xref: /openbmc/linux/drivers/video/fbdev/pxafb.c (revision 5e29a910)
1 /*
2  *  linux/drivers/video/pxafb.c
3  *
4  *  Copyright (C) 1999 Eric A. Thomas.
5  *  Copyright (C) 2004 Jean-Frederic Clere.
6  *  Copyright (C) 2004 Ian Campbell.
7  *  Copyright (C) 2004 Jeff Lackey.
8  *   Based on sa1100fb.c Copyright (C) 1999 Eric A. Thomas
9  *  which in turn is
10  *   Based on acornfb.c Copyright (C) Russell King.
11  *
12  * This file is subject to the terms and conditions of the GNU General Public
13  * License.  See the file COPYING in the main directory of this archive for
14  * more details.
15  *
16  *	        Intel PXA250/210 LCD Controller Frame Buffer Driver
17  *
18  * Please direct your questions and comments on this driver to the following
19  * email address:
20  *
21  *	linux-arm-kernel@lists.arm.linux.org.uk
22  *
23  * Add support for overlay1 and overlay2 based on pxafb_overlay.c:
24  *
25  *   Copyright (C) 2004, Intel Corporation
26  *
27  *     2003/08/27: <yu.tang@intel.com>
28  *     2004/03/10: <stanley.cai@intel.com>
29  *     2004/10/28: <yan.yin@intel.com>
30  *
31  *   Copyright (C) 2006-2008 Marvell International Ltd.
32  *   All Rights Reserved
33  */
34 
35 #include <linux/module.h>
36 #include <linux/moduleparam.h>
37 #include <linux/kernel.h>
38 #include <linux/sched.h>
39 #include <linux/errno.h>
40 #include <linux/string.h>
41 #include <linux/interrupt.h>
42 #include <linux/slab.h>
43 #include <linux/mm.h>
44 #include <linux/fb.h>
45 #include <linux/delay.h>
46 #include <linux/init.h>
47 #include <linux/ioport.h>
48 #include <linux/cpufreq.h>
49 #include <linux/platform_device.h>
50 #include <linux/dma-mapping.h>
51 #include <linux/clk.h>
52 #include <linux/err.h>
53 #include <linux/completion.h>
54 #include <linux/mutex.h>
55 #include <linux/kthread.h>
56 #include <linux/freezer.h>
57 #include <linux/console.h>
58 
59 #include <mach/hardware.h>
60 #include <asm/io.h>
61 #include <asm/irq.h>
62 #include <asm/div64.h>
63 #include <mach/bitfield.h>
64 #include <linux/platform_data/video-pxafb.h>
65 
66 /*
67  * Complain if VAR is out of range.
68  */
69 #define DEBUG_VAR 1
70 
71 #include "pxafb.h"
72 
73 /* Bits which should not be set in machine configuration structures */
74 #define LCCR0_INVALID_CONFIG_MASK	(LCCR0_OUM | LCCR0_BM | LCCR0_QDM |\
75 					 LCCR0_DIS | LCCR0_EFM | LCCR0_IUM |\
76 					 LCCR0_SFM | LCCR0_LDM | LCCR0_ENB)
77 
78 #define LCCR3_INVALID_CONFIG_MASK	(LCCR3_HSP | LCCR3_VSP |\
79 					 LCCR3_PCD | LCCR3_BPP(0xf))
80 
81 static int pxafb_activate_var(struct fb_var_screeninfo *var,
82 				struct pxafb_info *);
83 static void set_ctrlr_state(struct pxafb_info *fbi, u_int state);
84 static void setup_base_frame(struct pxafb_info *fbi,
85                              struct fb_var_screeninfo *var, int branch);
86 static int setup_frame_dma(struct pxafb_info *fbi, int dma, int pal,
87 			   unsigned long offset, size_t size);
88 
89 static unsigned long video_mem_size = 0;
90 
91 static inline unsigned long
92 lcd_readl(struct pxafb_info *fbi, unsigned int off)
93 {
94 	return __raw_readl(fbi->mmio_base + off);
95 }
96 
97 static inline void
98 lcd_writel(struct pxafb_info *fbi, unsigned int off, unsigned long val)
99 {
100 	__raw_writel(val, fbi->mmio_base + off);
101 }
102 
103 static inline void pxafb_schedule_work(struct pxafb_info *fbi, u_int state)
104 {
105 	unsigned long flags;
106 
107 	local_irq_save(flags);
108 	/*
109 	 * We need to handle two requests being made at the same time.
110 	 * There are two important cases:
111 	 *  1. When we are changing VT (C_REENABLE) while unblanking
112 	 *     (C_ENABLE) We must perform the unblanking, which will
113 	 *     do our REENABLE for us.
114 	 *  2. When we are blanking, but immediately unblank before
115 	 *     we have blanked.  We do the "REENABLE" thing here as
116 	 *     well, just to be sure.
117 	 */
118 	if (fbi->task_state == C_ENABLE && state == C_REENABLE)
119 		state = (u_int) -1;
120 	if (fbi->task_state == C_DISABLE && state == C_ENABLE)
121 		state = C_REENABLE;
122 
123 	if (state != (u_int)-1) {
124 		fbi->task_state = state;
125 		schedule_work(&fbi->task);
126 	}
127 	local_irq_restore(flags);
128 }
129 
130 static inline u_int chan_to_field(u_int chan, struct fb_bitfield *bf)
131 {
132 	chan &= 0xffff;
133 	chan >>= 16 - bf->length;
134 	return chan << bf->offset;
135 }
136 
137 static int
138 pxafb_setpalettereg(u_int regno, u_int red, u_int green, u_int blue,
139 		       u_int trans, struct fb_info *info)
140 {
141 	struct pxafb_info *fbi = container_of(info, struct pxafb_info, fb);
142 	u_int val;
143 
144 	if (regno >= fbi->palette_size)
145 		return 1;
146 
147 	if (fbi->fb.var.grayscale) {
148 		fbi->palette_cpu[regno] = ((blue >> 8) & 0x00ff);
149 		return 0;
150 	}
151 
152 	switch (fbi->lccr4 & LCCR4_PAL_FOR_MASK) {
153 	case LCCR4_PAL_FOR_0:
154 		val  = ((red   >>  0) & 0xf800);
155 		val |= ((green >>  5) & 0x07e0);
156 		val |= ((blue  >> 11) & 0x001f);
157 		fbi->palette_cpu[regno] = val;
158 		break;
159 	case LCCR4_PAL_FOR_1:
160 		val  = ((red   << 8) & 0x00f80000);
161 		val |= ((green >> 0) & 0x0000fc00);
162 		val |= ((blue  >> 8) & 0x000000f8);
163 		((u32 *)(fbi->palette_cpu))[regno] = val;
164 		break;
165 	case LCCR4_PAL_FOR_2:
166 		val  = ((red   << 8) & 0x00fc0000);
167 		val |= ((green >> 0) & 0x0000fc00);
168 		val |= ((blue  >> 8) & 0x000000fc);
169 		((u32 *)(fbi->palette_cpu))[regno] = val;
170 		break;
171 	case LCCR4_PAL_FOR_3:
172 		val  = ((red   << 8) & 0x00ff0000);
173 		val |= ((green >> 0) & 0x0000ff00);
174 		val |= ((blue  >> 8) & 0x000000ff);
175 		((u32 *)(fbi->palette_cpu))[regno] = val;
176 		break;
177 	}
178 
179 	return 0;
180 }
181 
182 static int
183 pxafb_setcolreg(u_int regno, u_int red, u_int green, u_int blue,
184 		   u_int trans, struct fb_info *info)
185 {
186 	struct pxafb_info *fbi = container_of(info, struct pxafb_info, fb);
187 	unsigned int val;
188 	int ret = 1;
189 
190 	/*
191 	 * If inverse mode was selected, invert all the colours
192 	 * rather than the register number.  The register number
193 	 * is what you poke into the framebuffer to produce the
194 	 * colour you requested.
195 	 */
196 	if (fbi->cmap_inverse) {
197 		red   = 0xffff - red;
198 		green = 0xffff - green;
199 		blue  = 0xffff - blue;
200 	}
201 
202 	/*
203 	 * If greyscale is true, then we convert the RGB value
204 	 * to greyscale no matter what visual we are using.
205 	 */
206 	if (fbi->fb.var.grayscale)
207 		red = green = blue = (19595 * red + 38470 * green +
208 					7471 * blue) >> 16;
209 
210 	switch (fbi->fb.fix.visual) {
211 	case FB_VISUAL_TRUECOLOR:
212 		/*
213 		 * 16-bit True Colour.  We encode the RGB value
214 		 * according to the RGB bitfield information.
215 		 */
216 		if (regno < 16) {
217 			u32 *pal = fbi->fb.pseudo_palette;
218 
219 			val  = chan_to_field(red, &fbi->fb.var.red);
220 			val |= chan_to_field(green, &fbi->fb.var.green);
221 			val |= chan_to_field(blue, &fbi->fb.var.blue);
222 
223 			pal[regno] = val;
224 			ret = 0;
225 		}
226 		break;
227 
228 	case FB_VISUAL_STATIC_PSEUDOCOLOR:
229 	case FB_VISUAL_PSEUDOCOLOR:
230 		ret = pxafb_setpalettereg(regno, red, green, blue, trans, info);
231 		break;
232 	}
233 
234 	return ret;
235 }
236 
237 /* calculate pixel depth, transparency bit included, >=16bpp formats _only_ */
238 static inline int var_to_depth(struct fb_var_screeninfo *var)
239 {
240 	return var->red.length + var->green.length +
241 		var->blue.length + var->transp.length;
242 }
243 
244 /* calculate 4-bit BPP value for LCCR3 and OVLxC1 */
245 static int pxafb_var_to_bpp(struct fb_var_screeninfo *var)
246 {
247 	int bpp = -EINVAL;
248 
249 	switch (var->bits_per_pixel) {
250 	case 1:  bpp = 0; break;
251 	case 2:  bpp = 1; break;
252 	case 4:  bpp = 2; break;
253 	case 8:  bpp = 3; break;
254 	case 16: bpp = 4; break;
255 	case 24:
256 		switch (var_to_depth(var)) {
257 		case 18: bpp = 6; break; /* 18-bits/pixel packed */
258 		case 19: bpp = 8; break; /* 19-bits/pixel packed */
259 		case 24: bpp = 9; break;
260 		}
261 		break;
262 	case 32:
263 		switch (var_to_depth(var)) {
264 		case 18: bpp = 5; break; /* 18-bits/pixel unpacked */
265 		case 19: bpp = 7; break; /* 19-bits/pixel unpacked */
266 		case 25: bpp = 10; break;
267 		}
268 		break;
269 	}
270 	return bpp;
271 }
272 
273 /*
274  *  pxafb_var_to_lccr3():
275  *    Convert a bits per pixel value to the correct bit pattern for LCCR3
276  *
277  *  NOTE: for PXA27x with overlays support, the LCCR3_PDFOR_x bits have an
278  *  implication of the acutal use of transparency bit,  which we handle it
279  *  here separatedly. See PXA27x Developer's Manual, Section <<7.4.6 Pixel
280  *  Formats>> for the valid combination of PDFOR, PAL_FOR for various BPP.
281  *
282  *  Transparency for palette pixel formats is not supported at the moment.
283  */
284 static uint32_t pxafb_var_to_lccr3(struct fb_var_screeninfo *var)
285 {
286 	int bpp = pxafb_var_to_bpp(var);
287 	uint32_t lccr3;
288 
289 	if (bpp < 0)
290 		return 0;
291 
292 	lccr3 = LCCR3_BPP(bpp);
293 
294 	switch (var_to_depth(var)) {
295 	case 16: lccr3 |= var->transp.length ? LCCR3_PDFOR_3 : 0; break;
296 	case 18: lccr3 |= LCCR3_PDFOR_3; break;
297 	case 24: lccr3 |= var->transp.length ? LCCR3_PDFOR_2 : LCCR3_PDFOR_3;
298 		 break;
299 	case 19:
300 	case 25: lccr3 |= LCCR3_PDFOR_0; break;
301 	}
302 	return lccr3;
303 }
304 
305 #define SET_PIXFMT(v, r, g, b, t)				\
306 ({								\
307 	(v)->transp.offset = (t) ? (r) + (g) + (b) : 0;		\
308 	(v)->transp.length = (t) ? (t) : 0;			\
309 	(v)->blue.length   = (b); (v)->blue.offset = 0;		\
310 	(v)->green.length  = (g); (v)->green.offset = (b);	\
311 	(v)->red.length    = (r); (v)->red.offset = (b) + (g);	\
312 })
313 
314 /* set the RGBT bitfields of fb_var_screeninf according to
315  * var->bits_per_pixel and given depth
316  */
317 static void pxafb_set_pixfmt(struct fb_var_screeninfo *var, int depth)
318 {
319 	if (depth == 0)
320 		depth = var->bits_per_pixel;
321 
322 	if (var->bits_per_pixel < 16) {
323 		/* indexed pixel formats */
324 		var->red.offset    = 0; var->red.length    = 8;
325 		var->green.offset  = 0; var->green.length  = 8;
326 		var->blue.offset   = 0; var->blue.length   = 8;
327 		var->transp.offset = 0; var->transp.length = 8;
328 	}
329 
330 	switch (depth) {
331 	case 16: var->transp.length ?
332 		 SET_PIXFMT(var, 5, 5, 5, 1) :		/* RGBT555 */
333 		 SET_PIXFMT(var, 5, 6, 5, 0); break;	/* RGB565 */
334 	case 18: SET_PIXFMT(var, 6, 6, 6, 0); break;	/* RGB666 */
335 	case 19: SET_PIXFMT(var, 6, 6, 6, 1); break;	/* RGBT666 */
336 	case 24: var->transp.length ?
337 		 SET_PIXFMT(var, 8, 8, 7, 1) :		/* RGBT887 */
338 		 SET_PIXFMT(var, 8, 8, 8, 0); break;	/* RGB888 */
339 	case 25: SET_PIXFMT(var, 8, 8, 8, 1); break;	/* RGBT888 */
340 	}
341 }
342 
343 #ifdef CONFIG_CPU_FREQ
344 /*
345  *  pxafb_display_dma_period()
346  *    Calculate the minimum period (in picoseconds) between two DMA
347  *    requests for the LCD controller.  If we hit this, it means we're
348  *    doing nothing but LCD DMA.
349  */
350 static unsigned int pxafb_display_dma_period(struct fb_var_screeninfo *var)
351 {
352 	/*
353 	 * Period = pixclock * bits_per_byte * bytes_per_transfer
354 	 *              / memory_bits_per_pixel;
355 	 */
356 	return var->pixclock * 8 * 16 / var->bits_per_pixel;
357 }
358 #endif
359 
360 /*
361  * Select the smallest mode that allows the desired resolution to be
362  * displayed. If desired parameters can be rounded up.
363  */
364 static struct pxafb_mode_info *pxafb_getmode(struct pxafb_mach_info *mach,
365 					     struct fb_var_screeninfo *var)
366 {
367 	struct pxafb_mode_info *mode = NULL;
368 	struct pxafb_mode_info *modelist = mach->modes;
369 	unsigned int best_x = 0xffffffff, best_y = 0xffffffff;
370 	unsigned int i;
371 
372 	for (i = 0; i < mach->num_modes; i++) {
373 		if (modelist[i].xres >= var->xres &&
374 		    modelist[i].yres >= var->yres &&
375 		    modelist[i].xres < best_x &&
376 		    modelist[i].yres < best_y &&
377 		    modelist[i].bpp >= var->bits_per_pixel) {
378 			best_x = modelist[i].xres;
379 			best_y = modelist[i].yres;
380 			mode = &modelist[i];
381 		}
382 	}
383 
384 	return mode;
385 }
386 
387 static void pxafb_setmode(struct fb_var_screeninfo *var,
388 			  struct pxafb_mode_info *mode)
389 {
390 	var->xres		= mode->xres;
391 	var->yres		= mode->yres;
392 	var->bits_per_pixel	= mode->bpp;
393 	var->pixclock		= mode->pixclock;
394 	var->hsync_len		= mode->hsync_len;
395 	var->left_margin	= mode->left_margin;
396 	var->right_margin	= mode->right_margin;
397 	var->vsync_len		= mode->vsync_len;
398 	var->upper_margin	= mode->upper_margin;
399 	var->lower_margin	= mode->lower_margin;
400 	var->sync		= mode->sync;
401 	var->grayscale		= mode->cmap_greyscale;
402 	var->transp.length	= mode->transparency;
403 
404 	/* set the initial RGBA bitfields */
405 	pxafb_set_pixfmt(var, mode->depth);
406 }
407 
408 static int pxafb_adjust_timing(struct pxafb_info *fbi,
409 			       struct fb_var_screeninfo *var)
410 {
411 	int line_length;
412 
413 	var->xres = max_t(int, var->xres, MIN_XRES);
414 	var->yres = max_t(int, var->yres, MIN_YRES);
415 
416 	if (!(fbi->lccr0 & LCCR0_LCDT)) {
417 		clamp_val(var->hsync_len, 1, 64);
418 		clamp_val(var->vsync_len, 1, 64);
419 		clamp_val(var->left_margin,  1, 255);
420 		clamp_val(var->right_margin, 1, 255);
421 		clamp_val(var->upper_margin, 1, 255);
422 		clamp_val(var->lower_margin, 1, 255);
423 	}
424 
425 	/* make sure each line is aligned on word boundary */
426 	line_length = var->xres * var->bits_per_pixel / 8;
427 	line_length = ALIGN(line_length, 4);
428 	var->xres = line_length * 8 / var->bits_per_pixel;
429 
430 	/* we don't support xpan, force xres_virtual to be equal to xres */
431 	var->xres_virtual = var->xres;
432 
433 	if (var->accel_flags & FB_ACCELF_TEXT)
434 		var->yres_virtual = fbi->fb.fix.smem_len / line_length;
435 	else
436 		var->yres_virtual = max(var->yres_virtual, var->yres);
437 
438 	/* check for limits */
439 	if (var->xres > MAX_XRES || var->yres > MAX_YRES)
440 		return -EINVAL;
441 
442 	if (var->yres > var->yres_virtual)
443 		return -EINVAL;
444 
445 	return 0;
446 }
447 
448 /*
449  *  pxafb_check_var():
450  *    Get the video params out of 'var'. If a value doesn't fit, round it up,
451  *    if it's too big, return -EINVAL.
452  *
453  *    Round up in the following order: bits_per_pixel, xres,
454  *    yres, xres_virtual, yres_virtual, xoffset, yoffset, grayscale,
455  *    bitfields, horizontal timing, vertical timing.
456  */
457 static int pxafb_check_var(struct fb_var_screeninfo *var, struct fb_info *info)
458 {
459 	struct pxafb_info *fbi = container_of(info, struct pxafb_info, fb);
460 	struct pxafb_mach_info *inf = dev_get_platdata(fbi->dev);
461 	int err;
462 
463 	if (inf->fixed_modes) {
464 		struct pxafb_mode_info *mode;
465 
466 		mode = pxafb_getmode(inf, var);
467 		if (!mode)
468 			return -EINVAL;
469 		pxafb_setmode(var, mode);
470 	}
471 
472 	/* do a test conversion to BPP fields to check the color formats */
473 	err = pxafb_var_to_bpp(var);
474 	if (err < 0)
475 		return err;
476 
477 	pxafb_set_pixfmt(var, var_to_depth(var));
478 
479 	err = pxafb_adjust_timing(fbi, var);
480 	if (err)
481 		return err;
482 
483 #ifdef CONFIG_CPU_FREQ
484 	pr_debug("pxafb: dma period = %d ps\n",
485 		 pxafb_display_dma_period(var));
486 #endif
487 
488 	return 0;
489 }
490 
491 /*
492  * pxafb_set_par():
493  *	Set the user defined part of the display for the specified console
494  */
495 static int pxafb_set_par(struct fb_info *info)
496 {
497 	struct pxafb_info *fbi = container_of(info, struct pxafb_info, fb);
498 	struct fb_var_screeninfo *var = &info->var;
499 
500 	if (var->bits_per_pixel >= 16)
501 		fbi->fb.fix.visual = FB_VISUAL_TRUECOLOR;
502 	else if (!fbi->cmap_static)
503 		fbi->fb.fix.visual = FB_VISUAL_PSEUDOCOLOR;
504 	else {
505 		/*
506 		 * Some people have weird ideas about wanting static
507 		 * pseudocolor maps.  I suspect their user space
508 		 * applications are broken.
509 		 */
510 		fbi->fb.fix.visual = FB_VISUAL_STATIC_PSEUDOCOLOR;
511 	}
512 
513 	fbi->fb.fix.line_length = var->xres_virtual *
514 				  var->bits_per_pixel / 8;
515 	if (var->bits_per_pixel >= 16)
516 		fbi->palette_size = 0;
517 	else
518 		fbi->palette_size = var->bits_per_pixel == 1 ?
519 					4 : 1 << var->bits_per_pixel;
520 
521 	fbi->palette_cpu = (u16 *)&fbi->dma_buff->palette[0];
522 
523 	if (fbi->fb.var.bits_per_pixel >= 16)
524 		fb_dealloc_cmap(&fbi->fb.cmap);
525 	else
526 		fb_alloc_cmap(&fbi->fb.cmap, 1<<fbi->fb.var.bits_per_pixel, 0);
527 
528 	pxafb_activate_var(var, fbi);
529 
530 	return 0;
531 }
532 
533 static int pxafb_pan_display(struct fb_var_screeninfo *var,
534 			     struct fb_info *info)
535 {
536 	struct pxafb_info *fbi = container_of(info, struct pxafb_info, fb);
537 	struct fb_var_screeninfo newvar;
538 	int dma = DMA_MAX + DMA_BASE;
539 
540 	if (fbi->state != C_ENABLE)
541 		return 0;
542 
543 	/* Only take .xoffset, .yoffset and .vmode & FB_VMODE_YWRAP from what
544 	 * was passed in and copy the rest from the old screeninfo.
545 	 */
546 	memcpy(&newvar, &fbi->fb.var, sizeof(newvar));
547 	newvar.xoffset = var->xoffset;
548 	newvar.yoffset = var->yoffset;
549 	newvar.vmode &= ~FB_VMODE_YWRAP;
550 	newvar.vmode |= var->vmode & FB_VMODE_YWRAP;
551 
552 	setup_base_frame(fbi, &newvar, 1);
553 
554 	if (fbi->lccr0 & LCCR0_SDS)
555 		lcd_writel(fbi, FBR1, fbi->fdadr[dma + 1] | 0x1);
556 
557 	lcd_writel(fbi, FBR0, fbi->fdadr[dma] | 0x1);
558 	return 0;
559 }
560 
561 /*
562  * pxafb_blank():
563  *	Blank the display by setting all palette values to zero.  Note, the
564  * 	16 bpp mode does not really use the palette, so this will not
565  *      blank the display in all modes.
566  */
567 static int pxafb_blank(int blank, struct fb_info *info)
568 {
569 	struct pxafb_info *fbi = container_of(info, struct pxafb_info, fb);
570 	int i;
571 
572 	switch (blank) {
573 	case FB_BLANK_POWERDOWN:
574 	case FB_BLANK_VSYNC_SUSPEND:
575 	case FB_BLANK_HSYNC_SUSPEND:
576 	case FB_BLANK_NORMAL:
577 		if (fbi->fb.fix.visual == FB_VISUAL_PSEUDOCOLOR ||
578 		    fbi->fb.fix.visual == FB_VISUAL_STATIC_PSEUDOCOLOR)
579 			for (i = 0; i < fbi->palette_size; i++)
580 				pxafb_setpalettereg(i, 0, 0, 0, 0, info);
581 
582 		pxafb_schedule_work(fbi, C_DISABLE);
583 		/* TODO if (pxafb_blank_helper) pxafb_blank_helper(blank); */
584 		break;
585 
586 	case FB_BLANK_UNBLANK:
587 		/* TODO if (pxafb_blank_helper) pxafb_blank_helper(blank); */
588 		if (fbi->fb.fix.visual == FB_VISUAL_PSEUDOCOLOR ||
589 		    fbi->fb.fix.visual == FB_VISUAL_STATIC_PSEUDOCOLOR)
590 			fb_set_cmap(&fbi->fb.cmap, info);
591 		pxafb_schedule_work(fbi, C_ENABLE);
592 	}
593 	return 0;
594 }
595 
596 static struct fb_ops pxafb_ops = {
597 	.owner		= THIS_MODULE,
598 	.fb_check_var	= pxafb_check_var,
599 	.fb_set_par	= pxafb_set_par,
600 	.fb_pan_display	= pxafb_pan_display,
601 	.fb_setcolreg	= pxafb_setcolreg,
602 	.fb_fillrect	= cfb_fillrect,
603 	.fb_copyarea	= cfb_copyarea,
604 	.fb_imageblit	= cfb_imageblit,
605 	.fb_blank	= pxafb_blank,
606 };
607 
608 #ifdef CONFIG_FB_PXA_OVERLAY
609 static void overlay1fb_setup(struct pxafb_layer *ofb)
610 {
611 	int size = ofb->fb.fix.line_length * ofb->fb.var.yres_virtual;
612 	unsigned long start = ofb->video_mem_phys;
613 	setup_frame_dma(ofb->fbi, DMA_OV1, PAL_NONE, start, size);
614 }
615 
616 /* Depending on the enable status of overlay1/2, the DMA should be
617  * updated from FDADRx (when disabled) or FBRx (when enabled).
618  */
619 static void overlay1fb_enable(struct pxafb_layer *ofb)
620 {
621 	int enabled = lcd_readl(ofb->fbi, OVL1C1) & OVLxC1_OEN;
622 	uint32_t fdadr1 = ofb->fbi->fdadr[DMA_OV1] | (enabled ? 0x1 : 0);
623 
624 	lcd_writel(ofb->fbi, enabled ? FBR1 : FDADR1, fdadr1);
625 	lcd_writel(ofb->fbi, OVL1C2, ofb->control[1]);
626 	lcd_writel(ofb->fbi, OVL1C1, ofb->control[0] | OVLxC1_OEN);
627 }
628 
629 static void overlay1fb_disable(struct pxafb_layer *ofb)
630 {
631 	uint32_t lccr5;
632 
633 	if (!(lcd_readl(ofb->fbi, OVL1C1) & OVLxC1_OEN))
634 		return;
635 
636 	lccr5 = lcd_readl(ofb->fbi, LCCR5);
637 
638 	lcd_writel(ofb->fbi, OVL1C1, ofb->control[0] & ~OVLxC1_OEN);
639 
640 	lcd_writel(ofb->fbi, LCSR1, LCSR1_BS(1));
641 	lcd_writel(ofb->fbi, LCCR5, lccr5 & ~LCSR1_BS(1));
642 	lcd_writel(ofb->fbi, FBR1, ofb->fbi->fdadr[DMA_OV1] | 0x3);
643 
644 	if (wait_for_completion_timeout(&ofb->branch_done, 1 * HZ) == 0)
645 		pr_warning("%s: timeout disabling overlay1\n", __func__);
646 
647 	lcd_writel(ofb->fbi, LCCR5, lccr5);
648 }
649 
650 static void overlay2fb_setup(struct pxafb_layer *ofb)
651 {
652 	int size, div = 1, pfor = NONSTD_TO_PFOR(ofb->fb.var.nonstd);
653 	unsigned long start[3] = { ofb->video_mem_phys, 0, 0 };
654 
655 	if (pfor == OVERLAY_FORMAT_RGB || pfor == OVERLAY_FORMAT_YUV444_PACKED) {
656 		size = ofb->fb.fix.line_length * ofb->fb.var.yres_virtual;
657 		setup_frame_dma(ofb->fbi, DMA_OV2_Y, -1, start[0], size);
658 	} else {
659 		size = ofb->fb.var.xres_virtual * ofb->fb.var.yres_virtual;
660 		switch (pfor) {
661 		case OVERLAY_FORMAT_YUV444_PLANAR: div = 1; break;
662 		case OVERLAY_FORMAT_YUV422_PLANAR: div = 2; break;
663 		case OVERLAY_FORMAT_YUV420_PLANAR: div = 4; break;
664 		}
665 		start[1] = start[0] + size;
666 		start[2] = start[1] + size / div;
667 		setup_frame_dma(ofb->fbi, DMA_OV2_Y,  -1, start[0], size);
668 		setup_frame_dma(ofb->fbi, DMA_OV2_Cb, -1, start[1], size / div);
669 		setup_frame_dma(ofb->fbi, DMA_OV2_Cr, -1, start[2], size / div);
670 	}
671 }
672 
673 static void overlay2fb_enable(struct pxafb_layer *ofb)
674 {
675 	int pfor = NONSTD_TO_PFOR(ofb->fb.var.nonstd);
676 	int enabled = lcd_readl(ofb->fbi, OVL2C1) & OVLxC1_OEN;
677 	uint32_t fdadr2 = ofb->fbi->fdadr[DMA_OV2_Y]  | (enabled ? 0x1 : 0);
678 	uint32_t fdadr3 = ofb->fbi->fdadr[DMA_OV2_Cb] | (enabled ? 0x1 : 0);
679 	uint32_t fdadr4 = ofb->fbi->fdadr[DMA_OV2_Cr] | (enabled ? 0x1 : 0);
680 
681 	if (pfor == OVERLAY_FORMAT_RGB || pfor == OVERLAY_FORMAT_YUV444_PACKED)
682 		lcd_writel(ofb->fbi, enabled ? FBR2 : FDADR2, fdadr2);
683 	else {
684 		lcd_writel(ofb->fbi, enabled ? FBR2 : FDADR2, fdadr2);
685 		lcd_writel(ofb->fbi, enabled ? FBR3 : FDADR3, fdadr3);
686 		lcd_writel(ofb->fbi, enabled ? FBR4 : FDADR4, fdadr4);
687 	}
688 	lcd_writel(ofb->fbi, OVL2C2, ofb->control[1]);
689 	lcd_writel(ofb->fbi, OVL2C1, ofb->control[0] | OVLxC1_OEN);
690 }
691 
692 static void overlay2fb_disable(struct pxafb_layer *ofb)
693 {
694 	uint32_t lccr5;
695 
696 	if (!(lcd_readl(ofb->fbi, OVL2C1) & OVLxC1_OEN))
697 		return;
698 
699 	lccr5 = lcd_readl(ofb->fbi, LCCR5);
700 
701 	lcd_writel(ofb->fbi, OVL2C1, ofb->control[0] & ~OVLxC1_OEN);
702 
703 	lcd_writel(ofb->fbi, LCSR1, LCSR1_BS(2));
704 	lcd_writel(ofb->fbi, LCCR5, lccr5 & ~LCSR1_BS(2));
705 	lcd_writel(ofb->fbi, FBR2, ofb->fbi->fdadr[DMA_OV2_Y]  | 0x3);
706 	lcd_writel(ofb->fbi, FBR3, ofb->fbi->fdadr[DMA_OV2_Cb] | 0x3);
707 	lcd_writel(ofb->fbi, FBR4, ofb->fbi->fdadr[DMA_OV2_Cr] | 0x3);
708 
709 	if (wait_for_completion_timeout(&ofb->branch_done, 1 * HZ) == 0)
710 		pr_warning("%s: timeout disabling overlay2\n", __func__);
711 }
712 
713 static struct pxafb_layer_ops ofb_ops[] = {
714 	[0] = {
715 		.enable		= overlay1fb_enable,
716 		.disable	= overlay1fb_disable,
717 		.setup		= overlay1fb_setup,
718 	},
719 	[1] = {
720 		.enable		= overlay2fb_enable,
721 		.disable	= overlay2fb_disable,
722 		.setup		= overlay2fb_setup,
723 	},
724 };
725 
726 static int overlayfb_open(struct fb_info *info, int user)
727 {
728 	struct pxafb_layer *ofb = container_of(info, struct pxafb_layer, fb);
729 
730 	/* no support for framebuffer console on overlay */
731 	if (user == 0)
732 		return -ENODEV;
733 
734 	if (ofb->usage++ == 0) {
735 		/* unblank the base framebuffer */
736 		console_lock();
737 		fb_blank(&ofb->fbi->fb, FB_BLANK_UNBLANK);
738 		console_unlock();
739 	}
740 
741 	return 0;
742 }
743 
744 static int overlayfb_release(struct fb_info *info, int user)
745 {
746 	struct pxafb_layer *ofb = container_of(info, struct pxafb_layer, fb);
747 
748 	if (ofb->usage == 1) {
749 		ofb->ops->disable(ofb);
750 		ofb->fb.var.height	= -1;
751 		ofb->fb.var.width	= -1;
752 		ofb->fb.var.xres = ofb->fb.var.xres_virtual = 0;
753 		ofb->fb.var.yres = ofb->fb.var.yres_virtual = 0;
754 
755 		ofb->usage--;
756 	}
757 	return 0;
758 }
759 
760 static int overlayfb_check_var(struct fb_var_screeninfo *var,
761 			       struct fb_info *info)
762 {
763 	struct pxafb_layer *ofb = container_of(info, struct pxafb_layer, fb);
764 	struct fb_var_screeninfo *base_var = &ofb->fbi->fb.var;
765 	int xpos, ypos, pfor, bpp;
766 
767 	xpos = NONSTD_TO_XPOS(var->nonstd);
768 	ypos = NONSTD_TO_YPOS(var->nonstd);
769 	pfor = NONSTD_TO_PFOR(var->nonstd);
770 
771 	bpp = pxafb_var_to_bpp(var);
772 	if (bpp < 0)
773 		return -EINVAL;
774 
775 	/* no support for YUV format on overlay1 */
776 	if (ofb->id == OVERLAY1 && pfor != 0)
777 		return -EINVAL;
778 
779 	/* for YUV packed formats, bpp = 'minimum bpp of YUV components' */
780 	switch (pfor) {
781 	case OVERLAY_FORMAT_RGB:
782 		bpp = pxafb_var_to_bpp(var);
783 		if (bpp < 0)
784 			return -EINVAL;
785 
786 		pxafb_set_pixfmt(var, var_to_depth(var));
787 		break;
788 	case OVERLAY_FORMAT_YUV444_PACKED: bpp = 24; break;
789 	case OVERLAY_FORMAT_YUV444_PLANAR: bpp = 8; break;
790 	case OVERLAY_FORMAT_YUV422_PLANAR: bpp = 4; break;
791 	case OVERLAY_FORMAT_YUV420_PLANAR: bpp = 2; break;
792 	default:
793 		return -EINVAL;
794 	}
795 
796 	/* each line must start at a 32-bit word boundary */
797 	if ((xpos * bpp) % 32)
798 		return -EINVAL;
799 
800 	/* xres must align on 32-bit word boundary */
801 	var->xres = roundup(var->xres * bpp, 32) / bpp;
802 
803 	if ((xpos + var->xres > base_var->xres) ||
804 	    (ypos + var->yres > base_var->yres))
805 		return -EINVAL;
806 
807 	var->xres_virtual = var->xres;
808 	var->yres_virtual = max(var->yres, var->yres_virtual);
809 	return 0;
810 }
811 
812 static int overlayfb_check_video_memory(struct pxafb_layer *ofb)
813 {
814 	struct fb_var_screeninfo *var = &ofb->fb.var;
815 	int pfor = NONSTD_TO_PFOR(var->nonstd);
816 	int size, bpp = 0;
817 
818 	switch (pfor) {
819 	case OVERLAY_FORMAT_RGB: bpp = var->bits_per_pixel; break;
820 	case OVERLAY_FORMAT_YUV444_PACKED: bpp = 24; break;
821 	case OVERLAY_FORMAT_YUV444_PLANAR: bpp = 24; break;
822 	case OVERLAY_FORMAT_YUV422_PLANAR: bpp = 16; break;
823 	case OVERLAY_FORMAT_YUV420_PLANAR: bpp = 12; break;
824 	}
825 
826 	ofb->fb.fix.line_length = var->xres_virtual * bpp / 8;
827 
828 	size = PAGE_ALIGN(ofb->fb.fix.line_length * var->yres_virtual);
829 
830 	if (ofb->video_mem) {
831 		if (ofb->video_mem_size >= size)
832 			return 0;
833 	}
834 	return -EINVAL;
835 }
836 
837 static int overlayfb_set_par(struct fb_info *info)
838 {
839 	struct pxafb_layer *ofb = container_of(info, struct pxafb_layer, fb);
840 	struct fb_var_screeninfo *var = &info->var;
841 	int xpos, ypos, pfor, bpp, ret;
842 
843 	ret = overlayfb_check_video_memory(ofb);
844 	if (ret)
845 		return ret;
846 
847 	bpp  = pxafb_var_to_bpp(var);
848 	xpos = NONSTD_TO_XPOS(var->nonstd);
849 	ypos = NONSTD_TO_YPOS(var->nonstd);
850 	pfor = NONSTD_TO_PFOR(var->nonstd);
851 
852 	ofb->control[0] = OVLxC1_PPL(var->xres) | OVLxC1_LPO(var->yres) |
853 			  OVLxC1_BPP(bpp);
854 	ofb->control[1] = OVLxC2_XPOS(xpos) | OVLxC2_YPOS(ypos);
855 
856 	if (ofb->id == OVERLAY2)
857 		ofb->control[1] |= OVL2C2_PFOR(pfor);
858 
859 	ofb->ops->setup(ofb);
860 	ofb->ops->enable(ofb);
861 	return 0;
862 }
863 
864 static struct fb_ops overlay_fb_ops = {
865 	.owner			= THIS_MODULE,
866 	.fb_open		= overlayfb_open,
867 	.fb_release		= overlayfb_release,
868 	.fb_check_var 		= overlayfb_check_var,
869 	.fb_set_par		= overlayfb_set_par,
870 };
871 
872 static void init_pxafb_overlay(struct pxafb_info *fbi, struct pxafb_layer *ofb,
873 			       int id)
874 {
875 	sprintf(ofb->fb.fix.id, "overlay%d", id + 1);
876 
877 	ofb->fb.fix.type		= FB_TYPE_PACKED_PIXELS;
878 	ofb->fb.fix.xpanstep		= 0;
879 	ofb->fb.fix.ypanstep		= 1;
880 
881 	ofb->fb.var.activate		= FB_ACTIVATE_NOW;
882 	ofb->fb.var.height		= -1;
883 	ofb->fb.var.width		= -1;
884 	ofb->fb.var.vmode		= FB_VMODE_NONINTERLACED;
885 
886 	ofb->fb.fbops			= &overlay_fb_ops;
887 	ofb->fb.flags			= FBINFO_FLAG_DEFAULT;
888 	ofb->fb.node			= -1;
889 	ofb->fb.pseudo_palette		= NULL;
890 
891 	ofb->id = id;
892 	ofb->ops = &ofb_ops[id];
893 	ofb->usage = 0;
894 	ofb->fbi = fbi;
895 	init_completion(&ofb->branch_done);
896 }
897 
898 static inline int pxafb_overlay_supported(void)
899 {
900 	if (cpu_is_pxa27x() || cpu_is_pxa3xx())
901 		return 1;
902 
903 	return 0;
904 }
905 
906 static int pxafb_overlay_map_video_memory(struct pxafb_info *pxafb,
907 					  struct pxafb_layer *ofb)
908 {
909 	/* We assume that user will use at most video_mem_size for overlay fb,
910 	 * anyway, it's useless to use 16bpp main plane and 24bpp overlay
911 	 */
912 	ofb->video_mem = alloc_pages_exact(PAGE_ALIGN(pxafb->video_mem_size),
913 		GFP_KERNEL | __GFP_ZERO);
914 	if (ofb->video_mem == NULL)
915 		return -ENOMEM;
916 
917 	ofb->video_mem_phys = virt_to_phys(ofb->video_mem);
918 	ofb->video_mem_size = PAGE_ALIGN(pxafb->video_mem_size);
919 
920 	mutex_lock(&ofb->fb.mm_lock);
921 	ofb->fb.fix.smem_start	= ofb->video_mem_phys;
922 	ofb->fb.fix.smem_len	= pxafb->video_mem_size;
923 	mutex_unlock(&ofb->fb.mm_lock);
924 
925 	ofb->fb.screen_base	= ofb->video_mem;
926 
927 	return 0;
928 }
929 
930 static void pxafb_overlay_init(struct pxafb_info *fbi)
931 {
932 	int i, ret;
933 
934 	if (!pxafb_overlay_supported())
935 		return;
936 
937 	for (i = 0; i < 2; i++) {
938 		struct pxafb_layer *ofb = &fbi->overlay[i];
939 		init_pxafb_overlay(fbi, ofb, i);
940 		ret = register_framebuffer(&ofb->fb);
941 		if (ret) {
942 			dev_err(fbi->dev, "failed to register overlay %d\n", i);
943 			continue;
944 		}
945 		ret = pxafb_overlay_map_video_memory(fbi, ofb);
946 		if (ret) {
947 			dev_err(fbi->dev,
948 				"failed to map video memory for overlay %d\n",
949 				i);
950 			unregister_framebuffer(&ofb->fb);
951 			continue;
952 		}
953 		ofb->registered = 1;
954 	}
955 
956 	/* mask all IU/BS/EOF/SOF interrupts */
957 	lcd_writel(fbi, LCCR5, ~0);
958 
959 	pr_info("PXA Overlay driver loaded successfully!\n");
960 }
961 
962 static void pxafb_overlay_exit(struct pxafb_info *fbi)
963 {
964 	int i;
965 
966 	if (!pxafb_overlay_supported())
967 		return;
968 
969 	for (i = 0; i < 2; i++) {
970 		struct pxafb_layer *ofb = &fbi->overlay[i];
971 		if (ofb->registered) {
972 			if (ofb->video_mem)
973 				free_pages_exact(ofb->video_mem,
974 					ofb->video_mem_size);
975 			unregister_framebuffer(&ofb->fb);
976 		}
977 	}
978 }
979 #else
980 static inline void pxafb_overlay_init(struct pxafb_info *fbi) {}
981 static inline void pxafb_overlay_exit(struct pxafb_info *fbi) {}
982 #endif /* CONFIG_FB_PXA_OVERLAY */
983 
984 /*
985  * Calculate the PCD value from the clock rate (in picoseconds).
986  * We take account of the PPCR clock setting.
987  * From PXA Developer's Manual:
988  *
989  *   PixelClock =      LCLK
990  *                -------------
991  *                2 ( PCD + 1 )
992  *
993  *   PCD =      LCLK
994  *         ------------- - 1
995  *         2(PixelClock)
996  *
997  * Where:
998  *   LCLK = LCD/Memory Clock
999  *   PCD = LCCR3[7:0]
1000  *
1001  * PixelClock here is in Hz while the pixclock argument given is the
1002  * period in picoseconds. Hence PixelClock = 1 / ( pixclock * 10^-12 )
1003  *
1004  * The function get_lclk_frequency_10khz returns LCLK in units of
1005  * 10khz. Calling the result of this function lclk gives us the
1006  * following
1007  *
1008  *    PCD = (lclk * 10^4 ) * ( pixclock * 10^-12 )
1009  *          -------------------------------------- - 1
1010  *                          2
1011  *
1012  * Factoring the 10^4 and 10^-12 out gives 10^-8 == 1 / 100000000 as used below.
1013  */
1014 static inline unsigned int get_pcd(struct pxafb_info *fbi,
1015 				   unsigned int pixclock)
1016 {
1017 	unsigned long long pcd;
1018 
1019 	/* FIXME: Need to take into account Double Pixel Clock mode
1020 	 * (DPC) bit? or perhaps set it based on the various clock
1021 	 * speeds */
1022 	pcd = (unsigned long long)(clk_get_rate(fbi->clk) / 10000);
1023 	pcd *= pixclock;
1024 	do_div(pcd, 100000000 * 2);
1025 	/* no need for this, since we should subtract 1 anyway. they cancel */
1026 	/* pcd += 1; */ /* make up for integer math truncations */
1027 	return (unsigned int)pcd;
1028 }
1029 
1030 /*
1031  * Some touchscreens need hsync information from the video driver to
1032  * function correctly. We export it here.  Note that 'hsync_time' and
1033  * the value returned from pxafb_get_hsync_time() is the *reciprocal*
1034  * of the hsync period in seconds.
1035  */
1036 static inline void set_hsync_time(struct pxafb_info *fbi, unsigned int pcd)
1037 {
1038 	unsigned long htime;
1039 
1040 	if ((pcd == 0) || (fbi->fb.var.hsync_len == 0)) {
1041 		fbi->hsync_time = 0;
1042 		return;
1043 	}
1044 
1045 	htime = clk_get_rate(fbi->clk) / (pcd * fbi->fb.var.hsync_len);
1046 
1047 	fbi->hsync_time = htime;
1048 }
1049 
1050 unsigned long pxafb_get_hsync_time(struct device *dev)
1051 {
1052 	struct pxafb_info *fbi = dev_get_drvdata(dev);
1053 
1054 	/* If display is blanked/suspended, hsync isn't active */
1055 	if (!fbi || (fbi->state != C_ENABLE))
1056 		return 0;
1057 
1058 	return fbi->hsync_time;
1059 }
1060 EXPORT_SYMBOL(pxafb_get_hsync_time);
1061 
1062 static int setup_frame_dma(struct pxafb_info *fbi, int dma, int pal,
1063 			   unsigned long start, size_t size)
1064 {
1065 	struct pxafb_dma_descriptor *dma_desc, *pal_desc;
1066 	unsigned int dma_desc_off, pal_desc_off;
1067 
1068 	if (dma < 0 || dma >= DMA_MAX * 2)
1069 		return -EINVAL;
1070 
1071 	dma_desc = &fbi->dma_buff->dma_desc[dma];
1072 	dma_desc_off = offsetof(struct pxafb_dma_buff, dma_desc[dma]);
1073 
1074 	dma_desc->fsadr = start;
1075 	dma_desc->fidr  = 0;
1076 	dma_desc->ldcmd = size;
1077 
1078 	if (pal < 0 || pal >= PAL_MAX * 2) {
1079 		dma_desc->fdadr = fbi->dma_buff_phys + dma_desc_off;
1080 		fbi->fdadr[dma] = fbi->dma_buff_phys + dma_desc_off;
1081 	} else {
1082 		pal_desc = &fbi->dma_buff->pal_desc[pal];
1083 		pal_desc_off = offsetof(struct pxafb_dma_buff, pal_desc[pal]);
1084 
1085 		pal_desc->fsadr = fbi->dma_buff_phys + pal * PALETTE_SIZE;
1086 		pal_desc->fidr  = 0;
1087 
1088 		if ((fbi->lccr4 & LCCR4_PAL_FOR_MASK) == LCCR4_PAL_FOR_0)
1089 			pal_desc->ldcmd = fbi->palette_size * sizeof(u16);
1090 		else
1091 			pal_desc->ldcmd = fbi->palette_size * sizeof(u32);
1092 
1093 		pal_desc->ldcmd |= LDCMD_PAL;
1094 
1095 		/* flip back and forth between palette and frame buffer */
1096 		pal_desc->fdadr = fbi->dma_buff_phys + dma_desc_off;
1097 		dma_desc->fdadr = fbi->dma_buff_phys + pal_desc_off;
1098 		fbi->fdadr[dma] = fbi->dma_buff_phys + dma_desc_off;
1099 	}
1100 
1101 	return 0;
1102 }
1103 
1104 static void setup_base_frame(struct pxafb_info *fbi,
1105                              struct fb_var_screeninfo *var,
1106                              int branch)
1107 {
1108 	struct fb_fix_screeninfo *fix = &fbi->fb.fix;
1109 	int nbytes, dma, pal, bpp = var->bits_per_pixel;
1110 	unsigned long offset;
1111 
1112 	dma = DMA_BASE + (branch ? DMA_MAX : 0);
1113 	pal = (bpp >= 16) ? PAL_NONE : PAL_BASE + (branch ? PAL_MAX : 0);
1114 
1115 	nbytes = fix->line_length * var->yres;
1116 	offset = fix->line_length * var->yoffset + fbi->video_mem_phys;
1117 
1118 	if (fbi->lccr0 & LCCR0_SDS) {
1119 		nbytes = nbytes / 2;
1120 		setup_frame_dma(fbi, dma + 1, PAL_NONE, offset + nbytes, nbytes);
1121 	}
1122 
1123 	setup_frame_dma(fbi, dma, pal, offset, nbytes);
1124 }
1125 
1126 #ifdef CONFIG_FB_PXA_SMARTPANEL
1127 static int setup_smart_dma(struct pxafb_info *fbi)
1128 {
1129 	struct pxafb_dma_descriptor *dma_desc;
1130 	unsigned long dma_desc_off, cmd_buff_off;
1131 
1132 	dma_desc = &fbi->dma_buff->dma_desc[DMA_CMD];
1133 	dma_desc_off = offsetof(struct pxafb_dma_buff, dma_desc[DMA_CMD]);
1134 	cmd_buff_off = offsetof(struct pxafb_dma_buff, cmd_buff);
1135 
1136 	dma_desc->fdadr = fbi->dma_buff_phys + dma_desc_off;
1137 	dma_desc->fsadr = fbi->dma_buff_phys + cmd_buff_off;
1138 	dma_desc->fidr  = 0;
1139 	dma_desc->ldcmd = fbi->n_smart_cmds * sizeof(uint16_t);
1140 
1141 	fbi->fdadr[DMA_CMD] = dma_desc->fdadr;
1142 	return 0;
1143 }
1144 
1145 int pxafb_smart_flush(struct fb_info *info)
1146 {
1147 	struct pxafb_info *fbi = container_of(info, struct pxafb_info, fb);
1148 	uint32_t prsr;
1149 	int ret = 0;
1150 
1151 	/* disable controller until all registers are set up */
1152 	lcd_writel(fbi, LCCR0, fbi->reg_lccr0 & ~LCCR0_ENB);
1153 
1154 	/* 1. make it an even number of commands to align on 32-bit boundary
1155 	 * 2. add the interrupt command to the end of the chain so we can
1156 	 *    keep track of the end of the transfer
1157 	 */
1158 
1159 	while (fbi->n_smart_cmds & 1)
1160 		fbi->smart_cmds[fbi->n_smart_cmds++] = SMART_CMD_NOOP;
1161 
1162 	fbi->smart_cmds[fbi->n_smart_cmds++] = SMART_CMD_INTERRUPT;
1163 	fbi->smart_cmds[fbi->n_smart_cmds++] = SMART_CMD_WAIT_FOR_VSYNC;
1164 	setup_smart_dma(fbi);
1165 
1166 	/* continue to execute next command */
1167 	prsr = lcd_readl(fbi, PRSR) | PRSR_ST_OK | PRSR_CON_NT;
1168 	lcd_writel(fbi, PRSR, prsr);
1169 
1170 	/* stop the processor in case it executed "wait for sync" cmd */
1171 	lcd_writel(fbi, CMDCR, 0x0001);
1172 
1173 	/* don't send interrupts for fifo underruns on channel 6 */
1174 	lcd_writel(fbi, LCCR5, LCCR5_IUM(6));
1175 
1176 	lcd_writel(fbi, LCCR1, fbi->reg_lccr1);
1177 	lcd_writel(fbi, LCCR2, fbi->reg_lccr2);
1178 	lcd_writel(fbi, LCCR3, fbi->reg_lccr3);
1179 	lcd_writel(fbi, LCCR4, fbi->reg_lccr4);
1180 	lcd_writel(fbi, FDADR0, fbi->fdadr[0]);
1181 	lcd_writel(fbi, FDADR6, fbi->fdadr[6]);
1182 
1183 	/* begin sending */
1184 	lcd_writel(fbi, LCCR0, fbi->reg_lccr0 | LCCR0_ENB);
1185 
1186 	if (wait_for_completion_timeout(&fbi->command_done, HZ/2) == 0) {
1187 		pr_warning("%s: timeout waiting for command done\n",
1188 				__func__);
1189 		ret = -ETIMEDOUT;
1190 	}
1191 
1192 	/* quick disable */
1193 	prsr = lcd_readl(fbi, PRSR) & ~(PRSR_ST_OK | PRSR_CON_NT);
1194 	lcd_writel(fbi, PRSR, prsr);
1195 	lcd_writel(fbi, LCCR0, fbi->reg_lccr0 & ~LCCR0_ENB);
1196 	lcd_writel(fbi, FDADR6, 0);
1197 	fbi->n_smart_cmds = 0;
1198 	return ret;
1199 }
1200 
1201 int pxafb_smart_queue(struct fb_info *info, uint16_t *cmds, int n_cmds)
1202 {
1203 	int i;
1204 	struct pxafb_info *fbi = container_of(info, struct pxafb_info, fb);
1205 
1206 	for (i = 0; i < n_cmds; i++, cmds++) {
1207 		/* if it is a software delay, flush and delay */
1208 		if ((*cmds & 0xff00) == SMART_CMD_DELAY) {
1209 			pxafb_smart_flush(info);
1210 			mdelay(*cmds & 0xff);
1211 			continue;
1212 		}
1213 
1214 		/* leave 2 commands for INTERRUPT and WAIT_FOR_SYNC */
1215 		if (fbi->n_smart_cmds == CMD_BUFF_SIZE - 8)
1216 			pxafb_smart_flush(info);
1217 
1218 		fbi->smart_cmds[fbi->n_smart_cmds++] = *cmds;
1219 	}
1220 
1221 	return 0;
1222 }
1223 
1224 static unsigned int __smart_timing(unsigned time_ns, unsigned long lcd_clk)
1225 {
1226 	unsigned int t = (time_ns * (lcd_clk / 1000000) / 1000);
1227 	return (t == 0) ? 1 : t;
1228 }
1229 
1230 static void setup_smart_timing(struct pxafb_info *fbi,
1231 				struct fb_var_screeninfo *var)
1232 {
1233 	struct pxafb_mach_info *inf = dev_get_platdata(fbi->dev);
1234 	struct pxafb_mode_info *mode = &inf->modes[0];
1235 	unsigned long lclk = clk_get_rate(fbi->clk);
1236 	unsigned t1, t2, t3, t4;
1237 
1238 	t1 = max(mode->a0csrd_set_hld, mode->a0cswr_set_hld);
1239 	t2 = max(mode->rd_pulse_width, mode->wr_pulse_width);
1240 	t3 = mode->op_hold_time;
1241 	t4 = mode->cmd_inh_time;
1242 
1243 	fbi->reg_lccr1 =
1244 		LCCR1_DisWdth(var->xres) |
1245 		LCCR1_BegLnDel(__smart_timing(t1, lclk)) |
1246 		LCCR1_EndLnDel(__smart_timing(t2, lclk)) |
1247 		LCCR1_HorSnchWdth(__smart_timing(t3, lclk));
1248 
1249 	fbi->reg_lccr2 = LCCR2_DisHght(var->yres);
1250 	fbi->reg_lccr3 = fbi->lccr3 | LCCR3_PixClkDiv(__smart_timing(t4, lclk));
1251 	fbi->reg_lccr3 |= (var->sync & FB_SYNC_HOR_HIGH_ACT) ? LCCR3_HSP : 0;
1252 	fbi->reg_lccr3 |= (var->sync & FB_SYNC_VERT_HIGH_ACT) ? LCCR3_VSP : 0;
1253 
1254 	/* FIXME: make this configurable */
1255 	fbi->reg_cmdcr = 1;
1256 }
1257 
1258 static int pxafb_smart_thread(void *arg)
1259 {
1260 	struct pxafb_info *fbi = arg;
1261 	struct pxafb_mach_info *inf = dev_get_platdata(fbi->dev);
1262 
1263 	if (!inf->smart_update) {
1264 		pr_err("%s: not properly initialized, thread terminated\n",
1265 				__func__);
1266 		return -EINVAL;
1267 	}
1268 	inf = dev_get_platdata(fbi->dev);
1269 
1270 	pr_debug("%s(): task starting\n", __func__);
1271 
1272 	set_freezable();
1273 	while (!kthread_should_stop()) {
1274 
1275 		if (try_to_freeze())
1276 			continue;
1277 
1278 		mutex_lock(&fbi->ctrlr_lock);
1279 
1280 		if (fbi->state == C_ENABLE) {
1281 			inf->smart_update(&fbi->fb);
1282 			complete(&fbi->refresh_done);
1283 		}
1284 
1285 		mutex_unlock(&fbi->ctrlr_lock);
1286 
1287 		set_current_state(TASK_INTERRUPTIBLE);
1288 		schedule_timeout(30 * HZ / 1000);
1289 	}
1290 
1291 	pr_debug("%s(): task ending\n", __func__);
1292 	return 0;
1293 }
1294 
1295 static int pxafb_smart_init(struct pxafb_info *fbi)
1296 {
1297 	if (!(fbi->lccr0 & LCCR0_LCDT))
1298 		return 0;
1299 
1300 	fbi->smart_cmds = (uint16_t *) fbi->dma_buff->cmd_buff;
1301 	fbi->n_smart_cmds = 0;
1302 
1303 	init_completion(&fbi->command_done);
1304 	init_completion(&fbi->refresh_done);
1305 
1306 	fbi->smart_thread = kthread_run(pxafb_smart_thread, fbi,
1307 					"lcd_refresh");
1308 	if (IS_ERR(fbi->smart_thread)) {
1309 		pr_err("%s: unable to create kernel thread\n", __func__);
1310 		return PTR_ERR(fbi->smart_thread);
1311 	}
1312 
1313 	return 0;
1314 }
1315 #else
1316 static inline int pxafb_smart_init(struct pxafb_info *fbi) { return 0; }
1317 #endif /* CONFIG_FB_PXA_SMARTPANEL */
1318 
1319 static void setup_parallel_timing(struct pxafb_info *fbi,
1320 				  struct fb_var_screeninfo *var)
1321 {
1322 	unsigned int lines_per_panel, pcd = get_pcd(fbi, var->pixclock);
1323 
1324 	fbi->reg_lccr1 =
1325 		LCCR1_DisWdth(var->xres) +
1326 		LCCR1_HorSnchWdth(var->hsync_len) +
1327 		LCCR1_BegLnDel(var->left_margin) +
1328 		LCCR1_EndLnDel(var->right_margin);
1329 
1330 	/*
1331 	 * If we have a dual scan LCD, we need to halve
1332 	 * the YRES parameter.
1333 	 */
1334 	lines_per_panel = var->yres;
1335 	if ((fbi->lccr0 & LCCR0_SDS) == LCCR0_Dual)
1336 		lines_per_panel /= 2;
1337 
1338 	fbi->reg_lccr2 =
1339 		LCCR2_DisHght(lines_per_panel) +
1340 		LCCR2_VrtSnchWdth(var->vsync_len) +
1341 		LCCR2_BegFrmDel(var->upper_margin) +
1342 		LCCR2_EndFrmDel(var->lower_margin);
1343 
1344 	fbi->reg_lccr3 = fbi->lccr3 |
1345 		(var->sync & FB_SYNC_HOR_HIGH_ACT ?
1346 		 LCCR3_HorSnchH : LCCR3_HorSnchL) |
1347 		(var->sync & FB_SYNC_VERT_HIGH_ACT ?
1348 		 LCCR3_VrtSnchH : LCCR3_VrtSnchL);
1349 
1350 	if (pcd) {
1351 		fbi->reg_lccr3 |= LCCR3_PixClkDiv(pcd);
1352 		set_hsync_time(fbi, pcd);
1353 	}
1354 }
1355 
1356 /*
1357  * pxafb_activate_var():
1358  *	Configures LCD Controller based on entries in var parameter.
1359  *	Settings are only written to the controller if changes were made.
1360  */
1361 static int pxafb_activate_var(struct fb_var_screeninfo *var,
1362 			      struct pxafb_info *fbi)
1363 {
1364 	u_long flags;
1365 
1366 	/* Update shadow copy atomically */
1367 	local_irq_save(flags);
1368 
1369 #ifdef CONFIG_FB_PXA_SMARTPANEL
1370 	if (fbi->lccr0 & LCCR0_LCDT)
1371 		setup_smart_timing(fbi, var);
1372 	else
1373 #endif
1374 		setup_parallel_timing(fbi, var);
1375 
1376 	setup_base_frame(fbi, var, 0);
1377 
1378 	fbi->reg_lccr0 = fbi->lccr0 |
1379 		(LCCR0_LDM | LCCR0_SFM | LCCR0_IUM | LCCR0_EFM |
1380 		 LCCR0_QDM | LCCR0_BM  | LCCR0_OUM);
1381 
1382 	fbi->reg_lccr3 |= pxafb_var_to_lccr3(var);
1383 
1384 	fbi->reg_lccr4 = lcd_readl(fbi, LCCR4) & ~LCCR4_PAL_FOR_MASK;
1385 	fbi->reg_lccr4 |= (fbi->lccr4 & LCCR4_PAL_FOR_MASK);
1386 	local_irq_restore(flags);
1387 
1388 	/*
1389 	 * Only update the registers if the controller is enabled
1390 	 * and something has changed.
1391 	 */
1392 	if ((lcd_readl(fbi, LCCR0) != fbi->reg_lccr0) ||
1393 	    (lcd_readl(fbi, LCCR1) != fbi->reg_lccr1) ||
1394 	    (lcd_readl(fbi, LCCR2) != fbi->reg_lccr2) ||
1395 	    (lcd_readl(fbi, LCCR3) != fbi->reg_lccr3) ||
1396 	    (lcd_readl(fbi, LCCR4) != fbi->reg_lccr4) ||
1397 	    (lcd_readl(fbi, FDADR0) != fbi->fdadr[0]) ||
1398 	    ((fbi->lccr0 & LCCR0_SDS) &&
1399 	    (lcd_readl(fbi, FDADR1) != fbi->fdadr[1])))
1400 		pxafb_schedule_work(fbi, C_REENABLE);
1401 
1402 	return 0;
1403 }
1404 
1405 /*
1406  * NOTE!  The following functions are purely helpers for set_ctrlr_state.
1407  * Do not call them directly; set_ctrlr_state does the correct serialisation
1408  * to ensure that things happen in the right way 100% of time time.
1409  *	-- rmk
1410  */
1411 static inline void __pxafb_backlight_power(struct pxafb_info *fbi, int on)
1412 {
1413 	pr_debug("pxafb: backlight o%s\n", on ? "n" : "ff");
1414 
1415 	if (fbi->backlight_power)
1416 		fbi->backlight_power(on);
1417 }
1418 
1419 static inline void __pxafb_lcd_power(struct pxafb_info *fbi, int on)
1420 {
1421 	pr_debug("pxafb: LCD power o%s\n", on ? "n" : "ff");
1422 
1423 	if (fbi->lcd_power)
1424 		fbi->lcd_power(on, &fbi->fb.var);
1425 }
1426 
1427 static void pxafb_enable_controller(struct pxafb_info *fbi)
1428 {
1429 	pr_debug("pxafb: Enabling LCD controller\n");
1430 	pr_debug("fdadr0 0x%08x\n", (unsigned int) fbi->fdadr[0]);
1431 	pr_debug("fdadr1 0x%08x\n", (unsigned int) fbi->fdadr[1]);
1432 	pr_debug("reg_lccr0 0x%08x\n", (unsigned int) fbi->reg_lccr0);
1433 	pr_debug("reg_lccr1 0x%08x\n", (unsigned int) fbi->reg_lccr1);
1434 	pr_debug("reg_lccr2 0x%08x\n", (unsigned int) fbi->reg_lccr2);
1435 	pr_debug("reg_lccr3 0x%08x\n", (unsigned int) fbi->reg_lccr3);
1436 
1437 	/* enable LCD controller clock */
1438 	clk_prepare_enable(fbi->clk);
1439 
1440 	if (fbi->lccr0 & LCCR0_LCDT)
1441 		return;
1442 
1443 	/* Sequence from 11.7.10 */
1444 	lcd_writel(fbi, LCCR4, fbi->reg_lccr4);
1445 	lcd_writel(fbi, LCCR3, fbi->reg_lccr3);
1446 	lcd_writel(fbi, LCCR2, fbi->reg_lccr2);
1447 	lcd_writel(fbi, LCCR1, fbi->reg_lccr1);
1448 	lcd_writel(fbi, LCCR0, fbi->reg_lccr0 & ~LCCR0_ENB);
1449 
1450 	lcd_writel(fbi, FDADR0, fbi->fdadr[0]);
1451 	if (fbi->lccr0 & LCCR0_SDS)
1452 		lcd_writel(fbi, FDADR1, fbi->fdadr[1]);
1453 	lcd_writel(fbi, LCCR0, fbi->reg_lccr0 | LCCR0_ENB);
1454 }
1455 
1456 static void pxafb_disable_controller(struct pxafb_info *fbi)
1457 {
1458 	uint32_t lccr0;
1459 
1460 #ifdef CONFIG_FB_PXA_SMARTPANEL
1461 	if (fbi->lccr0 & LCCR0_LCDT) {
1462 		wait_for_completion_timeout(&fbi->refresh_done,
1463 				200 * HZ / 1000);
1464 		return;
1465 	}
1466 #endif
1467 
1468 	/* Clear LCD Status Register */
1469 	lcd_writel(fbi, LCSR, 0xffffffff);
1470 
1471 	lccr0 = lcd_readl(fbi, LCCR0) & ~LCCR0_LDM;
1472 	lcd_writel(fbi, LCCR0, lccr0);
1473 	lcd_writel(fbi, LCCR0, lccr0 | LCCR0_DIS);
1474 
1475 	wait_for_completion_timeout(&fbi->disable_done, 200 * HZ / 1000);
1476 
1477 	/* disable LCD controller clock */
1478 	clk_disable_unprepare(fbi->clk);
1479 }
1480 
1481 /*
1482  *  pxafb_handle_irq: Handle 'LCD DONE' interrupts.
1483  */
1484 static irqreturn_t pxafb_handle_irq(int irq, void *dev_id)
1485 {
1486 	struct pxafb_info *fbi = dev_id;
1487 	unsigned int lccr0, lcsr;
1488 
1489 	lcsr = lcd_readl(fbi, LCSR);
1490 	if (lcsr & LCSR_LDD) {
1491 		lccr0 = lcd_readl(fbi, LCCR0);
1492 		lcd_writel(fbi, LCCR0, lccr0 | LCCR0_LDM);
1493 		complete(&fbi->disable_done);
1494 	}
1495 
1496 #ifdef CONFIG_FB_PXA_SMARTPANEL
1497 	if (lcsr & LCSR_CMD_INT)
1498 		complete(&fbi->command_done);
1499 #endif
1500 	lcd_writel(fbi, LCSR, lcsr);
1501 
1502 #ifdef CONFIG_FB_PXA_OVERLAY
1503 	{
1504 		unsigned int lcsr1 = lcd_readl(fbi, LCSR1);
1505 		if (lcsr1 & LCSR1_BS(1))
1506 			complete(&fbi->overlay[0].branch_done);
1507 
1508 		if (lcsr1 & LCSR1_BS(2))
1509 			complete(&fbi->overlay[1].branch_done);
1510 
1511 		lcd_writel(fbi, LCSR1, lcsr1);
1512 	}
1513 #endif
1514 	return IRQ_HANDLED;
1515 }
1516 
1517 /*
1518  * This function must be called from task context only, since it will
1519  * sleep when disabling the LCD controller, or if we get two contending
1520  * processes trying to alter state.
1521  */
1522 static void set_ctrlr_state(struct pxafb_info *fbi, u_int state)
1523 {
1524 	u_int old_state;
1525 
1526 	mutex_lock(&fbi->ctrlr_lock);
1527 
1528 	old_state = fbi->state;
1529 
1530 	/*
1531 	 * Hack around fbcon initialisation.
1532 	 */
1533 	if (old_state == C_STARTUP && state == C_REENABLE)
1534 		state = C_ENABLE;
1535 
1536 	switch (state) {
1537 	case C_DISABLE_CLKCHANGE:
1538 		/*
1539 		 * Disable controller for clock change.  If the
1540 		 * controller is already disabled, then do nothing.
1541 		 */
1542 		if (old_state != C_DISABLE && old_state != C_DISABLE_PM) {
1543 			fbi->state = state;
1544 			/* TODO __pxafb_lcd_power(fbi, 0); */
1545 			pxafb_disable_controller(fbi);
1546 		}
1547 		break;
1548 
1549 	case C_DISABLE_PM:
1550 	case C_DISABLE:
1551 		/*
1552 		 * Disable controller
1553 		 */
1554 		if (old_state != C_DISABLE) {
1555 			fbi->state = state;
1556 			__pxafb_backlight_power(fbi, 0);
1557 			__pxafb_lcd_power(fbi, 0);
1558 			if (old_state != C_DISABLE_CLKCHANGE)
1559 				pxafb_disable_controller(fbi);
1560 		}
1561 		break;
1562 
1563 	case C_ENABLE_CLKCHANGE:
1564 		/*
1565 		 * Enable the controller after clock change.  Only
1566 		 * do this if we were disabled for the clock change.
1567 		 */
1568 		if (old_state == C_DISABLE_CLKCHANGE) {
1569 			fbi->state = C_ENABLE;
1570 			pxafb_enable_controller(fbi);
1571 			/* TODO __pxafb_lcd_power(fbi, 1); */
1572 		}
1573 		break;
1574 
1575 	case C_REENABLE:
1576 		/*
1577 		 * Re-enable the controller only if it was already
1578 		 * enabled.  This is so we reprogram the control
1579 		 * registers.
1580 		 */
1581 		if (old_state == C_ENABLE) {
1582 			__pxafb_lcd_power(fbi, 0);
1583 			pxafb_disable_controller(fbi);
1584 			pxafb_enable_controller(fbi);
1585 			__pxafb_lcd_power(fbi, 1);
1586 		}
1587 		break;
1588 
1589 	case C_ENABLE_PM:
1590 		/*
1591 		 * Re-enable the controller after PM.  This is not
1592 		 * perfect - think about the case where we were doing
1593 		 * a clock change, and we suspended half-way through.
1594 		 */
1595 		if (old_state != C_DISABLE_PM)
1596 			break;
1597 		/* fall through */
1598 
1599 	case C_ENABLE:
1600 		/*
1601 		 * Power up the LCD screen, enable controller, and
1602 		 * turn on the backlight.
1603 		 */
1604 		if (old_state != C_ENABLE) {
1605 			fbi->state = C_ENABLE;
1606 			pxafb_enable_controller(fbi);
1607 			__pxafb_lcd_power(fbi, 1);
1608 			__pxafb_backlight_power(fbi, 1);
1609 		}
1610 		break;
1611 	}
1612 	mutex_unlock(&fbi->ctrlr_lock);
1613 }
1614 
1615 /*
1616  * Our LCD controller task (which is called when we blank or unblank)
1617  * via keventd.
1618  */
1619 static void pxafb_task(struct work_struct *work)
1620 {
1621 	struct pxafb_info *fbi =
1622 		container_of(work, struct pxafb_info, task);
1623 	u_int state = xchg(&fbi->task_state, -1);
1624 
1625 	set_ctrlr_state(fbi, state);
1626 }
1627 
1628 #ifdef CONFIG_CPU_FREQ
1629 /*
1630  * CPU clock speed change handler.  We need to adjust the LCD timing
1631  * parameters when the CPU clock is adjusted by the power management
1632  * subsystem.
1633  *
1634  * TODO: Determine why f->new != 10*get_lclk_frequency_10khz()
1635  */
1636 static int
1637 pxafb_freq_transition(struct notifier_block *nb, unsigned long val, void *data)
1638 {
1639 	struct pxafb_info *fbi = TO_INF(nb, freq_transition);
1640 	/* TODO struct cpufreq_freqs *f = data; */
1641 	u_int pcd;
1642 
1643 	switch (val) {
1644 	case CPUFREQ_PRECHANGE:
1645 #ifdef CONFIG_FB_PXA_OVERLAY
1646 		if (!(fbi->overlay[0].usage || fbi->overlay[1].usage))
1647 #endif
1648 			set_ctrlr_state(fbi, C_DISABLE_CLKCHANGE);
1649 		break;
1650 
1651 	case CPUFREQ_POSTCHANGE:
1652 		pcd = get_pcd(fbi, fbi->fb.var.pixclock);
1653 		set_hsync_time(fbi, pcd);
1654 		fbi->reg_lccr3 = (fbi->reg_lccr3 & ~0xff) |
1655 				  LCCR3_PixClkDiv(pcd);
1656 		set_ctrlr_state(fbi, C_ENABLE_CLKCHANGE);
1657 		break;
1658 	}
1659 	return 0;
1660 }
1661 
1662 static int
1663 pxafb_freq_policy(struct notifier_block *nb, unsigned long val, void *data)
1664 {
1665 	struct pxafb_info *fbi = TO_INF(nb, freq_policy);
1666 	struct fb_var_screeninfo *var = &fbi->fb.var;
1667 	struct cpufreq_policy *policy = data;
1668 
1669 	switch (val) {
1670 	case CPUFREQ_ADJUST:
1671 	case CPUFREQ_INCOMPATIBLE:
1672 		pr_debug("min dma period: %d ps, "
1673 			"new clock %d kHz\n", pxafb_display_dma_period(var),
1674 			policy->max);
1675 		/* TODO: fill in min/max values */
1676 		break;
1677 	}
1678 	return 0;
1679 }
1680 #endif
1681 
1682 #ifdef CONFIG_PM
1683 /*
1684  * Power management hooks.  Note that we won't be called from IRQ context,
1685  * unlike the blank functions above, so we may sleep.
1686  */
1687 static int pxafb_suspend(struct device *dev)
1688 {
1689 	struct pxafb_info *fbi = dev_get_drvdata(dev);
1690 
1691 	set_ctrlr_state(fbi, C_DISABLE_PM);
1692 	return 0;
1693 }
1694 
1695 static int pxafb_resume(struct device *dev)
1696 {
1697 	struct pxafb_info *fbi = dev_get_drvdata(dev);
1698 
1699 	set_ctrlr_state(fbi, C_ENABLE_PM);
1700 	return 0;
1701 }
1702 
1703 static const struct dev_pm_ops pxafb_pm_ops = {
1704 	.suspend	= pxafb_suspend,
1705 	.resume		= pxafb_resume,
1706 };
1707 #endif
1708 
1709 static int pxafb_init_video_memory(struct pxafb_info *fbi)
1710 {
1711 	int size = PAGE_ALIGN(fbi->video_mem_size);
1712 
1713 	fbi->video_mem = alloc_pages_exact(size, GFP_KERNEL | __GFP_ZERO);
1714 	if (fbi->video_mem == NULL)
1715 		return -ENOMEM;
1716 
1717 	fbi->video_mem_phys = virt_to_phys(fbi->video_mem);
1718 	fbi->video_mem_size = size;
1719 
1720 	fbi->fb.fix.smem_start	= fbi->video_mem_phys;
1721 	fbi->fb.fix.smem_len	= fbi->video_mem_size;
1722 	fbi->fb.screen_base	= fbi->video_mem;
1723 
1724 	return fbi->video_mem ? 0 : -ENOMEM;
1725 }
1726 
1727 static void pxafb_decode_mach_info(struct pxafb_info *fbi,
1728 				   struct pxafb_mach_info *inf)
1729 {
1730 	unsigned int lcd_conn = inf->lcd_conn;
1731 	struct pxafb_mode_info *m;
1732 	int i;
1733 
1734 	fbi->cmap_inverse	= inf->cmap_inverse;
1735 	fbi->cmap_static	= inf->cmap_static;
1736 	fbi->lccr4 		= inf->lccr4;
1737 
1738 	switch (lcd_conn & LCD_TYPE_MASK) {
1739 	case LCD_TYPE_MONO_STN:
1740 		fbi->lccr0 = LCCR0_CMS;
1741 		break;
1742 	case LCD_TYPE_MONO_DSTN:
1743 		fbi->lccr0 = LCCR0_CMS | LCCR0_SDS;
1744 		break;
1745 	case LCD_TYPE_COLOR_STN:
1746 		fbi->lccr0 = 0;
1747 		break;
1748 	case LCD_TYPE_COLOR_DSTN:
1749 		fbi->lccr0 = LCCR0_SDS;
1750 		break;
1751 	case LCD_TYPE_COLOR_TFT:
1752 		fbi->lccr0 = LCCR0_PAS;
1753 		break;
1754 	case LCD_TYPE_SMART_PANEL:
1755 		fbi->lccr0 = LCCR0_LCDT | LCCR0_PAS;
1756 		break;
1757 	default:
1758 		/* fall back to backward compatibility way */
1759 		fbi->lccr0 = inf->lccr0;
1760 		fbi->lccr3 = inf->lccr3;
1761 		goto decode_mode;
1762 	}
1763 
1764 	if (lcd_conn == LCD_MONO_STN_8BPP)
1765 		fbi->lccr0 |= LCCR0_DPD;
1766 
1767 	fbi->lccr0 |= (lcd_conn & LCD_ALTERNATE_MAPPING) ? LCCR0_LDDALT : 0;
1768 
1769 	fbi->lccr3 = LCCR3_Acb((inf->lcd_conn >> 10) & 0xff);
1770 	fbi->lccr3 |= (lcd_conn & LCD_BIAS_ACTIVE_LOW) ? LCCR3_OEP : 0;
1771 	fbi->lccr3 |= (lcd_conn & LCD_PCLK_EDGE_FALL)  ? LCCR3_PCP : 0;
1772 
1773 decode_mode:
1774 	pxafb_setmode(&fbi->fb.var, &inf->modes[0]);
1775 
1776 	/* decide video memory size as follows:
1777 	 * 1. default to mode of maximum resolution
1778 	 * 2. allow platform to override
1779 	 * 3. allow module parameter to override
1780 	 */
1781 	for (i = 0, m = &inf->modes[0]; i < inf->num_modes; i++, m++)
1782 		fbi->video_mem_size = max_t(size_t, fbi->video_mem_size,
1783 				m->xres * m->yres * m->bpp / 8);
1784 
1785 	if (inf->video_mem_size > fbi->video_mem_size)
1786 		fbi->video_mem_size = inf->video_mem_size;
1787 
1788 	if (video_mem_size > fbi->video_mem_size)
1789 		fbi->video_mem_size = video_mem_size;
1790 }
1791 
1792 static struct pxafb_info *pxafb_init_fbinfo(struct device *dev)
1793 {
1794 	struct pxafb_info *fbi;
1795 	void *addr;
1796 	struct pxafb_mach_info *inf = dev_get_platdata(dev);
1797 
1798 	/* Alloc the pxafb_info and pseudo_palette in one step */
1799 	fbi = kmalloc(sizeof(struct pxafb_info) + sizeof(u32) * 16, GFP_KERNEL);
1800 	if (!fbi)
1801 		return NULL;
1802 
1803 	memset(fbi, 0, sizeof(struct pxafb_info));
1804 	fbi->dev = dev;
1805 
1806 	fbi->clk = clk_get(dev, NULL);
1807 	if (IS_ERR(fbi->clk)) {
1808 		kfree(fbi);
1809 		return NULL;
1810 	}
1811 
1812 	strcpy(fbi->fb.fix.id, PXA_NAME);
1813 
1814 	fbi->fb.fix.type	= FB_TYPE_PACKED_PIXELS;
1815 	fbi->fb.fix.type_aux	= 0;
1816 	fbi->fb.fix.xpanstep	= 0;
1817 	fbi->fb.fix.ypanstep	= 1;
1818 	fbi->fb.fix.ywrapstep	= 0;
1819 	fbi->fb.fix.accel	= FB_ACCEL_NONE;
1820 
1821 	fbi->fb.var.nonstd	= 0;
1822 	fbi->fb.var.activate	= FB_ACTIVATE_NOW;
1823 	fbi->fb.var.height	= -1;
1824 	fbi->fb.var.width	= -1;
1825 	fbi->fb.var.accel_flags	= FB_ACCELF_TEXT;
1826 	fbi->fb.var.vmode	= FB_VMODE_NONINTERLACED;
1827 
1828 	fbi->fb.fbops		= &pxafb_ops;
1829 	fbi->fb.flags		= FBINFO_DEFAULT;
1830 	fbi->fb.node		= -1;
1831 
1832 	addr = fbi;
1833 	addr = addr + sizeof(struct pxafb_info);
1834 	fbi->fb.pseudo_palette	= addr;
1835 
1836 	fbi->state		= C_STARTUP;
1837 	fbi->task_state		= (u_char)-1;
1838 
1839 	pxafb_decode_mach_info(fbi, inf);
1840 
1841 #ifdef CONFIG_FB_PXA_OVERLAY
1842 	/* place overlay(s) on top of base */
1843 	if (pxafb_overlay_supported())
1844 		fbi->lccr0 |= LCCR0_OUC;
1845 #endif
1846 
1847 	init_waitqueue_head(&fbi->ctrlr_wait);
1848 	INIT_WORK(&fbi->task, pxafb_task);
1849 	mutex_init(&fbi->ctrlr_lock);
1850 	init_completion(&fbi->disable_done);
1851 
1852 	return fbi;
1853 }
1854 
1855 #ifdef CONFIG_FB_PXA_PARAMETERS
1856 static int parse_opt_mode(struct device *dev, const char *this_opt)
1857 {
1858 	struct pxafb_mach_info *inf = dev_get_platdata(dev);
1859 
1860 	const char *name = this_opt+5;
1861 	unsigned int namelen = strlen(name);
1862 	int res_specified = 0, bpp_specified = 0;
1863 	unsigned int xres = 0, yres = 0, bpp = 0;
1864 	int yres_specified = 0;
1865 	int i;
1866 	for (i = namelen-1; i >= 0; i--) {
1867 		switch (name[i]) {
1868 		case '-':
1869 			namelen = i;
1870 			if (!bpp_specified && !yres_specified) {
1871 				bpp = simple_strtoul(&name[i+1], NULL, 0);
1872 				bpp_specified = 1;
1873 			} else
1874 				goto done;
1875 			break;
1876 		case 'x':
1877 			if (!yres_specified) {
1878 				yres = simple_strtoul(&name[i+1], NULL, 0);
1879 				yres_specified = 1;
1880 			} else
1881 				goto done;
1882 			break;
1883 		case '0' ... '9':
1884 			break;
1885 		default:
1886 			goto done;
1887 		}
1888 	}
1889 	if (i < 0 && yres_specified) {
1890 		xres = simple_strtoul(name, NULL, 0);
1891 		res_specified = 1;
1892 	}
1893 done:
1894 	if (res_specified) {
1895 		dev_info(dev, "overriding resolution: %dx%d\n", xres, yres);
1896 		inf->modes[0].xres = xres; inf->modes[0].yres = yres;
1897 	}
1898 	if (bpp_specified)
1899 		switch (bpp) {
1900 		case 1:
1901 		case 2:
1902 		case 4:
1903 		case 8:
1904 		case 16:
1905 			inf->modes[0].bpp = bpp;
1906 			dev_info(dev, "overriding bit depth: %d\n", bpp);
1907 			break;
1908 		default:
1909 			dev_err(dev, "Depth %d is not valid\n", bpp);
1910 			return -EINVAL;
1911 		}
1912 	return 0;
1913 }
1914 
1915 static int parse_opt(struct device *dev, char *this_opt)
1916 {
1917 	struct pxafb_mach_info *inf = dev_get_platdata(dev);
1918 	struct pxafb_mode_info *mode = &inf->modes[0];
1919 	char s[64];
1920 
1921 	s[0] = '\0';
1922 
1923 	if (!strncmp(this_opt, "vmem:", 5)) {
1924 		video_mem_size = memparse(this_opt + 5, NULL);
1925 	} else if (!strncmp(this_opt, "mode:", 5)) {
1926 		return parse_opt_mode(dev, this_opt);
1927 	} else if (!strncmp(this_opt, "pixclock:", 9)) {
1928 		mode->pixclock = simple_strtoul(this_opt+9, NULL, 0);
1929 		sprintf(s, "pixclock: %ld\n", mode->pixclock);
1930 	} else if (!strncmp(this_opt, "left:", 5)) {
1931 		mode->left_margin = simple_strtoul(this_opt+5, NULL, 0);
1932 		sprintf(s, "left: %u\n", mode->left_margin);
1933 	} else if (!strncmp(this_opt, "right:", 6)) {
1934 		mode->right_margin = simple_strtoul(this_opt+6, NULL, 0);
1935 		sprintf(s, "right: %u\n", mode->right_margin);
1936 	} else if (!strncmp(this_opt, "upper:", 6)) {
1937 		mode->upper_margin = simple_strtoul(this_opt+6, NULL, 0);
1938 		sprintf(s, "upper: %u\n", mode->upper_margin);
1939 	} else if (!strncmp(this_opt, "lower:", 6)) {
1940 		mode->lower_margin = simple_strtoul(this_opt+6, NULL, 0);
1941 		sprintf(s, "lower: %u\n", mode->lower_margin);
1942 	} else if (!strncmp(this_opt, "hsynclen:", 9)) {
1943 		mode->hsync_len = simple_strtoul(this_opt+9, NULL, 0);
1944 		sprintf(s, "hsynclen: %u\n", mode->hsync_len);
1945 	} else if (!strncmp(this_opt, "vsynclen:", 9)) {
1946 		mode->vsync_len = simple_strtoul(this_opt+9, NULL, 0);
1947 		sprintf(s, "vsynclen: %u\n", mode->vsync_len);
1948 	} else if (!strncmp(this_opt, "hsync:", 6)) {
1949 		if (simple_strtoul(this_opt+6, NULL, 0) == 0) {
1950 			sprintf(s, "hsync: Active Low\n");
1951 			mode->sync &= ~FB_SYNC_HOR_HIGH_ACT;
1952 		} else {
1953 			sprintf(s, "hsync: Active High\n");
1954 			mode->sync |= FB_SYNC_HOR_HIGH_ACT;
1955 		}
1956 	} else if (!strncmp(this_opt, "vsync:", 6)) {
1957 		if (simple_strtoul(this_opt+6, NULL, 0) == 0) {
1958 			sprintf(s, "vsync: Active Low\n");
1959 			mode->sync &= ~FB_SYNC_VERT_HIGH_ACT;
1960 		} else {
1961 			sprintf(s, "vsync: Active High\n");
1962 			mode->sync |= FB_SYNC_VERT_HIGH_ACT;
1963 		}
1964 	} else if (!strncmp(this_opt, "dpc:", 4)) {
1965 		if (simple_strtoul(this_opt+4, NULL, 0) == 0) {
1966 			sprintf(s, "double pixel clock: false\n");
1967 			inf->lccr3 &= ~LCCR3_DPC;
1968 		} else {
1969 			sprintf(s, "double pixel clock: true\n");
1970 			inf->lccr3 |= LCCR3_DPC;
1971 		}
1972 	} else if (!strncmp(this_opt, "outputen:", 9)) {
1973 		if (simple_strtoul(this_opt+9, NULL, 0) == 0) {
1974 			sprintf(s, "output enable: active low\n");
1975 			inf->lccr3 = (inf->lccr3 & ~LCCR3_OEP) | LCCR3_OutEnL;
1976 		} else {
1977 			sprintf(s, "output enable: active high\n");
1978 			inf->lccr3 = (inf->lccr3 & ~LCCR3_OEP) | LCCR3_OutEnH;
1979 		}
1980 	} else if (!strncmp(this_opt, "pixclockpol:", 12)) {
1981 		if (simple_strtoul(this_opt+12, NULL, 0) == 0) {
1982 			sprintf(s, "pixel clock polarity: falling edge\n");
1983 			inf->lccr3 = (inf->lccr3 & ~LCCR3_PCP) | LCCR3_PixFlEdg;
1984 		} else {
1985 			sprintf(s, "pixel clock polarity: rising edge\n");
1986 			inf->lccr3 = (inf->lccr3 & ~LCCR3_PCP) | LCCR3_PixRsEdg;
1987 		}
1988 	} else if (!strncmp(this_opt, "color", 5)) {
1989 		inf->lccr0 = (inf->lccr0 & ~LCCR0_CMS) | LCCR0_Color;
1990 	} else if (!strncmp(this_opt, "mono", 4)) {
1991 		inf->lccr0 = (inf->lccr0 & ~LCCR0_CMS) | LCCR0_Mono;
1992 	} else if (!strncmp(this_opt, "active", 6)) {
1993 		inf->lccr0 = (inf->lccr0 & ~LCCR0_PAS) | LCCR0_Act;
1994 	} else if (!strncmp(this_opt, "passive", 7)) {
1995 		inf->lccr0 = (inf->lccr0 & ~LCCR0_PAS) | LCCR0_Pas;
1996 	} else if (!strncmp(this_opt, "single", 6)) {
1997 		inf->lccr0 = (inf->lccr0 & ~LCCR0_SDS) | LCCR0_Sngl;
1998 	} else if (!strncmp(this_opt, "dual", 4)) {
1999 		inf->lccr0 = (inf->lccr0 & ~LCCR0_SDS) | LCCR0_Dual;
2000 	} else if (!strncmp(this_opt, "4pix", 4)) {
2001 		inf->lccr0 = (inf->lccr0 & ~LCCR0_DPD) | LCCR0_4PixMono;
2002 	} else if (!strncmp(this_opt, "8pix", 4)) {
2003 		inf->lccr0 = (inf->lccr0 & ~LCCR0_DPD) | LCCR0_8PixMono;
2004 	} else {
2005 		dev_err(dev, "unknown option: %s\n", this_opt);
2006 		return -EINVAL;
2007 	}
2008 
2009 	if (s[0] != '\0')
2010 		dev_info(dev, "override %s", s);
2011 
2012 	return 0;
2013 }
2014 
2015 static int pxafb_parse_options(struct device *dev, char *options)
2016 {
2017 	char *this_opt;
2018 	int ret;
2019 
2020 	if (!options || !*options)
2021 		return 0;
2022 
2023 	dev_dbg(dev, "options are \"%s\"\n", options ? options : "null");
2024 
2025 	/* could be made table driven or similar?... */
2026 	while ((this_opt = strsep(&options, ",")) != NULL) {
2027 		ret = parse_opt(dev, this_opt);
2028 		if (ret)
2029 			return ret;
2030 	}
2031 	return 0;
2032 }
2033 
2034 static char g_options[256] = "";
2035 
2036 #ifndef MODULE
2037 static int __init pxafb_setup_options(void)
2038 {
2039 	char *options = NULL;
2040 
2041 	if (fb_get_options("pxafb", &options))
2042 		return -ENODEV;
2043 
2044 	if (options)
2045 		strlcpy(g_options, options, sizeof(g_options));
2046 
2047 	return 0;
2048 }
2049 #else
2050 #define pxafb_setup_options()		(0)
2051 
2052 module_param_string(options, g_options, sizeof(g_options), 0);
2053 MODULE_PARM_DESC(options, "LCD parameters (see Documentation/fb/pxafb.txt)");
2054 #endif
2055 
2056 #else
2057 #define pxafb_parse_options(...)	(0)
2058 #define pxafb_setup_options()		(0)
2059 #endif
2060 
2061 #ifdef DEBUG_VAR
2062 /* Check for various illegal bit-combinations. Currently only
2063  * a warning is given. */
2064 static void pxafb_check_options(struct device *dev, struct pxafb_mach_info *inf)
2065 {
2066 	if (inf->lcd_conn)
2067 		return;
2068 
2069 	if (inf->lccr0 & LCCR0_INVALID_CONFIG_MASK)
2070 		dev_warn(dev, "machine LCCR0 setting contains "
2071 				"illegal bits: %08x\n",
2072 			inf->lccr0 & LCCR0_INVALID_CONFIG_MASK);
2073 	if (inf->lccr3 & LCCR3_INVALID_CONFIG_MASK)
2074 		dev_warn(dev, "machine LCCR3 setting contains "
2075 				"illegal bits: %08x\n",
2076 			inf->lccr3 & LCCR3_INVALID_CONFIG_MASK);
2077 	if (inf->lccr0 & LCCR0_DPD &&
2078 	    ((inf->lccr0 & LCCR0_PAS) != LCCR0_Pas ||
2079 	     (inf->lccr0 & LCCR0_SDS) != LCCR0_Sngl ||
2080 	     (inf->lccr0 & LCCR0_CMS) != LCCR0_Mono))
2081 		dev_warn(dev, "Double Pixel Data (DPD) mode is "
2082 				"only valid in passive mono"
2083 				" single panel mode\n");
2084 	if ((inf->lccr0 & LCCR0_PAS) == LCCR0_Act &&
2085 	    (inf->lccr0 & LCCR0_SDS) == LCCR0_Dual)
2086 		dev_warn(dev, "Dual panel only valid in passive mode\n");
2087 	if ((inf->lccr0 & LCCR0_PAS) == LCCR0_Pas &&
2088 	     (inf->modes->upper_margin || inf->modes->lower_margin))
2089 		dev_warn(dev, "Upper and lower margins must be 0 in "
2090 				"passive mode\n");
2091 }
2092 #else
2093 #define pxafb_check_options(...)	do {} while (0)
2094 #endif
2095 
2096 static int pxafb_probe(struct platform_device *dev)
2097 {
2098 	struct pxafb_info *fbi;
2099 	struct pxafb_mach_info *inf;
2100 	struct resource *r;
2101 	int irq, ret;
2102 
2103 	dev_dbg(&dev->dev, "pxafb_probe\n");
2104 
2105 	inf = dev_get_platdata(&dev->dev);
2106 	ret = -ENOMEM;
2107 	fbi = NULL;
2108 	if (!inf)
2109 		goto failed;
2110 
2111 	ret = pxafb_parse_options(&dev->dev, g_options);
2112 	if (ret < 0)
2113 		goto failed;
2114 
2115 	pxafb_check_options(&dev->dev, inf);
2116 
2117 	dev_dbg(&dev->dev, "got a %dx%dx%d LCD\n",
2118 			inf->modes->xres,
2119 			inf->modes->yres,
2120 			inf->modes->bpp);
2121 	if (inf->modes->xres == 0 ||
2122 	    inf->modes->yres == 0 ||
2123 	    inf->modes->bpp == 0) {
2124 		dev_err(&dev->dev, "Invalid resolution or bit depth\n");
2125 		ret = -EINVAL;
2126 		goto failed;
2127 	}
2128 
2129 	fbi = pxafb_init_fbinfo(&dev->dev);
2130 	if (!fbi) {
2131 		/* only reason for pxafb_init_fbinfo to fail is kmalloc */
2132 		dev_err(&dev->dev, "Failed to initialize framebuffer device\n");
2133 		ret = -ENOMEM;
2134 		goto failed;
2135 	}
2136 
2137 	if (cpu_is_pxa3xx() && inf->acceleration_enabled)
2138 		fbi->fb.fix.accel = FB_ACCEL_PXA3XX;
2139 
2140 	fbi->backlight_power = inf->pxafb_backlight_power;
2141 	fbi->lcd_power = inf->pxafb_lcd_power;
2142 
2143 	r = platform_get_resource(dev, IORESOURCE_MEM, 0);
2144 	if (r == NULL) {
2145 		dev_err(&dev->dev, "no I/O memory resource defined\n");
2146 		ret = -ENODEV;
2147 		goto failed_fbi;
2148 	}
2149 
2150 	r = request_mem_region(r->start, resource_size(r), dev->name);
2151 	if (r == NULL) {
2152 		dev_err(&dev->dev, "failed to request I/O memory\n");
2153 		ret = -EBUSY;
2154 		goto failed_fbi;
2155 	}
2156 
2157 	fbi->mmio_base = ioremap(r->start, resource_size(r));
2158 	if (fbi->mmio_base == NULL) {
2159 		dev_err(&dev->dev, "failed to map I/O memory\n");
2160 		ret = -EBUSY;
2161 		goto failed_free_res;
2162 	}
2163 
2164 	fbi->dma_buff_size = PAGE_ALIGN(sizeof(struct pxafb_dma_buff));
2165 	fbi->dma_buff = dma_alloc_coherent(fbi->dev, fbi->dma_buff_size,
2166 				&fbi->dma_buff_phys, GFP_KERNEL);
2167 	if (fbi->dma_buff == NULL) {
2168 		dev_err(&dev->dev, "failed to allocate memory for DMA\n");
2169 		ret = -ENOMEM;
2170 		goto failed_free_io;
2171 	}
2172 
2173 	ret = pxafb_init_video_memory(fbi);
2174 	if (ret) {
2175 		dev_err(&dev->dev, "Failed to allocate video RAM: %d\n", ret);
2176 		ret = -ENOMEM;
2177 		goto failed_free_dma;
2178 	}
2179 
2180 	irq = platform_get_irq(dev, 0);
2181 	if (irq < 0) {
2182 		dev_err(&dev->dev, "no IRQ defined\n");
2183 		ret = -ENODEV;
2184 		goto failed_free_mem;
2185 	}
2186 
2187 	ret = request_irq(irq, pxafb_handle_irq, 0, "LCD", fbi);
2188 	if (ret) {
2189 		dev_err(&dev->dev, "request_irq failed: %d\n", ret);
2190 		ret = -EBUSY;
2191 		goto failed_free_mem;
2192 	}
2193 
2194 	ret = pxafb_smart_init(fbi);
2195 	if (ret) {
2196 		dev_err(&dev->dev, "failed to initialize smartpanel\n");
2197 		goto failed_free_irq;
2198 	}
2199 
2200 	/*
2201 	 * This makes sure that our colour bitfield
2202 	 * descriptors are correctly initialised.
2203 	 */
2204 	ret = pxafb_check_var(&fbi->fb.var, &fbi->fb);
2205 	if (ret) {
2206 		dev_err(&dev->dev, "failed to get suitable mode\n");
2207 		goto failed_free_irq;
2208 	}
2209 
2210 	ret = pxafb_set_par(&fbi->fb);
2211 	if (ret) {
2212 		dev_err(&dev->dev, "Failed to set parameters\n");
2213 		goto failed_free_irq;
2214 	}
2215 
2216 	platform_set_drvdata(dev, fbi);
2217 
2218 	ret = register_framebuffer(&fbi->fb);
2219 	if (ret < 0) {
2220 		dev_err(&dev->dev,
2221 			"Failed to register framebuffer device: %d\n", ret);
2222 		goto failed_free_cmap;
2223 	}
2224 
2225 	pxafb_overlay_init(fbi);
2226 
2227 #ifdef CONFIG_CPU_FREQ
2228 	fbi->freq_transition.notifier_call = pxafb_freq_transition;
2229 	fbi->freq_policy.notifier_call = pxafb_freq_policy;
2230 	cpufreq_register_notifier(&fbi->freq_transition,
2231 				CPUFREQ_TRANSITION_NOTIFIER);
2232 	cpufreq_register_notifier(&fbi->freq_policy,
2233 				CPUFREQ_POLICY_NOTIFIER);
2234 #endif
2235 
2236 	/*
2237 	 * Ok, now enable the LCD controller
2238 	 */
2239 	set_ctrlr_state(fbi, C_ENABLE);
2240 
2241 	return 0;
2242 
2243 failed_free_cmap:
2244 	if (fbi->fb.cmap.len)
2245 		fb_dealloc_cmap(&fbi->fb.cmap);
2246 failed_free_irq:
2247 	free_irq(irq, fbi);
2248 failed_free_mem:
2249 	free_pages_exact(fbi->video_mem, fbi->video_mem_size);
2250 failed_free_dma:
2251 	dma_free_coherent(&dev->dev, fbi->dma_buff_size,
2252 			fbi->dma_buff, fbi->dma_buff_phys);
2253 failed_free_io:
2254 	iounmap(fbi->mmio_base);
2255 failed_free_res:
2256 	release_mem_region(r->start, resource_size(r));
2257 failed_fbi:
2258 	clk_put(fbi->clk);
2259 	kfree(fbi);
2260 failed:
2261 	return ret;
2262 }
2263 
2264 static int pxafb_remove(struct platform_device *dev)
2265 {
2266 	struct pxafb_info *fbi = platform_get_drvdata(dev);
2267 	struct resource *r;
2268 	int irq;
2269 	struct fb_info *info;
2270 
2271 	if (!fbi)
2272 		return 0;
2273 
2274 	info = &fbi->fb;
2275 
2276 	pxafb_overlay_exit(fbi);
2277 	unregister_framebuffer(info);
2278 
2279 	pxafb_disable_controller(fbi);
2280 
2281 	if (fbi->fb.cmap.len)
2282 		fb_dealloc_cmap(&fbi->fb.cmap);
2283 
2284 	irq = platform_get_irq(dev, 0);
2285 	free_irq(irq, fbi);
2286 
2287 	free_pages_exact(fbi->video_mem, fbi->video_mem_size);
2288 
2289 	dma_free_writecombine(&dev->dev, fbi->dma_buff_size,
2290 			fbi->dma_buff, fbi->dma_buff_phys);
2291 
2292 	iounmap(fbi->mmio_base);
2293 
2294 	r = platform_get_resource(dev, IORESOURCE_MEM, 0);
2295 	release_mem_region(r->start, resource_size(r));
2296 
2297 	clk_put(fbi->clk);
2298 	kfree(fbi);
2299 
2300 	return 0;
2301 }
2302 
2303 static struct platform_driver pxafb_driver = {
2304 	.probe		= pxafb_probe,
2305 	.remove 	= pxafb_remove,
2306 	.driver		= {
2307 		.name	= "pxa2xx-fb",
2308 #ifdef CONFIG_PM
2309 		.pm	= &pxafb_pm_ops,
2310 #endif
2311 	},
2312 };
2313 
2314 static int __init pxafb_init(void)
2315 {
2316 	if (pxafb_setup_options())
2317 		return -EINVAL;
2318 
2319 	return platform_driver_register(&pxafb_driver);
2320 }
2321 
2322 static void __exit pxafb_exit(void)
2323 {
2324 	platform_driver_unregister(&pxafb_driver);
2325 }
2326 
2327 module_init(pxafb_init);
2328 module_exit(pxafb_exit);
2329 
2330 MODULE_DESCRIPTION("loadable framebuffer driver for PXA");
2331 MODULE_LICENSE("GPL");
2332