715 
1716 	fbi->video_mem = alloc_pages_exact(size, GFP_KERNEL | __GFP_ZERO);
1717 	if (fbi->video_mem == NULL)
1718 		return -ENOMEM;
1719 
1720 	fbi->video_mem_phys = virt_to_phys(fbi->video_mem);
1721 	fbi->video_mem_size = size;
1722 
1723 	fbi->fb.fix.smem_start	= fbi->video_mem_phys;
1724 	fbi->fb.fix.smem_len	= fbi->video_mem_size;
1725 	fbi->fb.screen_base	= fbi->video_mem;
1726 
1727 	return fbi->video_mem ? 0 : -ENOMEM;
1728 }
1729 
1730 static void pxafb_decode_mach_info(struct pxafb_info *fbi,
1731 				   struct pxafb_mach_info *inf)
1732 {
1733 	unsigned int lcd_conn = inf->lcd_conn;
1734 	struct pxafb_mode_info *m;
1735 	int i;
1736 
1737 	fbi->cmap_inverse	= inf->cmap_inverse;
1738 	fbi->cmap_static	= inf->cmap_static;
1739 	fbi->lccr4 		= inf->lccr4;
1740 
1741 	switch (lcd_conn & LCD_TYPE_MASK) {
1742 	case LCD_TYPE_MONO_STN:
1743 		fbi->lccr0 = LCCR0_CMS;
1744 		break;
1745 	case LCD_TYPE_MONO_DSTN:
1746 		fbi->lccr0 = LCCR0_CMS | LCCR0_SDS;
1747 		break;
1748 	case LCD_TYPE_COLOR_STN:
1749 		fbi->lccr0 = 0;
1750 		break;
1751 	case LCD_TYPE_COLOR_DSTN:
1752 		fbi->lccr0 = LCCR0_SDS;
1753 		break;
1754 	case LCD_TYPE_COLOR_TFT:
1755 		fbi->lccr0 = LCCR0_PAS;
1756 		break;
1757 	case LCD_TYPE_SMART_PANEL:
1758 		fbi->lccr0 = LCCR0_LCDT | LCCR0_PAS;
1759 		break;
1760 	default:
1761 		/* fall back to backward compatibility way */
1762 		fbi->lccr0 = inf->lccr0;
1763 		fbi->lccr3 = inf->lccr3;
1764 		goto decode_mode;
1765 	}
1766 
1767 	if (lcd_conn == LCD_MONO_STN_8BPP)
1768 		fbi->lccr0 |= LCCR0_DPD;
1769 
1770 	fbi->lccr0 |= (lcd_conn & LCD_ALTERNATE_MAPPING) ? LCCR0_LDDALT : 0;
1771 
1772 	fbi->lccr3 = LCCR3_Acb((inf->lcd_conn >> 10) & 0xff);
1773 	fbi->lccr3 |= (lcd_conn & LCD_BIAS_ACTIVE_LOW) ? LCCR3_OEP : 0;
1774 	fbi->lccr3 |= (lcd_conn & LCD_PCLK_EDGE_FALL)  ? LCCR3_PCP : 0;
1775 
1776 decode_mode:
1777 	pxafb_setmode(&fbi->fb.var, &inf->modes[0]);
1778 
1779 	/* decide video memory size as follows:
1780 	 * 1. default to mode of maximum resolution
1781 	 * 2. allow platform to override
1782 	 * 3. allow module parameter to override
1783 	 */
1784 	for (i = 0, m = &inf->modes[0]; i < inf->num_modes; i++, m++)
1785 		fbi->video_mem_size = max_t(size_t, fbi->video_mem_size,
1786 				m->xres * m->yres * m->bpp / 8);
1787 
1788 	if (inf->video_mem_size > fbi->video_mem_size)
1789 		fbi->video_mem_size = inf->video_mem_size;
1790 
1791 	if (video_mem_size > fbi->video_mem_size)
1792 		fbi->video_mem_size = video_mem_size;
1793 }
1794 
1795 static struct pxafb_info *pxafb_init_fbinfo(struct device *dev,
1796 					    struct pxafb_mach_info *inf)
1797 {
1798 	struct pxafb_info *fbi;
1799 	void *addr;
1800 
1801 	/* Alloc the pxafb_info and pseudo_palette in one step */
1802 	fbi = kmalloc(sizeof(struct pxafb_info) + sizeof(u32) * 16, GFP_KERNEL);
1803 	if (!fbi)
1804 		return NULL;
1805 
1806 	memset(fbi, 0, sizeof(struct pxafb_info));
1807 	fbi->dev = dev;
1808 	fbi->inf = inf;
1809 
1810 	fbi->clk = clk_get(dev, NULL);
1811 	if (IS_ERR(fbi->clk)) {
1812 		kfree(fbi);
1813 		return NULL;
1814 	}
1815 
1816 	strcpy(fbi->fb.fix.id, PXA_NAME);
1817 
1818 	fbi->fb.fix.type	= FB_TYPE_PACKED_PIXELS;
1819 	fbi->fb.fix.type_aux	= 0;
1820 	fbi->fb.fix.xpanstep	= 0;
1821 	fbi->fb.fix.ypanstep	= 1;
1822 	fbi->fb.fix.ywrapstep	= 0;
1823 	fbi->fb.fix.accel	= FB_ACCEL_NONE;
1824 
1825 	fbi->fb.var.nonstd	= 0;
1826 	fbi->fb.var.activate	= FB_ACTIVATE_NOW;
1827 	fbi->fb.var.height	= -1;
1828 	fbi->fb.var.width	= -1;
1829 	fbi->fb.var.accel_flags	= FB_ACCELF_TEXT;
1830 	fbi->fb.var.vmode	= FB_VMODE_NONINTERLACED;
1831 
1832 	fbi->fb.fbops		= &pxafb_ops;
1833 	fbi->fb.flags		= FBINFO_DEFAULT;
1834 	fbi->fb.node		= -1;
1835 
1836 	addr = fbi;
1837 	addr = addr + sizeof(struct pxafb_info);
1838 	fbi->fb.pseudo_palette	= addr;
1839 
1840 	fbi->state		= C_STARTUP;
1841 	fbi->task_state		= (u_char)-1;
1842 
1843 	pxafb_decode_mach_info(fbi, inf);
1844 
1845 #ifdef CONFIG_FB_PXA_OVERLAY
1846 	/* place overlay(s) on top of base */
1847 	if (pxafb_overlay_supported())
1848 		fbi->lccr0 |= LCCR0_OUC;
1849 #endif
1850 
1851 	init_waitqueue_head(&fbi->ctrlr_wait);
1852 	INIT_WORK(&fbi->task, pxafb_task);
1853 	mutex_init(&fbi->ctrlr_lock);
1854 	init_completion(&fbi->disable_done);
1855 
1856 	return fbi;
1857 }
1858 
1859 #ifdef CONFIG_FB_PXA_PARAMETERS
1860 static int parse_opt_mode(struct device *dev, const char *this_opt,
1861 			  struct pxafb_mach_info *inf)
1862 {
1863 	const char *name = this_opt+5;
1864 	unsigned int namelen = strlen(name);
1865 	int res_specified = 0, bpp_specified = 0;
1866 	unsigned int xres = 0, yres = 0, bpp = 0;
1867 	int yres_specified = 0;
1868 	int i;
1869 	for (i = namelen-1; i >= 0; i--) {
1870 		switch (name[i]) {
1871 		case '-':
1872 			namelen = i;
1873 			if (!bpp_specified && !yres_specified) {
1874 				bpp = simple_strtoul(&name[i+1], NULL, 0);
1875 				bpp_specified = 1;
1876 			} else
1877 				goto done;
1878 			break;
1879 		case 'x':
1880 			if (!yres_specified) {
1881 				yres = simple_strtoul(&name[i+1], NULL, 0);
1882 				yres_specified = 1;
1883 			} else
1884 				goto done;
1885 			break;
1886 		case '0' ... '9':
1887 			break;
1888 		default:
1889 			goto done;
1890 		}
1891 	}
1892 	if (i < 0 && yres_specified) {
1893 		xres = simple_strtoul(name, NULL, 0);
1894 		res_specified = 1;
1895 	}
1896 done:
1897 	if (res_specified) {
1898 		dev_info(dev, "overriding resolution: %dx%d\n", xres, yres);
1899 		inf->modes[0].xres = xres; inf->modes[0].yres = yres;
1900 	}
1901 	if (bpp_specified)
1902 		switch (bpp) {
1903 		case 1:
1904 		case 2:
1905 		case 4:
1906 		case 8:
1907 		case 16:
1908 			inf->modes[0].bpp = bpp;
1909 			dev_info(dev, "overriding bit depth: %d\n", bpp);
1910 			break;
1911 		default:
1912 			dev_err(dev, "Depth %d is not valid\n", bpp);
1913 			return -EINVAL;
1914 		}
1915 	return 0;
1916 }
1917 
1918 static int parse_opt(struct device *dev, char *this_opt,
1919 		     struct pxafb_mach_info *inf)
1920 {
1921 	struct pxafb_mode_info *mode = &inf->modes[0];
1922 	char s[64];
1923 
1924 	s[0] = '\0';
1925 
1926 	if (!strncmp(this_opt, "vmem:", 5)) {
1927 		video_mem_size = memparse(this_opt + 5, NULL);
1928 	} else if (!strncmp(this_opt, "mode:", 5)) {
1929 		return parse_opt_mode(dev, this_opt, inf);
1930 	} else if (!strncmp(this_opt, "pixclock:", 9)) {
1931 		mode->pixclock = simple_strtoul(this_opt+9, NULL, 0);
1932 		sprintf(s, "pixclock: %ld\n", mode->pixclock);
1933 	} else if (!strncmp(this_opt, "left:", 5)) {
1934 		mode->left_margin = simple_strtoul(this_opt+5, NULL, 0);
1935 		sprintf(s, "left: %u\n", mode->left_margin);
1936 	} else if (!strncmp(this_opt, "right:", 6)) {
1937 		mode->right_margin = simple_strtoul(this_opt+6, NULL, 0);
1938 		sprintf(s, "right: %u\n", mode->right_margin);
1939 	} else if (!strncmp(this_opt, "upper:", 6)) {
1940 		mode->upper_margin = simple_strtoul(this_opt+6, NULL, 0);
1941 		sprintf(s, "upper: %u\n", mode->upper_margin);
1942 	} else if (!strncmp(this_opt, "lower:", 6)) {
1943 		mode->lower_margin = simple_strtoul(this_opt+6, NULL, 0);
1944 		sprintf(s, "lower: %u\n", mode->lower_margin);
1945 	} else if (!strncmp(this_opt, "hsynclen:", 9)) {
1946 		mode->hsync_len = simple_strtoul(this_opt+9, NULL, 0);
1947 		sprintf(s, "hsynclen: %u\n", mode->hsync_len);
1948 	} else if (!strncmp(this_opt, "vsynclen:", 9)) {
1949 		mode->vsync_len = simple_strtoul(this_opt+9, NULL, 0);
1950 		sprintf(s, "vsynclen: %u\n", mode->vsync_len);
1951 	} else if (!strncmp(this_opt, "hsync:", 6)) {
1952 		if (simple_strtoul(this_opt+6, NULL, 0) == 0) {
1953 			sprintf(s, "hsync: Active Low\n");
1954 			mode->sync &= ~FB_SYNC_HOR_HIGH_ACT;
1955 		} else {
1956 			sprintf(s, "hsync: Active High\n");
1957 			mode->sync |= FB_SYNC_HOR_HIGH_ACT;
1958 		}
1959 	} else if (!strncmp(this_opt, "vsync:", 6)) {
1960 		if (simple_strtoul(this_opt+6, NULL, 0) == 0) {
1961 			sprintf(s, "vsync: Active Low\n");
1962 			mode->sync &= ~FB_SYNC_VERT_HIGH_ACT;
1963 		} else {
1964 			sprintf(s, "vsync: Active High\n");
1965 			mode->sync |= FB_SYNC_VERT_HIGH_ACT;
1966 		}
1967 	} else if (!strncmp(this_opt, "dpc:", 4)) {
1968 		if (simple_strtoul(this_opt+4, NULL, 0) == 0) {
1969 			sprintf(s, "double pixel clock: false\n");
1970 			inf->lccr3 &= ~LCCR3_DPC;
1971 		} else {
1972 			sprintf(s, "double pixel clock: true\n");
1973 			inf->lccr3 |= LCCR3_DPC;
1974 		}
1975 	} else if (!strncmp(this_opt, "outputen:", 9)) {
1976 		if (simple_strtoul(this_opt+9, NULL, 0) == 0) {
1977 			sprintf(s, "output enable: active low\n");
1978 			inf->lccr3 = (inf->lccr3 & ~LCCR3_OEP) | LCCR3_OutEnL;
1979 		} else {
1980 			sprintf(s, "output enable: active high\n");
1981 			inf->lccr3 = (inf->lccr3 & ~LCCR3_OEP) | LCCR3_OutEnH;
1982 		}
1983 	} else if (!strncmp(this_opt, "pixclockpol:", 12)) {
1984 		if (simple_strtoul(this_opt+12, NULL, 0) == 0) {
1985 			sprintf(s, "pixel clock polarity: falling edge\n");
1986 			inf->lccr3 = (inf->lccr3 & ~LCCR3_PCP) | LCCR3_PixFlEdg;
1987 		} else {
1988 			sprintf(s, "pixel clock polarity: rising edge\n");
1989 			inf->lccr3 = (inf->lccr3 & ~LCCR3_PCP) | LCCR3_PixRsEdg;
1990 		}
1991 	} else if (!strncmp(this_opt, "color", 5)) {
1992 		inf->lccr0 = (inf->lccr0 & ~LCCR0_CMS) | LCCR0_Color;
1993 	} else if (!strncmp(this_opt, "mono", 4)) {
1994 		inf->lccr0 = (inf->lccr0 & ~LCCR0_CMS) | LCCR0_Mono;
1995 	} else if (!strncmp(this_opt, "active", 6)) {
1996 		inf->lccr0 = (inf->lccr0 & ~LCCR0_PAS) | LCCR0_Act;
1997 	} else if (!strncmp(this_opt, "passive", 7)) {
1998 		inf->lccr0 = (inf->lccr0 & ~LCCR0_PAS) | LCCR0_Pas;
1999 	} else if (!strncmp(this_opt, "single", 6)) {
2000 		inf->lccr0 = (inf->lccr0 & ~LCCR0_SDS) | LCCR0_Sngl;
2001 	} else if (!strncmp(this_opt, "dual", 4)) {
2002 		inf->lccr0 = (inf->lccr0 & ~LCCR0_SDS) | LCCR0_Dual;
2003 	} else if (!strncmp(this_opt, "4pix", 4)) {
2004 		inf->lccr0 = (inf->lccr0 & ~LCCR0_DPD) | LCCR0_4PixMono;
2005 	} else if (!strncmp(this_opt, "8pix", 4)) {
2006 		inf->lccr0 = (inf->lccr0 & ~LCCR0_DPD) | LCCR0_8PixMono;
2007 	} else {
2008 		dev_err(dev, "unknown option: %s\n", this_opt);
2009 		return -EINVAL;
2010 	}
2011 
2012 	if (s[0] != '\0')
2013 		dev_info(dev, "override %s", s);
2014 
2015 	return 0;
2016 }
2017 
2018 static int pxafb_parse_options(struct device *dev, char *options,
2019 			       struct pxafb_mach_info *inf)
2020 {
2021 	char *this_opt;
2022 	int ret;
2023 
2024 	if (!options || !*options)
2025 		return 0;
2026 
2027 	dev_dbg(dev, "options are \"%s\"\n", options ? options : "null");
2028 
2029 	/* could be made table driven or similar?... */
2030 	while ((this_opt = strsep(&options, ",")) != NULL) {
2031 		ret = parse_opt(dev, this_opt, inf);
2032 		if (ret)
2033 			return ret;
2034 	}
2035 	return 0;
2036 }
2037 
2038 static char g_options[256] = "";
2039 
2040 #ifndef MODULE
2041 static int __init pxafb_setup_options(void)
2042 {
2043 	char *options = NULL;
2044 
2045 	if (fb_get_options("pxafb", &options))
2046 		return -ENODEV;
2047 
2048 	if (options)
2049 		strlcpy(g_options, options, sizeof(g_options));
2050 
2051 	return 0;
2052 }
2053 #else
2054 #define pxafb_setup_options()		(0)
2055 
2056 module_param_string(options, g_options, sizeof(g_options), 0);
2057 MODULE_PARM_DESC(options, "LCD parameters (see Documentation/fb/pxafb.txt)");
2058 #endif
2059 
2060 #else
2061 #define pxafb_parse_options(...)	(0)
2062 #define pxafb_setup_options()		(0)
2063 #endif
2064 
2065 #ifdef DEBUG_VAR
2066 /* Check for various illegal bit-combinations. Currently only
2067  * a warning is given. */
2068 static void pxafb_check_options(struct device *dev, struct pxafb_mach_info *inf)
2069 {
2070 	if (inf->lcd_conn)
2071 		return;
2072 
2073 	if (inf->lccr0 & LCCR0_INVALID_CONFIG_MASK)
2074 		dev_warn(dev, "machine LCCR0 setting contains "
2075 				"illegal bits: %08x\n",
2076 			inf->lccr0 & LCCR0_INVALID_CONFIG_MASK);
2077 	if (inf->lccr3 & LCCR3_INVALID_CONFIG_MASK)
2078 		dev_warn(dev, "machine LCCR3 setting contains "
2079 				"illegal bits: %08x\n",
2080 			inf->lccr3 & LCCR3_INVALID_CONFIG_MASK);
2081 	if (inf->lccr0 & LCCR0_DPD &&
2082 	    ((inf->lccr0 & LCCR0_PAS) != LCCR0_Pas ||
2083 	     (inf->lccr0 & LCCR0_SDS) != LCCR0_Sngl ||
2084 	     (inf->lccr0 & LCCR0_CMS) != LCCR0_Mono))
2085 		dev_warn(dev, "Double Pixel Data (DPD) mode is "
2086 				"only valid in passive mono"
2087 				" single panel mode\n");
2088 	if ((inf->lccr0 & LCCR0_PAS) == LCCR0_Act &&
2089 	    (inf->lccr0 & LCCR0_SDS) == LCCR0_Dual)
2090 		dev_warn(dev, "Dual panel only valid in passive mode\n");
2091 	if ((inf->lccr0 & LCCR0_PAS) == LCCR0_Pas &&
2092 	     (inf->modes->upper_margin || inf->modes->lower_margin))
2093 		dev_warn(dev, "Upper and lower margins must be 0 in "
2094 				"passive mode\n");
2095 }
2096 #else
2097 #define pxafb_check_options(...)	do {} while (0)
2098 #endif
2099 
2100 #if defined(CONFIG_OF)
2101 static const char * const lcd_types[] = {
2102 	"unknown", "mono-stn", "mono-dstn", "color-stn", "color-dstn",
2103 	"color-tft", "smart-panel", NULL
2104 };
2105 
2106 static int of_get_pxafb_display(struct device *dev, struct device_node *disp,
2107 				struct pxafb_mach_info *info, u32 bus_width)
2108 {
2109 	struct display_timings *timings;
2110 	struct videomode vm;
2111 	int i, ret = -EINVAL;
2112 	const char *s;
2113 
2114 	ret = of_property_read_string(disp, "lcd-type", &s);
2115 	if (ret)
2116 		s = "color-tft";
2117 
2118 	for (i = 0; lcd_types[i]; i++)
2119 		if (!strcmp(s, lcd_types[i]))
2120 			break;
2121 	if (!i || !lcd_types[i]) {
2122 		dev_err(dev, "lcd-type %s is unknown\n", s);
2123 		return -EINVAL;
2124 	}
2125 	info->lcd_conn |= LCD_CONN_TYPE(i);
2126 	info->lcd_conn |= LCD_CONN_WIDTH(bus_width);
2127 
2128 	timings = of_get_display_timings(disp);
2129 	if (!timings)
2130 		return -EINVAL;
2131 
2132 	ret = -ENOMEM;
2133 	info->modes = kmalloc_array(timings->num_timings,
2134 				    sizeof(info->modes[0]), GFP_KERNEL);
2135 	if (!info->modes)
2136 		goto out;
2137 	info->num_modes = timings->num_timings;
2138 
2139 	for (i = 0; i < timings->num_timings; i++) {
2140 		ret = videomode_from_timings(timings, &vm, i);
2141 		if (ret) {
2142 			dev_err(dev, "videomode_from_timings %d failed: %d\n",
2143 				i, ret);
2144 			goto out;
2145 		}
2146 		if (vm.flags & DISPLAY_FLAGS_PIXDATA_POSEDGE)
2147 			info->lcd_conn |= LCD_PCLK_EDGE_RISE;
2148 		if (vm.flags & DISPLAY_FLAGS_PIXDATA_NEGEDGE)
2149 			info->lcd_conn |= LCD_PCLK_EDGE_FALL;
2150 		if (vm.flags & DISPLAY_FLAGS_DE_HIGH)
2151 			info->lcd_conn |= LCD_BIAS_ACTIVE_HIGH;
2152 		if (vm.flags & DISPLAY_FLAGS_DE_LOW)
2153 			info->lcd_conn |= LCD_BIAS_ACTIVE_LOW;
2154 		if (vm.flags & DISPLAY_FLAGS_HSYNC_HIGH)
2155 			info->modes[i].sync |= FB_SYNC_HOR_HIGH_ACT;
2156 		if (vm.flags & DISPLAY_FLAGS_VSYNC_HIGH)
2157 			info->modes[i].sync |= FB_SYNC_VERT_HIGH_ACT;
2158 
2159 		info->modes[i].pixclock = 1000000000UL / (vm.pixelclock / 1000);
2160 		info->modes[i].xres = vm.hactive;
2161 		info->modes[i].yres = vm.vactive;
2162 		info->modes[i].hsync_len = vm.hsync_len;
2163 		info->modes[i].left_margin = vm.hback_porch;
2164 		info->modes[i].right_margin = vm.hfront_porch;
2165 		info->modes[i].vsync_len = vm.vsync_len;
2166 		info->modes[i].upper_margin = vm.vback_porch;
2167 		info->modes[i].lower_margin = vm.vfront_porch;
2168 	}
2169 	ret = 0;
2170 
2171 out:
2172 	display_timings_release(timings);
2173 	return ret;
2174 }
2175 
2176 static int of_get_pxafb_mode_info(struct device *dev,
2177 				  struct pxafb_mach_info *info)
2178 {
2179 	struct device_node *display, *np;
2180 	u32 bus_width;
2181 	int ret, i;
2182 
2183 	np = of_graph_get_next_endpoint(dev->of_node, NULL);
2184 	if (!np) {
2185 		dev_err(dev, "could not find endpoint\n");
2186 		return -EINVAL;
2187 	}
2188 	ret = of_property_read_u32(np, "bus-width", &bus_width);
2189 	if (ret) {
2190 		dev_err(dev, "no bus-width specified: %d\n", ret);
2191 		of_node_put(np);
2192 		return ret;
2193 	}
2194 
2195 	display = of_graph_get_remote_port_parent(np);
2196 	of_node_put(np);
2197 	if (!display) {
2198 		dev_err(dev, "no display defined\n");
2199 		return -EINVAL;
2200 	}
2201 
2202 	ret = of_get_pxafb_display(dev, display, info, bus_width);
2203 	of_node_put(display);
2204 	if (ret)
2205 		return ret;
2206 
2207 	for (i = 0; i < info->num_modes; i++)
2208 		info->modes[i].bpp = bus_width;
2209 
2210 	return 0;
2211 }
2212 
2213 static struct pxafb_mach_info *of_pxafb_of_mach_info(struct device *dev)
2214 {
2215 	int ret;
2216 	struct pxafb_mach_info *info;
2217 
2218 	if (!dev->of_node)
2219 		return NULL;
2220 	info = devm_kzalloc(dev, sizeof(*info), GFP_KERNEL);
2221 	if (!info)
2222 		return ERR_PTR(-ENOMEM);
2223 	ret = of_get_pxafb_mode_info(dev, info);
2224 	if (ret) {
2225 		kfree(info->modes);
2226 		return ERR_PTR(ret);
2227 	}
2228 
2229 	/*
2230 	 * On purpose, neither lccrX registers nor video memory size can be
2231 	 * specified through device-tree, they are considered more a debug hack
2232 	 * available through command line.
2233 	 */
2234 	return info;
2235 }
2236 #else
2237 static struct pxafb_mach_info *of_pxafb_of_mach_info(struct device *dev)
2238 {
2239 	return NULL;
2240 }
2241 #endif
2242 
2243 static int pxafb_probe(struct platform_device *dev)
2244 {
2245 	struct pxafb_info *fbi;
2246 	struct pxafb_mach_info *inf, *pdata;
2247 	struct resource *r;
2248 	int i, irq, ret;
2249 
2250 	dev_dbg(&dev->dev, "pxafb_probe\n");
2251 
2252 	ret = -ENOMEM;
2253 	pdata = dev_get_platdata(&dev->dev);
2254 	inf = devm_kmalloc(&dev->dev, sizeof(*inf), GFP_KERNEL);
2255 	if (!inf)
2256 		goto failed;
2257 
2258 	if (pdata) {
2259 		*inf = *pdata;
2260 		inf->modes =
2261 			devm_kmalloc_array(&dev->dev, pdata->num_modes,
2262 					   sizeof(inf->modes[0]), GFP_KERNEL);
2263 		if (!inf->modes)
2264 			goto failed;
2265 		for (i = 0; i < inf->num_modes; i++)
2266 			inf->modes[i] = pdata->modes[i];
2267 	}
2268 
2269 	if (!pdata)
2270 		inf = of_pxafb_of_mach_info(&dev->dev);
2271 	if (IS_ERR_OR_NULL(inf))
2272 		goto failed;
2273 
2274 	ret = pxafb_parse_options(&dev->dev, g_options, inf);
2275 	if (ret < 0)
2276 		goto failed;
2277 
2278 	pxafb_check_options(&dev->dev, inf);
2279 
2280 	dev_dbg(&dev->dev, "got a %dx%dx%d LCD\n",
2281 			inf->modes->xres,
2282 			inf->modes->yres,
2283 			inf->modes->bpp);
2284 	if (inf->modes->xres == 0 ||
2285 	    inf->modes->yres == 0 ||
2286 	    inf->modes->bpp == 0) {
2287 		dev_err(&dev->dev, "Invalid resolution or bit depth\n");
2288 		ret = -EINVAL;
2289 		goto failed;
2290 	}
2291 
2292 	fbi = pxafb_init_fbinfo(&dev->dev, inf);
2293 	if (!fbi) {
2294 		/* only reason for pxafb_init_fbinfo to fail is kmalloc */
2295 		dev_err(&dev->dev, "Failed to initialize framebuffer device\n");
2296 		ret = -ENOMEM;
2297 		goto failed;
2298 	}
2299 
2300 	if (cpu_is_pxa3xx() && inf->acceleration_enabled)
2301 		fbi->fb.fix.accel = FB_ACCEL_PXA3XX;
2302 
2303 	fbi->backlight_power = inf->pxafb_backlight_power;
2304 	fbi->lcd_power = inf->pxafb_lcd_power;
2305 
2306 	r = platform_get_resource(dev, IORESOURCE_MEM, 0);
2307 	if (r == NULL) {
2308 		dev_err(&dev->dev, "no I/O memory resource defined\n");
2309 		ret = -ENODEV;
2310 		goto failed_fbi;
2311 	}
2312 
2313 	r = request_mem_region(r->start, resource_size(r), dev->name);
2314 	if (r == NULL) {
2315 		dev_err(&dev->dev, "failed to request I/O memory\n");
2316 		ret = -EBUSY;
2317 		goto failed_fbi;
2318 	}
2319 
2320 	fbi->mmio_base = ioremap(r->start, resource_size(r));
2321 	if (fbi->mmio_base == NULL) {
2322 		dev_err(&dev->dev, "failed to map I/O memory\n");
2323 		ret = -EBUSY;
2324 		goto failed_free_res;
2325 	}
2326 
2327 	fbi->dma_buff_size = PAGE_ALIGN(sizeof(struct pxafb_dma_buff));
2328 	fbi->dma_buff = dma_alloc_coherent(fbi->dev, fbi->dma_buff_size,
2329 				&fbi->dma_buff_phys, GFP_KERNEL);
2330 	if (fbi->dma_buff == NULL) {
2331 		dev_err(&dev->dev, "failed to allocate memory for DMA\n");
2332 		ret = -ENOMEM;
2333 		goto failed_free_io;
2334 	}
2335 
2336 	ret = pxafb_init_video_memory(fbi);
2337 	if (ret) {
2338 		dev_err(&dev->dev, "Failed to allocate video RAM: %d\n", ret);
2339 		ret = -ENOMEM;
2340 		goto failed_free_dma;
2341 	}
2342 
2343 	irq = platform_get_irq(dev, 0);
2344 	if (irq < 0) {
2345 		dev_err(&dev->dev, "no IRQ defined\n");
2346 		ret = -ENODEV;
2347 		goto failed_free_mem;
2348 	}
2349 
2350 	ret = request_irq(irq, pxafb_handle_irq, 0, "LCD", fbi);
2351 	if (ret) {
2352 		dev_err(&dev->dev, "request_irq failed: %d\n", ret);
2353 		ret = -EBUSY;
2354 		goto failed_free_mem;
2355 	}
2356 
2357 	ret = pxafb_smart_init(fbi);
2358 	if (ret) {
2359 		dev_err(&dev->dev, "failed to initialize smartpanel\n");
2360 		goto failed_free_irq;
2361 	}
2362 
2363 	/*
2364 	 * This makes sure that our colour bitfield
2365 	 * descriptors are correctly initialised.
2366 	 */
2367 	ret = pxafb_check_var(&fbi->fb.var, &fbi->fb);
2368 	if (ret) {
2369 		dev_err(&dev->dev, "failed to get suitable mode\n");
2370 		goto failed_free_irq;
2371 	}
2372 
2373 	ret = pxafb_set_par(&fbi->fb);
2374 	if (ret) {
2375 		dev_err(&dev->dev, "Failed to set parameters\n");
2376 		goto failed_free_irq;
2377 	}
2378 
2379 	platform_set_drvdata(dev, fbi);
2380 
2381 	ret = register_framebuffer(&fbi->fb);
2382 	if (ret < 0) {
2383 		dev_err(&dev->dev,
2384 			"Failed to register framebuffer device: %d\n", ret);
2385 		goto failed_free_cmap;
2386 	}
2387 
2388 	pxafb_overlay_init(fbi);
2389 
2390 #ifdef CONFIG_CPU_FREQ
2391 	fbi->freq_transition.notifier_call = pxafb_freq_transition;
2392 	fbi->freq_policy.notifier_call = pxafb_freq_policy;
2393 	cpufreq_register_notifier(&fbi->freq_transition,
2394 				CPUFREQ_TRANSITION_NOTIFIER);
2395 	cpufreq_register_notifier(&fbi->freq_policy,
2396 				CPUFREQ_POLICY_NOTIFIER);
2397 #endif
2398 
2399 	/*
2400 	 * Ok, now enable the LCD controller
2401 	 */
2402 	set_ctrlr_state(fbi, C_ENABLE);
2403 
2404 	return 0;
2405 
2406 failed_free_cmap:
2407 	if (fbi->fb.cmap.len)
2408 		fb_dealloc_cmap(&fbi->fb.cmap);
2409 failed_free_irq:
2410 	free_irq(irq, fbi);
2411 failed_free_mem:
2412 	free_pages_exact(fbi->video_mem, fbi->video_mem_size);
2413 failed_free_dma:
2414 	dma_free_coherent(&dev->dev, fbi->dma_buff_size,
2415 			fbi->dma_buff, fbi->dma_buff_phys);
2416 failed_free_io:
2417 	iounmap(fbi->mmio_base);
2418 failed_free_res:
2419 	release_mem_region(r->start, resource_size(r));
2420 failed_fbi:
2421 	clk_put(fbi->clk);
2422 	kfree(fbi);
2423 failed:
2424 	return ret;
2425 }
2426 
2427 static int pxafb_remove(struct platform_device *dev)
2428 {
2429 	struct pxafb_info *fbi = platform_get_drvdata(dev);
2430 	struct resource *r;
2431 	int irq;
2432 	struct fb_info *info;
2433 
2434 	if (!fbi)
2435 		return 0;
2436 
2437 	info = &fbi->fb;
2438 
2439 	pxafb_overlay_exit(fbi);
2440 	unregister_framebuffer(info);
2441 
2442 	pxafb_disable_controller(fbi);
2443 
2444 	if (fbi->fb.cmap.len)
2445 		fb_dealloc_cmap(&fbi->fb.cmap);
2446 
2447 	irq = platform_get_irq(dev, 0);
2448 	free_irq(irq, fbi);
2449 
2450 	free_pages_exact(fbi->video_mem, fbi->video_mem_size);
2451 
2452 	dma_free_wc(&dev->dev, fbi->dma_buff_size, fbi->dma_buff,
2453 		    fbi->dma_buff_phys);
2454 
2455 	iounmap(fbi->mmio_base);
2456 
2457 	r = platform_get_resource(dev, IORESOURCE_MEM, 0);
2458 	release_mem_region(r->start, resource_size(r));
2459 
2460 	clk_put(fbi->clk);
2461 	kfree(fbi);
2462 
2463 	return 0;
2464 }
2465 
2466 static const struct of_device_id pxafb_of_dev_id[] = {
2467 	{ .compatible = "marvell,pxa270-lcdc", },
2468 	{ .compatible = "marvell,pxa300-lcdc", },
2469 	{ .compatible = "marvell,pxa2xx-lcdc", },
2470 	{ /* sentinel */ }
2471 };
2472 MODULE_DEVICE_TABLE(of, pxafb_of_dev_id);
2473 
2474 static struct platform_driver pxafb_driver = {
2475 	.probe		= pxafb_probe,
2476 	.remove 	= pxafb_remove,
2477 	.driver		= {
2478 		.name	= "pxa2xx-fb",
2479 		.of_match_table = pxafb_of_dev_id,
2480 #ifdef CONFIG_PM
2481 		.pm	= &pxafb_pm_ops,
2482 #endif
2483 	},
2484 };
2485 
2486 static int __init pxafb_init(void)
2487 {
2488 	if (pxafb_setup_options())
2489 		return -EINVAL;
2490 
2491 	return platform_driver_register(&pxafb_driver);
2492 }
2493 
2494 static void __exit pxafb_exit(void)
2495 {
2496 	platform_driver_unregister(&pxafb_driver);
2497 }
2498 
2499 module_init(pxafb_init);
2500 module_exit(pxafb_exit);
2501 
2502 MODULE_DESCRIPTION("loadable framebuffer driver for PXA");
2503 MODULE_LICENSE("GPL");
2504