1 /* 2 * linux/drivers/video/pxafb.c 3 * 4 * Copyright (C) 1999 Eric A. Thomas. 5 * Copyright (C) 2004 Jean-Frederic Clere. 6 * Copyright (C) 2004 Ian Campbell. 7 * Copyright (C) 2004 Jeff Lackey. 8 * Based on sa1100fb.c Copyright (C) 1999 Eric A. Thomas 9 * which in turn is 10 * Based on acornfb.c Copyright (C) Russell King. 11 * 12 * This file is subject to the terms and conditions of the GNU General Public 13 * License. See the file COPYING in the main directory of this archive for 14 * more details. 15 * 16 * Intel PXA250/210 LCD Controller Frame Buffer Driver 17 * 18 * Please direct your questions and comments on this driver to the following 19 * email address: 20 * 21 * linux-arm-kernel@lists.arm.linux.org.uk 22 * 23 * Add support for overlay1 and overlay2 based on pxafb_overlay.c: 24 * 25 * Copyright (C) 2004, Intel Corporation 26 * 27 * 2003/08/27: <yu.tang@intel.com> 28 * 2004/03/10: <stanley.cai@intel.com> 29 * 2004/10/28: <yan.yin@intel.com> 30 * 31 * Copyright (C) 2006-2008 Marvell International Ltd. 32 * All Rights Reserved 33 */ 34 35 #include <linux/module.h> 36 #include <linux/moduleparam.h> 37 #include <linux/kernel.h> 38 #include <linux/sched.h> 39 #include <linux/errno.h> 40 #include <linux/string.h> 41 #include <linux/interrupt.h> 42 #include <linux/slab.h> 43 #include <linux/mm.h> 44 #include <linux/fb.h> 45 #include <linux/delay.h> 46 #include <linux/init.h> 47 #include <linux/ioport.h> 48 #include <linux/cpufreq.h> 49 #include <linux/platform_device.h> 50 #include <linux/dma-mapping.h> 51 #include <linux/clk.h> 52 #include <linux/err.h> 53 #include <linux/completion.h> 54 #include <linux/mutex.h> 55 #include <linux/kthread.h> 56 #include <linux/freezer.h> 57 #include <linux/console.h> 58 59 #include <mach/hardware.h> 60 #include <asm/io.h> 61 #include <asm/irq.h> 62 #include <asm/div64.h> 63 #include <mach/bitfield.h> 64 #include <linux/platform_data/video-pxafb.h> 65 66 /* 67 * Complain if VAR is out of range. 68 */ 69 #define DEBUG_VAR 1 70 71 #include "pxafb.h" 72 73 /* Bits which should not be set in machine configuration structures */ 74 #define LCCR0_INVALID_CONFIG_MASK (LCCR0_OUM | LCCR0_BM | LCCR0_QDM |\ 75 LCCR0_DIS | LCCR0_EFM | LCCR0_IUM |\ 76 LCCR0_SFM | LCCR0_LDM | LCCR0_ENB) 77 78 #define LCCR3_INVALID_CONFIG_MASK (LCCR3_HSP | LCCR3_VSP |\ 79 LCCR3_PCD | LCCR3_BPP(0xf)) 80 81 static int pxafb_activate_var(struct fb_var_screeninfo *var, 82 struct pxafb_info *); 83 static void set_ctrlr_state(struct pxafb_info *fbi, u_int state); 84 static void setup_base_frame(struct pxafb_info *fbi, 85 struct fb_var_screeninfo *var, int branch); 86 static int setup_frame_dma(struct pxafb_info *fbi, int dma, int pal, 87 unsigned long offset, size_t size); 88 89 static unsigned long video_mem_size = 0; 90 91 static inline unsigned long 92 lcd_readl(struct pxafb_info *fbi, unsigned int off) 93 { 94 return __raw_readl(fbi->mmio_base + off); 95 } 96 97 static inline void 98 lcd_writel(struct pxafb_info *fbi, unsigned int off, unsigned long val) 99 { 100 __raw_writel(val, fbi->mmio_base + off); 101 } 102 103 static inline void pxafb_schedule_work(struct pxafb_info *fbi, u_int state) 104 { 105 unsigned long flags; 106 107 local_irq_save(flags); 108 /* 109 * We need to handle two requests being made at the same time. 110 * There are two important cases: 111 * 1. When we are changing VT (C_REENABLE) while unblanking 112 * (C_ENABLE) We must perform the unblanking, which will 113 * do our REENABLE for us. 114 * 2. When we are blanking, but immediately unblank before 115 * we have blanked. We do the "REENABLE" thing here as 116 * well, just to be sure. 117 */ 118 if (fbi->task_state == C_ENABLE && state == C_REENABLE) 119 state = (u_int) -1; 120 if (fbi->task_state == C_DISABLE && state == C_ENABLE) 121 state = C_REENABLE; 122 123 if (state != (u_int)-1) { 124 fbi->task_state = state; 125 schedule_work(&fbi->task); 126 } 127 local_irq_restore(flags); 128 } 129 130 static inline u_int chan_to_field(u_int chan, struct fb_bitfield *bf) 131 { 132 chan &= 0xffff; 133 chan >>= 16 - bf->length; 134 return chan << bf->offset; 135 } 136 137 static int 138 pxafb_setpalettereg(u_int regno, u_int red, u_int green, u_int blue, 139 u_int trans, struct fb_info *info) 140 { 141 struct pxafb_info *fbi = container_of(info, struct pxafb_info, fb); 142 u_int val; 143 144 if (regno >= fbi->palette_size) 145 return 1; 146 147 if (fbi->fb.var.grayscale) { 148 fbi->palette_cpu[regno] = ((blue >> 8) & 0x00ff); 149 return 0; 150 } 151 152 switch (fbi->lccr4 & LCCR4_PAL_FOR_MASK) { 153 case LCCR4_PAL_FOR_0: 154 val = ((red >> 0) & 0xf800); 155 val |= ((green >> 5) & 0x07e0); 156 val |= ((blue >> 11) & 0x001f); 157 fbi->palette_cpu[regno] = val; 158 break; 159 case LCCR4_PAL_FOR_1: 160 val = ((red << 8) & 0x00f80000); 161 val |= ((green >> 0) & 0x0000fc00); 162 val |= ((blue >> 8) & 0x000000f8); 163 ((u32 *)(fbi->palette_cpu))[regno] = val; 164 break; 165 case LCCR4_PAL_FOR_2: 166 val = ((red << 8) & 0x00fc0000); 167 val |= ((green >> 0) & 0x0000fc00); 168 val |= ((blue >> 8) & 0x000000fc); 169 ((u32 *)(fbi->palette_cpu))[regno] = val; 170 break; 171 case LCCR4_PAL_FOR_3: 172 val = ((red << 8) & 0x00ff0000); 173 val |= ((green >> 0) & 0x0000ff00); 174 val |= ((blue >> 8) & 0x000000ff); 175 ((u32 *)(fbi->palette_cpu))[regno] = val; 176 break; 177 } 178 179 return 0; 180 } 181 182 static int 183 pxafb_setcolreg(u_int regno, u_int red, u_int green, u_int blue, 184 u_int trans, struct fb_info *info) 185 { 186 struct pxafb_info *fbi = container_of(info, struct pxafb_info, fb); 187 unsigned int val; 188 int ret = 1; 189 190 /* 191 * If inverse mode was selected, invert all the colours 192 * rather than the register number. The register number 193 * is what you poke into the framebuffer to produce the 194 * colour you requested. 195 */ 196 if (fbi->cmap_inverse) { 197 red = 0xffff - red; 198 green = 0xffff - green; 199 blue = 0xffff - blue; 200 } 201 202 /* 203 * If greyscale is true, then we convert the RGB value 204 * to greyscale no matter what visual we are using. 205 */ 206 if (fbi->fb.var.grayscale) 207 red = green = blue = (19595 * red + 38470 * green + 208 7471 * blue) >> 16; 209 210 switch (fbi->fb.fix.visual) { 211 case FB_VISUAL_TRUECOLOR: 212 /* 213 * 16-bit True Colour. We encode the RGB value 214 * according to the RGB bitfield information. 215 */ 216 if (regno < 16) { 217 u32 *pal = fbi->fb.pseudo_palette; 218 219 val = chan_to_field(red, &fbi->fb.var.red); 220 val |= chan_to_field(green, &fbi->fb.var.green); 221 val |= chan_to_field(blue, &fbi->fb.var.blue); 222 223 pal[regno] = val; 224 ret = 0; 225 } 226 break; 227 228 case FB_VISUAL_STATIC_PSEUDOCOLOR: 229 case FB_VISUAL_PSEUDOCOLOR: 230 ret = pxafb_setpalettereg(regno, red, green, blue, trans, info); 231 break; 232 } 233 234 return ret; 235 } 236 237 /* calculate pixel depth, transparency bit included, >=16bpp formats _only_ */ 238 static inline int var_to_depth(struct fb_var_screeninfo *var) 239 { 240 return var->red.length + var->green.length + 241 var->blue.length + var->transp.length; 242 } 243 244 /* calculate 4-bit BPP value for LCCR3 and OVLxC1 */ 245 static int pxafb_var_to_bpp(struct fb_var_screeninfo *var) 246 { 247 int bpp = -EINVAL; 248 249 switch (var->bits_per_pixel) { 250 case 1: bpp = 0; break; 251 case 2: bpp = 1; break; 252 case 4: bpp = 2; break; 253 case 8: bpp = 3; break; 254 case 16: bpp = 4; break; 255 case 24: 256 switch (var_to_depth(var)) { 257 case 18: bpp = 6; break; /* 18-bits/pixel packed */ 258 case 19: bpp = 8; break; /* 19-bits/pixel packed */ 259 case 24: bpp = 9; break; 260 } 261 break; 262 case 32: 263 switch (var_to_depth(var)) { 264 case 18: bpp = 5; break; /* 18-bits/pixel unpacked */ 265 case 19: bpp = 7; break; /* 19-bits/pixel unpacked */ 266 case 25: bpp = 10; break; 267 } 268 break; 269 } 270 return bpp; 271 } 272 273 /* 274 * pxafb_var_to_lccr3(): 275 * Convert a bits per pixel value to the correct bit pattern for LCCR3 276 * 277 * NOTE: for PXA27x with overlays support, the LCCR3_PDFOR_x bits have an 278 * implication of the acutal use of transparency bit, which we handle it 279 * here separatedly. See PXA27x Developer's Manual, Section <<7.4.6 Pixel 280 * Formats>> for the valid combination of PDFOR, PAL_FOR for various BPP. 281 * 282 * Transparency for palette pixel formats is not supported at the moment. 283 */ 284 static uint32_t pxafb_var_to_lccr3(struct fb_var_screeninfo *var) 285 { 286 int bpp = pxafb_var_to_bpp(var); 287 uint32_t lccr3; 288 289 if (bpp < 0) 290 return 0; 291 292 lccr3 = LCCR3_BPP(bpp); 293 294 switch (var_to_depth(var)) { 295 case 16: lccr3 |= var->transp.length ? LCCR3_PDFOR_3 : 0; break; 296 case 18: lccr3 |= LCCR3_PDFOR_3; break; 297 case 24: lccr3 |= var->transp.length ? LCCR3_PDFOR_2 : LCCR3_PDFOR_3; 298 break; 299 case 19: 300 case 25: lccr3 |= LCCR3_PDFOR_0; break; 301 } 302 return lccr3; 303 } 304 305 #define SET_PIXFMT(v, r, g, b, t) \ 306 ({ \ 307 (v)->transp.offset = (t) ? (r) + (g) + (b) : 0; \ 308 (v)->transp.length = (t) ? (t) : 0; \ 309 (v)->blue.length = (b); (v)->blue.offset = 0; \ 310 (v)->green.length = (g); (v)->green.offset = (b); \ 311 (v)->red.length = (r); (v)->red.offset = (b) + (g); \ 312 }) 313 314 /* set the RGBT bitfields of fb_var_screeninf according to 315 * var->bits_per_pixel and given depth 316 */ 317 static void pxafb_set_pixfmt(struct fb_var_screeninfo *var, int depth) 318 { 319 if (depth == 0) 320 depth = var->bits_per_pixel; 321 322 if (var->bits_per_pixel < 16) { 323 /* indexed pixel formats */ 324 var->red.offset = 0; var->red.length = 8; 325 var->green.offset = 0; var->green.length = 8; 326 var->blue.offset = 0; var->blue.length = 8; 327 var->transp.offset = 0; var->transp.length = 8; 328 } 329 330 switch (depth) { 331 case 16: var->transp.length ? 332 SET_PIXFMT(var, 5, 5, 5, 1) : /* RGBT555 */ 333 SET_PIXFMT(var, 5, 6, 5, 0); break; /* RGB565 */ 334 case 18: SET_PIXFMT(var, 6, 6, 6, 0); break; /* RGB666 */ 335 case 19: SET_PIXFMT(var, 6, 6, 6, 1); break; /* RGBT666 */ 336 case 24: var->transp.length ? 337 SET_PIXFMT(var, 8, 8, 7, 1) : /* RGBT887 */ 338 SET_PIXFMT(var, 8, 8, 8, 0); break; /* RGB888 */ 339 case 25: SET_PIXFMT(var, 8, 8, 8, 1); break; /* RGBT888 */ 340 } 341 } 342 343 #ifdef CONFIG_CPU_FREQ 344 /* 345 * pxafb_display_dma_period() 346 * Calculate the minimum period (in picoseconds) between two DMA 347 * requests for the LCD controller. If we hit this, it means we're 348 * doing nothing but LCD DMA. 349 */ 350 static unsigned int pxafb_display_dma_period(struct fb_var_screeninfo *var) 351 { 352 /* 353 * Period = pixclock * bits_per_byte * bytes_per_transfer 354 * / memory_bits_per_pixel; 355 */ 356 return var->pixclock * 8 * 16 / var->bits_per_pixel; 357 } 358 #endif 359 360 /* 361 * Select the smallest mode that allows the desired resolution to be 362 * displayed. If desired parameters can be rounded up. 363 */ 364 static struct pxafb_mode_info *pxafb_getmode(struct pxafb_mach_info *mach, 365 struct fb_var_screeninfo *var) 366 { 367 struct pxafb_mode_info *mode = NULL; 368 struct pxafb_mode_info *modelist = mach->modes; 369 unsigned int best_x = 0xffffffff, best_y = 0xffffffff; 370 unsigned int i; 371 372 for (i = 0; i < mach->num_modes; i++) { 373 if (modelist[i].xres >= var->xres && 374 modelist[i].yres >= var->yres && 375 modelist[i].xres < best_x && 376 modelist[i].yres < best_y && 377 modelist[i].bpp >= var->bits_per_pixel) { 378 best_x = modelist[i].xres; 379 best_y = modelist[i].yres; 380 mode = &modelist[i]; 381 } 382 } 383 384 return mode; 385 } 386 387 static void pxafb_setmode(struct fb_var_screeninfo *var, 388 struct pxafb_mode_info *mode) 389 { 390 var->xres = mode->xres; 391 var->yres = mode->yres; 392 var->bits_per_pixel = mode->bpp; 393 var->pixclock = mode->pixclock; 394 var->hsync_len = mode->hsync_len; 395 var->left_margin = mode->left_margin; 396 var->right_margin = mode->right_margin; 397 var->vsync_len = mode->vsync_len; 398 var->upper_margin = mode->upper_margin; 399 var->lower_margin = mode->lower_margin; 400 var->sync = mode->sync; 401 var->grayscale = mode->cmap_greyscale; 402 var->transp.length = mode->transparency; 403 404 /* set the initial RGBA bitfields */ 405 pxafb_set_pixfmt(var, mode->depth); 406 } 407 408 static int pxafb_adjust_timing(struct pxafb_info *fbi, 409 struct fb_var_screeninfo *var) 410 { 411 int line_length; 412 413 var->xres = max_t(int, var->xres, MIN_XRES); 414 var->yres = max_t(int, var->yres, MIN_YRES); 415 416 if (!(fbi->lccr0 & LCCR0_LCDT)) { 417 clamp_val(var->hsync_len, 1, 64); 418 clamp_val(var->vsync_len, 1, 64); 419 clamp_val(var->left_margin, 1, 255); 420 clamp_val(var->right_margin, 1, 255); 421 clamp_val(var->upper_margin, 1, 255); 422 clamp_val(var->lower_margin, 1, 255); 423 } 424 425 /* make sure each line is aligned on word boundary */ 426 line_length = var->xres * var->bits_per_pixel / 8; 427 line_length = ALIGN(line_length, 4); 428 var->xres = line_length * 8 / var->bits_per_pixel; 429 430 /* we don't support xpan, force xres_virtual to be equal to xres */ 431 var->xres_virtual = var->xres; 432 433 if (var->accel_flags & FB_ACCELF_TEXT) 434 var->yres_virtual = fbi->fb.fix.smem_len / line_length; 435 else 436 var->yres_virtual = max(var->yres_virtual, var->yres); 437 438 /* check for limits */ 439 if (var->xres > MAX_XRES || var->yres > MAX_YRES) 440 return -EINVAL; 441 442 if (var->yres > var->yres_virtual) 443 return -EINVAL; 444 445 return 0; 446 } 447 448 /* 449 * pxafb_check_var(): 450 * Get the video params out of 'var'. If a value doesn't fit, round it up, 451 * if it's too big, return -EINVAL. 452 * 453 * Round up in the following order: bits_per_pixel, xres, 454 * yres, xres_virtual, yres_virtual, xoffset, yoffset, grayscale, 455 * bitfields, horizontal timing, vertical timing. 456 */ 457 static int pxafb_check_var(struct fb_var_screeninfo *var, struct fb_info *info) 458 { 459 struct pxafb_info *fbi = container_of(info, struct pxafb_info, fb); 460 struct pxafb_mach_info *inf = dev_get_platdata(fbi->dev); 461 int err; 462 463 if (inf->fixed_modes) { 464 struct pxafb_mode_info *mode; 465 466 mode = pxafb_getmode(inf, var); 467 if (!mode) 468 return -EINVAL; 469 pxafb_setmode(var, mode); 470 } 471 472 /* do a test conversion to BPP fields to check the color formats */ 473 err = pxafb_var_to_bpp(var); 474 if (err < 0) 475 return err; 476 477 pxafb_set_pixfmt(var, var_to_depth(var)); 478 479 err = pxafb_adjust_timing(fbi, var); 480 if (err) 481 return err; 482 483 #ifdef CONFIG_CPU_FREQ 484 pr_debug("pxafb: dma period = %d ps\n", 485 pxafb_display_dma_period(var)); 486 #endif 487 488 return 0; 489 } 490 491 /* 492 * pxafb_set_par(): 493 * Set the user defined part of the display for the specified console 494 */ 495 static int pxafb_set_par(struct fb_info *info) 496 { 497 struct pxafb_info *fbi = container_of(info, struct pxafb_info, fb); 498 struct fb_var_screeninfo *var = &info->var; 499 500 if (var->bits_per_pixel >= 16) 501 fbi->fb.fix.visual = FB_VISUAL_TRUECOLOR; 502 else if (!fbi->cmap_static) 503 fbi->fb.fix.visual = FB_VISUAL_PSEUDOCOLOR; 504 else { 505 /* 506 * Some people have weird ideas about wanting static 507 * pseudocolor maps. I suspect their user space 508 * applications are broken. 509 */ 510 fbi->fb.fix.visual = FB_VISUAL_STATIC_PSEUDOCOLOR; 511 } 512 513 fbi->fb.fix.line_length = var->xres_virtual * 514 var->bits_per_pixel / 8; 515 if (var->bits_per_pixel >= 16) 516 fbi->palette_size = 0; 517 else 518 fbi->palette_size = var->bits_per_pixel == 1 ? 519 4 : 1 << var->bits_per_pixel; 520 521 fbi->palette_cpu = (u16 *)&fbi->dma_buff->palette[0]; 522 523 if (fbi->fb.var.bits_per_pixel >= 16) 524 fb_dealloc_cmap(&fbi->fb.cmap); 525 else 526 fb_alloc_cmap(&fbi->fb.cmap, 1<<fbi->fb.var.bits_per_pixel, 0); 527 528 pxafb_activate_var(var, fbi); 529 530 return 0; 531 } 532 533 static int pxafb_pan_display(struct fb_var_screeninfo *var, 534 struct fb_info *info) 535 { 536 struct pxafb_info *fbi = container_of(info, struct pxafb_info, fb); 537 struct fb_var_screeninfo newvar; 538 int dma = DMA_MAX + DMA_BASE; 539 540 if (fbi->state != C_ENABLE) 541 return 0; 542 543 /* Only take .xoffset, .yoffset and .vmode & FB_VMODE_YWRAP from what 544 * was passed in and copy the rest from the old screeninfo. 545 */ 546 memcpy(&newvar, &fbi->fb.var, sizeof(newvar)); 547 newvar.xoffset = var->xoffset; 548 newvar.yoffset = var->yoffset; 549 newvar.vmode &= ~FB_VMODE_YWRAP; 550 newvar.vmode |= var->vmode & FB_VMODE_YWRAP; 551 552 setup_base_frame(fbi, &newvar, 1); 553 554 if (fbi->lccr0 & LCCR0_SDS) 555 lcd_writel(fbi, FBR1, fbi->fdadr[dma + 1] | 0x1); 556 557 lcd_writel(fbi, FBR0, fbi->fdadr[dma] | 0x1); 558 return 0; 559 } 560 561 /* 562 * pxafb_blank(): 563 * Blank the display by setting all palette values to zero. Note, the 564 * 16 bpp mode does not really use the palette, so this will not 565 * blank the display in all modes. 566 */ 567 static int pxafb_blank(int blank, struct fb_info *info) 568 { 569 struct pxafb_info *fbi = container_of(info, struct pxafb_info, fb); 570 int i; 571 572 switch (blank) { 573 case FB_BLANK_POWERDOWN: 574 case FB_BLANK_VSYNC_SUSPEND: 575 case FB_BLANK_HSYNC_SUSPEND: 576 case FB_BLANK_NORMAL: 577 if (fbi->fb.fix.visual == FB_VISUAL_PSEUDOCOLOR || 578 fbi->fb.fix.visual == FB_VISUAL_STATIC_PSEUDOCOLOR) 579 for (i = 0; i < fbi->palette_size; i++) 580 pxafb_setpalettereg(i, 0, 0, 0, 0, info); 581 582 pxafb_schedule_work(fbi, C_DISABLE); 583 /* TODO if (pxafb_blank_helper) pxafb_blank_helper(blank); */ 584 break; 585 586 case FB_BLANK_UNBLANK: 587 /* TODO if (pxafb_blank_helper) pxafb_blank_helper(blank); */ 588 if (fbi->fb.fix.visual == FB_VISUAL_PSEUDOCOLOR || 589 fbi->fb.fix.visual == FB_VISUAL_STATIC_PSEUDOCOLOR) 590 fb_set_cmap(&fbi->fb.cmap, info); 591 pxafb_schedule_work(fbi, C_ENABLE); 592 } 593 return 0; 594 } 595 596 static struct fb_ops pxafb_ops = { 597 .owner = THIS_MODULE, 598 .fb_check_var = pxafb_check_var, 599 .fb_set_par = pxafb_set_par, 600 .fb_pan_display = pxafb_pan_display, 601 .fb_setcolreg = pxafb_setcolreg, 602 .fb_fillrect = cfb_fillrect, 603 .fb_copyarea = cfb_copyarea, 604 .fb_imageblit = cfb_imageblit, 605 .fb_blank = pxafb_blank, 606 }; 607 608 #ifdef CONFIG_FB_PXA_OVERLAY 609 static void overlay1fb_setup(struct pxafb_layer *ofb) 610 { 611 int size = ofb->fb.fix.line_length * ofb->fb.var.yres_virtual; 612 unsigned long start = ofb->video_mem_phys; 613 setup_frame_dma(ofb->fbi, DMA_OV1, PAL_NONE, start, size); 614 } 615 616 /* Depending on the enable status of overlay1/2, the DMA should be 617 * updated from FDADRx (when disabled) or FBRx (when enabled). 618 */ 619 static void overlay1fb_enable(struct pxafb_layer *ofb) 620 { 621 int enabled = lcd_readl(ofb->fbi, OVL1C1) & OVLxC1_OEN; 622 uint32_t fdadr1 = ofb->fbi->fdadr[DMA_OV1] | (enabled ? 0x1 : 0); 623 624 lcd_writel(ofb->fbi, enabled ? FBR1 : FDADR1, fdadr1); 625 lcd_writel(ofb->fbi, OVL1C2, ofb->control[1]); 626 lcd_writel(ofb->fbi, OVL1C1, ofb->control[0] | OVLxC1_OEN); 627 } 628 629 static void overlay1fb_disable(struct pxafb_layer *ofb) 630 { 631 uint32_t lccr5; 632 633 if (!(lcd_readl(ofb->fbi, OVL1C1) & OVLxC1_OEN)) 634 return; 635 636 lccr5 = lcd_readl(ofb->fbi, LCCR5); 637 638 lcd_writel(ofb->fbi, OVL1C1, ofb->control[0] & ~OVLxC1_OEN); 639 640 lcd_writel(ofb->fbi, LCSR1, LCSR1_BS(1)); 641 lcd_writel(ofb->fbi, LCCR5, lccr5 & ~LCSR1_BS(1)); 642 lcd_writel(ofb->fbi, FBR1, ofb->fbi->fdadr[DMA_OV1] | 0x3); 643 644 if (wait_for_completion_timeout(&ofb->branch_done, 1 * HZ) == 0) 645 pr_warning("%s: timeout disabling overlay1\n", __func__); 646 647 lcd_writel(ofb->fbi, LCCR5, lccr5); 648 } 649 650 static void overlay2fb_setup(struct pxafb_layer *ofb) 651 { 652 int size, div = 1, pfor = NONSTD_TO_PFOR(ofb->fb.var.nonstd); 653 unsigned long start[3] = { ofb->video_mem_phys, 0, 0 }; 654 655 if (pfor == OVERLAY_FORMAT_RGB || pfor == OVERLAY_FORMAT_YUV444_PACKED) { 656 size = ofb->fb.fix.line_length * ofb->fb.var.yres_virtual; 657 setup_frame_dma(ofb->fbi, DMA_OV2_Y, -1, start[0], size); 658 } else { 659 size = ofb->fb.var.xres_virtual * ofb->fb.var.yres_virtual; 660 switch (pfor) { 661 case OVERLAY_FORMAT_YUV444_PLANAR: div = 1; break; 662 case OVERLAY_FORMAT_YUV422_PLANAR: div = 2; break; 663 case OVERLAY_FORMAT_YUV420_PLANAR: div = 4; break; 664 } 665 start[1] = start[0] + size; 666 start[2] = start[1] + size / div; 667 setup_frame_dma(ofb->fbi, DMA_OV2_Y, -1, start[0], size); 668 setup_frame_dma(ofb->fbi, DMA_OV2_Cb, -1, start[1], size / div); 669 setup_frame_dma(ofb->fbi, DMA_OV2_Cr, -1, start[2], size / div); 670 } 671 } 672 673 static void overlay2fb_enable(struct pxafb_layer *ofb) 674 { 675 int pfor = NONSTD_TO_PFOR(ofb->fb.var.nonstd); 676 int enabled = lcd_readl(ofb->fbi, OVL2C1) & OVLxC1_OEN; 677 uint32_t fdadr2 = ofb->fbi->fdadr[DMA_OV2_Y] | (enabled ? 0x1 : 0); 678 uint32_t fdadr3 = ofb->fbi->fdadr[DMA_OV2_Cb] | (enabled ? 0x1 : 0); 679 uint32_t fdadr4 = ofb->fbi->fdadr[DMA_OV2_Cr] | (enabled ? 0x1 : 0); 680 681 if (pfor == OVERLAY_FORMAT_RGB || pfor == OVERLAY_FORMAT_YUV444_PACKED) 682 lcd_writel(ofb->fbi, enabled ? FBR2 : FDADR2, fdadr2); 683 else { 684 lcd_writel(ofb->fbi, enabled ? FBR2 : FDADR2, fdadr2); 685 lcd_writel(ofb->fbi, enabled ? FBR3 : FDADR3, fdadr3); 686 lcd_writel(ofb->fbi, enabled ? FBR4 : FDADR4, fdadr4); 687 } 688 lcd_writel(ofb->fbi, OVL2C2, ofb->control[1]); 689 lcd_writel(ofb->fbi, OVL2C1, ofb->control[0] | OVLxC1_OEN); 690 } 691 692 static void overlay2fb_disable(struct pxafb_layer *ofb) 693 { 694 uint32_t lccr5; 695 696 if (!(lcd_readl(ofb->fbi, OVL2C1) & OVLxC1_OEN)) 697 return; 698 699 lccr5 = lcd_readl(ofb->fbi, LCCR5); 700 701 lcd_writel(ofb->fbi, OVL2C1, ofb->control[0] & ~OVLxC1_OEN); 702 703 lcd_writel(ofb->fbi, LCSR1, LCSR1_BS(2)); 704 lcd_writel(ofb->fbi, LCCR5, lccr5 & ~LCSR1_BS(2)); 705 lcd_writel(ofb->fbi, FBR2, ofb->fbi->fdadr[DMA_OV2_Y] | 0x3); 706 lcd_writel(ofb->fbi, FBR3, ofb->fbi->fdadr[DMA_OV2_Cb] | 0x3); 707 lcd_writel(ofb->fbi, FBR4, ofb->fbi->fdadr[DMA_OV2_Cr] | 0x3); 708 709 if (wait_for_completion_timeout(&ofb->branch_done, 1 * HZ) == 0) 710 pr_warning("%s: timeout disabling overlay2\n", __func__); 711 } 712 713 static struct pxafb_layer_ops ofb_ops[] = { 714 [0] = { 715 .enable = overlay1fb_enable, 716 .disable = overlay1fb_disable, 717 .setup = overlay1fb_setup, 718 }, 719 [1] = { 720 .enable = overlay2fb_enable, 721 .disable = overlay2fb_disable, 722 .setup = overlay2fb_setup, 723 }, 724 }; 725 726 static int overlayfb_open(struct fb_info *info, int user) 727 { 728 struct pxafb_layer *ofb = container_of(info, struct pxafb_layer, fb); 729 730 /* no support for framebuffer console on overlay */ 731 if (user == 0) 732 return -ENODEV; 733 734 if (ofb->usage++ == 0) { 735 /* unblank the base framebuffer */ 736 console_lock(); 737 fb_blank(&ofb->fbi->fb, FB_BLANK_UNBLANK); 738 console_unlock(); 739 } 740 741 return 0; 742 } 743 744 static int overlayfb_release(struct fb_info *info, int user) 745 { 746 struct pxafb_layer *ofb = container_of(info, struct pxafb_layer, fb); 747 748 if (ofb->usage == 1) { 749 ofb->ops->disable(ofb); 750 ofb->fb.var.height = -1; 751 ofb->fb.var.width = -1; 752 ofb->fb.var.xres = ofb->fb.var.xres_virtual = 0; 753 ofb->fb.var.yres = ofb->fb.var.yres_virtual = 0; 754 755 ofb->usage--; 756 } 757 return 0; 758 } 759 760 static int overlayfb_check_var(struct fb_var_screeninfo *var, 761 struct fb_info *info) 762 { 763 struct pxafb_layer *ofb = container_of(info, struct pxafb_layer, fb); 764 struct fb_var_screeninfo *base_var = &ofb->fbi->fb.var; 765 int xpos, ypos, pfor, bpp; 766 767 xpos = NONSTD_TO_XPOS(var->nonstd); 768 ypos = NONSTD_TO_YPOS(var->nonstd); 769 pfor = NONSTD_TO_PFOR(var->nonstd); 770 771 bpp = pxafb_var_to_bpp(var); 772 if (bpp < 0) 773 return -EINVAL; 774 775 /* no support for YUV format on overlay1 */ 776 if (ofb->id == OVERLAY1 && pfor != 0) 777 return -EINVAL; 778 779 /* for YUV packed formats, bpp = 'minimum bpp of YUV components' */ 780 switch (pfor) { 781 case OVERLAY_FORMAT_RGB: 782 bpp = pxafb_var_to_bpp(var); 783 if (bpp < 0) 784 return -EINVAL; 785 786 pxafb_set_pixfmt(var, var_to_depth(var)); 787 break; 788 case OVERLAY_FORMAT_YUV444_PACKED: bpp = 24; break; 789 case OVERLAY_FORMAT_YUV444_PLANAR: bpp = 8; break; 790 case OVERLAY_FORMAT_YUV422_PLANAR: bpp = 4; break; 791 case OVERLAY_FORMAT_YUV420_PLANAR: bpp = 2; break; 792 default: 793 return -EINVAL; 794 } 795 796 /* each line must start at a 32-bit word boundary */ 797 if ((xpos * bpp) % 32) 798 return -EINVAL; 799 800 /* xres must align on 32-bit word boundary */ 801 var->xres = roundup(var->xres * bpp, 32) / bpp; 802 803 if ((xpos + var->xres > base_var->xres) || 804 (ypos + var->yres > base_var->yres)) 805 return -EINVAL; 806 807 var->xres_virtual = var->xres; 808 var->yres_virtual = max(var->yres, var->yres_virtual); 809 return 0; 810 } 811 812 static int overlayfb_check_video_memory(struct pxafb_layer *ofb) 813 { 814 struct fb_var_screeninfo *var = &ofb->fb.var; 815 int pfor = NONSTD_TO_PFOR(var->nonstd); 816 int size, bpp = 0; 817 818 switch (pfor) { 819 case OVERLAY_FORMAT_RGB: bpp = var->bits_per_pixel; break; 820 case OVERLAY_FORMAT_YUV444_PACKED: bpp = 24; break; 821 case OVERLAY_FORMAT_YUV444_PLANAR: bpp = 24; break; 822 case OVERLAY_FORMAT_YUV422_PLANAR: bpp = 16; break; 823 case OVERLAY_FORMAT_YUV420_PLANAR: bpp = 12; break; 824 } 825 826 ofb->fb.fix.line_length = var->xres_virtual * bpp / 8; 827 828 size = PAGE_ALIGN(ofb->fb.fix.line_length * var->yres_virtual); 829 830 if (ofb->video_mem) { 831 if (ofb->video_mem_size >= size) 832 return 0; 833 } 834 return -EINVAL; 835 } 836 837 static int overlayfb_set_par(struct fb_info *info) 838 { 839 struct pxafb_layer *ofb = container_of(info, struct pxafb_layer, fb); 840 struct fb_var_screeninfo *var = &info->var; 841 int xpos, ypos, pfor, bpp, ret; 842 843 ret = overlayfb_check_video_memory(ofb); 844 if (ret) 845 return ret; 846 847 bpp = pxafb_var_to_bpp(var); 848 xpos = NONSTD_TO_XPOS(var->nonstd); 849 ypos = NONSTD_TO_YPOS(var->nonstd); 850 pfor = NONSTD_TO_PFOR(var->nonstd); 851 852 ofb->control[0] = OVLxC1_PPL(var->xres) | OVLxC1_LPO(var->yres) | 853 OVLxC1_BPP(bpp); 854 ofb->control[1] = OVLxC2_XPOS(xpos) | OVLxC2_YPOS(ypos); 855 856 if (ofb->id == OVERLAY2) 857 ofb->control[1] |= OVL2C2_PFOR(pfor); 858 859 ofb->ops->setup(ofb); 860 ofb->ops->enable(ofb); 861 return 0; 862 } 863 864 static struct fb_ops overlay_fb_ops = { 865 .owner = THIS_MODULE, 866 .fb_open = overlayfb_open, 867 .fb_release = overlayfb_release, 868 .fb_check_var = overlayfb_check_var, 869 .fb_set_par = overlayfb_set_par, 870 }; 871 872 static void init_pxafb_overlay(struct pxafb_info *fbi, struct pxafb_layer *ofb, 873 int id) 874 { 875 sprintf(ofb->fb.fix.id, "overlay%d", id + 1); 876 877 ofb->fb.fix.type = FB_TYPE_PACKED_PIXELS; 878 ofb->fb.fix.xpanstep = 0; 879 ofb->fb.fix.ypanstep = 1; 880 881 ofb->fb.var.activate = FB_ACTIVATE_NOW; 882 ofb->fb.var.height = -1; 883 ofb->fb.var.width = -1; 884 ofb->fb.var.vmode = FB_VMODE_NONINTERLACED; 885 886 ofb->fb.fbops = &overlay_fb_ops; 887 ofb->fb.flags = FBINFO_FLAG_DEFAULT; 888 ofb->fb.node = -1; 889 ofb->fb.pseudo_palette = NULL; 890 891 ofb->id = id; 892 ofb->ops = &ofb_ops[id]; 893 ofb->usage = 0; 894 ofb->fbi = fbi; 895 init_completion(&ofb->branch_done); 896 } 897 898 static inline int pxafb_overlay_supported(void) 899 { 900 if (cpu_is_pxa27x() || cpu_is_pxa3xx()) 901 return 1; 902 903 return 0; 904 } 905 906 static int pxafb_overlay_map_video_memory(struct pxafb_info *pxafb, 907 struct pxafb_layer *ofb) 908 { 909 /* We assume that user will use at most video_mem_size for overlay fb, 910 * anyway, it's useless to use 16bpp main plane and 24bpp overlay 911 */ 912 ofb->video_mem = alloc_pages_exact(PAGE_ALIGN(pxafb->video_mem_size), 913 GFP_KERNEL | __GFP_ZERO); 914 if (ofb->video_mem == NULL) 915 return -ENOMEM; 916 917 ofb->video_mem_phys = virt_to_phys(ofb->video_mem); 918 ofb->video_mem_size = PAGE_ALIGN(pxafb->video_mem_size); 919 920 mutex_lock(&ofb->fb.mm_lock); 921 ofb->fb.fix.smem_start = ofb->video_mem_phys; 922 ofb->fb.fix.smem_len = pxafb->video_mem_size; 923 mutex_unlock(&ofb->fb.mm_lock); 924 925 ofb->fb.screen_base = ofb->video_mem; 926 927 return 0; 928 } 929 930 static void pxafb_overlay_init(struct pxafb_info *fbi) 931 { 932 int i, ret; 933 934 if (!pxafb_overlay_supported()) 935 return; 936 937 for (i = 0; i < 2; i++) { 938 struct pxafb_layer *ofb = &fbi->overlay[i]; 939 init_pxafb_overlay(fbi, ofb, i); 940 ret = register_framebuffer(&ofb->fb); 941 if (ret) { 942 dev_err(fbi->dev, "failed to register overlay %d\n", i); 943 continue; 944 } 945 ret = pxafb_overlay_map_video_memory(fbi, ofb); 946 if (ret) { 947 dev_err(fbi->dev, 948 "failed to map video memory for overlay %d\n", 949 i); 950 unregister_framebuffer(&ofb->fb); 951 continue; 952 } 953 ofb->registered = 1; 954 } 955 956 /* mask all IU/BS/EOF/SOF interrupts */ 957 lcd_writel(fbi, LCCR5, ~0); 958 959 pr_info("PXA Overlay driver loaded successfully!\n"); 960 } 961 962 static void pxafb_overlay_exit(struct pxafb_info *fbi) 963 { 964 int i; 965 966 if (!pxafb_overlay_supported()) 967 return; 968 969 for (i = 0; i < 2; i++) { 970 struct pxafb_layer *ofb = &fbi->overlay[i]; 971 if (ofb->registered) { 972 if (ofb->video_mem) 973 free_pages_exact(ofb->video_mem, 974 ofb->video_mem_size); 975 unregister_framebuffer(&ofb->fb); 976 } 977 } 978 } 979 #else 980 static inline void pxafb_overlay_init(struct pxafb_info *fbi) {} 981 static inline void pxafb_overlay_exit(struct pxafb_info *fbi) {} 982 #endif /* CONFIG_FB_PXA_OVERLAY */ 983 984 /* 985 * Calculate the PCD value from the clock rate (in picoseconds). 986 * We take account of the PPCR clock setting. 987 * From PXA Developer's Manual: 988 * 989 * PixelClock = LCLK 990 * ------------- 991 * 2 ( PCD + 1 ) 992 * 993 * PCD = LCLK 994 * ------------- - 1 995 * 2(PixelClock) 996 * 997 * Where: 998 * LCLK = LCD/Memory Clock 999 * PCD = LCCR3[7:0] 1000 * 1001 * PixelClock here is in Hz while the pixclock argument given is the 1002 * period in picoseconds. Hence PixelClock = 1 / ( pixclock * 10^-12 ) 1003 * 1004 * The function get_lclk_frequency_10khz returns LCLK in units of 1005 * 10khz. Calling the result of this function lclk gives us the 1006 * following 1007 * 1008 * PCD = (lclk * 10^4 ) * ( pixclock * 10^-12 ) 1009 * -------------------------------------- - 1 1010 * 2 1011 * 1012 * Factoring the 10^4 and 10^-12 out gives 10^-8 == 1 / 100000000 as used below. 1013 */ 1014 static inline unsigned int get_pcd(struct pxafb_info *fbi, 1015 unsigned int pixclock) 1016 { 1017 unsigned long long pcd; 1018 1019 /* FIXME: Need to take into account Double Pixel Clock mode 1020 * (DPC) bit? or perhaps set it based on the various clock 1021 * speeds */ 1022 pcd = (unsigned long long)(clk_get_rate(fbi->clk) / 10000); 1023 pcd *= pixclock; 1024 do_div(pcd, 100000000 * 2); 1025 /* no need for this, since we should subtract 1 anyway. they cancel */ 1026 /* pcd += 1; */ /* make up for integer math truncations */ 1027 return (unsigned int)pcd; 1028 } 1029 1030 /* 1031 * Some touchscreens need hsync information from the video driver to 1032 * function correctly. We export it here. Note that 'hsync_time' and 1033 * the value returned from pxafb_get_hsync_time() is the *reciprocal* 1034 * of the hsync period in seconds. 1035 */ 1036 static inline void set_hsync_time(struct pxafb_info *fbi, unsigned int pcd) 1037 { 1038 unsigned long htime; 1039 1040 if ((pcd == 0) || (fbi->fb.var.hsync_len == 0)) { 1041 fbi->hsync_time = 0; 1042 return; 1043 } 1044 1045 htime = clk_get_rate(fbi->clk) / (pcd * fbi->fb.var.hsync_len); 1046 1047 fbi->hsync_time = htime; 1048 } 1049 1050 unsigned long pxafb_get_hsync_time(struct device *dev) 1051 { 1052 struct pxafb_info *fbi = dev_get_drvdata(dev); 1053 1054 /* If display is blanked/suspended, hsync isn't active */ 1055 if (!fbi || (fbi->state != C_ENABLE)) 1056 return 0; 1057 1058 return fbi->hsync_time; 1059 } 1060 EXPORT_SYMBOL(pxafb_get_hsync_time); 1061 1062 static int setup_frame_dma(struct pxafb_info *fbi, int dma, int pal, 1063 unsigned long start, size_t size) 1064 { 1065 struct pxafb_dma_descriptor *dma_desc, *pal_desc; 1066 unsigned int dma_desc_off, pal_desc_off; 1067 1068 if (dma < 0 || dma >= DMA_MAX * 2) 1069 return -EINVAL; 1070 1071 dma_desc = &fbi->dma_buff->dma_desc[dma]; 1072 dma_desc_off = offsetof(struct pxafb_dma_buff, dma_desc[dma]); 1073 1074 dma_desc->fsadr = start; 1075 dma_desc->fidr = 0; 1076 dma_desc->ldcmd = size; 1077 1078 if (pal < 0 || pal >= PAL_MAX * 2) { 1079 dma_desc->fdadr = fbi->dma_buff_phys + dma_desc_off; 1080 fbi->fdadr[dma] = fbi->dma_buff_phys + dma_desc_off; 1081 } else { 1082 pal_desc = &fbi->dma_buff->pal_desc[pal]; 1083 pal_desc_off = offsetof(struct pxafb_dma_buff, pal_desc[pal]); 1084 1085 pal_desc->fsadr = fbi->dma_buff_phys + pal * PALETTE_SIZE; 1086 pal_desc->fidr = 0; 1087 1088 if ((fbi->lccr4 & LCCR4_PAL_FOR_MASK) == LCCR4_PAL_FOR_0) 1089 pal_desc->ldcmd = fbi->palette_size * sizeof(u16); 1090 else 1091 pal_desc->ldcmd = fbi->palette_size * sizeof(u32); 1092 1093 pal_desc->ldcmd |= LDCMD_PAL; 1094 1095 /* flip back and forth between palette and frame buffer */ 1096 pal_desc->fdadr = fbi->dma_buff_phys + dma_desc_off; 1097 dma_desc->fdadr = fbi->dma_buff_phys + pal_desc_off; 1098 fbi->fdadr[dma] = fbi->dma_buff_phys + dma_desc_off; 1099 } 1100 1101 return 0; 1102 } 1103 1104 static void setup_base_frame(struct pxafb_info *fbi, 1105 struct fb_var_screeninfo *var, 1106 int branch) 1107 { 1108 struct fb_fix_screeninfo *fix = &fbi->fb.fix; 1109 int nbytes, dma, pal, bpp = var->bits_per_pixel; 1110 unsigned long offset; 1111 1112 dma = DMA_BASE + (branch ? DMA_MAX : 0); 1113 pal = (bpp >= 16) ? PAL_NONE : PAL_BASE + (branch ? PAL_MAX : 0); 1114 1115 nbytes = fix->line_length * var->yres; 1116 offset = fix->line_length * var->yoffset + fbi->video_mem_phys; 1117 1118 if (fbi->lccr0 & LCCR0_SDS) { 1119 nbytes = nbytes / 2; 1120 setup_frame_dma(fbi, dma + 1, PAL_NONE, offset + nbytes, nbytes); 1121 } 1122 1123 setup_frame_dma(fbi, dma, pal, offset, nbytes); 1124 } 1125 1126 #ifdef CONFIG_FB_PXA_SMARTPANEL 1127 static int setup_smart_dma(struct pxafb_info *fbi) 1128 { 1129 struct pxafb_dma_descriptor *dma_desc; 1130 unsigned long dma_desc_off, cmd_buff_off; 1131 1132 dma_desc = &fbi->dma_buff->dma_desc[DMA_CMD]; 1133 dma_desc_off = offsetof(struct pxafb_dma_buff, dma_desc[DMA_CMD]); 1134 cmd_buff_off = offsetof(struct pxafb_dma_buff, cmd_buff); 1135 1136 dma_desc->fdadr = fbi->dma_buff_phys + dma_desc_off; 1137 dma_desc->fsadr = fbi->dma_buff_phys + cmd_buff_off; 1138 dma_desc->fidr = 0; 1139 dma_desc->ldcmd = fbi->n_smart_cmds * sizeof(uint16_t); 1140 1141 fbi->fdadr[DMA_CMD] = dma_desc->fdadr; 1142 return 0; 1143 } 1144 1145 int pxafb_smart_flush(struct fb_info *info) 1146 { 1147 struct pxafb_info *fbi = container_of(info, struct pxafb_info, fb); 1148 uint32_t prsr; 1149 int ret = 0; 1150 1151 /* disable controller until all registers are set up */ 1152 lcd_writel(fbi, LCCR0, fbi->reg_lccr0 & ~LCCR0_ENB); 1153 1154 /* 1. make it an even number of commands to align on 32-bit boundary 1155 * 2. add the interrupt command to the end of the chain so we can 1156 * keep track of the end of the transfer 1157 */ 1158 1159 while (fbi->n_smart_cmds & 1) 1160 fbi->smart_cmds[fbi->n_smart_cmds++] = SMART_CMD_NOOP; 1161 1162 fbi->smart_cmds[fbi->n_smart_cmds++] = SMART_CMD_INTERRUPT; 1163 fbi->smart_cmds[fbi->n_smart_cmds++] = SMART_CMD_WAIT_FOR_VSYNC; 1164 setup_smart_dma(fbi); 1165 1166 /* continue to execute next command */ 1167 prsr = lcd_readl(fbi, PRSR) | PRSR_ST_OK | PRSR_CON_NT; 1168 lcd_writel(fbi, PRSR, prsr); 1169 1170 /* stop the processor in case it executed "wait for sync" cmd */ 1171 lcd_writel(fbi, CMDCR, 0x0001); 1172 1173 /* don't send interrupts for fifo underruns on channel 6 */ 1174 lcd_writel(fbi, LCCR5, LCCR5_IUM(6)); 1175 1176 lcd_writel(fbi, LCCR1, fbi->reg_lccr1); 1177 lcd_writel(fbi, LCCR2, fbi->reg_lccr2); 1178 lcd_writel(fbi, LCCR3, fbi->reg_lccr3); 1179 lcd_writel(fbi, LCCR4, fbi->reg_lccr4); 1180 lcd_writel(fbi, FDADR0, fbi->fdadr[0]); 1181 lcd_writel(fbi, FDADR6, fbi->fdadr[6]); 1182 1183 /* begin sending */ 1184 lcd_writel(fbi, LCCR0, fbi->reg_lccr0 | LCCR0_ENB); 1185 1186 if (wait_for_completion_timeout(&fbi->command_done, HZ/2) == 0) { 1187 pr_warning("%s: timeout waiting for command done\n", 1188 __func__); 1189 ret = -ETIMEDOUT; 1190 } 1191 1192 /* quick disable */ 1193 prsr = lcd_readl(fbi, PRSR) & ~(PRSR_ST_OK | PRSR_CON_NT); 1194 lcd_writel(fbi, PRSR, prsr); 1195 lcd_writel(fbi, LCCR0, fbi->reg_lccr0 & ~LCCR0_ENB); 1196 lcd_writel(fbi, FDADR6, 0); 1197 fbi->n_smart_cmds = 0; 1198 return ret; 1199 } 1200 1201 int pxafb_smart_queue(struct fb_info *info, uint16_t *cmds, int n_cmds) 1202 { 1203 int i; 1204 struct pxafb_info *fbi = container_of(info, struct pxafb_info, fb); 1205 1206 for (i = 0; i < n_cmds; i++, cmds++) { 1207 /* if it is a software delay, flush and delay */ 1208 if ((*cmds & 0xff00) == SMART_CMD_DELAY) { 1209 pxafb_smart_flush(info); 1210 mdelay(*cmds & 0xff); 1211 continue; 1212 } 1213 1214 /* leave 2 commands for INTERRUPT and WAIT_FOR_SYNC */ 1215 if (fbi->n_smart_cmds == CMD_BUFF_SIZE - 8) 1216 pxafb_smart_flush(info); 1217 1218 fbi->smart_cmds[fbi->n_smart_cmds++] = *cmds; 1219 } 1220 1221 return 0; 1222 } 1223 1224 static unsigned int __smart_timing(unsigned time_ns, unsigned long lcd_clk) 1225 { 1226 unsigned int t = (time_ns * (lcd_clk / 1000000) / 1000); 1227 return (t == 0) ? 1 : t; 1228 } 1229 1230 static void setup_smart_timing(struct pxafb_info *fbi, 1231 struct fb_var_screeninfo *var) 1232 { 1233 struct pxafb_mach_info *inf = dev_get_platdata(fbi->dev); 1234 struct pxafb_mode_info *mode = &inf->modes[0]; 1235 unsigned long lclk = clk_get_rate(fbi->clk); 1236 unsigned t1, t2, t3, t4; 1237 1238 t1 = max(mode->a0csrd_set_hld, mode->a0cswr_set_hld); 1239 t2 = max(mode->rd_pulse_width, mode->wr_pulse_width); 1240 t3 = mode->op_hold_time; 1241 t4 = mode->cmd_inh_time; 1242 1243 fbi->reg_lccr1 = 1244 LCCR1_DisWdth(var->xres) | 1245 LCCR1_BegLnDel(__smart_timing(t1, lclk)) | 1246 LCCR1_EndLnDel(__smart_timing(t2, lclk)) | 1247 LCCR1_HorSnchWdth(__smart_timing(t3, lclk)); 1248 1249 fbi->reg_lccr2 = LCCR2_DisHght(var->yres); 1250 fbi->reg_lccr3 = fbi->lccr3 | LCCR3_PixClkDiv(__smart_timing(t4, lclk)); 1251 fbi->reg_lccr3 |= (var->sync & FB_SYNC_HOR_HIGH_ACT) ? LCCR3_HSP : 0; 1252 fbi->reg_lccr3 |= (var->sync & FB_SYNC_VERT_HIGH_ACT) ? LCCR3_VSP : 0; 1253 1254 /* FIXME: make this configurable */ 1255 fbi->reg_cmdcr = 1; 1256 } 1257 1258 static int pxafb_smart_thread(void *arg) 1259 { 1260 struct pxafb_info *fbi = arg; 1261 struct pxafb_mach_info *inf = dev_get_platdata(fbi->dev); 1262 1263 if (!inf->smart_update) { 1264 pr_err("%s: not properly initialized, thread terminated\n", 1265 __func__); 1266 return -EINVAL; 1267 } 1268 inf = dev_get_platdata(fbi->dev); 1269 1270 pr_debug("%s(): task starting\n", __func__); 1271 1272 set_freezable(); 1273 while (!kthread_should_stop()) { 1274 1275 if (try_to_freeze()) 1276 continue; 1277 1278 mutex_lock(&fbi->ctrlr_lock); 1279 1280 if (fbi->state == C_ENABLE) { 1281 inf->smart_update(&fbi->fb); 1282 complete(&fbi->refresh_done); 1283 } 1284 1285 mutex_unlock(&fbi->ctrlr_lock); 1286 1287 set_current_state(TASK_INTERRUPTIBLE); 1288 schedule_timeout(30 * HZ / 1000); 1289 } 1290 1291 pr_debug("%s(): task ending\n", __func__); 1292 return 0; 1293 } 1294 1295 static int pxafb_smart_init(struct pxafb_info *fbi) 1296 { 1297 if (!(fbi->lccr0 & LCCR0_LCDT)) 1298 return 0; 1299 1300 fbi->smart_cmds = (uint16_t *) fbi->dma_buff->cmd_buff; 1301 fbi->n_smart_cmds = 0; 1302 1303 init_completion(&fbi->command_done); 1304 init_completion(&fbi->refresh_done); 1305 1306 fbi->smart_thread = kthread_run(pxafb_smart_thread, fbi, 1307 "lcd_refresh"); 1308 if (IS_ERR(fbi->smart_thread)) { 1309 pr_err("%s: unable to create kernel thread\n", __func__); 1310 return PTR_ERR(fbi->smart_thread); 1311 } 1312 1313 return 0; 1314 } 1315 #else 1316 static inline int pxafb_smart_init(struct pxafb_info *fbi) { return 0; } 1317 #endif /* CONFIG_FB_PXA_SMARTPANEL */ 1318 1319 static void setup_parallel_timing(struct pxafb_info *fbi, 1320 struct fb_var_screeninfo *var) 1321 { 1322 unsigned int lines_per_panel, pcd = get_pcd(fbi, var->pixclock); 1323 1324 fbi->reg_lccr1 = 1325 LCCR1_DisWdth(var->xres) + 1326 LCCR1_HorSnchWdth(var->hsync_len) + 1327 LCCR1_BegLnDel(var->left_margin) + 1328 LCCR1_EndLnDel(var->right_margin); 1329 1330 /* 1331 * If we have a dual scan LCD, we need to halve 1332 * the YRES parameter. 1333 */ 1334 lines_per_panel = var->yres; 1335 if ((fbi->lccr0 & LCCR0_SDS) == LCCR0_Dual) 1336 lines_per_panel /= 2; 1337 1338 fbi->reg_lccr2 = 1339 LCCR2_DisHght(lines_per_panel) + 1340 LCCR2_VrtSnchWdth(var->vsync_len) + 1341 LCCR2_BegFrmDel(var->upper_margin) + 1342 LCCR2_EndFrmDel(var->lower_margin); 1343 1344 fbi->reg_lccr3 = fbi->lccr3 | 1345 (var->sync & FB_SYNC_HOR_HIGH_ACT ? 1346 LCCR3_HorSnchH : LCCR3_HorSnchL) | 1347 (var->sync & FB_SYNC_VERT_HIGH_ACT ? 1348 LCCR3_VrtSnchH : LCCR3_VrtSnchL); 1349 1350 if (pcd) { 1351 fbi->reg_lccr3 |= LCCR3_PixClkDiv(pcd); 1352 set_hsync_time(fbi, pcd); 1353 } 1354 } 1355 1356 /* 1357 * pxafb_activate_var(): 1358 * Configures LCD Controller based on entries in var parameter. 1359 * Settings are only written to the controller if changes were made. 1360 */ 1361 static int pxafb_activate_var(struct fb_var_screeninfo *var, 1362 struct pxafb_info *fbi) 1363 { 1364 u_long flags; 1365 1366 /* Update shadow copy atomically */ 1367 local_irq_save(flags); 1368 1369 #ifdef CONFIG_FB_PXA_SMARTPANEL 1370 if (fbi->lccr0 & LCCR0_LCDT) 1371 setup_smart_timing(fbi, var); 1372 else 1373 #endif 1374 setup_parallel_timing(fbi, var); 1375 1376 setup_base_frame(fbi, var, 0); 1377 1378 fbi->reg_lccr0 = fbi->lccr0 | 1379 (LCCR0_LDM | LCCR0_SFM | LCCR0_IUM | LCCR0_EFM | 1380 LCCR0_QDM | LCCR0_BM | LCCR0_OUM); 1381 1382 fbi->reg_lccr3 |= pxafb_var_to_lccr3(var); 1383 1384 fbi->reg_lccr4 = lcd_readl(fbi, LCCR4) & ~LCCR4_PAL_FOR_MASK; 1385 fbi->reg_lccr4 |= (fbi->lccr4 & LCCR4_PAL_FOR_MASK); 1386 local_irq_restore(flags); 1387 1388 /* 1389 * Only update the registers if the controller is enabled 1390 * and something has changed. 1391 */ 1392 if ((lcd_readl(fbi, LCCR0) != fbi->reg_lccr0) || 1393 (lcd_readl(fbi, LCCR1) != fbi->reg_lccr1) || 1394 (lcd_readl(fbi, LCCR2) != fbi->reg_lccr2) || 1395 (lcd_readl(fbi, LCCR3) != fbi->reg_lccr3) || 1396 (lcd_readl(fbi, LCCR4) != fbi->reg_lccr4) || 1397 (lcd_readl(fbi, FDADR0) != fbi->fdadr[0]) || 1398 ((fbi->lccr0 & LCCR0_SDS) && 1399 (lcd_readl(fbi, FDADR1) != fbi->fdadr[1]))) 1400 pxafb_schedule_work(fbi, C_REENABLE); 1401 1402 return 0; 1403 } 1404 1405 /* 1406 * NOTE! The following functions are purely helpers for set_ctrlr_state. 1407 * Do not call them directly; set_ctrlr_state does the correct serialisation 1408 * to ensure that things happen in the right way 100% of time time. 1409 * -- rmk 1410 */ 1411 static inline void __pxafb_backlight_power(struct pxafb_info *fbi, int on) 1412 { 1413 pr_debug("pxafb: backlight o%s\n", on ? "n" : "ff"); 1414 1415 if (fbi->backlight_power) 1416 fbi->backlight_power(on); 1417 } 1418 1419 static inline void __pxafb_lcd_power(struct pxafb_info *fbi, int on) 1420 { 1421 pr_debug("pxafb: LCD power o%s\n", on ? "n" : "ff"); 1422 1423 if (fbi->lcd_power) 1424 fbi->lcd_power(on, &fbi->fb.var); 1425 } 1426 1427 static void pxafb_enable_controller(struct pxafb_info *fbi) 1428 { 1429 pr_debug("pxafb: Enabling LCD controller\n"); 1430 pr_debug("fdadr0 0x%08x\n", (unsigned int) fbi->fdadr[0]); 1431 pr_debug("fdadr1 0x%08x\n", (unsigned int) fbi->fdadr[1]); 1432 pr_debug("reg_lccr0 0x%08x\n", (unsigned int) fbi->reg_lccr0); 1433 pr_debug("reg_lccr1 0x%08x\n", (unsigned int) fbi->reg_lccr1); 1434 pr_debug("reg_lccr2 0x%08x\n", (unsigned int) fbi->reg_lccr2); 1435 pr_debug("reg_lccr3 0x%08x\n", (unsigned int) fbi->reg_lccr3); 1436 1437 /* enable LCD controller clock */ 1438 clk_prepare_enable(fbi->clk); 1439 1440 if (fbi->lccr0 & LCCR0_LCDT) 1441 return; 1442 1443 /* Sequence from 11.7.10 */ 1444 lcd_writel(fbi, LCCR4, fbi->reg_lccr4); 1445 lcd_writel(fbi, LCCR3, fbi->reg_lccr3); 1446 lcd_writel(fbi, LCCR2, fbi->reg_lccr2); 1447 lcd_writel(fbi, LCCR1, fbi->reg_lccr1); 1448 lcd_writel(fbi, LCCR0, fbi->reg_lccr0 & ~LCCR0_ENB); 1449 1450 lcd_writel(fbi, FDADR0, fbi->fdadr[0]); 1451 if (fbi->lccr0 & LCCR0_SDS) 1452 lcd_writel(fbi, FDADR1, fbi->fdadr[1]); 1453 lcd_writel(fbi, LCCR0, fbi->reg_lccr0 | LCCR0_ENB); 1454 } 1455 1456 static void pxafb_disable_controller(struct pxafb_info *fbi) 1457 { 1458 uint32_t lccr0; 1459 1460 #ifdef CONFIG_FB_PXA_SMARTPANEL 1461 if (fbi->lccr0 & LCCR0_LCDT) { 1462 wait_for_completion_timeout(&fbi->refresh_done, 1463 200 * HZ / 1000); 1464 return; 1465 } 1466 #endif 1467 1468 /* Clear LCD Status Register */ 1469 lcd_writel(fbi, LCSR, 0xffffffff); 1470 1471 lccr0 = lcd_readl(fbi, LCCR0) & ~LCCR0_LDM; 1472 lcd_writel(fbi, LCCR0, lccr0); 1473 lcd_writel(fbi, LCCR0, lccr0 | LCCR0_DIS); 1474 1475 wait_for_completion_timeout(&fbi->disable_done, 200 * HZ / 1000); 1476 1477 /* disable LCD controller clock */ 1478 clk_disable_unprepare(fbi->clk); 1479 } 1480 1481 /* 1482 * pxafb_handle_irq: Handle 'LCD DONE' interrupts. 1483 */ 1484 static irqreturn_t pxafb_handle_irq(int irq, void *dev_id) 1485 { 1486 struct pxafb_info *fbi = dev_id; 1487 unsigned int lccr0, lcsr; 1488 1489 lcsr = lcd_readl(fbi, LCSR); 1490 if (lcsr & LCSR_LDD) { 1491 lccr0 = lcd_readl(fbi, LCCR0); 1492 lcd_writel(fbi, LCCR0, lccr0 | LCCR0_LDM); 1493 complete(&fbi->disable_done); 1494 } 1495 1496 #ifdef CONFIG_FB_PXA_SMARTPANEL 1497 if (lcsr & LCSR_CMD_INT) 1498 complete(&fbi->command_done); 1499 #endif 1500 lcd_writel(fbi, LCSR, lcsr); 1501 1502 #ifdef CONFIG_FB_PXA_OVERLAY 1503 { 1504 unsigned int lcsr1 = lcd_readl(fbi, LCSR1); 1505 if (lcsr1 & LCSR1_BS(1)) 1506 complete(&fbi->overlay[0].branch_done); 1507 1508 if (lcsr1 & LCSR1_BS(2)) 1509 complete(&fbi->overlay[1].branch_done); 1510 1511 lcd_writel(fbi, LCSR1, lcsr1); 1512 } 1513 #endif 1514 return IRQ_HANDLED; 1515 } 1516 1517 /* 1518 * This function must be called from task context only, since it will 1519 * sleep when disabling the LCD controller, or if we get two contending 1520 * processes trying to alter state. 1521 */ 1522 static void set_ctrlr_state(struct pxafb_info *fbi, u_int state) 1523 { 1524 u_int old_state; 1525 1526 mutex_lock(&fbi->ctrlr_lock); 1527 1528 old_state = fbi->state; 1529 1530 /* 1531 * Hack around fbcon initialisation. 1532 */ 1533 if (old_state == C_STARTUP && state == C_REENABLE) 1534 state = C_ENABLE; 1535 1536 switch (state) { 1537 case C_DISABLE_CLKCHANGE: 1538 /* 1539 * Disable controller for clock change. If the 1540 * controller is already disabled, then do nothing. 1541 */ 1542 if (old_state != C_DISABLE && old_state != C_DISABLE_PM) { 1543 fbi->state = state; 1544 /* TODO __pxafb_lcd_power(fbi, 0); */ 1545 pxafb_disable_controller(fbi); 1546 } 1547 break; 1548 1549 case C_DISABLE_PM: 1550 case C_DISABLE: 1551 /* 1552 * Disable controller 1553 */ 1554 if (old_state != C_DISABLE) { 1555 fbi->state = state; 1556 __pxafb_backlight_power(fbi, 0); 1557 __pxafb_lcd_power(fbi, 0); 1558 if (old_state != C_DISABLE_CLKCHANGE) 1559 pxafb_disable_controller(fbi); 1560 } 1561 break; 1562 1563 case C_ENABLE_CLKCHANGE: 1564 /* 1565 * Enable the controller after clock change. Only 1566 * do this if we were disabled for the clock change. 1567 */ 1568 if (old_state == C_DISABLE_CLKCHANGE) { 1569 fbi->state = C_ENABLE; 1570 pxafb_enable_controller(fbi); 1571 /* TODO __pxafb_lcd_power(fbi, 1); */ 1572 } 1573 break; 1574 1575 case C_REENABLE: 1576 /* 1577 * Re-enable the controller only if it was already 1578 * enabled. This is so we reprogram the control 1579 * registers. 1580 */ 1581 if (old_state == C_ENABLE) { 1582 __pxafb_lcd_power(fbi, 0); 1583 pxafb_disable_controller(fbi); 1584 pxafb_enable_controller(fbi); 1585 __pxafb_lcd_power(fbi, 1); 1586 } 1587 break; 1588 1589 case C_ENABLE_PM: 1590 /* 1591 * Re-enable the controller after PM. This is not 1592 * perfect - think about the case where we were doing 1593 * a clock change, and we suspended half-way through. 1594 */ 1595 if (old_state != C_DISABLE_PM) 1596 break; 1597 /* fall through */ 1598 1599 case C_ENABLE: 1600 /* 1601 * Power up the LCD screen, enable controller, and 1602 * turn on the backlight. 1603 */ 1604 if (old_state != C_ENABLE) { 1605 fbi->state = C_ENABLE; 1606 pxafb_enable_controller(fbi); 1607 __pxafb_lcd_power(fbi, 1); 1608 __pxafb_backlight_power(fbi, 1); 1609 } 1610 break; 1611 } 1612 mutex_unlock(&fbi->ctrlr_lock); 1613 } 1614 1615 /* 1616 * Our LCD controller task (which is called when we blank or unblank) 1617 * via keventd. 1618 */ 1619 static void pxafb_task(struct work_struct *work) 1620 { 1621 struct pxafb_info *fbi = 1622 container_of(work, struct pxafb_info, task); 1623 u_int state = xchg(&fbi->task_state, -1); 1624 1625 set_ctrlr_state(fbi, state); 1626 } 1627 1628 #ifdef CONFIG_CPU_FREQ 1629 /* 1630 * CPU clock speed change handler. We need to adjust the LCD timing 1631 * parameters when the CPU clock is adjusted by the power management 1632 * subsystem. 1633 * 1634 * TODO: Determine why f->new != 10*get_lclk_frequency_10khz() 1635 */ 1636 static int 1637 pxafb_freq_transition(struct notifier_block *nb, unsigned long val, void *data) 1638 { 1639 struct pxafb_info *fbi = TO_INF(nb, freq_transition); 1640 /* TODO struct cpufreq_freqs *f = data; */ 1641 u_int pcd; 1642 1643 switch (val) { 1644 case CPUFREQ_PRECHANGE: 1645 #ifdef CONFIG_FB_PXA_OVERLAY 1646 if (!(fbi->overlay[0].usage || fbi->overlay[1].usage)) 1647 #endif 1648 set_ctrlr_state(fbi, C_DISABLE_CLKCHANGE); 1649 break; 1650 1651 case CPUFREQ_POSTCHANGE: 1652 pcd = get_pcd(fbi, fbi->fb.var.pixclock); 1653 set_hsync_time(fbi, pcd); 1654 fbi->reg_lccr3 = (fbi->reg_lccr3 & ~0xff) | 1655 LCCR3_PixClkDiv(pcd); 1656 set_ctrlr_state(fbi, C_ENABLE_CLKCHANGE); 1657 break; 1658 } 1659 return 0; 1660 } 1661 1662 static int 1663 pxafb_freq_policy(struct notifier_block *nb, unsigned long val, void *data) 1664 { 1665 struct pxafb_info *fbi = TO_INF(nb, freq_policy); 1666 struct fb_var_screeninfo *var = &fbi->fb.var; 1667 struct cpufreq_policy *policy = data; 1668 1669 switch (val) { 1670 case CPUFREQ_ADJUST: 1671 case CPUFREQ_INCOMPATIBLE: 1672 pr_debug("min dma period: %d ps, " 1673 "new clock %d kHz\n", pxafb_display_dma_period(var), 1674 policy->max); 1675 /* TODO: fill in min/max values */ 1676 break; 1677 } 1678 return 0; 1679 } 1680 #endif 1681 1682 #ifdef CONFIG_PM 1683 /* 1684 * Power management hooks. Note that we won't be called from IRQ context, 1685 * unlike the blank functions above, so we may sleep. 1686 */ 1687 static int pxafb_suspend(struct device *dev) 1688 { 1689 struct pxafb_info *fbi = dev_get_drvdata(dev); 1690 1691 set_ctrlr_state(fbi, C_DISABLE_PM); 1692 return 0; 1693 } 1694 1695 static int pxafb_resume(struct device *dev) 1696 { 1697 struct pxafb_info *fbi = dev_get_drvdata(dev); 1698 1699 set_ctrlr_state(fbi, C_ENABLE_PM); 1700 return 0; 1701 } 1702 1703 static const struct dev_pm_ops pxafb_pm_ops = { 1704 .suspend = pxafb_suspend, 1705 .resume = pxafb_resume, 1706 }; 1707 #endif 1708 1709 static int pxafb_init_video_memory(struct pxafb_info *fbi) 1710 { 1711 int size = PAGE_ALIGN(fbi->video_mem_size); 1712 1713 fbi->video_mem = alloc_pages_exact(size, GFP_KERNEL | __GFP_ZERO); 1714 if (fbi->video_mem == NULL) 1715 return -ENOMEM; 1716 1717 fbi->video_mem_phys = virt_to_phys(fbi->video_mem); 1718 fbi->video_mem_size = size; 1719 1720 fbi->fb.fix.smem_start = fbi->video_mem_phys; 1721 fbi->fb.fix.smem_len = fbi->video_mem_size; 1722 fbi->fb.screen_base = fbi->video_mem; 1723 1724 return fbi->video_mem ? 0 : -ENOMEM; 1725 } 1726 1727 static void pxafb_decode_mach_info(struct pxafb_info *fbi, 1728 struct pxafb_mach_info *inf) 1729 { 1730 unsigned int lcd_conn = inf->lcd_conn; 1731 struct pxafb_mode_info *m; 1732 int i; 1733 1734 fbi->cmap_inverse = inf->cmap_inverse; 1735 fbi->cmap_static = inf->cmap_static; 1736 fbi->lccr4 = inf->lccr4; 1737 1738 switch (lcd_conn & LCD_TYPE_MASK) { 1739 case LCD_TYPE_MONO_STN: 1740 fbi->lccr0 = LCCR0_CMS; 1741 break; 1742 case LCD_TYPE_MONO_DSTN: 1743 fbi->lccr0 = LCCR0_CMS | LCCR0_SDS; 1744 break; 1745 case LCD_TYPE_COLOR_STN: 1746 fbi->lccr0 = 0; 1747 break; 1748 case LCD_TYPE_COLOR_DSTN: 1749 fbi->lccr0 = LCCR0_SDS; 1750 break; 1751 case LCD_TYPE_COLOR_TFT: 1752 fbi->lccr0 = LCCR0_PAS; 1753 break; 1754 case LCD_TYPE_SMART_PANEL: 1755 fbi->lccr0 = LCCR0_LCDT | LCCR0_PAS; 1756 break; 1757 default: 1758 /* fall back to backward compatibility way */ 1759 fbi->lccr0 = inf->lccr0; 1760 fbi->lccr3 = inf->lccr3; 1761 goto decode_mode; 1762 } 1763 1764 if (lcd_conn == LCD_MONO_STN_8BPP) 1765 fbi->lccr0 |= LCCR0_DPD; 1766 1767 fbi->lccr0 |= (lcd_conn & LCD_ALTERNATE_MAPPING) ? LCCR0_LDDALT : 0; 1768 1769 fbi->lccr3 = LCCR3_Acb((inf->lcd_conn >> 10) & 0xff); 1770 fbi->lccr3 |= (lcd_conn & LCD_BIAS_ACTIVE_LOW) ? LCCR3_OEP : 0; 1771 fbi->lccr3 |= (lcd_conn & LCD_PCLK_EDGE_FALL) ? LCCR3_PCP : 0; 1772 1773 decode_mode: 1774 pxafb_setmode(&fbi->fb.var, &inf->modes[0]); 1775 1776 /* decide video memory size as follows: 1777 * 1. default to mode of maximum resolution 1778 * 2. allow platform to override 1779 * 3. allow module parameter to override 1780 */ 1781 for (i = 0, m = &inf->modes[0]; i < inf->num_modes; i++, m++) 1782 fbi->video_mem_size = max_t(size_t, fbi->video_mem_size, 1783 m->xres * m->yres * m->bpp / 8); 1784 1785 if (inf->video_mem_size > fbi->video_mem_size) 1786 fbi->video_mem_size = inf->video_mem_size; 1787 1788 if (video_mem_size > fbi->video_mem_size) 1789 fbi->video_mem_size = video_mem_size; 1790 } 1791 1792 static struct pxafb_info *pxafb_init_fbinfo(struct device *dev) 1793 { 1794 struct pxafb_info *fbi; 1795 void *addr; 1796 struct pxafb_mach_info *inf = dev_get_platdata(dev); 1797 1798 /* Alloc the pxafb_info and pseudo_palette in one step */ 1799 fbi = kmalloc(sizeof(struct pxafb_info) + sizeof(u32) * 16, GFP_KERNEL); 1800 if (!fbi) 1801 return NULL; 1802 1803 memset(fbi, 0, sizeof(struct pxafb_info)); 1804 fbi->dev = dev; 1805 1806 fbi->clk = clk_get(dev, NULL); 1807 if (IS_ERR(fbi->clk)) { 1808 kfree(fbi); 1809 return NULL; 1810 } 1811 1812 strcpy(fbi->fb.fix.id, PXA_NAME); 1813 1814 fbi->fb.fix.type = FB_TYPE_PACKED_PIXELS; 1815 fbi->fb.fix.type_aux = 0; 1816 fbi->fb.fix.xpanstep = 0; 1817 fbi->fb.fix.ypanstep = 1; 1818 fbi->fb.fix.ywrapstep = 0; 1819 fbi->fb.fix.accel = FB_ACCEL_NONE; 1820 1821 fbi->fb.var.nonstd = 0; 1822 fbi->fb.var.activate = FB_ACTIVATE_NOW; 1823 fbi->fb.var.height = -1; 1824 fbi->fb.var.width = -1; 1825 fbi->fb.var.accel_flags = FB_ACCELF_TEXT; 1826 fbi->fb.var.vmode = FB_VMODE_NONINTERLACED; 1827 1828 fbi->fb.fbops = &pxafb_ops; 1829 fbi->fb.flags = FBINFO_DEFAULT; 1830 fbi->fb.node = -1; 1831 1832 addr = fbi; 1833 addr = addr + sizeof(struct pxafb_info); 1834 fbi->fb.pseudo_palette = addr; 1835 1836 fbi->state = C_STARTUP; 1837 fbi->task_state = (u_char)-1; 1838 1839 pxafb_decode_mach_info(fbi, inf); 1840 1841 #ifdef CONFIG_FB_PXA_OVERLAY 1842 /* place overlay(s) on top of base */ 1843 if (pxafb_overlay_supported()) 1844 fbi->lccr0 |= LCCR0_OUC; 1845 #endif 1846 1847 init_waitqueue_head(&fbi->ctrlr_wait); 1848 INIT_WORK(&fbi->task, pxafb_task); 1849 mutex_init(&fbi->ctrlr_lock); 1850 init_completion(&fbi->disable_done); 1851 1852 return fbi; 1853 } 1854 1855 #ifdef CONFIG_FB_PXA_PARAMETERS 1856 static int parse_opt_mode(struct device *dev, const char *this_opt) 1857 { 1858 struct pxafb_mach_info *inf = dev_get_platdata(dev); 1859 1860 const char *name = this_opt+5; 1861 unsigned int namelen = strlen(name); 1862 int res_specified = 0, bpp_specified = 0; 1863 unsigned int xres = 0, yres = 0, bpp = 0; 1864 int yres_specified = 0; 1865 int i; 1866 for (i = namelen-1; i >= 0; i--) { 1867 switch (name[i]) { 1868 case '-': 1869 namelen = i; 1870 if (!bpp_specified && !yres_specified) { 1871 bpp = simple_strtoul(&name[i+1], NULL, 0); 1872 bpp_specified = 1; 1873 } else 1874 goto done; 1875 break; 1876 case 'x': 1877 if (!yres_specified) { 1878 yres = simple_strtoul(&name[i+1], NULL, 0); 1879 yres_specified = 1; 1880 } else 1881 goto done; 1882 break; 1883 case '0' ... '9': 1884 break; 1885 default: 1886 goto done; 1887 } 1888 } 1889 if (i < 0 && yres_specified) { 1890 xres = simple_strtoul(name, NULL, 0); 1891 res_specified = 1; 1892 } 1893 done: 1894 if (res_specified) { 1895 dev_info(dev, "overriding resolution: %dx%d\n", xres, yres); 1896 inf->modes[0].xres = xres; inf->modes[0].yres = yres; 1897 } 1898 if (bpp_specified) 1899 switch (bpp) { 1900 case 1: 1901 case 2: 1902 case 4: 1903 case 8: 1904 case 16: 1905 inf->modes[0].bpp = bpp; 1906 dev_info(dev, "overriding bit depth: %d\n", bpp); 1907 break; 1908 default: 1909 dev_err(dev, "Depth %d is not valid\n", bpp); 1910 return -EINVAL; 1911 } 1912 return 0; 1913 } 1914 1915 static int parse_opt(struct device *dev, char *this_opt) 1916 { 1917 struct pxafb_mach_info *inf = dev_get_platdata(dev); 1918 struct pxafb_mode_info *mode = &inf->modes[0]; 1919 char s[64]; 1920 1921 s[0] = '\0'; 1922 1923 if (!strncmp(this_opt, "vmem:", 5)) { 1924 video_mem_size = memparse(this_opt + 5, NULL); 1925 } else if (!strncmp(this_opt, "mode:", 5)) { 1926 return parse_opt_mode(dev, this_opt); 1927 } else if (!strncmp(this_opt, "pixclock:", 9)) { 1928 mode->pixclock = simple_strtoul(this_opt+9, NULL, 0); 1929 sprintf(s, "pixclock: %ld\n", mode->pixclock); 1930 } else if (!strncmp(this_opt, "left:", 5)) { 1931 mode->left_margin = simple_strtoul(this_opt+5, NULL, 0); 1932 sprintf(s, "left: %u\n", mode->left_margin); 1933 } else if (!strncmp(this_opt, "right:", 6)) { 1934 mode->right_margin = simple_strtoul(this_opt+6, NULL, 0); 1935 sprintf(s, "right: %u\n", mode->right_margin); 1936 } else if (!strncmp(this_opt, "upper:", 6)) { 1937 mode->upper_margin = simple_strtoul(this_opt+6, NULL, 0); 1938 sprintf(s, "upper: %u\n", mode->upper_margin); 1939 } else if (!strncmp(this_opt, "lower:", 6)) { 1940 mode->lower_margin = simple_strtoul(this_opt+6, NULL, 0); 1941 sprintf(s, "lower: %u\n", mode->lower_margin); 1942 } else if (!strncmp(this_opt, "hsynclen:", 9)) { 1943 mode->hsync_len = simple_strtoul(this_opt+9, NULL, 0); 1944 sprintf(s, "hsynclen: %u\n", mode->hsync_len); 1945 } else if (!strncmp(this_opt, "vsynclen:", 9)) { 1946 mode->vsync_len = simple_strtoul(this_opt+9, NULL, 0); 1947 sprintf(s, "vsynclen: %u\n", mode->vsync_len); 1948 } else if (!strncmp(this_opt, "hsync:", 6)) { 1949 if (simple_strtoul(this_opt+6, NULL, 0) == 0) { 1950 sprintf(s, "hsync: Active Low\n"); 1951 mode->sync &= ~FB_SYNC_HOR_HIGH_ACT; 1952 } else { 1953 sprintf(s, "hsync: Active High\n"); 1954 mode->sync |= FB_SYNC_HOR_HIGH_ACT; 1955 } 1956 } else if (!strncmp(this_opt, "vsync:", 6)) { 1957 if (simple_strtoul(this_opt+6, NULL, 0) == 0) { 1958 sprintf(s, "vsync: Active Low\n"); 1959 mode->sync &= ~FB_SYNC_VERT_HIGH_ACT; 1960 } else { 1961 sprintf(s, "vsync: Active High\n"); 1962 mode->sync |= FB_SYNC_VERT_HIGH_ACT; 1963 } 1964 } else if (!strncmp(this_opt, "dpc:", 4)) { 1965 if (simple_strtoul(this_opt+4, NULL, 0) == 0) { 1966 sprintf(s, "double pixel clock: false\n"); 1967 inf->lccr3 &= ~LCCR3_DPC; 1968 } else { 1969 sprintf(s, "double pixel clock: true\n"); 1970 inf->lccr3 |= LCCR3_DPC; 1971 } 1972 } else if (!strncmp(this_opt, "outputen:", 9)) { 1973 if (simple_strtoul(this_opt+9, NULL, 0) == 0) { 1974 sprintf(s, "output enable: active low\n"); 1975 inf->lccr3 = (inf->lccr3 & ~LCCR3_OEP) | LCCR3_OutEnL; 1976 } else { 1977 sprintf(s, "output enable: active high\n"); 1978 inf->lccr3 = (inf->lccr3 & ~LCCR3_OEP) | LCCR3_OutEnH; 1979 } 1980 } else if (!strncmp(this_opt, "pixclockpol:", 12)) { 1981 if (simple_strtoul(this_opt+12, NULL, 0) == 0) { 1982 sprintf(s, "pixel clock polarity: falling edge\n"); 1983 inf->lccr3 = (inf->lccr3 & ~LCCR3_PCP) | LCCR3_PixFlEdg; 1984 } else { 1985 sprintf(s, "pixel clock polarity: rising edge\n"); 1986 inf->lccr3 = (inf->lccr3 & ~LCCR3_PCP) | LCCR3_PixRsEdg; 1987 } 1988 } else if (!strncmp(this_opt, "color", 5)) { 1989 inf->lccr0 = (inf->lccr0 & ~LCCR0_CMS) | LCCR0_Color; 1990 } else if (!strncmp(this_opt, "mono", 4)) { 1991 inf->lccr0 = (inf->lccr0 & ~LCCR0_CMS) | LCCR0_Mono; 1992 } else if (!strncmp(this_opt, "active", 6)) { 1993 inf->lccr0 = (inf->lccr0 & ~LCCR0_PAS) | LCCR0_Act; 1994 } else if (!strncmp(this_opt, "passive", 7)) { 1995 inf->lccr0 = (inf->lccr0 & ~LCCR0_PAS) | LCCR0_Pas; 1996 } else if (!strncmp(this_opt, "single", 6)) { 1997 inf->lccr0 = (inf->lccr0 & ~LCCR0_SDS) | LCCR0_Sngl; 1998 } else if (!strncmp(this_opt, "dual", 4)) { 1999 inf->lccr0 = (inf->lccr0 & ~LCCR0_SDS) | LCCR0_Dual; 2000 } else if (!strncmp(this_opt, "4pix", 4)) { 2001 inf->lccr0 = (inf->lccr0 & ~LCCR0_DPD) | LCCR0_4PixMono; 2002 } else if (!strncmp(this_opt, "8pix", 4)) { 2003 inf->lccr0 = (inf->lccr0 & ~LCCR0_DPD) | LCCR0_8PixMono; 2004 } else { 2005 dev_err(dev, "unknown option: %s\n", this_opt); 2006 return -EINVAL; 2007 } 2008 2009 if (s[0] != '\0') 2010 dev_info(dev, "override %s", s); 2011 2012 return 0; 2013 } 2014 2015 static int pxafb_parse_options(struct device *dev, char *options) 2016 { 2017 char *this_opt; 2018 int ret; 2019 2020 if (!options || !*options) 2021 return 0; 2022 2023 dev_dbg(dev, "options are \"%s\"\n", options ? options : "null"); 2024 2025 /* could be made table driven or similar?... */ 2026 while ((this_opt = strsep(&options, ",")) != NULL) { 2027 ret = parse_opt(dev, this_opt); 2028 if (ret) 2029 return ret; 2030 } 2031 return 0; 2032 } 2033 2034 static char g_options[256] = ""; 2035 2036 #ifndef MODULE 2037 static int __init pxafb_setup_options(void) 2038 { 2039 char *options = NULL; 2040 2041 if (fb_get_options("pxafb", &options)) 2042 return -ENODEV; 2043 2044 if (options) 2045 strlcpy(g_options, options, sizeof(g_options)); 2046 2047 return 0; 2048 } 2049 #else 2050 #define pxafb_setup_options() (0) 2051 2052 module_param_string(options, g_options, sizeof(g_options), 0); 2053 MODULE_PARM_DESC(options, "LCD parameters (see Documentation/fb/pxafb.txt)"); 2054 #endif 2055 2056 #else 2057 #define pxafb_parse_options(...) (0) 2058 #define pxafb_setup_options() (0) 2059 #endif 2060 2061 #ifdef DEBUG_VAR 2062 /* Check for various illegal bit-combinations. Currently only 2063 * a warning is given. */ 2064 static void pxafb_check_options(struct device *dev, struct pxafb_mach_info *inf) 2065 { 2066 if (inf->lcd_conn) 2067 return; 2068 2069 if (inf->lccr0 & LCCR0_INVALID_CONFIG_MASK) 2070 dev_warn(dev, "machine LCCR0 setting contains " 2071 "illegal bits: %08x\n", 2072 inf->lccr0 & LCCR0_INVALID_CONFIG_MASK); 2073 if (inf->lccr3 & LCCR3_INVALID_CONFIG_MASK) 2074 dev_warn(dev, "machine LCCR3 setting contains " 2075 "illegal bits: %08x\n", 2076 inf->lccr3 & LCCR3_INVALID_CONFIG_MASK); 2077 if (inf->lccr0 & LCCR0_DPD && 2078 ((inf->lccr0 & LCCR0_PAS) != LCCR0_Pas || 2079 (inf->lccr0 & LCCR0_SDS) != LCCR0_Sngl || 2080 (inf->lccr0 & LCCR0_CMS) != LCCR0_Mono)) 2081 dev_warn(dev, "Double Pixel Data (DPD) mode is " 2082 "only valid in passive mono" 2083 " single panel mode\n"); 2084 if ((inf->lccr0 & LCCR0_PAS) == LCCR0_Act && 2085 (inf->lccr0 & LCCR0_SDS) == LCCR0_Dual) 2086 dev_warn(dev, "Dual panel only valid in passive mode\n"); 2087 if ((inf->lccr0 & LCCR0_PAS) == LCCR0_Pas && 2088 (inf->modes->upper_margin || inf->modes->lower_margin)) 2089 dev_warn(dev, "Upper and lower margins must be 0 in " 2090 "passive mode\n"); 2091 } 2092 #else 2093 #define pxafb_check_options(...) do {} while (0) 2094 #endif 2095 2096 static int pxafb_probe(struct platform_device *dev) 2097 { 2098 struct pxafb_info *fbi; 2099 struct pxafb_mach_info *inf; 2100 struct resource *r; 2101 int irq, ret; 2102 2103 dev_dbg(&dev->dev, "pxafb_probe\n"); 2104 2105 inf = dev_get_platdata(&dev->dev); 2106 ret = -ENOMEM; 2107 fbi = NULL; 2108 if (!inf) 2109 goto failed; 2110 2111 ret = pxafb_parse_options(&dev->dev, g_options); 2112 if (ret < 0) 2113 goto failed; 2114 2115 pxafb_check_options(&dev->dev, inf); 2116 2117 dev_dbg(&dev->dev, "got a %dx%dx%d LCD\n", 2118 inf->modes->xres, 2119 inf->modes->yres, 2120 inf->modes->bpp); 2121 if (inf->modes->xres == 0 || 2122 inf->modes->yres == 0 || 2123 inf->modes->bpp == 0) { 2124 dev_err(&dev->dev, "Invalid resolution or bit depth\n"); 2125 ret = -EINVAL; 2126 goto failed; 2127 } 2128 2129 fbi = pxafb_init_fbinfo(&dev->dev); 2130 if (!fbi) { 2131 /* only reason for pxafb_init_fbinfo to fail is kmalloc */ 2132 dev_err(&dev->dev, "Failed to initialize framebuffer device\n"); 2133 ret = -ENOMEM; 2134 goto failed; 2135 } 2136 2137 if (cpu_is_pxa3xx() && inf->acceleration_enabled) 2138 fbi->fb.fix.accel = FB_ACCEL_PXA3XX; 2139 2140 fbi->backlight_power = inf->pxafb_backlight_power; 2141 fbi->lcd_power = inf->pxafb_lcd_power; 2142 2143 r = platform_get_resource(dev, IORESOURCE_MEM, 0); 2144 if (r == NULL) { 2145 dev_err(&dev->dev, "no I/O memory resource defined\n"); 2146 ret = -ENODEV; 2147 goto failed_fbi; 2148 } 2149 2150 r = request_mem_region(r->start, resource_size(r), dev->name); 2151 if (r == NULL) { 2152 dev_err(&dev->dev, "failed to request I/O memory\n"); 2153 ret = -EBUSY; 2154 goto failed_fbi; 2155 } 2156 2157 fbi->mmio_base = ioremap(r->start, resource_size(r)); 2158 if (fbi->mmio_base == NULL) { 2159 dev_err(&dev->dev, "failed to map I/O memory\n"); 2160 ret = -EBUSY; 2161 goto failed_free_res; 2162 } 2163 2164 fbi->dma_buff_size = PAGE_ALIGN(sizeof(struct pxafb_dma_buff)); 2165 fbi->dma_buff = dma_alloc_coherent(fbi->dev, fbi->dma_buff_size, 2166 &fbi->dma_buff_phys, GFP_KERNEL); 2167 if (fbi->dma_buff == NULL) { 2168 dev_err(&dev->dev, "failed to allocate memory for DMA\n"); 2169 ret = -ENOMEM; 2170 goto failed_free_io; 2171 } 2172 2173 ret = pxafb_init_video_memory(fbi); 2174 if (ret) { 2175 dev_err(&dev->dev, "Failed to allocate video RAM: %d\n", ret); 2176 ret = -ENOMEM; 2177 goto failed_free_dma; 2178 } 2179 2180 irq = platform_get_irq(dev, 0); 2181 if (irq < 0) { 2182 dev_err(&dev->dev, "no IRQ defined\n"); 2183 ret = -ENODEV; 2184 goto failed_free_mem; 2185 } 2186 2187 ret = request_irq(irq, pxafb_handle_irq, 0, "LCD", fbi); 2188 if (ret) { 2189 dev_err(&dev->dev, "request_irq failed: %d\n", ret); 2190 ret = -EBUSY; 2191 goto failed_free_mem; 2192 } 2193 2194 ret = pxafb_smart_init(fbi); 2195 if (ret) { 2196 dev_err(&dev->dev, "failed to initialize smartpanel\n"); 2197 goto failed_free_irq; 2198 } 2199 2200 /* 2201 * This makes sure that our colour bitfield 2202 * descriptors are correctly initialised. 2203 */ 2204 ret = pxafb_check_var(&fbi->fb.var, &fbi->fb); 2205 if (ret) { 2206 dev_err(&dev->dev, "failed to get suitable mode\n"); 2207 goto failed_free_irq; 2208 } 2209 2210 ret = pxafb_set_par(&fbi->fb); 2211 if (ret) { 2212 dev_err(&dev->dev, "Failed to set parameters\n"); 2213 goto failed_free_irq; 2214 } 2215 2216 platform_set_drvdata(dev, fbi); 2217 2218 ret = register_framebuffer(&fbi->fb); 2219 if (ret < 0) { 2220 dev_err(&dev->dev, 2221 "Failed to register framebuffer device: %d\n", ret); 2222 goto failed_free_cmap; 2223 } 2224 2225 pxafb_overlay_init(fbi); 2226 2227 #ifdef CONFIG_CPU_FREQ 2228 fbi->freq_transition.notifier_call = pxafb_freq_transition; 2229 fbi->freq_policy.notifier_call = pxafb_freq_policy; 2230 cpufreq_register_notifier(&fbi->freq_transition, 2231 CPUFREQ_TRANSITION_NOTIFIER); 2232 cpufreq_register_notifier(&fbi->freq_policy, 2233 CPUFREQ_POLICY_NOTIFIER); 2234 #endif 2235 2236 /* 2237 * Ok, now enable the LCD controller 2238 */ 2239 set_ctrlr_state(fbi, C_ENABLE); 2240 2241 return 0; 2242 2243 failed_free_cmap: 2244 if (fbi->fb.cmap.len) 2245 fb_dealloc_cmap(&fbi->fb.cmap); 2246 failed_free_irq: 2247 free_irq(irq, fbi); 2248 failed_free_mem: 2249 free_pages_exact(fbi->video_mem, fbi->video_mem_size); 2250 failed_free_dma: 2251 dma_free_coherent(&dev->dev, fbi->dma_buff_size, 2252 fbi->dma_buff, fbi->dma_buff_phys); 2253 failed_free_io: 2254 iounmap(fbi->mmio_base); 2255 failed_free_res: 2256 release_mem_region(r->start, resource_size(r)); 2257 failed_fbi: 2258 clk_put(fbi->clk); 2259 kfree(fbi); 2260 failed: 2261 return ret; 2262 } 2263 2264 static int pxafb_remove(struct platform_device *dev) 2265 { 2266 struct pxafb_info *fbi = platform_get_drvdata(dev); 2267 struct resource *r; 2268 int irq; 2269 struct fb_info *info; 2270 2271 if (!fbi) 2272 return 0; 2273 2274 info = &fbi->fb; 2275 2276 pxafb_overlay_exit(fbi); 2277 unregister_framebuffer(info); 2278 2279 pxafb_disable_controller(fbi); 2280 2281 if (fbi->fb.cmap.len) 2282 fb_dealloc_cmap(&fbi->fb.cmap); 2283 2284 irq = platform_get_irq(dev, 0); 2285 free_irq(irq, fbi); 2286 2287 free_pages_exact(fbi->video_mem, fbi->video_mem_size); 2288 2289 dma_free_writecombine(&dev->dev, fbi->dma_buff_size, 2290 fbi->dma_buff, fbi->dma_buff_phys); 2291 2292 iounmap(fbi->mmio_base); 2293 2294 r = platform_get_resource(dev, IORESOURCE_MEM, 0); 2295 release_mem_region(r->start, resource_size(r)); 2296 2297 clk_put(fbi->clk); 2298 kfree(fbi); 2299 2300 return 0; 2301 } 2302 2303 static struct platform_driver pxafb_driver = { 2304 .probe = pxafb_probe, 2305 .remove = pxafb_remove, 2306 .driver = { 2307 .owner = THIS_MODULE, 2308 .name = "pxa2xx-fb", 2309 #ifdef CONFIG_PM 2310 .pm = &pxafb_pm_ops, 2311 #endif 2312 }, 2313 }; 2314 2315 static int __init pxafb_init(void) 2316 { 2317 if (pxafb_setup_options()) 2318 return -EINVAL; 2319 2320 return platform_driver_register(&pxafb_driver); 2321 } 2322 2323 static void __exit pxafb_exit(void) 2324 { 2325 platform_driver_unregister(&pxafb_driver); 2326 } 2327 2328 module_init(pxafb_init); 2329 module_exit(pxafb_exit); 2330 2331 MODULE_DESCRIPTION("loadable framebuffer driver for PXA"); 2332 MODULE_LICENSE("GPL"); 2333