1 /* 2 * linux/drivers/video/pxafb.c 3 * 4 * Copyright (C) 1999 Eric A. Thomas. 5 * Copyright (C) 2004 Jean-Frederic Clere. 6 * Copyright (C) 2004 Ian Campbell. 7 * Copyright (C) 2004 Jeff Lackey. 8 * Based on sa1100fb.c Copyright (C) 1999 Eric A. Thomas 9 * which in turn is 10 * Based on acornfb.c Copyright (C) Russell King. 11 * 12 * This file is subject to the terms and conditions of the GNU General Public 13 * License. See the file COPYING in the main directory of this archive for 14 * more details. 15 * 16 * Intel PXA250/210 LCD Controller Frame Buffer Driver 17 * 18 * Please direct your questions and comments on this driver to the following 19 * email address: 20 * 21 * linux-arm-kernel@lists.arm.linux.org.uk 22 * 23 * Add support for overlay1 and overlay2 based on pxafb_overlay.c: 24 * 25 * Copyright (C) 2004, Intel Corporation 26 * 27 * 2003/08/27: <yu.tang@intel.com> 28 * 2004/03/10: <stanley.cai@intel.com> 29 * 2004/10/28: <yan.yin@intel.com> 30 * 31 * Copyright (C) 2006-2008 Marvell International Ltd. 32 * All Rights Reserved 33 */ 34 35 #include <linux/module.h> 36 #include <linux/moduleparam.h> 37 #include <linux/kernel.h> 38 #include <linux/sched.h> 39 #include <linux/errno.h> 40 #include <linux/string.h> 41 #include <linux/interrupt.h> 42 #include <linux/slab.h> 43 #include <linux/mm.h> 44 #include <linux/fb.h> 45 #include <linux/delay.h> 46 #include <linux/init.h> 47 #include <linux/ioport.h> 48 #include <linux/cpufreq.h> 49 #include <linux/platform_device.h> 50 #include <linux/dma-mapping.h> 51 #include <linux/clk.h> 52 #include <linux/err.h> 53 #include <linux/completion.h> 54 #include <linux/mutex.h> 55 #include <linux/kthread.h> 56 #include <linux/freezer.h> 57 #include <linux/console.h> 58 #include <linux/of_graph.h> 59 #include <linux/regulator/consumer.h> 60 #include <video/of_display_timing.h> 61 #include <video/videomode.h> 62 63 #include <mach/hardware.h> 64 #include <asm/io.h> 65 #include <asm/irq.h> 66 #include <asm/div64.h> 67 #include <mach/bitfield.h> 68 #include <linux/platform_data/video-pxafb.h> 69 70 /* 71 * Complain if VAR is out of range. 72 */ 73 #define DEBUG_VAR 1 74 75 #include "pxafb.h" 76 77 /* Bits which should not be set in machine configuration structures */ 78 #define LCCR0_INVALID_CONFIG_MASK (LCCR0_OUM | LCCR0_BM | LCCR0_QDM |\ 79 LCCR0_DIS | LCCR0_EFM | LCCR0_IUM |\ 80 LCCR0_SFM | LCCR0_LDM | LCCR0_ENB) 81 82 #define LCCR3_INVALID_CONFIG_MASK (LCCR3_HSP | LCCR3_VSP |\ 83 LCCR3_PCD | LCCR3_BPP(0xf)) 84 85 static int pxafb_activate_var(struct fb_var_screeninfo *var, 86 struct pxafb_info *); 87 static void set_ctrlr_state(struct pxafb_info *fbi, u_int state); 88 static void setup_base_frame(struct pxafb_info *fbi, 89 struct fb_var_screeninfo *var, int branch); 90 static int setup_frame_dma(struct pxafb_info *fbi, int dma, int pal, 91 unsigned long offset, size_t size); 92 93 static unsigned long video_mem_size = 0; 94 95 static inline unsigned long 96 lcd_readl(struct pxafb_info *fbi, unsigned int off) 97 { 98 return __raw_readl(fbi->mmio_base + off); 99 } 100 101 static inline void 102 lcd_writel(struct pxafb_info *fbi, unsigned int off, unsigned long val) 103 { 104 __raw_writel(val, fbi->mmio_base + off); 105 } 106 107 static inline void pxafb_schedule_work(struct pxafb_info *fbi, u_int state) 108 { 109 unsigned long flags; 110 111 local_irq_save(flags); 112 /* 113 * We need to handle two requests being made at the same time. 114 * There are two important cases: 115 * 1. When we are changing VT (C_REENABLE) while unblanking 116 * (C_ENABLE) We must perform the unblanking, which will 117 * do our REENABLE for us. 118 * 2. When we are blanking, but immediately unblank before 119 * we have blanked. We do the "REENABLE" thing here as 120 * well, just to be sure. 121 */ 122 if (fbi->task_state == C_ENABLE && state == C_REENABLE) 123 state = (u_int) -1; 124 if (fbi->task_state == C_DISABLE && state == C_ENABLE) 125 state = C_REENABLE; 126 127 if (state != (u_int)-1) { 128 fbi->task_state = state; 129 schedule_work(&fbi->task); 130 } 131 local_irq_restore(flags); 132 } 133 134 static inline u_int chan_to_field(u_int chan, struct fb_bitfield *bf) 135 { 136 chan &= 0xffff; 137 chan >>= 16 - bf->length; 138 return chan << bf->offset; 139 } 140 141 static int 142 pxafb_setpalettereg(u_int regno, u_int red, u_int green, u_int blue, 143 u_int trans, struct fb_info *info) 144 { 145 struct pxafb_info *fbi = container_of(info, struct pxafb_info, fb); 146 u_int val; 147 148 if (regno >= fbi->palette_size) 149 return 1; 150 151 if (fbi->fb.var.grayscale) { 152 fbi->palette_cpu[regno] = ((blue >> 8) & 0x00ff); 153 return 0; 154 } 155 156 switch (fbi->lccr4 & LCCR4_PAL_FOR_MASK) { 157 case LCCR4_PAL_FOR_0: 158 val = ((red >> 0) & 0xf800); 159 val |= ((green >> 5) & 0x07e0); 160 val |= ((blue >> 11) & 0x001f); 161 fbi->palette_cpu[regno] = val; 162 break; 163 case LCCR4_PAL_FOR_1: 164 val = ((red << 8) & 0x00f80000); 165 val |= ((green >> 0) & 0x0000fc00); 166 val |= ((blue >> 8) & 0x000000f8); 167 ((u32 *)(fbi->palette_cpu))[regno] = val; 168 break; 169 case LCCR4_PAL_FOR_2: 170 val = ((red << 8) & 0x00fc0000); 171 val |= ((green >> 0) & 0x0000fc00); 172 val |= ((blue >> 8) & 0x000000fc); 173 ((u32 *)(fbi->palette_cpu))[regno] = val; 174 break; 175 case LCCR4_PAL_FOR_3: 176 val = ((red << 8) & 0x00ff0000); 177 val |= ((green >> 0) & 0x0000ff00); 178 val |= ((blue >> 8) & 0x000000ff); 179 ((u32 *)(fbi->palette_cpu))[regno] = val; 180 break; 181 } 182 183 return 0; 184 } 185 186 static int 187 pxafb_setcolreg(u_int regno, u_int red, u_int green, u_int blue, 188 u_int trans, struct fb_info *info) 189 { 190 struct pxafb_info *fbi = container_of(info, struct pxafb_info, fb); 191 unsigned int val; 192 int ret = 1; 193 194 /* 195 * If inverse mode was selected, invert all the colours 196 * rather than the register number. The register number 197 * is what you poke into the framebuffer to produce the 198 * colour you requested. 199 */ 200 if (fbi->cmap_inverse) { 201 red = 0xffff - red; 202 green = 0xffff - green; 203 blue = 0xffff - blue; 204 } 205 206 /* 207 * If greyscale is true, then we convert the RGB value 208 * to greyscale no matter what visual we are using. 209 */ 210 if (fbi->fb.var.grayscale) 211 red = green = blue = (19595 * red + 38470 * green + 212 7471 * blue) >> 16; 213 214 switch (fbi->fb.fix.visual) { 215 case FB_VISUAL_TRUECOLOR: 216 /* 217 * 16-bit True Colour. We encode the RGB value 218 * according to the RGB bitfield information. 219 */ 220 if (regno < 16) { 221 u32 *pal = fbi->fb.pseudo_palette; 222 223 val = chan_to_field(red, &fbi->fb.var.red); 224 val |= chan_to_field(green, &fbi->fb.var.green); 225 val |= chan_to_field(blue, &fbi->fb.var.blue); 226 227 pal[regno] = val; 228 ret = 0; 229 } 230 break; 231 232 case FB_VISUAL_STATIC_PSEUDOCOLOR: 233 case FB_VISUAL_PSEUDOCOLOR: 234 ret = pxafb_setpalettereg(regno, red, green, blue, trans, info); 235 break; 236 } 237 238 return ret; 239 } 240 241 /* calculate pixel depth, transparency bit included, >=16bpp formats _only_ */ 242 static inline int var_to_depth(struct fb_var_screeninfo *var) 243 { 244 return var->red.length + var->green.length + 245 var->blue.length + var->transp.length; 246 } 247 248 /* calculate 4-bit BPP value for LCCR3 and OVLxC1 */ 249 static int pxafb_var_to_bpp(struct fb_var_screeninfo *var) 250 { 251 int bpp = -EINVAL; 252 253 switch (var->bits_per_pixel) { 254 case 1: bpp = 0; break; 255 case 2: bpp = 1; break; 256 case 4: bpp = 2; break; 257 case 8: bpp = 3; break; 258 case 16: bpp = 4; break; 259 case 24: 260 switch (var_to_depth(var)) { 261 case 18: bpp = 6; break; /* 18-bits/pixel packed */ 262 case 19: bpp = 8; break; /* 19-bits/pixel packed */ 263 case 24: bpp = 9; break; 264 } 265 break; 266 case 32: 267 switch (var_to_depth(var)) { 268 case 18: bpp = 5; break; /* 18-bits/pixel unpacked */ 269 case 19: bpp = 7; break; /* 19-bits/pixel unpacked */ 270 case 25: bpp = 10; break; 271 } 272 break; 273 } 274 return bpp; 275 } 276 277 /* 278 * pxafb_var_to_lccr3(): 279 * Convert a bits per pixel value to the correct bit pattern for LCCR3 280 * 281 * NOTE: for PXA27x with overlays support, the LCCR3_PDFOR_x bits have an 282 * implication of the acutal use of transparency bit, which we handle it 283 * here separatedly. See PXA27x Developer's Manual, Section <<7.4.6 Pixel 284 * Formats>> for the valid combination of PDFOR, PAL_FOR for various BPP. 285 * 286 * Transparency for palette pixel formats is not supported at the moment. 287 */ 288 static uint32_t pxafb_var_to_lccr3(struct fb_var_screeninfo *var) 289 { 290 int bpp = pxafb_var_to_bpp(var); 291 uint32_t lccr3; 292 293 if (bpp < 0) 294 return 0; 295 296 lccr3 = LCCR3_BPP(bpp); 297 298 switch (var_to_depth(var)) { 299 case 16: lccr3 |= var->transp.length ? LCCR3_PDFOR_3 : 0; break; 300 case 18: lccr3 |= LCCR3_PDFOR_3; break; 301 case 24: lccr3 |= var->transp.length ? LCCR3_PDFOR_2 : LCCR3_PDFOR_3; 302 break; 303 case 19: 304 case 25: lccr3 |= LCCR3_PDFOR_0; break; 305 } 306 return lccr3; 307 } 308 309 #define SET_PIXFMT(v, r, g, b, t) \ 310 ({ \ 311 (v)->transp.offset = (t) ? (r) + (g) + (b) : 0; \ 312 (v)->transp.length = (t) ? (t) : 0; \ 313 (v)->blue.length = (b); (v)->blue.offset = 0; \ 314 (v)->green.length = (g); (v)->green.offset = (b); \ 315 (v)->red.length = (r); (v)->red.offset = (b) + (g); \ 316 }) 317 318 /* set the RGBT bitfields of fb_var_screeninf according to 319 * var->bits_per_pixel and given depth 320 */ 321 static void pxafb_set_pixfmt(struct fb_var_screeninfo *var, int depth) 322 { 323 if (depth == 0) 324 depth = var->bits_per_pixel; 325 326 if (var->bits_per_pixel < 16) { 327 /* indexed pixel formats */ 328 var->red.offset = 0; var->red.length = 8; 329 var->green.offset = 0; var->green.length = 8; 330 var->blue.offset = 0; var->blue.length = 8; 331 var->transp.offset = 0; var->transp.length = 8; 332 } 333 334 switch (depth) { 335 case 16: var->transp.length ? 336 SET_PIXFMT(var, 5, 5, 5, 1) : /* RGBT555 */ 337 SET_PIXFMT(var, 5, 6, 5, 0); break; /* RGB565 */ 338 case 18: SET_PIXFMT(var, 6, 6, 6, 0); break; /* RGB666 */ 339 case 19: SET_PIXFMT(var, 6, 6, 6, 1); break; /* RGBT666 */ 340 case 24: var->transp.length ? 341 SET_PIXFMT(var, 8, 8, 7, 1) : /* RGBT887 */ 342 SET_PIXFMT(var, 8, 8, 8, 0); break; /* RGB888 */ 343 case 25: SET_PIXFMT(var, 8, 8, 8, 1); break; /* RGBT888 */ 344 } 345 } 346 347 #ifdef CONFIG_CPU_FREQ 348 /* 349 * pxafb_display_dma_period() 350 * Calculate the minimum period (in picoseconds) between two DMA 351 * requests for the LCD controller. If we hit this, it means we're 352 * doing nothing but LCD DMA. 353 */ 354 static unsigned int pxafb_display_dma_period(struct fb_var_screeninfo *var) 355 { 356 /* 357 * Period = pixclock * bits_per_byte * bytes_per_transfer 358 * / memory_bits_per_pixel; 359 */ 360 return var->pixclock * 8 * 16 / var->bits_per_pixel; 361 } 362 #endif 363 364 /* 365 * Select the smallest mode that allows the desired resolution to be 366 * displayed. If desired parameters can be rounded up. 367 */ 368 static struct pxafb_mode_info *pxafb_getmode(struct pxafb_mach_info *mach, 369 struct fb_var_screeninfo *var) 370 { 371 struct pxafb_mode_info *mode = NULL; 372 struct pxafb_mode_info *modelist = mach->modes; 373 unsigned int best_x = 0xffffffff, best_y = 0xffffffff; 374 unsigned int i; 375 376 for (i = 0; i < mach->num_modes; i++) { 377 if (modelist[i].xres >= var->xres && 378 modelist[i].yres >= var->yres && 379 modelist[i].xres < best_x && 380 modelist[i].yres < best_y && 381 modelist[i].bpp >= var->bits_per_pixel) { 382 best_x = modelist[i].xres; 383 best_y = modelist[i].yres; 384 mode = &modelist[i]; 385 } 386 } 387 388 return mode; 389 } 390 391 static void pxafb_setmode(struct fb_var_screeninfo *var, 392 struct pxafb_mode_info *mode) 393 { 394 var->xres = mode->xres; 395 var->yres = mode->yres; 396 var->bits_per_pixel = mode->bpp; 397 var->pixclock = mode->pixclock; 398 var->hsync_len = mode->hsync_len; 399 var->left_margin = mode->left_margin; 400 var->right_margin = mode->right_margin; 401 var->vsync_len = mode->vsync_len; 402 var->upper_margin = mode->upper_margin; 403 var->lower_margin = mode->lower_margin; 404 var->sync = mode->sync; 405 var->grayscale = mode->cmap_greyscale; 406 var->transp.length = mode->transparency; 407 408 /* set the initial RGBA bitfields */ 409 pxafb_set_pixfmt(var, mode->depth); 410 } 411 412 static int pxafb_adjust_timing(struct pxafb_info *fbi, 413 struct fb_var_screeninfo *var) 414 { 415 int line_length; 416 417 var->xres = max_t(int, var->xres, MIN_XRES); 418 var->yres = max_t(int, var->yres, MIN_YRES); 419 420 if (!(fbi->lccr0 & LCCR0_LCDT)) { 421 clamp_val(var->hsync_len, 1, 64); 422 clamp_val(var->vsync_len, 1, 64); 423 clamp_val(var->left_margin, 1, 255); 424 clamp_val(var->right_margin, 1, 255); 425 clamp_val(var->upper_margin, 1, 255); 426 clamp_val(var->lower_margin, 1, 255); 427 } 428 429 /* make sure each line is aligned on word boundary */ 430 line_length = var->xres * var->bits_per_pixel / 8; 431 line_length = ALIGN(line_length, 4); 432 var->xres = line_length * 8 / var->bits_per_pixel; 433 434 /* we don't support xpan, force xres_virtual to be equal to xres */ 435 var->xres_virtual = var->xres; 436 437 if (var->accel_flags & FB_ACCELF_TEXT) 438 var->yres_virtual = fbi->fb.fix.smem_len / line_length; 439 else 440 var->yres_virtual = max(var->yres_virtual, var->yres); 441 442 /* check for limits */ 443 if (var->xres > MAX_XRES || var->yres > MAX_YRES) 444 return -EINVAL; 445 446 if (var->yres > var->yres_virtual) 447 return -EINVAL; 448 449 return 0; 450 } 451 452 /* 453 * pxafb_check_var(): 454 * Get the video params out of 'var'. If a value doesn't fit, round it up, 455 * if it's too big, return -EINVAL. 456 * 457 * Round up in the following order: bits_per_pixel, xres, 458 * yres, xres_virtual, yres_virtual, xoffset, yoffset, grayscale, 459 * bitfields, horizontal timing, vertical timing. 460 */ 461 static int pxafb_check_var(struct fb_var_screeninfo *var, struct fb_info *info) 462 { 463 struct pxafb_info *fbi = container_of(info, struct pxafb_info, fb); 464 struct pxafb_mach_info *inf = fbi->inf; 465 int err; 466 467 if (inf->fixed_modes) { 468 struct pxafb_mode_info *mode; 469 470 mode = pxafb_getmode(inf, var); 471 if (!mode) 472 return -EINVAL; 473 pxafb_setmode(var, mode); 474 } 475 476 /* do a test conversion to BPP fields to check the color formats */ 477 err = pxafb_var_to_bpp(var); 478 if (err < 0) 479 return err; 480 481 pxafb_set_pixfmt(var, var_to_depth(var)); 482 483 err = pxafb_adjust_timing(fbi, var); 484 if (err) 485 return err; 486 487 #ifdef CONFIG_CPU_FREQ 488 pr_debug("pxafb: dma period = %d ps\n", 489 pxafb_display_dma_period(var)); 490 #endif 491 492 return 0; 493 } 494 495 /* 496 * pxafb_set_par(): 497 * Set the user defined part of the display for the specified console 498 */ 499 static int pxafb_set_par(struct fb_info *info) 500 { 501 struct pxafb_info *fbi = container_of(info, struct pxafb_info, fb); 502 struct fb_var_screeninfo *var = &info->var; 503 504 if (var->bits_per_pixel >= 16) 505 fbi->fb.fix.visual = FB_VISUAL_TRUECOLOR; 506 else if (!fbi->cmap_static) 507 fbi->fb.fix.visual = FB_VISUAL_PSEUDOCOLOR; 508 else { 509 /* 510 * Some people have weird ideas about wanting static 511 * pseudocolor maps. I suspect their user space 512 * applications are broken. 513 */ 514 fbi->fb.fix.visual = FB_VISUAL_STATIC_PSEUDOCOLOR; 515 } 516 517 fbi->fb.fix.line_length = var->xres_virtual * 518 var->bits_per_pixel / 8; 519 if (var->bits_per_pixel >= 16) 520 fbi->palette_size = 0; 521 else 522 fbi->palette_size = var->bits_per_pixel == 1 ? 523 4 : 1 << var->bits_per_pixel; 524 525 fbi->palette_cpu = (u16 *)&fbi->dma_buff->palette[0]; 526 527 if (fbi->fb.var.bits_per_pixel >= 16) 528 fb_dealloc_cmap(&fbi->fb.cmap); 529 else 530 fb_alloc_cmap(&fbi->fb.cmap, 1<<fbi->fb.var.bits_per_pixel, 0); 531 532 pxafb_activate_var(var, fbi); 533 534 return 0; 535 } 536 537 static int pxafb_pan_display(struct fb_var_screeninfo *var, 538 struct fb_info *info) 539 { 540 struct pxafb_info *fbi = container_of(info, struct pxafb_info, fb); 541 struct fb_var_screeninfo newvar; 542 int dma = DMA_MAX + DMA_BASE; 543 544 if (fbi->state != C_ENABLE) 545 return 0; 546 547 /* Only take .xoffset, .yoffset and .vmode & FB_VMODE_YWRAP from what 548 * was passed in and copy the rest from the old screeninfo. 549 */ 550 memcpy(&newvar, &fbi->fb.var, sizeof(newvar)); 551 newvar.xoffset = var->xoffset; 552 newvar.yoffset = var->yoffset; 553 newvar.vmode &= ~FB_VMODE_YWRAP; 554 newvar.vmode |= var->vmode & FB_VMODE_YWRAP; 555 556 setup_base_frame(fbi, &newvar, 1); 557 558 if (fbi->lccr0 & LCCR0_SDS) 559 lcd_writel(fbi, FBR1, fbi->fdadr[dma + 1] | 0x1); 560 561 lcd_writel(fbi, FBR0, fbi->fdadr[dma] | 0x1); 562 return 0; 563 } 564 565 /* 566 * pxafb_blank(): 567 * Blank the display by setting all palette values to zero. Note, the 568 * 16 bpp mode does not really use the palette, so this will not 569 * blank the display in all modes. 570 */ 571 static int pxafb_blank(int blank, struct fb_info *info) 572 { 573 struct pxafb_info *fbi = container_of(info, struct pxafb_info, fb); 574 int i; 575 576 switch (blank) { 577 case FB_BLANK_POWERDOWN: 578 case FB_BLANK_VSYNC_SUSPEND: 579 case FB_BLANK_HSYNC_SUSPEND: 580 case FB_BLANK_NORMAL: 581 if (fbi->fb.fix.visual == FB_VISUAL_PSEUDOCOLOR || 582 fbi->fb.fix.visual == FB_VISUAL_STATIC_PSEUDOCOLOR) 583 for (i = 0; i < fbi->palette_size; i++) 584 pxafb_setpalettereg(i, 0, 0, 0, 0, info); 585 586 pxafb_schedule_work(fbi, C_DISABLE); 587 /* TODO if (pxafb_blank_helper) pxafb_blank_helper(blank); */ 588 break; 589 590 case FB_BLANK_UNBLANK: 591 /* TODO if (pxafb_blank_helper) pxafb_blank_helper(blank); */ 592 if (fbi->fb.fix.visual == FB_VISUAL_PSEUDOCOLOR || 593 fbi->fb.fix.visual == FB_VISUAL_STATIC_PSEUDOCOLOR) 594 fb_set_cmap(&fbi->fb.cmap, info); 595 pxafb_schedule_work(fbi, C_ENABLE); 596 } 597 return 0; 598 } 599 600 static struct fb_ops pxafb_ops = { 601 .owner = THIS_MODULE, 602 .fb_check_var = pxafb_check_var, 603 .fb_set_par = pxafb_set_par, 604 .fb_pan_display = pxafb_pan_display, 605 .fb_setcolreg = pxafb_setcolreg, 606 .fb_fillrect = cfb_fillrect, 607 .fb_copyarea = cfb_copyarea, 608 .fb_imageblit = cfb_imageblit, 609 .fb_blank = pxafb_blank, 610 }; 611 612 #ifdef CONFIG_FB_PXA_OVERLAY 613 static void overlay1fb_setup(struct pxafb_layer *ofb) 614 { 615 int size = ofb->fb.fix.line_length * ofb->fb.var.yres_virtual; 616 unsigned long start = ofb->video_mem_phys; 617 setup_frame_dma(ofb->fbi, DMA_OV1, PAL_NONE, start, size); 618 } 619 620 /* Depending on the enable status of overlay1/2, the DMA should be 621 * updated from FDADRx (when disabled) or FBRx (when enabled). 622 */ 623 static void overlay1fb_enable(struct pxafb_layer *ofb) 624 { 625 int enabled = lcd_readl(ofb->fbi, OVL1C1) & OVLxC1_OEN; 626 uint32_t fdadr1 = ofb->fbi->fdadr[DMA_OV1] | (enabled ? 0x1 : 0); 627 628 lcd_writel(ofb->fbi, enabled ? FBR1 : FDADR1, fdadr1); 629 lcd_writel(ofb->fbi, OVL1C2, ofb->control[1]); 630 lcd_writel(ofb->fbi, OVL1C1, ofb->control[0] | OVLxC1_OEN); 631 } 632 633 static void overlay1fb_disable(struct pxafb_layer *ofb) 634 { 635 uint32_t lccr5; 636 637 if (!(lcd_readl(ofb->fbi, OVL1C1) & OVLxC1_OEN)) 638 return; 639 640 lccr5 = lcd_readl(ofb->fbi, LCCR5); 641 642 lcd_writel(ofb->fbi, OVL1C1, ofb->control[0] & ~OVLxC1_OEN); 643 644 lcd_writel(ofb->fbi, LCSR1, LCSR1_BS(1)); 645 lcd_writel(ofb->fbi, LCCR5, lccr5 & ~LCSR1_BS(1)); 646 lcd_writel(ofb->fbi, FBR1, ofb->fbi->fdadr[DMA_OV1] | 0x3); 647 648 if (wait_for_completion_timeout(&ofb->branch_done, 1 * HZ) == 0) 649 pr_warn("%s: timeout disabling overlay1\n", __func__); 650 651 lcd_writel(ofb->fbi, LCCR5, lccr5); 652 } 653 654 static void overlay2fb_setup(struct pxafb_layer *ofb) 655 { 656 int size, div = 1, pfor = NONSTD_TO_PFOR(ofb->fb.var.nonstd); 657 unsigned long start[3] = { ofb->video_mem_phys, 0, 0 }; 658 659 if (pfor == OVERLAY_FORMAT_RGB || pfor == OVERLAY_FORMAT_YUV444_PACKED) { 660 size = ofb->fb.fix.line_length * ofb->fb.var.yres_virtual; 661 setup_frame_dma(ofb->fbi, DMA_OV2_Y, -1, start[0], size); 662 } else { 663 size = ofb->fb.var.xres_virtual * ofb->fb.var.yres_virtual; 664 switch (pfor) { 665 case OVERLAY_FORMAT_YUV444_PLANAR: div = 1; break; 666 case OVERLAY_FORMAT_YUV422_PLANAR: div = 2; break; 667 case OVERLAY_FORMAT_YUV420_PLANAR: div = 4; break; 668 } 669 start[1] = start[0] + size; 670 start[2] = start[1] + size / div; 671 setup_frame_dma(ofb->fbi, DMA_OV2_Y, -1, start[0], size); 672 setup_frame_dma(ofb->fbi, DMA_OV2_Cb, -1, start[1], size / div); 673 setup_frame_dma(ofb->fbi, DMA_OV2_Cr, -1, start[2], size / div); 674 } 675 } 676 677 static void overlay2fb_enable(struct pxafb_layer *ofb) 678 { 679 int pfor = NONSTD_TO_PFOR(ofb->fb.var.nonstd); 680 int enabled = lcd_readl(ofb->fbi, OVL2C1) & OVLxC1_OEN; 681 uint32_t fdadr2 = ofb->fbi->fdadr[DMA_OV2_Y] | (enabled ? 0x1 : 0); 682 uint32_t fdadr3 = ofb->fbi->fdadr[DMA_OV2_Cb] | (enabled ? 0x1 : 0); 683 uint32_t fdadr4 = ofb->fbi->fdadr[DMA_OV2_Cr] | (enabled ? 0x1 : 0); 684 685 if (pfor == OVERLAY_FORMAT_RGB || pfor == OVERLAY_FORMAT_YUV444_PACKED) 686 lcd_writel(ofb->fbi, enabled ? FBR2 : FDADR2, fdadr2); 687 else { 688 lcd_writel(ofb->fbi, enabled ? FBR2 : FDADR2, fdadr2); 689 lcd_writel(ofb->fbi, enabled ? FBR3 : FDADR3, fdadr3); 690 lcd_writel(ofb->fbi, enabled ? FBR4 : FDADR4, fdadr4); 691 } 692 lcd_writel(ofb->fbi, OVL2C2, ofb->control[1]); 693 lcd_writel(ofb->fbi, OVL2C1, ofb->control[0] | OVLxC1_OEN); 694 } 695 696 static void overlay2fb_disable(struct pxafb_layer *ofb) 697 { 698 uint32_t lccr5; 699 700 if (!(lcd_readl(ofb->fbi, OVL2C1) & OVLxC1_OEN)) 701 return; 702 703 lccr5 = lcd_readl(ofb->fbi, LCCR5); 704 705 lcd_writel(ofb->fbi, OVL2C1, ofb->control[0] & ~OVLxC1_OEN); 706 707 lcd_writel(ofb->fbi, LCSR1, LCSR1_BS(2)); 708 lcd_writel(ofb->fbi, LCCR5, lccr5 & ~LCSR1_BS(2)); 709 lcd_writel(ofb->fbi, FBR2, ofb->fbi->fdadr[DMA_OV2_Y] | 0x3); 710 lcd_writel(ofb->fbi, FBR3, ofb->fbi->fdadr[DMA_OV2_Cb] | 0x3); 711 lcd_writel(ofb->fbi, FBR4, ofb->fbi->fdadr[DMA_OV2_Cr] | 0x3); 712 713 if (wait_for_completion_timeout(&ofb->branch_done, 1 * HZ) == 0) 714 pr_warn("%s: timeout disabling overlay2\n", __func__); 715 } 716 717 static struct pxafb_layer_ops ofb_ops[] = { 718 [0] = { 719 .enable = overlay1fb_enable, 720 .disable = overlay1fb_disable, 721 .setup = overlay1fb_setup, 722 }, 723 [1] = { 724 .enable = overlay2fb_enable, 725 .disable = overlay2fb_disable, 726 .setup = overlay2fb_setup, 727 }, 728 }; 729 730 static int overlayfb_open(struct fb_info *info, int user) 731 { 732 struct pxafb_layer *ofb = container_of(info, struct pxafb_layer, fb); 733 734 /* no support for framebuffer console on overlay */ 735 if (user == 0) 736 return -ENODEV; 737 738 if (ofb->usage++ == 0) { 739 /* unblank the base framebuffer */ 740 console_lock(); 741 fb_blank(&ofb->fbi->fb, FB_BLANK_UNBLANK); 742 console_unlock(); 743 } 744 745 return 0; 746 } 747 748 static int overlayfb_release(struct fb_info *info, int user) 749 { 750 struct pxafb_layer *ofb = container_of(info, struct pxafb_layer, fb); 751 752 if (ofb->usage == 1) { 753 ofb->ops->disable(ofb); 754 ofb->fb.var.height = -1; 755 ofb->fb.var.width = -1; 756 ofb->fb.var.xres = ofb->fb.var.xres_virtual = 0; 757 ofb->fb.var.yres = ofb->fb.var.yres_virtual = 0; 758 759 ofb->usage--; 760 } 761 return 0; 762 } 763 764 static int overlayfb_check_var(struct fb_var_screeninfo *var, 765 struct fb_info *info) 766 { 767 struct pxafb_layer *ofb = container_of(info, struct pxafb_layer, fb); 768 struct fb_var_screeninfo *base_var = &ofb->fbi->fb.var; 769 int xpos, ypos, pfor, bpp; 770 771 xpos = NONSTD_TO_XPOS(var->nonstd); 772 ypos = NONSTD_TO_YPOS(var->nonstd); 773 pfor = NONSTD_TO_PFOR(var->nonstd); 774 775 bpp = pxafb_var_to_bpp(var); 776 if (bpp < 0) 777 return -EINVAL; 778 779 /* no support for YUV format on overlay1 */ 780 if (ofb->id == OVERLAY1 && pfor != 0) 781 return -EINVAL; 782 783 /* for YUV packed formats, bpp = 'minimum bpp of YUV components' */ 784 switch (pfor) { 785 case OVERLAY_FORMAT_RGB: 786 bpp = pxafb_var_to_bpp(var); 787 if (bpp < 0) 788 return -EINVAL; 789 790 pxafb_set_pixfmt(var, var_to_depth(var)); 791 break; 792 case OVERLAY_FORMAT_YUV444_PACKED: bpp = 24; break; 793 case OVERLAY_FORMAT_YUV444_PLANAR: bpp = 8; break; 794 case OVERLAY_FORMAT_YUV422_PLANAR: bpp = 4; break; 795 case OVERLAY_FORMAT_YUV420_PLANAR: bpp = 2; break; 796 default: 797 return -EINVAL; 798 } 799 800 /* each line must start at a 32-bit word boundary */ 801 if ((xpos * bpp) % 32) 802 return -EINVAL; 803 804 /* xres must align on 32-bit word boundary */ 805 var->xres = roundup(var->xres * bpp, 32) / bpp; 806 807 if ((xpos + var->xres > base_var->xres) || 808 (ypos + var->yres > base_var->yres)) 809 return -EINVAL; 810 811 var->xres_virtual = var->xres; 812 var->yres_virtual = max(var->yres, var->yres_virtual); 813 return 0; 814 } 815 816 static int overlayfb_check_video_memory(struct pxafb_layer *ofb) 817 { 818 struct fb_var_screeninfo *var = &ofb->fb.var; 819 int pfor = NONSTD_TO_PFOR(var->nonstd); 820 int size, bpp = 0; 821 822 switch (pfor) { 823 case OVERLAY_FORMAT_RGB: bpp = var->bits_per_pixel; break; 824 case OVERLAY_FORMAT_YUV444_PACKED: bpp = 24; break; 825 case OVERLAY_FORMAT_YUV444_PLANAR: bpp = 24; break; 826 case OVERLAY_FORMAT_YUV422_PLANAR: bpp = 16; break; 827 case OVERLAY_FORMAT_YUV420_PLANAR: bpp = 12; break; 828 } 829 830 ofb->fb.fix.line_length = var->xres_virtual * bpp / 8; 831 832 size = PAGE_ALIGN(ofb->fb.fix.line_length * var->yres_virtual); 833 834 if (ofb->video_mem) { 835 if (ofb->video_mem_size >= size) 836 return 0; 837 } 838 return -EINVAL; 839 } 840 841 static int overlayfb_set_par(struct fb_info *info) 842 { 843 struct pxafb_layer *ofb = container_of(info, struct pxafb_layer, fb); 844 struct fb_var_screeninfo *var = &info->var; 845 int xpos, ypos, pfor, bpp, ret; 846 847 ret = overlayfb_check_video_memory(ofb); 848 if (ret) 849 return ret; 850 851 bpp = pxafb_var_to_bpp(var); 852 xpos = NONSTD_TO_XPOS(var->nonstd); 853 ypos = NONSTD_TO_YPOS(var->nonstd); 854 pfor = NONSTD_TO_PFOR(var->nonstd); 855 856 ofb->control[0] = OVLxC1_PPL(var->xres) | OVLxC1_LPO(var->yres) | 857 OVLxC1_BPP(bpp); 858 ofb->control[1] = OVLxC2_XPOS(xpos) | OVLxC2_YPOS(ypos); 859 860 if (ofb->id == OVERLAY2) 861 ofb->control[1] |= OVL2C2_PFOR(pfor); 862 863 ofb->ops->setup(ofb); 864 ofb->ops->enable(ofb); 865 return 0; 866 } 867 868 static struct fb_ops overlay_fb_ops = { 869 .owner = THIS_MODULE, 870 .fb_open = overlayfb_open, 871 .fb_release = overlayfb_release, 872 .fb_check_var = overlayfb_check_var, 873 .fb_set_par = overlayfb_set_par, 874 }; 875 876 static void init_pxafb_overlay(struct pxafb_info *fbi, struct pxafb_layer *ofb, 877 int id) 878 { 879 sprintf(ofb->fb.fix.id, "overlay%d", id + 1); 880 881 ofb->fb.fix.type = FB_TYPE_PACKED_PIXELS; 882 ofb->fb.fix.xpanstep = 0; 883 ofb->fb.fix.ypanstep = 1; 884 885 ofb->fb.var.activate = FB_ACTIVATE_NOW; 886 ofb->fb.var.height = -1; 887 ofb->fb.var.width = -1; 888 ofb->fb.var.vmode = FB_VMODE_NONINTERLACED; 889 890 ofb->fb.fbops = &overlay_fb_ops; 891 ofb->fb.flags = FBINFO_FLAG_DEFAULT; 892 ofb->fb.node = -1; 893 ofb->fb.pseudo_palette = NULL; 894 895 ofb->id = id; 896 ofb->ops = &ofb_ops[id]; 897 ofb->usage = 0; 898 ofb->fbi = fbi; 899 init_completion(&ofb->branch_done); 900 } 901 902 static inline int pxafb_overlay_supported(void) 903 { 904 if (cpu_is_pxa27x() || cpu_is_pxa3xx()) 905 return 1; 906 907 return 0; 908 } 909 910 static int pxafb_overlay_map_video_memory(struct pxafb_info *pxafb, 911 struct pxafb_layer *ofb) 912 { 913 /* We assume that user will use at most video_mem_size for overlay fb, 914 * anyway, it's useless to use 16bpp main plane and 24bpp overlay 915 */ 916 ofb->video_mem = alloc_pages_exact(PAGE_ALIGN(pxafb->video_mem_size), 917 GFP_KERNEL | __GFP_ZERO); 918 if (ofb->video_mem == NULL) 919 return -ENOMEM; 920 921 ofb->video_mem_phys = virt_to_phys(ofb->video_mem); 922 ofb->video_mem_size = PAGE_ALIGN(pxafb->video_mem_size); 923 924 mutex_lock(&ofb->fb.mm_lock); 925 ofb->fb.fix.smem_start = ofb->video_mem_phys; 926 ofb->fb.fix.smem_len = pxafb->video_mem_size; 927 mutex_unlock(&ofb->fb.mm_lock); 928 929 ofb->fb.screen_base = ofb->video_mem; 930 931 return 0; 932 } 933 934 static void pxafb_overlay_init(struct pxafb_info *fbi) 935 { 936 int i, ret; 937 938 if (!pxafb_overlay_supported()) 939 return; 940 941 for (i = 0; i < 2; i++) { 942 struct pxafb_layer *ofb = &fbi->overlay[i]; 943 init_pxafb_overlay(fbi, ofb, i); 944 ret = register_framebuffer(&ofb->fb); 945 if (ret) { 946 dev_err(fbi->dev, "failed to register overlay %d\n", i); 947 continue; 948 } 949 ret = pxafb_overlay_map_video_memory(fbi, ofb); 950 if (ret) { 951 dev_err(fbi->dev, 952 "failed to map video memory for overlay %d\n", 953 i); 954 unregister_framebuffer(&ofb->fb); 955 continue; 956 } 957 ofb->registered = 1; 958 } 959 960 /* mask all IU/BS/EOF/SOF interrupts */ 961 lcd_writel(fbi, LCCR5, ~0); 962 963 pr_info("PXA Overlay driver loaded successfully!\n"); 964 } 965 966 static void pxafb_overlay_exit(struct pxafb_info *fbi) 967 { 968 int i; 969 970 if (!pxafb_overlay_supported()) 971 return; 972 973 for (i = 0; i < 2; i++) { 974 struct pxafb_layer *ofb = &fbi->overlay[i]; 975 if (ofb->registered) { 976 if (ofb->video_mem) 977 free_pages_exact(ofb->video_mem, 978 ofb->video_mem_size); 979 unregister_framebuffer(&ofb->fb); 980 } 981 } 982 } 983 #else 984 static inline void pxafb_overlay_init(struct pxafb_info *fbi) {} 985 static inline void pxafb_overlay_exit(struct pxafb_info *fbi) {} 986 #endif /* CONFIG_FB_PXA_OVERLAY */ 987 988 /* 989 * Calculate the PCD value from the clock rate (in picoseconds). 990 * We take account of the PPCR clock setting. 991 * From PXA Developer's Manual: 992 * 993 * PixelClock = LCLK 994 * ------------- 995 * 2 ( PCD + 1 ) 996 * 997 * PCD = LCLK 998 * ------------- - 1 999 * 2(PixelClock) 1000 * 1001 * Where: 1002 * LCLK = LCD/Memory Clock 1003 * PCD = LCCR3[7:0] 1004 * 1005 * PixelClock here is in Hz while the pixclock argument given is the 1006 * period in picoseconds. Hence PixelClock = 1 / ( pixclock * 10^-12 ) 1007 * 1008 * The function get_lclk_frequency_10khz returns LCLK in units of 1009 * 10khz. Calling the result of this function lclk gives us the 1010 * following 1011 * 1012 * PCD = (lclk * 10^4 ) * ( pixclock * 10^-12 ) 1013 * -------------------------------------- - 1 1014 * 2 1015 * 1016 * Factoring the 10^4 and 10^-12 out gives 10^-8 == 1 / 100000000 as used below. 1017 */ 1018 static inline unsigned int get_pcd(struct pxafb_info *fbi, 1019 unsigned int pixclock) 1020 { 1021 unsigned long long pcd; 1022 1023 /* FIXME: Need to take into account Double Pixel Clock mode 1024 * (DPC) bit? or perhaps set it based on the various clock 1025 * speeds */ 1026 pcd = (unsigned long long)(clk_get_rate(fbi->clk) / 10000); 1027 pcd *= pixclock; 1028 do_div(pcd, 100000000 * 2); 1029 /* no need for this, since we should subtract 1 anyway. they cancel */ 1030 /* pcd += 1; */ /* make up for integer math truncations */ 1031 return (unsigned int)pcd; 1032 } 1033 1034 /* 1035 * Some touchscreens need hsync information from the video driver to 1036 * function correctly. We export it here. Note that 'hsync_time' and 1037 * the value returned from pxafb_get_hsync_time() is the *reciprocal* 1038 * of the hsync period in seconds. 1039 */ 1040 static inline void set_hsync_time(struct pxafb_info *fbi, unsigned int pcd) 1041 { 1042 unsigned long htime; 1043 1044 if ((pcd == 0) || (fbi->fb.var.hsync_len == 0)) { 1045 fbi->hsync_time = 0; 1046 return; 1047 } 1048 1049 htime = clk_get_rate(fbi->clk) / (pcd * fbi->fb.var.hsync_len); 1050 1051 fbi->hsync_time = htime; 1052 } 1053 1054 unsigned long pxafb_get_hsync_time(struct device *dev) 1055 { 1056 struct pxafb_info *fbi = dev_get_drvdata(dev); 1057 1058 /* If display is blanked/suspended, hsync isn't active */ 1059 if (!fbi || (fbi->state != C_ENABLE)) 1060 return 0; 1061 1062 return fbi->hsync_time; 1063 } 1064 EXPORT_SYMBOL(pxafb_get_hsync_time); 1065 1066 static int setup_frame_dma(struct pxafb_info *fbi, int dma, int pal, 1067 unsigned long start, size_t size) 1068 { 1069 struct pxafb_dma_descriptor *dma_desc, *pal_desc; 1070 unsigned int dma_desc_off, pal_desc_off; 1071 1072 if (dma < 0 || dma >= DMA_MAX * 2) 1073 return -EINVAL; 1074 1075 dma_desc = &fbi->dma_buff->dma_desc[dma]; 1076 dma_desc_off = offsetof(struct pxafb_dma_buff, dma_desc[dma]); 1077 1078 dma_desc->fsadr = start; 1079 dma_desc->fidr = 0; 1080 dma_desc->ldcmd = size; 1081 1082 if (pal < 0 || pal >= PAL_MAX * 2) { 1083 dma_desc->fdadr = fbi->dma_buff_phys + dma_desc_off; 1084 fbi->fdadr[dma] = fbi->dma_buff_phys + dma_desc_off; 1085 } else { 1086 pal_desc = &fbi->dma_buff->pal_desc[pal]; 1087 pal_desc_off = offsetof(struct pxafb_dma_buff, pal_desc[pal]); 1088 1089 pal_desc->fsadr = fbi->dma_buff_phys + pal * PALETTE_SIZE; 1090 pal_desc->fidr = 0; 1091 1092 if ((fbi->lccr4 & LCCR4_PAL_FOR_MASK) == LCCR4_PAL_FOR_0) 1093 pal_desc->ldcmd = fbi->palette_size * sizeof(u16); 1094 else 1095 pal_desc->ldcmd = fbi->palette_size * sizeof(u32); 1096 1097 pal_desc->ldcmd |= LDCMD_PAL; 1098 1099 /* flip back and forth between palette and frame buffer */ 1100 pal_desc->fdadr = fbi->dma_buff_phys + dma_desc_off; 1101 dma_desc->fdadr = fbi->dma_buff_phys + pal_desc_off; 1102 fbi->fdadr[dma] = fbi->dma_buff_phys + dma_desc_off; 1103 } 1104 1105 return 0; 1106 } 1107 1108 static void setup_base_frame(struct pxafb_info *fbi, 1109 struct fb_var_screeninfo *var, 1110 int branch) 1111 { 1112 struct fb_fix_screeninfo *fix = &fbi->fb.fix; 1113 int nbytes, dma, pal, bpp = var->bits_per_pixel; 1114 unsigned long offset; 1115 1116 dma = DMA_BASE + (branch ? DMA_MAX : 0); 1117 pal = (bpp >= 16) ? PAL_NONE : PAL_BASE + (branch ? PAL_MAX : 0); 1118 1119 nbytes = fix->line_length * var->yres; 1120 offset = fix->line_length * var->yoffset + fbi->video_mem_phys; 1121 1122 if (fbi->lccr0 & LCCR0_SDS) { 1123 nbytes = nbytes / 2; 1124 setup_frame_dma(fbi, dma + 1, PAL_NONE, offset + nbytes, nbytes); 1125 } 1126 1127 setup_frame_dma(fbi, dma, pal, offset, nbytes); 1128 } 1129 1130 #ifdef CONFIG_FB_PXA_SMARTPANEL 1131 static int setup_smart_dma(struct pxafb_info *fbi) 1132 { 1133 struct pxafb_dma_descriptor *dma_desc; 1134 unsigned long dma_desc_off, cmd_buff_off; 1135 1136 dma_desc = &fbi->dma_buff->dma_desc[DMA_CMD]; 1137 dma_desc_off = offsetof(struct pxafb_dma_buff, dma_desc[DMA_CMD]); 1138 cmd_buff_off = offsetof(struct pxafb_dma_buff, cmd_buff); 1139 1140 dma_desc->fdadr = fbi->dma_buff_phys + dma_desc_off; 1141 dma_desc->fsadr = fbi->dma_buff_phys + cmd_buff_off; 1142 dma_desc->fidr = 0; 1143 dma_desc->ldcmd = fbi->n_smart_cmds * sizeof(uint16_t); 1144 1145 fbi->fdadr[DMA_CMD] = dma_desc->fdadr; 1146 return 0; 1147 } 1148 1149 int pxafb_smart_flush(struct fb_info *info) 1150 { 1151 struct pxafb_info *fbi = container_of(info, struct pxafb_info, fb); 1152 uint32_t prsr; 1153 int ret = 0; 1154 1155 /* disable controller until all registers are set up */ 1156 lcd_writel(fbi, LCCR0, fbi->reg_lccr0 & ~LCCR0_ENB); 1157 1158 /* 1. make it an even number of commands to align on 32-bit boundary 1159 * 2. add the interrupt command to the end of the chain so we can 1160 * keep track of the end of the transfer 1161 */ 1162 1163 while (fbi->n_smart_cmds & 1) 1164 fbi->smart_cmds[fbi->n_smart_cmds++] = SMART_CMD_NOOP; 1165 1166 fbi->smart_cmds[fbi->n_smart_cmds++] = SMART_CMD_INTERRUPT; 1167 fbi->smart_cmds[fbi->n_smart_cmds++] = SMART_CMD_WAIT_FOR_VSYNC; 1168 setup_smart_dma(fbi); 1169 1170 /* continue to execute next command */ 1171 prsr = lcd_readl(fbi, PRSR) | PRSR_ST_OK | PRSR_CON_NT; 1172 lcd_writel(fbi, PRSR, prsr); 1173 1174 /* stop the processor in case it executed "wait for sync" cmd */ 1175 lcd_writel(fbi, CMDCR, 0x0001); 1176 1177 /* don't send interrupts for fifo underruns on channel 6 */ 1178 lcd_writel(fbi, LCCR5, LCCR5_IUM(6)); 1179 1180 lcd_writel(fbi, LCCR1, fbi->reg_lccr1); 1181 lcd_writel(fbi, LCCR2, fbi->reg_lccr2); 1182 lcd_writel(fbi, LCCR3, fbi->reg_lccr3); 1183 lcd_writel(fbi, LCCR4, fbi->reg_lccr4); 1184 lcd_writel(fbi, FDADR0, fbi->fdadr[0]); 1185 lcd_writel(fbi, FDADR6, fbi->fdadr[6]); 1186 1187 /* begin sending */ 1188 lcd_writel(fbi, LCCR0, fbi->reg_lccr0 | LCCR0_ENB); 1189 1190 if (wait_for_completion_timeout(&fbi->command_done, HZ/2) == 0) { 1191 pr_warn("%s: timeout waiting for command done\n", __func__); 1192 ret = -ETIMEDOUT; 1193 } 1194 1195 /* quick disable */ 1196 prsr = lcd_readl(fbi, PRSR) & ~(PRSR_ST_OK | PRSR_CON_NT); 1197 lcd_writel(fbi, PRSR, prsr); 1198 lcd_writel(fbi, LCCR0, fbi->reg_lccr0 & ~LCCR0_ENB); 1199 lcd_writel(fbi, FDADR6, 0); 1200 fbi->n_smart_cmds = 0; 1201 return ret; 1202 } 1203 1204 int pxafb_smart_queue(struct fb_info *info, uint16_t *cmds, int n_cmds) 1205 { 1206 int i; 1207 struct pxafb_info *fbi = container_of(info, struct pxafb_info, fb); 1208 1209 for (i = 0; i < n_cmds; i++, cmds++) { 1210 /* if it is a software delay, flush and delay */ 1211 if ((*cmds & 0xff00) == SMART_CMD_DELAY) { 1212 pxafb_smart_flush(info); 1213 mdelay(*cmds & 0xff); 1214 continue; 1215 } 1216 1217 /* leave 2 commands for INTERRUPT and WAIT_FOR_SYNC */ 1218 if (fbi->n_smart_cmds == CMD_BUFF_SIZE - 8) 1219 pxafb_smart_flush(info); 1220 1221 fbi->smart_cmds[fbi->n_smart_cmds++] = *cmds; 1222 } 1223 1224 return 0; 1225 } 1226 1227 static unsigned int __smart_timing(unsigned time_ns, unsigned long lcd_clk) 1228 { 1229 unsigned int t = (time_ns * (lcd_clk / 1000000) / 1000); 1230 return (t == 0) ? 1 : t; 1231 } 1232 1233 static void setup_smart_timing(struct pxafb_info *fbi, 1234 struct fb_var_screeninfo *var) 1235 { 1236 struct pxafb_mach_info *inf = fbi->inf; 1237 struct pxafb_mode_info *mode = &inf->modes[0]; 1238 unsigned long lclk = clk_get_rate(fbi->clk); 1239 unsigned t1, t2, t3, t4; 1240 1241 t1 = max(mode->a0csrd_set_hld, mode->a0cswr_set_hld); 1242 t2 = max(mode->rd_pulse_width, mode->wr_pulse_width); 1243 t3 = mode->op_hold_time; 1244 t4 = mode->cmd_inh_time; 1245 1246 fbi->reg_lccr1 = 1247 LCCR1_DisWdth(var->xres) | 1248 LCCR1_BegLnDel(__smart_timing(t1, lclk)) | 1249 LCCR1_EndLnDel(__smart_timing(t2, lclk)) | 1250 LCCR1_HorSnchWdth(__smart_timing(t3, lclk)); 1251 1252 fbi->reg_lccr2 = LCCR2_DisHght(var->yres); 1253 fbi->reg_lccr3 = fbi->lccr3 | LCCR3_PixClkDiv(__smart_timing(t4, lclk)); 1254 fbi->reg_lccr3 |= (var->sync & FB_SYNC_HOR_HIGH_ACT) ? LCCR3_HSP : 0; 1255 fbi->reg_lccr3 |= (var->sync & FB_SYNC_VERT_HIGH_ACT) ? LCCR3_VSP : 0; 1256 1257 /* FIXME: make this configurable */ 1258 fbi->reg_cmdcr = 1; 1259 } 1260 1261 static int pxafb_smart_thread(void *arg) 1262 { 1263 struct pxafb_info *fbi = arg; 1264 struct pxafb_mach_info *inf = fbi->inf; 1265 1266 if (!inf->smart_update) { 1267 pr_err("%s: not properly initialized, thread terminated\n", 1268 __func__); 1269 return -EINVAL; 1270 } 1271 1272 pr_debug("%s(): task starting\n", __func__); 1273 1274 set_freezable(); 1275 while (!kthread_should_stop()) { 1276 1277 if (try_to_freeze()) 1278 continue; 1279 1280 mutex_lock(&fbi->ctrlr_lock); 1281 1282 if (fbi->state == C_ENABLE) { 1283 inf->smart_update(&fbi->fb); 1284 complete(&fbi->refresh_done); 1285 } 1286 1287 mutex_unlock(&fbi->ctrlr_lock); 1288 1289 set_current_state(TASK_INTERRUPTIBLE); 1290 schedule_timeout(msecs_to_jiffies(30)); 1291 } 1292 1293 pr_debug("%s(): task ending\n", __func__); 1294 return 0; 1295 } 1296 1297 static int pxafb_smart_init(struct pxafb_info *fbi) 1298 { 1299 if (!(fbi->lccr0 & LCCR0_LCDT)) 1300 return 0; 1301 1302 fbi->smart_cmds = (uint16_t *) fbi->dma_buff->cmd_buff; 1303 fbi->n_smart_cmds = 0; 1304 1305 init_completion(&fbi->command_done); 1306 init_completion(&fbi->refresh_done); 1307 1308 fbi->smart_thread = kthread_run(pxafb_smart_thread, fbi, 1309 "lcd_refresh"); 1310 if (IS_ERR(fbi->smart_thread)) { 1311 pr_err("%s: unable to create kernel thread\n", __func__); 1312 return PTR_ERR(fbi->smart_thread); 1313 } 1314 1315 return 0; 1316 } 1317 #else 1318 static inline int pxafb_smart_init(struct pxafb_info *fbi) { return 0; } 1319 #endif /* CONFIG_FB_PXA_SMARTPANEL */ 1320 1321 static void setup_parallel_timing(struct pxafb_info *fbi, 1322 struct fb_var_screeninfo *var) 1323 { 1324 unsigned int lines_per_panel, pcd = get_pcd(fbi, var->pixclock); 1325 1326 fbi->reg_lccr1 = 1327 LCCR1_DisWdth(var->xres) + 1328 LCCR1_HorSnchWdth(var->hsync_len) + 1329 LCCR1_BegLnDel(var->left_margin) + 1330 LCCR1_EndLnDel(var->right_margin); 1331 1332 /* 1333 * If we have a dual scan LCD, we need to halve 1334 * the YRES parameter. 1335 */ 1336 lines_per_panel = var->yres; 1337 if ((fbi->lccr0 & LCCR0_SDS) == LCCR0_Dual) 1338 lines_per_panel /= 2; 1339 1340 fbi->reg_lccr2 = 1341 LCCR2_DisHght(lines_per_panel) + 1342 LCCR2_VrtSnchWdth(var->vsync_len) + 1343 LCCR2_BegFrmDel(var->upper_margin) + 1344 LCCR2_EndFrmDel(var->lower_margin); 1345 1346 fbi->reg_lccr3 = fbi->lccr3 | 1347 (var->sync & FB_SYNC_HOR_HIGH_ACT ? 1348 LCCR3_HorSnchH : LCCR3_HorSnchL) | 1349 (var->sync & FB_SYNC_VERT_HIGH_ACT ? 1350 LCCR3_VrtSnchH : LCCR3_VrtSnchL); 1351 1352 if (pcd) { 1353 fbi->reg_lccr3 |= LCCR3_PixClkDiv(pcd); 1354 set_hsync_time(fbi, pcd); 1355 } 1356 } 1357 1358 /* 1359 * pxafb_activate_var(): 1360 * Configures LCD Controller based on entries in var parameter. 1361 * Settings are only written to the controller if changes were made. 1362 */ 1363 static int pxafb_activate_var(struct fb_var_screeninfo *var, 1364 struct pxafb_info *fbi) 1365 { 1366 u_long flags; 1367 1368 /* Update shadow copy atomically */ 1369 local_irq_save(flags); 1370 1371 #ifdef CONFIG_FB_PXA_SMARTPANEL 1372 if (fbi->lccr0 & LCCR0_LCDT) 1373 setup_smart_timing(fbi, var); 1374 else 1375 #endif 1376 setup_parallel_timing(fbi, var); 1377 1378 setup_base_frame(fbi, var, 0); 1379 1380 fbi->reg_lccr0 = fbi->lccr0 | 1381 (LCCR0_LDM | LCCR0_SFM | LCCR0_IUM | LCCR0_EFM | 1382 LCCR0_QDM | LCCR0_BM | LCCR0_OUM); 1383 1384 fbi->reg_lccr3 |= pxafb_var_to_lccr3(var); 1385 1386 fbi->reg_lccr4 = lcd_readl(fbi, LCCR4) & ~LCCR4_PAL_FOR_MASK; 1387 fbi->reg_lccr4 |= (fbi->lccr4 & LCCR4_PAL_FOR_MASK); 1388 local_irq_restore(flags); 1389 1390 /* 1391 * Only update the registers if the controller is enabled 1392 * and something has changed. 1393 */ 1394 if ((lcd_readl(fbi, LCCR0) != fbi->reg_lccr0) || 1395 (lcd_readl(fbi, LCCR1) != fbi->reg_lccr1) || 1396 (lcd_readl(fbi, LCCR2) != fbi->reg_lccr2) || 1397 (lcd_readl(fbi, LCCR3) != fbi->reg_lccr3) || 1398 (lcd_readl(fbi, LCCR4) != fbi->reg_lccr4) || 1399 (lcd_readl(fbi, FDADR0) != fbi->fdadr[0]) || 1400 ((fbi->lccr0 & LCCR0_SDS) && 1401 (lcd_readl(fbi, FDADR1) != fbi->fdadr[1]))) 1402 pxafb_schedule_work(fbi, C_REENABLE); 1403 1404 return 0; 1405 } 1406 1407 /* 1408 * NOTE! The following functions are purely helpers for set_ctrlr_state. 1409 * Do not call them directly; set_ctrlr_state does the correct serialisation 1410 * to ensure that things happen in the right way 100% of time time. 1411 * -- rmk 1412 */ 1413 static inline void __pxafb_backlight_power(struct pxafb_info *fbi, int on) 1414 { 1415 pr_debug("pxafb: backlight o%s\n", on ? "n" : "ff"); 1416 1417 if (fbi->backlight_power) 1418 fbi->backlight_power(on); 1419 } 1420 1421 static inline void __pxafb_lcd_power(struct pxafb_info *fbi, int on) 1422 { 1423 pr_debug("pxafb: LCD power o%s\n", on ? "n" : "ff"); 1424 1425 if (fbi->lcd_power) 1426 fbi->lcd_power(on, &fbi->fb.var); 1427 1428 if (fbi->lcd_supply && fbi->lcd_supply_enabled != on) { 1429 int ret; 1430 1431 if (on) 1432 ret = regulator_enable(fbi->lcd_supply); 1433 else 1434 ret = regulator_disable(fbi->lcd_supply); 1435 1436 if (ret < 0) 1437 pr_warn("Unable to %s LCD supply regulator: %d\n", 1438 on ? "enable" : "disable", ret); 1439 else 1440 fbi->lcd_supply_enabled = on; 1441 } 1442 } 1443 1444 static void pxafb_enable_controller(struct pxafb_info *fbi) 1445 { 1446 pr_debug("pxafb: Enabling LCD controller\n"); 1447 pr_debug("fdadr0 0x%08x\n", (unsigned int) fbi->fdadr[0]); 1448 pr_debug("fdadr1 0x%08x\n", (unsigned int) fbi->fdadr[1]); 1449 pr_debug("reg_lccr0 0x%08x\n", (unsigned int) fbi->reg_lccr0); 1450 pr_debug("reg_lccr1 0x%08x\n", (unsigned int) fbi->reg_lccr1); 1451 pr_debug("reg_lccr2 0x%08x\n", (unsigned int) fbi->reg_lccr2); 1452 pr_debug("reg_lccr3 0x%08x\n", (unsigned int) fbi->reg_lccr3); 1453 1454 /* enable LCD controller clock */ 1455 if (clk_prepare_enable(fbi->clk)) { 1456 pr_err("%s: Failed to prepare clock\n", __func__); 1457 return; 1458 } 1459 1460 if (fbi->lccr0 & LCCR0_LCDT) 1461 return; 1462 1463 /* Sequence from 11.7.10 */ 1464 lcd_writel(fbi, LCCR4, fbi->reg_lccr4); 1465 lcd_writel(fbi, LCCR3, fbi->reg_lccr3); 1466 lcd_writel(fbi, LCCR2, fbi->reg_lccr2); 1467 lcd_writel(fbi, LCCR1, fbi->reg_lccr1); 1468 lcd_writel(fbi, LCCR0, fbi->reg_lccr0 & ~LCCR0_ENB); 1469 1470 lcd_writel(fbi, FDADR0, fbi->fdadr[0]); 1471 if (fbi->lccr0 & LCCR0_SDS) 1472 lcd_writel(fbi, FDADR1, fbi->fdadr[1]); 1473 lcd_writel(fbi, LCCR0, fbi->reg_lccr0 | LCCR0_ENB); 1474 } 1475 1476 static void pxafb_disable_controller(struct pxafb_info *fbi) 1477 { 1478 uint32_t lccr0; 1479 1480 #ifdef CONFIG_FB_PXA_SMARTPANEL 1481 if (fbi->lccr0 & LCCR0_LCDT) { 1482 wait_for_completion_timeout(&fbi->refresh_done, 1483 msecs_to_jiffies(200)); 1484 return; 1485 } 1486 #endif 1487 1488 /* Clear LCD Status Register */ 1489 lcd_writel(fbi, LCSR, 0xffffffff); 1490 1491 lccr0 = lcd_readl(fbi, LCCR0) & ~LCCR0_LDM; 1492 lcd_writel(fbi, LCCR0, lccr0); 1493 lcd_writel(fbi, LCCR0, lccr0 | LCCR0_DIS); 1494 1495 wait_for_completion_timeout(&fbi->disable_done, msecs_to_jiffies(200)); 1496 1497 /* disable LCD controller clock */ 1498 clk_disable_unprepare(fbi->clk); 1499 } 1500 1501 /* 1502 * pxafb_handle_irq: Handle 'LCD DONE' interrupts. 1503 */ 1504 static irqreturn_t pxafb_handle_irq(int irq, void *dev_id) 1505 { 1506 struct pxafb_info *fbi = dev_id; 1507 unsigned int lccr0, lcsr; 1508 1509 lcsr = lcd_readl(fbi, LCSR); 1510 if (lcsr & LCSR_LDD) { 1511 lccr0 = lcd_readl(fbi, LCCR0); 1512 lcd_writel(fbi, LCCR0, lccr0 | LCCR0_LDM); 1513 complete(&fbi->disable_done); 1514 } 1515 1516 #ifdef CONFIG_FB_PXA_SMARTPANEL 1517 if (lcsr & LCSR_CMD_INT) 1518 complete(&fbi->command_done); 1519 #endif 1520 lcd_writel(fbi, LCSR, lcsr); 1521 1522 #ifdef CONFIG_FB_PXA_OVERLAY 1523 { 1524 unsigned int lcsr1 = lcd_readl(fbi, LCSR1); 1525 if (lcsr1 & LCSR1_BS(1)) 1526 complete(&fbi->overlay[0].branch_done); 1527 1528 if (lcsr1 & LCSR1_BS(2)) 1529 complete(&fbi->overlay[1].branch_done); 1530 1531 lcd_writel(fbi, LCSR1, lcsr1); 1532 } 1533 #endif 1534 return IRQ_HANDLED; 1535 } 1536 1537 /* 1538 * This function must be called from task context only, since it will 1539 * sleep when disabling the LCD controller, or if we get two contending 1540 * processes trying to alter state. 1541 */ 1542 static void set_ctrlr_state(struct pxafb_info *fbi, u_int state) 1543 { 1544 u_int old_state; 1545 1546 mutex_lock(&fbi->ctrlr_lock); 1547 1548 old_state = fbi->state; 1549 1550 /* 1551 * Hack around fbcon initialisation. 1552 */ 1553 if (old_state == C_STARTUP && state == C_REENABLE) 1554 state = C_ENABLE; 1555 1556 switch (state) { 1557 case C_DISABLE_CLKCHANGE: 1558 /* 1559 * Disable controller for clock change. If the 1560 * controller is already disabled, then do nothing. 1561 */ 1562 if (old_state != C_DISABLE && old_state != C_DISABLE_PM) { 1563 fbi->state = state; 1564 /* TODO __pxafb_lcd_power(fbi, 0); */ 1565 pxafb_disable_controller(fbi); 1566 } 1567 break; 1568 1569 case C_DISABLE_PM: 1570 case C_DISABLE: 1571 /* 1572 * Disable controller 1573 */ 1574 if (old_state != C_DISABLE) { 1575 fbi->state = state; 1576 __pxafb_backlight_power(fbi, 0); 1577 __pxafb_lcd_power(fbi, 0); 1578 if (old_state != C_DISABLE_CLKCHANGE) 1579 pxafb_disable_controller(fbi); 1580 } 1581 break; 1582 1583 case C_ENABLE_CLKCHANGE: 1584 /* 1585 * Enable the controller after clock change. Only 1586 * do this if we were disabled for the clock change. 1587 */ 1588 if (old_state == C_DISABLE_CLKCHANGE) { 1589 fbi->state = C_ENABLE; 1590 pxafb_enable_controller(fbi); 1591 /* TODO __pxafb_lcd_power(fbi, 1); */ 1592 } 1593 break; 1594 1595 case C_REENABLE: 1596 /* 1597 * Re-enable the controller only if it was already 1598 * enabled. This is so we reprogram the control 1599 * registers. 1600 */ 1601 if (old_state == C_ENABLE) { 1602 __pxafb_lcd_power(fbi, 0); 1603 pxafb_disable_controller(fbi); 1604 pxafb_enable_controller(fbi); 1605 __pxafb_lcd_power(fbi, 1); 1606 } 1607 break; 1608 1609 case C_ENABLE_PM: 1610 /* 1611 * Re-enable the controller after PM. This is not 1612 * perfect - think about the case where we were doing 1613 * a clock change, and we suspended half-way through. 1614 */ 1615 if (old_state != C_DISABLE_PM) 1616 break; 1617 /* fall through */ 1618 1619 case C_ENABLE: 1620 /* 1621 * Power up the LCD screen, enable controller, and 1622 * turn on the backlight. 1623 */ 1624 if (old_state != C_ENABLE) { 1625 fbi->state = C_ENABLE; 1626 pxafb_enable_controller(fbi); 1627 __pxafb_lcd_power(fbi, 1); 1628 __pxafb_backlight_power(fbi, 1); 1629 } 1630 break; 1631 } 1632 mutex_unlock(&fbi->ctrlr_lock); 1633 } 1634 1635 /* 1636 * Our LCD controller task (which is called when we blank or unblank) 1637 * via keventd. 1638 */ 1639 static void pxafb_task(struct work_struct *work) 1640 { 1641 struct pxafb_info *fbi = 1642 container_of(work, struct pxafb_info, task); 1643 u_int state = xchg(&fbi->task_state, -1); 1644 1645 set_ctrlr_state(fbi, state); 1646 } 1647 1648 #ifdef CONFIG_CPU_FREQ 1649 /* 1650 * CPU clock speed change handler. We need to adjust the LCD timing 1651 * parameters when the CPU clock is adjusted by the power management 1652 * subsystem. 1653 * 1654 * TODO: Determine why f->new != 10*get_lclk_frequency_10khz() 1655 */ 1656 static int 1657 pxafb_freq_transition(struct notifier_block *nb, unsigned long val, void *data) 1658 { 1659 struct pxafb_info *fbi = TO_INF(nb, freq_transition); 1660 /* TODO struct cpufreq_freqs *f = data; */ 1661 u_int pcd; 1662 1663 switch (val) { 1664 case CPUFREQ_PRECHANGE: 1665 #ifdef CONFIG_FB_PXA_OVERLAY 1666 if (!(fbi->overlay[0].usage || fbi->overlay[1].usage)) 1667 #endif 1668 set_ctrlr_state(fbi, C_DISABLE_CLKCHANGE); 1669 break; 1670 1671 case CPUFREQ_POSTCHANGE: 1672 pcd = get_pcd(fbi, fbi->fb.var.pixclock); 1673 set_hsync_time(fbi, pcd); 1674 fbi->reg_lccr3 = (fbi->reg_lccr3 & ~0xff) | 1675 LCCR3_PixClkDiv(pcd); 1676 set_ctrlr_state(fbi, C_ENABLE_CLKCHANGE); 1677 break; 1678 } 1679 return 0; 1680 } 1681 1682 static int 1683 pxafb_freq_policy(struct notifier_block *nb, unsigned long val, void *data) 1684 { 1685 struct pxafb_info *fbi = TO_INF(nb, freq_policy); 1686 struct fb_var_screeninfo *var = &fbi->fb.var; 1687 struct cpufreq_policy *policy = data; 1688 1689 switch (val) { 1690 case CPUFREQ_ADJUST: 1691 pr_debug("min dma period: %d ps, " 1692 "new clock %d kHz\n", pxafb_display_dma_period(var), 1693 policy->max); 1694 /* TODO: fill in min/max values */ 1695 break; 1696 } 1697 return 0; 1698 } 1699 #endif 1700 1701 #ifdef CONFIG_PM 1702 /* 1703 * Power management hooks. Note that we won't be called from IRQ context, 1704 * unlike the blank functions above, so we may sleep. 1705 */ 1706 static int pxafb_suspend(struct device *dev) 1707 { 1708 struct pxafb_info *fbi = dev_get_drvdata(dev); 1709 1710 set_ctrlr_state(fbi, C_DISABLE_PM); 1711 return 0; 1712 } 1713 1714 static int pxafb_resume(struct device *dev) 1715 { 1716 struct pxafb_info *fbi = dev_get_drvdata(dev); 1717 1718 set_ctrlr_state(fbi, C_ENABLE_PM); 1719 return 0; 1720 } 1721 1722 static const struct dev_pm_ops pxafb_pm_ops = { 1723 .suspend = pxafb_suspend, 1724 .resume = pxafb_resume, 1725 }; 1726 #endif 1727 1728 static int pxafb_init_video_memory(struct pxafb_info *fbi) 1729 { 1730 int size = PAGE_ALIGN(fbi->video_mem_size); 1731 1732 fbi->video_mem = alloc_pages_exact(size, GFP_KERNEL | __GFP_ZERO); 1733 if (fbi->video_mem == NULL) 1734 return -ENOMEM; 1735 1736 fbi->video_mem_phys = virt_to_phys(fbi->video_mem); 1737 fbi->video_mem_size = size; 1738 1739 fbi->fb.fix.smem_start = fbi->video_mem_phys; 1740 fbi->fb.fix.smem_len = fbi->video_mem_size; 1741 fbi->fb.screen_base = fbi->video_mem; 1742 1743 return fbi->video_mem ? 0 : -ENOMEM; 1744 } 1745 1746 static void pxafb_decode_mach_info(struct pxafb_info *fbi, 1747 struct pxafb_mach_info *inf) 1748 { 1749 unsigned int lcd_conn = inf->lcd_conn; 1750 struct pxafb_mode_info *m; 1751 int i; 1752 1753 fbi->cmap_inverse = inf->cmap_inverse; 1754 fbi->cmap_static = inf->cmap_static; 1755 fbi->lccr4 = inf->lccr4; 1756 1757 switch (lcd_conn & LCD_TYPE_MASK) { 1758 case LCD_TYPE_MONO_STN: 1759 fbi->lccr0 = LCCR0_CMS; 1760 break; 1761 case LCD_TYPE_MONO_DSTN: 1762 fbi->lccr0 = LCCR0_CMS | LCCR0_SDS; 1763 break; 1764 case LCD_TYPE_COLOR_STN: 1765 fbi->lccr0 = 0; 1766 break; 1767 case LCD_TYPE_COLOR_DSTN: 1768 fbi->lccr0 = LCCR0_SDS; 1769 break; 1770 case LCD_TYPE_COLOR_TFT: 1771 fbi->lccr0 = LCCR0_PAS; 1772 break; 1773 case LCD_TYPE_SMART_PANEL: 1774 fbi->lccr0 = LCCR0_LCDT | LCCR0_PAS; 1775 break; 1776 default: 1777 /* fall back to backward compatibility way */ 1778 fbi->lccr0 = inf->lccr0; 1779 fbi->lccr3 = inf->lccr3; 1780 goto decode_mode; 1781 } 1782 1783 if (lcd_conn == LCD_MONO_STN_8BPP) 1784 fbi->lccr0 |= LCCR0_DPD; 1785 1786 fbi->lccr0 |= (lcd_conn & LCD_ALTERNATE_MAPPING) ? LCCR0_LDDALT : 0; 1787 1788 fbi->lccr3 = LCCR3_Acb((inf->lcd_conn >> 10) & 0xff); 1789 fbi->lccr3 |= (lcd_conn & LCD_BIAS_ACTIVE_LOW) ? LCCR3_OEP : 0; 1790 fbi->lccr3 |= (lcd_conn & LCD_PCLK_EDGE_FALL) ? LCCR3_PCP : 0; 1791 1792 decode_mode: 1793 pxafb_setmode(&fbi->fb.var, &inf->modes[0]); 1794 1795 /* decide video memory size as follows: 1796 * 1. default to mode of maximum resolution 1797 * 2. allow platform to override 1798 * 3. allow module parameter to override 1799 */ 1800 for (i = 0, m = &inf->modes[0]; i < inf->num_modes; i++, m++) 1801 fbi->video_mem_size = max_t(size_t, fbi->video_mem_size, 1802 m->xres * m->yres * m->bpp / 8); 1803 1804 if (inf->video_mem_size > fbi->video_mem_size) 1805 fbi->video_mem_size = inf->video_mem_size; 1806 1807 if (video_mem_size > fbi->video_mem_size) 1808 fbi->video_mem_size = video_mem_size; 1809 } 1810 1811 static struct pxafb_info *pxafb_init_fbinfo(struct device *dev, 1812 struct pxafb_mach_info *inf) 1813 { 1814 struct pxafb_info *fbi; 1815 void *addr; 1816 1817 /* Alloc the pxafb_info and pseudo_palette in one step */ 1818 fbi = devm_kzalloc(dev, sizeof(struct pxafb_info) + sizeof(u32) * 16, 1819 GFP_KERNEL); 1820 if (!fbi) 1821 return ERR_PTR(-ENOMEM); 1822 1823 fbi->dev = dev; 1824 fbi->inf = inf; 1825 1826 fbi->clk = devm_clk_get(dev, NULL); 1827 if (IS_ERR(fbi->clk)) 1828 return ERR_CAST(fbi->clk); 1829 1830 strcpy(fbi->fb.fix.id, PXA_NAME); 1831 1832 fbi->fb.fix.type = FB_TYPE_PACKED_PIXELS; 1833 fbi->fb.fix.type_aux = 0; 1834 fbi->fb.fix.xpanstep = 0; 1835 fbi->fb.fix.ypanstep = 1; 1836 fbi->fb.fix.ywrapstep = 0; 1837 fbi->fb.fix.accel = FB_ACCEL_NONE; 1838 1839 fbi->fb.var.nonstd = 0; 1840 fbi->fb.var.activate = FB_ACTIVATE_NOW; 1841 fbi->fb.var.height = -1; 1842 fbi->fb.var.width = -1; 1843 fbi->fb.var.accel_flags = FB_ACCELF_TEXT; 1844 fbi->fb.var.vmode = FB_VMODE_NONINTERLACED; 1845 1846 fbi->fb.fbops = &pxafb_ops; 1847 fbi->fb.flags = FBINFO_DEFAULT; 1848 fbi->fb.node = -1; 1849 1850 addr = fbi; 1851 addr = addr + sizeof(struct pxafb_info); 1852 fbi->fb.pseudo_palette = addr; 1853 1854 fbi->state = C_STARTUP; 1855 fbi->task_state = (u_char)-1; 1856 1857 pxafb_decode_mach_info(fbi, inf); 1858 1859 #ifdef CONFIG_FB_PXA_OVERLAY 1860 /* place overlay(s) on top of base */ 1861 if (pxafb_overlay_supported()) 1862 fbi->lccr0 |= LCCR0_OUC; 1863 #endif 1864 1865 init_waitqueue_head(&fbi->ctrlr_wait); 1866 INIT_WORK(&fbi->task, pxafb_task); 1867 mutex_init(&fbi->ctrlr_lock); 1868 init_completion(&fbi->disable_done); 1869 1870 return fbi; 1871 } 1872 1873 #ifdef CONFIG_FB_PXA_PARAMETERS 1874 static int parse_opt_mode(struct device *dev, const char *this_opt, 1875 struct pxafb_mach_info *inf) 1876 { 1877 const char *name = this_opt+5; 1878 unsigned int namelen = strlen(name); 1879 int res_specified = 0, bpp_specified = 0; 1880 unsigned int xres = 0, yres = 0, bpp = 0; 1881 int yres_specified = 0; 1882 int i; 1883 for (i = namelen-1; i >= 0; i--) { 1884 switch (name[i]) { 1885 case '-': 1886 namelen = i; 1887 if (!bpp_specified && !yres_specified) { 1888 bpp = simple_strtoul(&name[i+1], NULL, 0); 1889 bpp_specified = 1; 1890 } else 1891 goto done; 1892 break; 1893 case 'x': 1894 if (!yres_specified) { 1895 yres = simple_strtoul(&name[i+1], NULL, 0); 1896 yres_specified = 1; 1897 } else 1898 goto done; 1899 break; 1900 case '0' ... '9': 1901 break; 1902 default: 1903 goto done; 1904 } 1905 } 1906 if (i < 0 && yres_specified) { 1907 xres = simple_strtoul(name, NULL, 0); 1908 res_specified = 1; 1909 } 1910 done: 1911 if (res_specified) { 1912 dev_info(dev, "overriding resolution: %dx%d\n", xres, yres); 1913 inf->modes[0].xres = xres; inf->modes[0].yres = yres; 1914 } 1915 if (bpp_specified) 1916 switch (bpp) { 1917 case 1: 1918 case 2: 1919 case 4: 1920 case 8: 1921 case 16: 1922 inf->modes[0].bpp = bpp; 1923 dev_info(dev, "overriding bit depth: %d\n", bpp); 1924 break; 1925 default: 1926 dev_err(dev, "Depth %d is not valid\n", bpp); 1927 return -EINVAL; 1928 } 1929 return 0; 1930 } 1931 1932 static int parse_opt(struct device *dev, char *this_opt, 1933 struct pxafb_mach_info *inf) 1934 { 1935 struct pxafb_mode_info *mode = &inf->modes[0]; 1936 char s[64]; 1937 1938 s[0] = '\0'; 1939 1940 if (!strncmp(this_opt, "vmem:", 5)) { 1941 video_mem_size = memparse(this_opt + 5, NULL); 1942 } else if (!strncmp(this_opt, "mode:", 5)) { 1943 return parse_opt_mode(dev, this_opt, inf); 1944 } else if (!strncmp(this_opt, "pixclock:", 9)) { 1945 mode->pixclock = simple_strtoul(this_opt+9, NULL, 0); 1946 sprintf(s, "pixclock: %ld\n", mode->pixclock); 1947 } else if (!strncmp(this_opt, "left:", 5)) { 1948 mode->left_margin = simple_strtoul(this_opt+5, NULL, 0); 1949 sprintf(s, "left: %u\n", mode->left_margin); 1950 } else if (!strncmp(this_opt, "right:", 6)) { 1951 mode->right_margin = simple_strtoul(this_opt+6, NULL, 0); 1952 sprintf(s, "right: %u\n", mode->right_margin); 1953 } else if (!strncmp(this_opt, "upper:", 6)) { 1954 mode->upper_margin = simple_strtoul(this_opt+6, NULL, 0); 1955 sprintf(s, "upper: %u\n", mode->upper_margin); 1956 } else if (!strncmp(this_opt, "lower:", 6)) { 1957 mode->lower_margin = simple_strtoul(this_opt+6, NULL, 0); 1958 sprintf(s, "lower: %u\n", mode->lower_margin); 1959 } else if (!strncmp(this_opt, "hsynclen:", 9)) { 1960 mode->hsync_len = simple_strtoul(this_opt+9, NULL, 0); 1961 sprintf(s, "hsynclen: %u\n", mode->hsync_len); 1962 } else if (!strncmp(this_opt, "vsynclen:", 9)) { 1963 mode->vsync_len = simple_strtoul(this_opt+9, NULL, 0); 1964 sprintf(s, "vsynclen: %u\n", mode->vsync_len); 1965 } else if (!strncmp(this_opt, "hsync:", 6)) { 1966 if (simple_strtoul(this_opt+6, NULL, 0) == 0) { 1967 sprintf(s, "hsync: Active Low\n"); 1968 mode->sync &= ~FB_SYNC_HOR_HIGH_ACT; 1969 } else { 1970 sprintf(s, "hsync: Active High\n"); 1971 mode->sync |= FB_SYNC_HOR_HIGH_ACT; 1972 } 1973 } else if (!strncmp(this_opt, "vsync:", 6)) { 1974 if (simple_strtoul(this_opt+6, NULL, 0) == 0) { 1975 sprintf(s, "vsync: Active Low\n"); 1976 mode->sync &= ~FB_SYNC_VERT_HIGH_ACT; 1977 } else { 1978 sprintf(s, "vsync: Active High\n"); 1979 mode->sync |= FB_SYNC_VERT_HIGH_ACT; 1980 } 1981 } else if (!strncmp(this_opt, "dpc:", 4)) { 1982 if (simple_strtoul(this_opt+4, NULL, 0) == 0) { 1983 sprintf(s, "double pixel clock: false\n"); 1984 inf->lccr3 &= ~LCCR3_DPC; 1985 } else { 1986 sprintf(s, "double pixel clock: true\n"); 1987 inf->lccr3 |= LCCR3_DPC; 1988 } 1989 } else if (!strncmp(this_opt, "outputen:", 9)) { 1990 if (simple_strtoul(this_opt+9, NULL, 0) == 0) { 1991 sprintf(s, "output enable: active low\n"); 1992 inf->lccr3 = (inf->lccr3 & ~LCCR3_OEP) | LCCR3_OutEnL; 1993 } else { 1994 sprintf(s, "output enable: active high\n"); 1995 inf->lccr3 = (inf->lccr3 & ~LCCR3_OEP) | LCCR3_OutEnH; 1996 } 1997 } else if (!strncmp(this_opt, "pixclockpol:", 12)) { 1998 if (simple_strtoul(this_opt+12, NULL, 0) == 0) { 1999 sprintf(s, "pixel clock polarity: falling edge\n"); 2000 inf->lccr3 = (inf->lccr3 & ~LCCR3_PCP) | LCCR3_PixFlEdg; 2001 } else { 2002 sprintf(s, "pixel clock polarity: rising edge\n"); 2003 inf->lccr3 = (inf->lccr3 & ~LCCR3_PCP) | LCCR3_PixRsEdg; 2004 } 2005 } else if (!strncmp(this_opt, "color", 5)) { 2006 inf->lccr0 = (inf->lccr0 & ~LCCR0_CMS) | LCCR0_Color; 2007 } else if (!strncmp(this_opt, "mono", 4)) { 2008 inf->lccr0 = (inf->lccr0 & ~LCCR0_CMS) | LCCR0_Mono; 2009 } else if (!strncmp(this_opt, "active", 6)) { 2010 inf->lccr0 = (inf->lccr0 & ~LCCR0_PAS) | LCCR0_Act; 2011 } else if (!strncmp(this_opt, "passive", 7)) { 2012 inf->lccr0 = (inf->lccr0 & ~LCCR0_PAS) | LCCR0_Pas; 2013 } else if (!strncmp(this_opt, "single", 6)) { 2014 inf->lccr0 = (inf->lccr0 & ~LCCR0_SDS) | LCCR0_Sngl; 2015 } else if (!strncmp(this_opt, "dual", 4)) { 2016 inf->lccr0 = (inf->lccr0 & ~LCCR0_SDS) | LCCR0_Dual; 2017 } else if (!strncmp(this_opt, "4pix", 4)) { 2018 inf->lccr0 = (inf->lccr0 & ~LCCR0_DPD) | LCCR0_4PixMono; 2019 } else if (!strncmp(this_opt, "8pix", 4)) { 2020 inf->lccr0 = (inf->lccr0 & ~LCCR0_DPD) | LCCR0_8PixMono; 2021 } else { 2022 dev_err(dev, "unknown option: %s\n", this_opt); 2023 return -EINVAL; 2024 } 2025 2026 if (s[0] != '\0') 2027 dev_info(dev, "override %s", s); 2028 2029 return 0; 2030 } 2031 2032 static int pxafb_parse_options(struct device *dev, char *options, 2033 struct pxafb_mach_info *inf) 2034 { 2035 char *this_opt; 2036 int ret; 2037 2038 if (!options || !*options) 2039 return 0; 2040 2041 dev_dbg(dev, "options are \"%s\"\n", options ? options : "null"); 2042 2043 /* could be made table driven or similar?... */ 2044 while ((this_opt = strsep(&options, ",")) != NULL) { 2045 ret = parse_opt(dev, this_opt, inf); 2046 if (ret) 2047 return ret; 2048 } 2049 return 0; 2050 } 2051 2052 static char g_options[256] = ""; 2053 2054 #ifndef MODULE 2055 static int __init pxafb_setup_options(void) 2056 { 2057 char *options = NULL; 2058 2059 if (fb_get_options("pxafb", &options)) 2060 return -ENODEV; 2061 2062 if (options) 2063 strlcpy(g_options, options, sizeof(g_options)); 2064 2065 return 0; 2066 } 2067 #else 2068 #define pxafb_setup_options() (0) 2069 2070 module_param_string(options, g_options, sizeof(g_options), 0); 2071 MODULE_PARM_DESC(options, "LCD parameters (see Documentation/fb/pxafb.txt)"); 2072 #endif 2073 2074 #else 2075 #define pxafb_parse_options(...) (0) 2076 #define pxafb_setup_options() (0) 2077 #endif 2078 2079 #ifdef DEBUG_VAR 2080 /* Check for various illegal bit-combinations. Currently only 2081 * a warning is given. */ 2082 static void pxafb_check_options(struct device *dev, struct pxafb_mach_info *inf) 2083 { 2084 if (inf->lcd_conn) 2085 return; 2086 2087 if (inf->lccr0 & LCCR0_INVALID_CONFIG_MASK) 2088 dev_warn(dev, "machine LCCR0 setting contains " 2089 "illegal bits: %08x\n", 2090 inf->lccr0 & LCCR0_INVALID_CONFIG_MASK); 2091 if (inf->lccr3 & LCCR3_INVALID_CONFIG_MASK) 2092 dev_warn(dev, "machine LCCR3 setting contains " 2093 "illegal bits: %08x\n", 2094 inf->lccr3 & LCCR3_INVALID_CONFIG_MASK); 2095 if (inf->lccr0 & LCCR0_DPD && 2096 ((inf->lccr0 & LCCR0_PAS) != LCCR0_Pas || 2097 (inf->lccr0 & LCCR0_SDS) != LCCR0_Sngl || 2098 (inf->lccr0 & LCCR0_CMS) != LCCR0_Mono)) 2099 dev_warn(dev, "Double Pixel Data (DPD) mode is " 2100 "only valid in passive mono" 2101 " single panel mode\n"); 2102 if ((inf->lccr0 & LCCR0_PAS) == LCCR0_Act && 2103 (inf->lccr0 & LCCR0_SDS) == LCCR0_Dual) 2104 dev_warn(dev, "Dual panel only valid in passive mode\n"); 2105 if ((inf->lccr0 & LCCR0_PAS) == LCCR0_Pas && 2106 (inf->modes->upper_margin || inf->modes->lower_margin)) 2107 dev_warn(dev, "Upper and lower margins must be 0 in " 2108 "passive mode\n"); 2109 } 2110 #else 2111 #define pxafb_check_options(...) do {} while (0) 2112 #endif 2113 2114 #if defined(CONFIG_OF) 2115 static const char * const lcd_types[] = { 2116 "unknown", "mono-stn", "mono-dstn", "color-stn", "color-dstn", 2117 "color-tft", "smart-panel", NULL 2118 }; 2119 2120 static int of_get_pxafb_display(struct device *dev, struct device_node *disp, 2121 struct pxafb_mach_info *info, u32 bus_width) 2122 { 2123 struct display_timings *timings; 2124 struct videomode vm; 2125 int i, ret = -EINVAL; 2126 const char *s; 2127 2128 ret = of_property_read_string(disp, "lcd-type", &s); 2129 if (ret) 2130 s = "color-tft"; 2131 2132 i = match_string(lcd_types, -1, s); 2133 if (i < 0) { 2134 dev_err(dev, "lcd-type %s is unknown\n", s); 2135 return i; 2136 } 2137 info->lcd_conn |= LCD_CONN_TYPE(i); 2138 info->lcd_conn |= LCD_CONN_WIDTH(bus_width); 2139 2140 timings = of_get_display_timings(disp); 2141 if (!timings) 2142 return -EINVAL; 2143 2144 ret = -ENOMEM; 2145 info->modes = devm_kcalloc(dev, timings->num_timings, 2146 sizeof(info->modes[0]), 2147 GFP_KERNEL); 2148 if (!info->modes) 2149 goto out; 2150 info->num_modes = timings->num_timings; 2151 2152 for (i = 0; i < timings->num_timings; i++) { 2153 ret = videomode_from_timings(timings, &vm, i); 2154 if (ret) { 2155 dev_err(dev, "videomode_from_timings %d failed: %d\n", 2156 i, ret); 2157 goto out; 2158 } 2159 if (vm.flags & DISPLAY_FLAGS_PIXDATA_POSEDGE) 2160 info->lcd_conn |= LCD_PCLK_EDGE_RISE; 2161 if (vm.flags & DISPLAY_FLAGS_PIXDATA_NEGEDGE) 2162 info->lcd_conn |= LCD_PCLK_EDGE_FALL; 2163 if (vm.flags & DISPLAY_FLAGS_DE_HIGH) 2164 info->lcd_conn |= LCD_BIAS_ACTIVE_HIGH; 2165 if (vm.flags & DISPLAY_FLAGS_DE_LOW) 2166 info->lcd_conn |= LCD_BIAS_ACTIVE_LOW; 2167 if (vm.flags & DISPLAY_FLAGS_HSYNC_HIGH) 2168 info->modes[i].sync |= FB_SYNC_HOR_HIGH_ACT; 2169 if (vm.flags & DISPLAY_FLAGS_VSYNC_HIGH) 2170 info->modes[i].sync |= FB_SYNC_VERT_HIGH_ACT; 2171 2172 info->modes[i].pixclock = 1000000000UL / (vm.pixelclock / 1000); 2173 info->modes[i].xres = vm.hactive; 2174 info->modes[i].yres = vm.vactive; 2175 info->modes[i].hsync_len = vm.hsync_len; 2176 info->modes[i].left_margin = vm.hback_porch; 2177 info->modes[i].right_margin = vm.hfront_porch; 2178 info->modes[i].vsync_len = vm.vsync_len; 2179 info->modes[i].upper_margin = vm.vback_porch; 2180 info->modes[i].lower_margin = vm.vfront_porch; 2181 } 2182 ret = 0; 2183 2184 out: 2185 display_timings_release(timings); 2186 return ret; 2187 } 2188 2189 static int of_get_pxafb_mode_info(struct device *dev, 2190 struct pxafb_mach_info *info) 2191 { 2192 struct device_node *display, *np; 2193 u32 bus_width; 2194 int ret, i; 2195 2196 np = of_graph_get_next_endpoint(dev->of_node, NULL); 2197 if (!np) { 2198 dev_err(dev, "could not find endpoint\n"); 2199 return -EINVAL; 2200 } 2201 ret = of_property_read_u32(np, "bus-width", &bus_width); 2202 if (ret) { 2203 dev_err(dev, "no bus-width specified: %d\n", ret); 2204 of_node_put(np); 2205 return ret; 2206 } 2207 2208 display = of_graph_get_remote_port_parent(np); 2209 of_node_put(np); 2210 if (!display) { 2211 dev_err(dev, "no display defined\n"); 2212 return -EINVAL; 2213 } 2214 2215 ret = of_get_pxafb_display(dev, display, info, bus_width); 2216 of_node_put(display); 2217 if (ret) 2218 return ret; 2219 2220 for (i = 0; i < info->num_modes; i++) 2221 info->modes[i].bpp = bus_width; 2222 2223 return 0; 2224 } 2225 2226 static struct pxafb_mach_info *of_pxafb_of_mach_info(struct device *dev) 2227 { 2228 int ret; 2229 struct pxafb_mach_info *info; 2230 2231 if (!dev->of_node) 2232 return NULL; 2233 info = devm_kzalloc(dev, sizeof(*info), GFP_KERNEL); 2234 if (!info) 2235 return ERR_PTR(-ENOMEM); 2236 ret = of_get_pxafb_mode_info(dev, info); 2237 if (ret) { 2238 kfree(info->modes); 2239 return ERR_PTR(ret); 2240 } 2241 2242 /* 2243 * On purpose, neither lccrX registers nor video memory size can be 2244 * specified through device-tree, they are considered more a debug hack 2245 * available through command line. 2246 */ 2247 return info; 2248 } 2249 #else 2250 static struct pxafb_mach_info *of_pxafb_of_mach_info(struct device *dev) 2251 { 2252 return NULL; 2253 } 2254 #endif 2255 2256 static int pxafb_probe(struct platform_device *dev) 2257 { 2258 struct pxafb_info *fbi; 2259 struct pxafb_mach_info *inf, *pdata; 2260 struct resource *r; 2261 int i, irq, ret; 2262 2263 dev_dbg(&dev->dev, "pxafb_probe\n"); 2264 2265 ret = -ENOMEM; 2266 pdata = dev_get_platdata(&dev->dev); 2267 inf = devm_kmalloc(&dev->dev, sizeof(*inf), GFP_KERNEL); 2268 if (!inf) 2269 goto failed; 2270 2271 if (pdata) { 2272 *inf = *pdata; 2273 inf->modes = 2274 devm_kmalloc_array(&dev->dev, pdata->num_modes, 2275 sizeof(inf->modes[0]), GFP_KERNEL); 2276 if (!inf->modes) 2277 goto failed; 2278 for (i = 0; i < inf->num_modes; i++) 2279 inf->modes[i] = pdata->modes[i]; 2280 } 2281 2282 if (!pdata) 2283 inf = of_pxafb_of_mach_info(&dev->dev); 2284 if (IS_ERR_OR_NULL(inf)) 2285 goto failed; 2286 2287 ret = pxafb_parse_options(&dev->dev, g_options, inf); 2288 if (ret < 0) 2289 goto failed; 2290 2291 pxafb_check_options(&dev->dev, inf); 2292 2293 dev_dbg(&dev->dev, "got a %dx%dx%d LCD\n", 2294 inf->modes->xres, 2295 inf->modes->yres, 2296 inf->modes->bpp); 2297 if (inf->modes->xres == 0 || 2298 inf->modes->yres == 0 || 2299 inf->modes->bpp == 0) { 2300 dev_err(&dev->dev, "Invalid resolution or bit depth\n"); 2301 ret = -EINVAL; 2302 goto failed; 2303 } 2304 2305 fbi = pxafb_init_fbinfo(&dev->dev, inf); 2306 if (IS_ERR(fbi)) { 2307 dev_err(&dev->dev, "Failed to initialize framebuffer device\n"); 2308 ret = PTR_ERR(fbi); 2309 goto failed; 2310 } 2311 2312 if (cpu_is_pxa3xx() && inf->acceleration_enabled) 2313 fbi->fb.fix.accel = FB_ACCEL_PXA3XX; 2314 2315 fbi->backlight_power = inf->pxafb_backlight_power; 2316 fbi->lcd_power = inf->pxafb_lcd_power; 2317 2318 fbi->lcd_supply = devm_regulator_get_optional(&dev->dev, "lcd"); 2319 if (IS_ERR(fbi->lcd_supply)) { 2320 if (PTR_ERR(fbi->lcd_supply) == -EPROBE_DEFER) 2321 return -EPROBE_DEFER; 2322 2323 fbi->lcd_supply = NULL; 2324 } 2325 2326 r = platform_get_resource(dev, IORESOURCE_MEM, 0); 2327 if (r == NULL) { 2328 dev_err(&dev->dev, "no I/O memory resource defined\n"); 2329 ret = -ENODEV; 2330 goto failed; 2331 } 2332 2333 fbi->mmio_base = devm_ioremap_resource(&dev->dev, r); 2334 if (IS_ERR(fbi->mmio_base)) { 2335 dev_err(&dev->dev, "failed to get I/O memory\n"); 2336 ret = -EBUSY; 2337 goto failed; 2338 } 2339 2340 fbi->dma_buff_size = PAGE_ALIGN(sizeof(struct pxafb_dma_buff)); 2341 fbi->dma_buff = dma_alloc_coherent(fbi->dev, fbi->dma_buff_size, 2342 &fbi->dma_buff_phys, GFP_KERNEL); 2343 if (fbi->dma_buff == NULL) { 2344 dev_err(&dev->dev, "failed to allocate memory for DMA\n"); 2345 ret = -ENOMEM; 2346 goto failed; 2347 } 2348 2349 ret = pxafb_init_video_memory(fbi); 2350 if (ret) { 2351 dev_err(&dev->dev, "Failed to allocate video RAM: %d\n", ret); 2352 ret = -ENOMEM; 2353 goto failed_free_dma; 2354 } 2355 2356 irq = platform_get_irq(dev, 0); 2357 if (irq < 0) { 2358 dev_err(&dev->dev, "no IRQ defined\n"); 2359 ret = -ENODEV; 2360 goto failed_free_mem; 2361 } 2362 2363 ret = devm_request_irq(&dev->dev, irq, pxafb_handle_irq, 0, "LCD", fbi); 2364 if (ret) { 2365 dev_err(&dev->dev, "request_irq failed: %d\n", ret); 2366 ret = -EBUSY; 2367 goto failed_free_mem; 2368 } 2369 2370 ret = pxafb_smart_init(fbi); 2371 if (ret) { 2372 dev_err(&dev->dev, "failed to initialize smartpanel\n"); 2373 goto failed_free_mem; 2374 } 2375 2376 /* 2377 * This makes sure that our colour bitfield 2378 * descriptors are correctly initialised. 2379 */ 2380 ret = pxafb_check_var(&fbi->fb.var, &fbi->fb); 2381 if (ret) { 2382 dev_err(&dev->dev, "failed to get suitable mode\n"); 2383 goto failed_free_mem; 2384 } 2385 2386 ret = pxafb_set_par(&fbi->fb); 2387 if (ret) { 2388 dev_err(&dev->dev, "Failed to set parameters\n"); 2389 goto failed_free_mem; 2390 } 2391 2392 platform_set_drvdata(dev, fbi); 2393 2394 ret = register_framebuffer(&fbi->fb); 2395 if (ret < 0) { 2396 dev_err(&dev->dev, 2397 "Failed to register framebuffer device: %d\n", ret); 2398 goto failed_free_cmap; 2399 } 2400 2401 pxafb_overlay_init(fbi); 2402 2403 #ifdef CONFIG_CPU_FREQ 2404 fbi->freq_transition.notifier_call = pxafb_freq_transition; 2405 fbi->freq_policy.notifier_call = pxafb_freq_policy; 2406 cpufreq_register_notifier(&fbi->freq_transition, 2407 CPUFREQ_TRANSITION_NOTIFIER); 2408 cpufreq_register_notifier(&fbi->freq_policy, 2409 CPUFREQ_POLICY_NOTIFIER); 2410 #endif 2411 2412 /* 2413 * Ok, now enable the LCD controller 2414 */ 2415 set_ctrlr_state(fbi, C_ENABLE); 2416 2417 return 0; 2418 2419 failed_free_cmap: 2420 if (fbi->fb.cmap.len) 2421 fb_dealloc_cmap(&fbi->fb.cmap); 2422 failed_free_mem: 2423 free_pages_exact(fbi->video_mem, fbi->video_mem_size); 2424 failed_free_dma: 2425 dma_free_coherent(&dev->dev, fbi->dma_buff_size, 2426 fbi->dma_buff, fbi->dma_buff_phys); 2427 failed: 2428 return ret; 2429 } 2430 2431 static int pxafb_remove(struct platform_device *dev) 2432 { 2433 struct pxafb_info *fbi = platform_get_drvdata(dev); 2434 struct fb_info *info; 2435 2436 if (!fbi) 2437 return 0; 2438 2439 info = &fbi->fb; 2440 2441 pxafb_overlay_exit(fbi); 2442 unregister_framebuffer(info); 2443 2444 pxafb_disable_controller(fbi); 2445 2446 if (fbi->fb.cmap.len) 2447 fb_dealloc_cmap(&fbi->fb.cmap); 2448 2449 free_pages_exact(fbi->video_mem, fbi->video_mem_size); 2450 2451 dma_free_wc(&dev->dev, fbi->dma_buff_size, fbi->dma_buff, 2452 fbi->dma_buff_phys); 2453 2454 return 0; 2455 } 2456 2457 static const struct of_device_id pxafb_of_dev_id[] = { 2458 { .compatible = "marvell,pxa270-lcdc", }, 2459 { .compatible = "marvell,pxa300-lcdc", }, 2460 { .compatible = "marvell,pxa2xx-lcdc", }, 2461 { /* sentinel */ } 2462 }; 2463 MODULE_DEVICE_TABLE(of, pxafb_of_dev_id); 2464 2465 static struct platform_driver pxafb_driver = { 2466 .probe = pxafb_probe, 2467 .remove = pxafb_remove, 2468 .driver = { 2469 .name = "pxa2xx-fb", 2470 .of_match_table = pxafb_of_dev_id, 2471 #ifdef CONFIG_PM 2472 .pm = &pxafb_pm_ops, 2473 #endif 2474 }, 2475 }; 2476 2477 static int __init pxafb_init(void) 2478 { 2479 if (pxafb_setup_options()) 2480 return -EINVAL; 2481 2482 return platform_driver_register(&pxafb_driver); 2483 } 2484 2485 static void __exit pxafb_exit(void) 2486 { 2487 platform_driver_unregister(&pxafb_driver); 2488 } 2489 2490 module_init(pxafb_init); 2491 module_exit(pxafb_exit); 2492 2493 MODULE_DESCRIPTION("loadable framebuffer driver for PXA"); 2494 MODULE_LICENSE("GPL"); 2495