xref: /openbmc/linux/drivers/video/fbdev/pxafb.c (revision 0e73f1ba602d953ee8ceda5cea3a381bf212b80b)
1 /*
2  *  linux/drivers/video/pxafb.c
3  *
4  *  Copyright (C) 1999 Eric A. Thomas.
5  *  Copyright (C) 2004 Jean-Frederic Clere.
6  *  Copyright (C) 2004 Ian Campbell.
7  *  Copyright (C) 2004 Jeff Lackey.
8  *   Based on sa1100fb.c Copyright (C) 1999 Eric A. Thomas
9  *  which in turn is
10  *   Based on acornfb.c Copyright (C) Russell King.
11  *
12  * This file is subject to the terms and conditions of the GNU General Public
13  * License.  See the file COPYING in the main directory of this archive for
14  * more details.
15  *
16  *	        Intel PXA250/210 LCD Controller Frame Buffer Driver
17  *
18  * Please direct your questions and comments on this driver to the following
19  * email address:
20  *
21  *	linux-arm-kernel@lists.arm.linux.org.uk
22  *
23  * Add support for overlay1 and overlay2 based on pxafb_overlay.c:
24  *
25  *   Copyright (C) 2004, Intel Corporation
26  *
27  *     2003/08/27: <yu.tang@intel.com>
28  *     2004/03/10: <stanley.cai@intel.com>
29  *     2004/10/28: <yan.yin@intel.com>
30  *
31  *   Copyright (C) 2006-2008 Marvell International Ltd.
32  *   All Rights Reserved
33  */
34 
35 #include <linux/module.h>
36 #include <linux/moduleparam.h>
37 #include <linux/kernel.h>
38 #include <linux/sched.h>
39 #include <linux/errno.h>
40 #include <linux/string.h>
41 #include <linux/interrupt.h>
42 #include <linux/slab.h>
43 #include <linux/mm.h>
44 #include <linux/fb.h>
45 #include <linux/delay.h>
46 #include <linux/init.h>
47 #include <linux/ioport.h>
48 #include <linux/cpufreq.h>
49 #include <linux/platform_device.h>
50 #include <linux/dma-mapping.h>
51 #include <linux/clk.h>
52 #include <linux/err.h>
53 #include <linux/completion.h>
54 #include <linux/mutex.h>
55 #include <linux/kthread.h>
56 #include <linux/freezer.h>
57 #include <linux/console.h>
58 #include <linux/of_graph.h>
59 #include <linux/regulator/consumer.h>
60 #include <linux/soc/pxa/cpu.h>
61 #include <video/of_display_timing.h>
62 #include <video/videomode.h>
63 
64 #include <asm/io.h>
65 #include <asm/irq.h>
66 #include <asm/div64.h>
67 #include <linux/platform_data/video-pxafb.h>
68 
69 /*
70  * Complain if VAR is out of range.
71  */
72 #define DEBUG_VAR 1
73 
74 #include "pxafb.h"
75 #include "pxa3xx-regs.h"
76 
77 /* Bits which should not be set in machine configuration structures */
78 #define LCCR0_INVALID_CONFIG_MASK	(LCCR0_OUM | LCCR0_BM | LCCR0_QDM |\
79 					 LCCR0_DIS | LCCR0_EFM | LCCR0_IUM |\
80 					 LCCR0_SFM | LCCR0_LDM | LCCR0_ENB)
81 
82 #define LCCR3_INVALID_CONFIG_MASK	(LCCR3_HSP | LCCR3_VSP |\
83 					 LCCR3_PCD | LCCR3_BPP(0xf))
84 
85 static int pxafb_activate_var(struct fb_var_screeninfo *var,
86 				struct pxafb_info *);
87 static void set_ctrlr_state(struct pxafb_info *fbi, u_int state);
88 static void setup_base_frame(struct pxafb_info *fbi,
89                              struct fb_var_screeninfo *var, int branch);
90 static int setup_frame_dma(struct pxafb_info *fbi, int dma, int pal,
91 			   unsigned long offset, size_t size);
92 
93 static unsigned long video_mem_size = 0;
94 
95 static inline unsigned long
96 lcd_readl(struct pxafb_info *fbi, unsigned int off)
97 {
98 	return __raw_readl(fbi->mmio_base + off);
99 }
100 
101 static inline void
102 lcd_writel(struct pxafb_info *fbi, unsigned int off, unsigned long val)
103 {
104 	__raw_writel(val, fbi->mmio_base + off);
105 }
106 
107 static inline void pxafb_schedule_work(struct pxafb_info *fbi, u_int state)
108 {
109 	unsigned long flags;
110 
111 	local_irq_save(flags);
112 	/*
113 	 * We need to handle two requests being made at the same time.
114 	 * There are two important cases:
115 	 *  1. When we are changing VT (C_REENABLE) while unblanking
116 	 *     (C_ENABLE) We must perform the unblanking, which will
117 	 *     do our REENABLE for us.
118 	 *  2. When we are blanking, but immediately unblank before
119 	 *     we have blanked.  We do the "REENABLE" thing here as
120 	 *     well, just to be sure.
121 	 */
122 	if (fbi->task_state == C_ENABLE && state == C_REENABLE)
123 		state = (u_int) -1;
124 	if (fbi->task_state == C_DISABLE && state == C_ENABLE)
125 		state = C_REENABLE;
126 
127 	if (state != (u_int)-1) {
128 		fbi->task_state = state;
129 		schedule_work(&fbi->task);
130 	}
131 	local_irq_restore(flags);
132 }
133 
134 static inline u_int chan_to_field(u_int chan, struct fb_bitfield *bf)
135 {
136 	chan &= 0xffff;
137 	chan >>= 16 - bf->length;
138 	return chan << bf->offset;
139 }
140 
141 static int
142 pxafb_setpalettereg(u_int regno, u_int red, u_int green, u_int blue,
143 		       u_int trans, struct fb_info *info)
144 {
145 	struct pxafb_info *fbi = container_of(info, struct pxafb_info, fb);
146 	u_int val;
147 
148 	if (regno >= fbi->palette_size)
149 		return 1;
150 
151 	if (fbi->fb.var.grayscale) {
152 		fbi->palette_cpu[regno] = ((blue >> 8) & 0x00ff);
153 		return 0;
154 	}
155 
156 	switch (fbi->lccr4 & LCCR4_PAL_FOR_MASK) {
157 	case LCCR4_PAL_FOR_0:
158 		val  = ((red   >>  0) & 0xf800);
159 		val |= ((green >>  5) & 0x07e0);
160 		val |= ((blue  >> 11) & 0x001f);
161 		fbi->palette_cpu[regno] = val;
162 		break;
163 	case LCCR4_PAL_FOR_1:
164 		val  = ((red   << 8) & 0x00f80000);
165 		val |= ((green >> 0) & 0x0000fc00);
166 		val |= ((blue  >> 8) & 0x000000f8);
167 		((u32 *)(fbi->palette_cpu))[regno] = val;
168 		break;
169 	case LCCR4_PAL_FOR_2:
170 		val  = ((red   << 8) & 0x00fc0000);
171 		val |= ((green >> 0) & 0x0000fc00);
172 		val |= ((blue  >> 8) & 0x000000fc);
173 		((u32 *)(fbi->palette_cpu))[regno] = val;
174 		break;
175 	case LCCR4_PAL_FOR_3:
176 		val  = ((red   << 8) & 0x00ff0000);
177 		val |= ((green >> 0) & 0x0000ff00);
178 		val |= ((blue  >> 8) & 0x000000ff);
179 		((u32 *)(fbi->palette_cpu))[regno] = val;
180 		break;
181 	}
182 
183 	return 0;
184 }
185 
186 static int
187 pxafb_setcolreg(u_int regno, u_int red, u_int green, u_int blue,
188 		   u_int trans, struct fb_info *info)
189 {
190 	struct pxafb_info *fbi = container_of(info, struct pxafb_info, fb);
191 	unsigned int val;
192 	int ret = 1;
193 
194 	/*
195 	 * If inverse mode was selected, invert all the colours
196 	 * rather than the register number.  The register number
197 	 * is what you poke into the framebuffer to produce the
198 	 * colour you requested.
199 	 */
200 	if (fbi->cmap_inverse) {
201 		red   = 0xffff - red;
202 		green = 0xffff - green;
203 		blue  = 0xffff - blue;
204 	}
205 
206 	/*
207 	 * If greyscale is true, then we convert the RGB value
208 	 * to greyscale no matter what visual we are using.
209 	 */
210 	if (fbi->fb.var.grayscale)
211 		red = green = blue = (19595 * red + 38470 * green +
212 					7471 * blue) >> 16;
213 
214 	switch (fbi->fb.fix.visual) {
215 	case FB_VISUAL_TRUECOLOR:
216 		/*
217 		 * 16-bit True Colour.  We encode the RGB value
218 		 * according to the RGB bitfield information.
219 		 */
220 		if (regno < 16) {
221 			u32 *pal = fbi->fb.pseudo_palette;
222 
223 			val  = chan_to_field(red, &fbi->fb.var.red);
224 			val |= chan_to_field(green, &fbi->fb.var.green);
225 			val |= chan_to_field(blue, &fbi->fb.var.blue);
226 
227 			pal[regno] = val;
228 			ret = 0;
229 		}
230 		break;
231 
232 	case FB_VISUAL_STATIC_PSEUDOCOLOR:
233 	case FB_VISUAL_PSEUDOCOLOR:
234 		ret = pxafb_setpalettereg(regno, red, green, blue, trans, info);
235 		break;
236 	}
237 
238 	return ret;
239 }
240 
241 /* calculate pixel depth, transparency bit included, >=16bpp formats _only_ */
242 static inline int var_to_depth(struct fb_var_screeninfo *var)
243 {
244 	return var->red.length + var->green.length +
245 		var->blue.length + var->transp.length;
246 }
247 
248 /* calculate 4-bit BPP value for LCCR3 and OVLxC1 */
249 static int pxafb_var_to_bpp(struct fb_var_screeninfo *var)
250 {
251 	int bpp = -EINVAL;
252 
253 	switch (var->bits_per_pixel) {
254 	case 1:  bpp = 0; break;
255 	case 2:  bpp = 1; break;
256 	case 4:  bpp = 2; break;
257 	case 8:  bpp = 3; break;
258 	case 16: bpp = 4; break;
259 	case 24:
260 		switch (var_to_depth(var)) {
261 		case 18: bpp = 6; break; /* 18-bits/pixel packed */
262 		case 19: bpp = 8; break; /* 19-bits/pixel packed */
263 		case 24: bpp = 9; break;
264 		}
265 		break;
266 	case 32:
267 		switch (var_to_depth(var)) {
268 		case 18: bpp = 5; break; /* 18-bits/pixel unpacked */
269 		case 19: bpp = 7; break; /* 19-bits/pixel unpacked */
270 		case 25: bpp = 10; break;
271 		}
272 		break;
273 	}
274 	return bpp;
275 }
276 
277 /*
278  *  pxafb_var_to_lccr3():
279  *    Convert a bits per pixel value to the correct bit pattern for LCCR3
280  *
281  *  NOTE: for PXA27x with overlays support, the LCCR3_PDFOR_x bits have an
282  *  implication of the acutal use of transparency bit,  which we handle it
283  *  here separatedly. See PXA27x Developer's Manual, Section <<7.4.6 Pixel
284  *  Formats>> for the valid combination of PDFOR, PAL_FOR for various BPP.
285  *
286  *  Transparency for palette pixel formats is not supported at the moment.
287  */
288 static uint32_t pxafb_var_to_lccr3(struct fb_var_screeninfo *var)
289 {
290 	int bpp = pxafb_var_to_bpp(var);
291 	uint32_t lccr3;
292 
293 	if (bpp < 0)
294 		return 0;
295 
296 	lccr3 = LCCR3_BPP(bpp);
297 
298 	switch (var_to_depth(var)) {
299 	case 16: lccr3 |= var->transp.length ? LCCR3_PDFOR_3 : 0; break;
300 	case 18: lccr3 |= LCCR3_PDFOR_3; break;
301 	case 24: lccr3 |= var->transp.length ? LCCR3_PDFOR_2 : LCCR3_PDFOR_3;
302 		 break;
303 	case 19:
304 	case 25: lccr3 |= LCCR3_PDFOR_0; break;
305 	}
306 	return lccr3;
307 }
308 
309 #define SET_PIXFMT(v, r, g, b, t)				\
310 ({								\
311 	(v)->transp.offset = (t) ? (r) + (g) + (b) : 0;		\
312 	(v)->transp.length = (t) ? (t) : 0;			\
313 	(v)->blue.length   = (b); (v)->blue.offset = 0;		\
314 	(v)->green.length  = (g); (v)->green.offset = (b);	\
315 	(v)->red.length    = (r); (v)->red.offset = (b) + (g);	\
316 })
317 
318 /* set the RGBT bitfields of fb_var_screeninf according to
319  * var->bits_per_pixel and given depth
320  */
321 static void pxafb_set_pixfmt(struct fb_var_screeninfo *var, int depth)
322 {
323 	if (depth == 0)
324 		depth = var->bits_per_pixel;
325 
326 	if (var->bits_per_pixel < 16) {
327 		/* indexed pixel formats */
328 		var->red.offset    = 0; var->red.length    = 8;
329 		var->green.offset  = 0; var->green.length  = 8;
330 		var->blue.offset   = 0; var->blue.length   = 8;
331 		var->transp.offset = 0; var->transp.length = 8;
332 	}
333 
334 	switch (depth) {
335 	case 16: var->transp.length ?
336 		 SET_PIXFMT(var, 5, 5, 5, 1) :		/* RGBT555 */
337 		 SET_PIXFMT(var, 5, 6, 5, 0); break;	/* RGB565 */
338 	case 18: SET_PIXFMT(var, 6, 6, 6, 0); break;	/* RGB666 */
339 	case 19: SET_PIXFMT(var, 6, 6, 6, 1); break;	/* RGBT666 */
340 	case 24: var->transp.length ?
341 		 SET_PIXFMT(var, 8, 8, 7, 1) :		/* RGBT887 */
342 		 SET_PIXFMT(var, 8, 8, 8, 0); break;	/* RGB888 */
343 	case 25: SET_PIXFMT(var, 8, 8, 8, 1); break;	/* RGBT888 */
344 	}
345 }
346 
347 #ifdef CONFIG_CPU_FREQ
348 /*
349  *  pxafb_display_dma_period()
350  *    Calculate the minimum period (in picoseconds) between two DMA
351  *    requests for the LCD controller.  If we hit this, it means we're
352  *    doing nothing but LCD DMA.
353  */
354 static unsigned int pxafb_display_dma_period(struct fb_var_screeninfo *var)
355 {
356 	/*
357 	 * Period = pixclock * bits_per_byte * bytes_per_transfer
358 	 *              / memory_bits_per_pixel;
359 	 */
360 	return var->pixclock * 8 * 16 / var->bits_per_pixel;
361 }
362 #endif
363 
364 /*
365  * Select the smallest mode that allows the desired resolution to be
366  * displayed. If desired parameters can be rounded up.
367  */
368 static struct pxafb_mode_info *pxafb_getmode(struct pxafb_mach_info *mach,
369 					     struct fb_var_screeninfo *var)
370 {
371 	struct pxafb_mode_info *mode = NULL;
372 	struct pxafb_mode_info *modelist = mach->modes;
373 	unsigned int best_x = 0xffffffff, best_y = 0xffffffff;
374 	unsigned int i;
375 
376 	for (i = 0; i < mach->num_modes; i++) {
377 		if (modelist[i].xres >= var->xres &&
378 		    modelist[i].yres >= var->yres &&
379 		    modelist[i].xres < best_x &&
380 		    modelist[i].yres < best_y &&
381 		    modelist[i].bpp >= var->bits_per_pixel) {
382 			best_x = modelist[i].xres;
383 			best_y = modelist[i].yres;
384 			mode = &modelist[i];
385 		}
386 	}
387 
388 	return mode;
389 }
390 
391 static void pxafb_setmode(struct fb_var_screeninfo *var,
392 			  struct pxafb_mode_info *mode)
393 {
394 	var->xres		= mode->xres;
395 	var->yres		= mode->yres;
396 	var->bits_per_pixel	= mode->bpp;
397 	var->pixclock		= mode->pixclock;
398 	var->hsync_len		= mode->hsync_len;
399 	var->left_margin	= mode->left_margin;
400 	var->right_margin	= mode->right_margin;
401 	var->vsync_len		= mode->vsync_len;
402 	var->upper_margin	= mode->upper_margin;
403 	var->lower_margin	= mode->lower_margin;
404 	var->sync		= mode->sync;
405 	var->grayscale		= mode->cmap_greyscale;
406 	var->transp.length	= mode->transparency;
407 
408 	/* set the initial RGBA bitfields */
409 	pxafb_set_pixfmt(var, mode->depth);
410 }
411 
412 static int pxafb_adjust_timing(struct pxafb_info *fbi,
413 			       struct fb_var_screeninfo *var)
414 {
415 	int line_length;
416 
417 	var->xres = max_t(int, var->xres, MIN_XRES);
418 	var->yres = max_t(int, var->yres, MIN_YRES);
419 
420 	if (!(fbi->lccr0 & LCCR0_LCDT)) {
421 		clamp_val(var->hsync_len, 1, 64);
422 		clamp_val(var->vsync_len, 1, 64);
423 		clamp_val(var->left_margin,  1, 255);
424 		clamp_val(var->right_margin, 1, 255);
425 		clamp_val(var->upper_margin, 1, 255);
426 		clamp_val(var->lower_margin, 1, 255);
427 	}
428 
429 	/* make sure each line is aligned on word boundary */
430 	line_length = var->xres * var->bits_per_pixel / 8;
431 	line_length = ALIGN(line_length, 4);
432 	var->xres = line_length * 8 / var->bits_per_pixel;
433 
434 	/* we don't support xpan, force xres_virtual to be equal to xres */
435 	var->xres_virtual = var->xres;
436 
437 	if (var->accel_flags & FB_ACCELF_TEXT)
438 		var->yres_virtual = fbi->fb.fix.smem_len / line_length;
439 	else
440 		var->yres_virtual = max(var->yres_virtual, var->yres);
441 
442 	/* check for limits */
443 	if (var->xres > MAX_XRES || var->yres > MAX_YRES)
444 		return -EINVAL;
445 
446 	if (var->yres > var->yres_virtual)
447 		return -EINVAL;
448 
449 	return 0;
450 }
451 
452 /*
453  *  pxafb_check_var():
454  *    Get the video params out of 'var'. If a value doesn't fit, round it up,
455  *    if it's too big, return -EINVAL.
456  *
457  *    Round up in the following order: bits_per_pixel, xres,
458  *    yres, xres_virtual, yres_virtual, xoffset, yoffset, grayscale,
459  *    bitfields, horizontal timing, vertical timing.
460  */
461 static int pxafb_check_var(struct fb_var_screeninfo *var, struct fb_info *info)
462 {
463 	struct pxafb_info *fbi = container_of(info, struct pxafb_info, fb);
464 	struct pxafb_mach_info *inf = fbi->inf;
465 	int err;
466 
467 	if (inf->fixed_modes) {
468 		struct pxafb_mode_info *mode;
469 
470 		mode = pxafb_getmode(inf, var);
471 		if (!mode)
472 			return -EINVAL;
473 		pxafb_setmode(var, mode);
474 	}
475 
476 	/* do a test conversion to BPP fields to check the color formats */
477 	err = pxafb_var_to_bpp(var);
478 	if (err < 0)
479 		return err;
480 
481 	pxafb_set_pixfmt(var, var_to_depth(var));
482 
483 	err = pxafb_adjust_timing(fbi, var);
484 	if (err)
485 		return err;
486 
487 #ifdef CONFIG_CPU_FREQ
488 	pr_debug("pxafb: dma period = %d ps\n",
489 		 pxafb_display_dma_period(var));
490 #endif
491 
492 	return 0;
493 }
494 
495 /*
496  * pxafb_set_par():
497  *	Set the user defined part of the display for the specified console
498  */
499 static int pxafb_set_par(struct fb_info *info)
500 {
501 	struct pxafb_info *fbi = container_of(info, struct pxafb_info, fb);
502 	struct fb_var_screeninfo *var = &info->var;
503 
504 	if (var->bits_per_pixel >= 16)
505 		fbi->fb.fix.visual = FB_VISUAL_TRUECOLOR;
506 	else if (!fbi->cmap_static)
507 		fbi->fb.fix.visual = FB_VISUAL_PSEUDOCOLOR;
508 	else {
509 		/*
510 		 * Some people have weird ideas about wanting static
511 		 * pseudocolor maps.  I suspect their user space
512 		 * applications are broken.
513 		 */
514 		fbi->fb.fix.visual = FB_VISUAL_STATIC_PSEUDOCOLOR;
515 	}
516 
517 	fbi->fb.fix.line_length = var->xres_virtual *
518 				  var->bits_per_pixel / 8;
519 	if (var->bits_per_pixel >= 16)
520 		fbi->palette_size = 0;
521 	else
522 		fbi->palette_size = var->bits_per_pixel == 1 ?
523 					4 : 1 << var->bits_per_pixel;
524 
525 	fbi->palette_cpu = (u16 *)&fbi->dma_buff->palette[0];
526 
527 	if (fbi->fb.var.bits_per_pixel >= 16)
528 		fb_dealloc_cmap(&fbi->fb.cmap);
529 	else
530 		fb_alloc_cmap(&fbi->fb.cmap, 1<<fbi->fb.var.bits_per_pixel, 0);
531 
532 	pxafb_activate_var(var, fbi);
533 
534 	return 0;
535 }
536 
537 static int pxafb_pan_display(struct fb_var_screeninfo *var,
538 			     struct fb_info *info)
539 {
540 	struct pxafb_info *fbi = container_of(info, struct pxafb_info, fb);
541 	struct fb_var_screeninfo newvar;
542 	int dma = DMA_MAX + DMA_BASE;
543 
544 	if (fbi->state != C_ENABLE)
545 		return 0;
546 
547 	/* Only take .xoffset, .yoffset and .vmode & FB_VMODE_YWRAP from what
548 	 * was passed in and copy the rest from the old screeninfo.
549 	 */
550 	memcpy(&newvar, &fbi->fb.var, sizeof(newvar));
551 	newvar.xoffset = var->xoffset;
552 	newvar.yoffset = var->yoffset;
553 	newvar.vmode &= ~FB_VMODE_YWRAP;
554 	newvar.vmode |= var->vmode & FB_VMODE_YWRAP;
555 
556 	setup_base_frame(fbi, &newvar, 1);
557 
558 	if (fbi->lccr0 & LCCR0_SDS)
559 		lcd_writel(fbi, FBR1, fbi->fdadr[dma + 1] | 0x1);
560 
561 	lcd_writel(fbi, FBR0, fbi->fdadr[dma] | 0x1);
562 	return 0;
563 }
564 
565 /*
566  * pxafb_blank():
567  *	Blank the display by setting all palette values to zero.  Note, the
568  * 	16 bpp mode does not really use the palette, so this will not
569  *      blank the display in all modes.
570  */
571 static int pxafb_blank(int blank, struct fb_info *info)
572 {
573 	struct pxafb_info *fbi = container_of(info, struct pxafb_info, fb);
574 	int i;
575 
576 	switch (blank) {
577 	case FB_BLANK_POWERDOWN:
578 	case FB_BLANK_VSYNC_SUSPEND:
579 	case FB_BLANK_HSYNC_SUSPEND:
580 	case FB_BLANK_NORMAL:
581 		if (fbi->fb.fix.visual == FB_VISUAL_PSEUDOCOLOR ||
582 		    fbi->fb.fix.visual == FB_VISUAL_STATIC_PSEUDOCOLOR)
583 			for (i = 0; i < fbi->palette_size; i++)
584 				pxafb_setpalettereg(i, 0, 0, 0, 0, info);
585 
586 		pxafb_schedule_work(fbi, C_DISABLE);
587 		/* TODO if (pxafb_blank_helper) pxafb_blank_helper(blank); */
588 		break;
589 
590 	case FB_BLANK_UNBLANK:
591 		/* TODO if (pxafb_blank_helper) pxafb_blank_helper(blank); */
592 		if (fbi->fb.fix.visual == FB_VISUAL_PSEUDOCOLOR ||
593 		    fbi->fb.fix.visual == FB_VISUAL_STATIC_PSEUDOCOLOR)
594 			fb_set_cmap(&fbi->fb.cmap, info);
595 		pxafb_schedule_work(fbi, C_ENABLE);
596 	}
597 	return 0;
598 }
599 
600 static const struct fb_ops pxafb_ops = {
601 	.owner		= THIS_MODULE,
602 	FB_DEFAULT_IOMEM_OPS,
603 	.fb_check_var	= pxafb_check_var,
604 	.fb_set_par	= pxafb_set_par,
605 	.fb_pan_display	= pxafb_pan_display,
606 	.fb_setcolreg	= pxafb_setcolreg,
607 	.fb_blank	= pxafb_blank,
608 };
609 
610 #ifdef CONFIG_FB_PXA_OVERLAY
611 static void overlay1fb_setup(struct pxafb_layer *ofb)
612 {
613 	int size = ofb->fb.fix.line_length * ofb->fb.var.yres_virtual;
614 	unsigned long start = ofb->video_mem_phys;
615 	setup_frame_dma(ofb->fbi, DMA_OV1, PAL_NONE, start, size);
616 }
617 
618 /* Depending on the enable status of overlay1/2, the DMA should be
619  * updated from FDADRx (when disabled) or FBRx (when enabled).
620  */
621 static void overlay1fb_enable(struct pxafb_layer *ofb)
622 {
623 	int enabled = lcd_readl(ofb->fbi, OVL1C1) & OVLxC1_OEN;
624 	uint32_t fdadr1 = ofb->fbi->fdadr[DMA_OV1] | (enabled ? 0x1 : 0);
625 
626 	lcd_writel(ofb->fbi, enabled ? FBR1 : FDADR1, fdadr1);
627 	lcd_writel(ofb->fbi, OVL1C2, ofb->control[1]);
628 	lcd_writel(ofb->fbi, OVL1C1, ofb->control[0] | OVLxC1_OEN);
629 }
630 
631 static void overlay1fb_disable(struct pxafb_layer *ofb)
632 {
633 	uint32_t lccr5;
634 
635 	if (!(lcd_readl(ofb->fbi, OVL1C1) & OVLxC1_OEN))
636 		return;
637 
638 	lccr5 = lcd_readl(ofb->fbi, LCCR5);
639 
640 	lcd_writel(ofb->fbi, OVL1C1, ofb->control[0] & ~OVLxC1_OEN);
641 
642 	lcd_writel(ofb->fbi, LCSR1, LCSR1_BS(1));
643 	lcd_writel(ofb->fbi, LCCR5, lccr5 & ~LCSR1_BS(1));
644 	lcd_writel(ofb->fbi, FBR1, ofb->fbi->fdadr[DMA_OV1] | 0x3);
645 
646 	if (wait_for_completion_timeout(&ofb->branch_done, 1 * HZ) == 0)
647 		pr_warn("%s: timeout disabling overlay1\n", __func__);
648 
649 	lcd_writel(ofb->fbi, LCCR5, lccr5);
650 }
651 
652 static void overlay2fb_setup(struct pxafb_layer *ofb)
653 {
654 	int size, div = 1, pfor = NONSTD_TO_PFOR(ofb->fb.var.nonstd);
655 	unsigned long start[3] = { ofb->video_mem_phys, 0, 0 };
656 
657 	if (pfor == OVERLAY_FORMAT_RGB || pfor == OVERLAY_FORMAT_YUV444_PACKED) {
658 		size = ofb->fb.fix.line_length * ofb->fb.var.yres_virtual;
659 		setup_frame_dma(ofb->fbi, DMA_OV2_Y, -1, start[0], size);
660 	} else {
661 		size = ofb->fb.var.xres_virtual * ofb->fb.var.yres_virtual;
662 		switch (pfor) {
663 		case OVERLAY_FORMAT_YUV444_PLANAR: div = 1; break;
664 		case OVERLAY_FORMAT_YUV422_PLANAR: div = 2; break;
665 		case OVERLAY_FORMAT_YUV420_PLANAR: div = 4; break;
666 		}
667 		start[1] = start[0] + size;
668 		start[2] = start[1] + size / div;
669 		setup_frame_dma(ofb->fbi, DMA_OV2_Y,  -1, start[0], size);
670 		setup_frame_dma(ofb->fbi, DMA_OV2_Cb, -1, start[1], size / div);
671 		setup_frame_dma(ofb->fbi, DMA_OV2_Cr, -1, start[2], size / div);
672 	}
673 }
674 
675 static void overlay2fb_enable(struct pxafb_layer *ofb)
676 {
677 	int pfor = NONSTD_TO_PFOR(ofb->fb.var.nonstd);
678 	int enabled = lcd_readl(ofb->fbi, OVL2C1) & OVLxC1_OEN;
679 	uint32_t fdadr2 = ofb->fbi->fdadr[DMA_OV2_Y]  | (enabled ? 0x1 : 0);
680 	uint32_t fdadr3 = ofb->fbi->fdadr[DMA_OV2_Cb] | (enabled ? 0x1 : 0);
681 	uint32_t fdadr4 = ofb->fbi->fdadr[DMA_OV2_Cr] | (enabled ? 0x1 : 0);
682 
683 	if (pfor == OVERLAY_FORMAT_RGB || pfor == OVERLAY_FORMAT_YUV444_PACKED)
684 		lcd_writel(ofb->fbi, enabled ? FBR2 : FDADR2, fdadr2);
685 	else {
686 		lcd_writel(ofb->fbi, enabled ? FBR2 : FDADR2, fdadr2);
687 		lcd_writel(ofb->fbi, enabled ? FBR3 : FDADR3, fdadr3);
688 		lcd_writel(ofb->fbi, enabled ? FBR4 : FDADR4, fdadr4);
689 	}
690 	lcd_writel(ofb->fbi, OVL2C2, ofb->control[1]);
691 	lcd_writel(ofb->fbi, OVL2C1, ofb->control[0] | OVLxC1_OEN);
692 }
693 
694 static void overlay2fb_disable(struct pxafb_layer *ofb)
695 {
696 	uint32_t lccr5;
697 
698 	if (!(lcd_readl(ofb->fbi, OVL2C1) & OVLxC1_OEN))
699 		return;
700 
701 	lccr5 = lcd_readl(ofb->fbi, LCCR5);
702 
703 	lcd_writel(ofb->fbi, OVL2C1, ofb->control[0] & ~OVLxC1_OEN);
704 
705 	lcd_writel(ofb->fbi, LCSR1, LCSR1_BS(2));
706 	lcd_writel(ofb->fbi, LCCR5, lccr5 & ~LCSR1_BS(2));
707 	lcd_writel(ofb->fbi, FBR2, ofb->fbi->fdadr[DMA_OV2_Y]  | 0x3);
708 	lcd_writel(ofb->fbi, FBR3, ofb->fbi->fdadr[DMA_OV2_Cb] | 0x3);
709 	lcd_writel(ofb->fbi, FBR4, ofb->fbi->fdadr[DMA_OV2_Cr] | 0x3);
710 
711 	if (wait_for_completion_timeout(&ofb->branch_done, 1 * HZ) == 0)
712 		pr_warn("%s: timeout disabling overlay2\n", __func__);
713 }
714 
715 static struct pxafb_layer_ops ofb_ops[] = {
716 	[0] = {
717 		.enable		= overlay1fb_enable,
718 		.disable	= overlay1fb_disable,
719 		.setup		= overlay1fb_setup,
720 	},
721 	[1] = {
722 		.enable		= overlay2fb_enable,
723 		.disable	= overlay2fb_disable,
724 		.setup		= overlay2fb_setup,
725 	},
726 };
727 
728 static int overlayfb_open(struct fb_info *info, int user)
729 {
730 	struct pxafb_layer *ofb = container_of(info, struct pxafb_layer, fb);
731 
732 	/* no support for framebuffer console on overlay */
733 	if (user == 0)
734 		return -ENODEV;
735 
736 	if (ofb->usage++ == 0) {
737 		/* unblank the base framebuffer */
738 		console_lock();
739 		fb_blank(&ofb->fbi->fb, FB_BLANK_UNBLANK);
740 		console_unlock();
741 	}
742 
743 	return 0;
744 }
745 
746 static int overlayfb_release(struct fb_info *info, int user)
747 {
748 	struct pxafb_layer *ofb = container_of(info, struct pxafb_layer, fb);
749 
750 	if (ofb->usage == 1) {
751 		ofb->ops->disable(ofb);
752 		ofb->fb.var.height	= -1;
753 		ofb->fb.var.width	= -1;
754 		ofb->fb.var.xres = ofb->fb.var.xres_virtual = 0;
755 		ofb->fb.var.yres = ofb->fb.var.yres_virtual = 0;
756 
757 		ofb->usage--;
758 	}
759 	return 0;
760 }
761 
762 static int overlayfb_check_var(struct fb_var_screeninfo *var,
763 			       struct fb_info *info)
764 {
765 	struct pxafb_layer *ofb = container_of(info, struct pxafb_layer, fb);
766 	struct fb_var_screeninfo *base_var = &ofb->fbi->fb.var;
767 	int xpos, ypos, pfor, bpp;
768 
769 	xpos = NONSTD_TO_XPOS(var->nonstd);
770 	ypos = NONSTD_TO_YPOS(var->nonstd);
771 	pfor = NONSTD_TO_PFOR(var->nonstd);
772 
773 	bpp = pxafb_var_to_bpp(var);
774 	if (bpp < 0)
775 		return -EINVAL;
776 
777 	/* no support for YUV format on overlay1 */
778 	if (ofb->id == OVERLAY1 && pfor != 0)
779 		return -EINVAL;
780 
781 	/* for YUV packed formats, bpp = 'minimum bpp of YUV components' */
782 	switch (pfor) {
783 	case OVERLAY_FORMAT_RGB:
784 		bpp = pxafb_var_to_bpp(var);
785 		if (bpp < 0)
786 			return -EINVAL;
787 
788 		pxafb_set_pixfmt(var, var_to_depth(var));
789 		break;
790 	case OVERLAY_FORMAT_YUV444_PACKED: bpp = 24; break;
791 	case OVERLAY_FORMAT_YUV444_PLANAR: bpp = 8; break;
792 	case OVERLAY_FORMAT_YUV422_PLANAR: bpp = 4; break;
793 	case OVERLAY_FORMAT_YUV420_PLANAR: bpp = 2; break;
794 	default:
795 		return -EINVAL;
796 	}
797 
798 	/* each line must start at a 32-bit word boundary */
799 	if ((xpos * bpp) % 32)
800 		return -EINVAL;
801 
802 	/* xres must align on 32-bit word boundary */
803 	var->xres = roundup(var->xres * bpp, 32) / bpp;
804 
805 	if ((xpos + var->xres > base_var->xres) ||
806 	    (ypos + var->yres > base_var->yres))
807 		return -EINVAL;
808 
809 	var->xres_virtual = var->xres;
810 	var->yres_virtual = max(var->yres, var->yres_virtual);
811 	return 0;
812 }
813 
814 static int overlayfb_check_video_memory(struct pxafb_layer *ofb)
815 {
816 	struct fb_var_screeninfo *var = &ofb->fb.var;
817 	int pfor = NONSTD_TO_PFOR(var->nonstd);
818 	int size, bpp = 0;
819 
820 	switch (pfor) {
821 	case OVERLAY_FORMAT_RGB: bpp = var->bits_per_pixel; break;
822 	case OVERLAY_FORMAT_YUV444_PACKED: bpp = 24; break;
823 	case OVERLAY_FORMAT_YUV444_PLANAR: bpp = 24; break;
824 	case OVERLAY_FORMAT_YUV422_PLANAR: bpp = 16; break;
825 	case OVERLAY_FORMAT_YUV420_PLANAR: bpp = 12; break;
826 	}
827 
828 	ofb->fb.fix.line_length = var->xres_virtual * bpp / 8;
829 
830 	size = PAGE_ALIGN(ofb->fb.fix.line_length * var->yres_virtual);
831 
832 	if (ofb->video_mem) {
833 		if (ofb->video_mem_size >= size)
834 			return 0;
835 	}
836 	return -EINVAL;
837 }
838 
839 static int overlayfb_set_par(struct fb_info *info)
840 {
841 	struct pxafb_layer *ofb = container_of(info, struct pxafb_layer, fb);
842 	struct fb_var_screeninfo *var = &info->var;
843 	int xpos, ypos, pfor, bpp, ret;
844 
845 	ret = overlayfb_check_video_memory(ofb);
846 	if (ret)
847 		return ret;
848 
849 	bpp  = pxafb_var_to_bpp(var);
850 	xpos = NONSTD_TO_XPOS(var->nonstd);
851 	ypos = NONSTD_TO_YPOS(var->nonstd);
852 	pfor = NONSTD_TO_PFOR(var->nonstd);
853 
854 	ofb->control[0] = OVLxC1_PPL(var->xres) | OVLxC1_LPO(var->yres) |
855 			  OVLxC1_BPP(bpp);
856 	ofb->control[1] = OVLxC2_XPOS(xpos) | OVLxC2_YPOS(ypos);
857 
858 	if (ofb->id == OVERLAY2)
859 		ofb->control[1] |= OVL2C2_PFOR(pfor);
860 
861 	ofb->ops->setup(ofb);
862 	ofb->ops->enable(ofb);
863 	return 0;
864 }
865 
866 static const struct fb_ops overlay_fb_ops = {
867 	.owner			= THIS_MODULE,
868 	.fb_open		= overlayfb_open,
869 	.fb_release		= overlayfb_release,
870 	.fb_check_var 		= overlayfb_check_var,
871 	.fb_set_par		= overlayfb_set_par,
872 };
873 
874 static void init_pxafb_overlay(struct pxafb_info *fbi, struct pxafb_layer *ofb,
875 			       int id)
876 {
877 	sprintf(ofb->fb.fix.id, "overlay%d", id + 1);
878 
879 	ofb->fb.fix.type		= FB_TYPE_PACKED_PIXELS;
880 	ofb->fb.fix.xpanstep		= 0;
881 	ofb->fb.fix.ypanstep		= 1;
882 
883 	ofb->fb.var.activate		= FB_ACTIVATE_NOW;
884 	ofb->fb.var.height		= -1;
885 	ofb->fb.var.width		= -1;
886 	ofb->fb.var.vmode		= FB_VMODE_NONINTERLACED;
887 
888 	ofb->fb.fbops			= &overlay_fb_ops;
889 	ofb->fb.node			= -1;
890 	ofb->fb.pseudo_palette		= NULL;
891 
892 	ofb->id = id;
893 	ofb->ops = &ofb_ops[id];
894 	ofb->usage = 0;
895 	ofb->fbi = fbi;
896 	init_completion(&ofb->branch_done);
897 }
898 
899 static inline int pxafb_overlay_supported(void)
900 {
901 	if (cpu_is_pxa27x() || cpu_is_pxa3xx())
902 		return 1;
903 
904 	return 0;
905 }
906 
907 static int pxafb_overlay_map_video_memory(struct pxafb_info *pxafb,
908 					  struct pxafb_layer *ofb)
909 {
910 	/* We assume that user will use at most video_mem_size for overlay fb,
911 	 * anyway, it's useless to use 16bpp main plane and 24bpp overlay
912 	 */
913 	ofb->video_mem = alloc_pages_exact(PAGE_ALIGN(pxafb->video_mem_size),
914 		GFP_KERNEL | __GFP_ZERO);
915 	if (ofb->video_mem == NULL)
916 		return -ENOMEM;
917 
918 	ofb->video_mem_phys = virt_to_phys(ofb->video_mem);
919 	ofb->video_mem_size = PAGE_ALIGN(pxafb->video_mem_size);
920 
921 	mutex_lock(&ofb->fb.mm_lock);
922 	ofb->fb.fix.smem_start	= ofb->video_mem_phys;
923 	ofb->fb.fix.smem_len	= pxafb->video_mem_size;
924 	mutex_unlock(&ofb->fb.mm_lock);
925 
926 	ofb->fb.screen_base	= ofb->video_mem;
927 
928 	return 0;
929 }
930 
931 static void pxafb_overlay_init(struct pxafb_info *fbi)
932 {
933 	int i, ret;
934 
935 	if (!pxafb_overlay_supported())
936 		return;
937 
938 	for (i = 0; i < 2; i++) {
939 		struct pxafb_layer *ofb = &fbi->overlay[i];
940 		init_pxafb_overlay(fbi, ofb, i);
941 		ret = register_framebuffer(&ofb->fb);
942 		if (ret) {
943 			dev_err(fbi->dev, "failed to register overlay %d\n", i);
944 			continue;
945 		}
946 		ret = pxafb_overlay_map_video_memory(fbi, ofb);
947 		if (ret) {
948 			dev_err(fbi->dev,
949 				"failed to map video memory for overlay %d\n",
950 				i);
951 			unregister_framebuffer(&ofb->fb);
952 			continue;
953 		}
954 		ofb->registered = 1;
955 	}
956 
957 	/* mask all IU/BS/EOF/SOF interrupts */
958 	lcd_writel(fbi, LCCR5, ~0);
959 
960 	pr_info("PXA Overlay driver loaded successfully!\n");
961 }
962 
963 static void pxafb_overlay_exit(struct pxafb_info *fbi)
964 {
965 	int i;
966 
967 	if (!pxafb_overlay_supported())
968 		return;
969 
970 	for (i = 0; i < 2; i++) {
971 		struct pxafb_layer *ofb = &fbi->overlay[i];
972 		if (ofb->registered) {
973 			if (ofb->video_mem)
974 				free_pages_exact(ofb->video_mem,
975 					ofb->video_mem_size);
976 			unregister_framebuffer(&ofb->fb);
977 		}
978 	}
979 }
980 #else
981 static inline void pxafb_overlay_init(struct pxafb_info *fbi) {}
982 static inline void pxafb_overlay_exit(struct pxafb_info *fbi) {}
983 #endif /* CONFIG_FB_PXA_OVERLAY */
984 
985 /*
986  * Calculate the PCD value from the clock rate (in picoseconds).
987  * We take account of the PPCR clock setting.
988  * From PXA Developer's Manual:
989  *
990  *   PixelClock =      LCLK
991  *                -------------
992  *                2 ( PCD + 1 )
993  *
994  *   PCD =      LCLK
995  *         ------------- - 1
996  *         2(PixelClock)
997  *
998  * Where:
999  *   LCLK = LCD/Memory Clock
1000  *   PCD = LCCR3[7:0]
1001  *
1002  * PixelClock here is in Hz while the pixclock argument given is the
1003  * period in picoseconds. Hence PixelClock = 1 / ( pixclock * 10^-12 )
1004  *
1005  * The function get_lclk_frequency_10khz returns LCLK in units of
1006  * 10khz. Calling the result of this function lclk gives us the
1007  * following
1008  *
1009  *    PCD = (lclk * 10^4 ) * ( pixclock * 10^-12 )
1010  *          -------------------------------------- - 1
1011  *                          2
1012  *
1013  * Factoring the 10^4 and 10^-12 out gives 10^-8 == 1 / 100000000 as used below.
1014  */
1015 static inline unsigned int get_pcd(struct pxafb_info *fbi,
1016 				   unsigned int pixclock)
1017 {
1018 	unsigned long long pcd;
1019 
1020 	/* FIXME: Need to take into account Double Pixel Clock mode
1021 	 * (DPC) bit? or perhaps set it based on the various clock
1022 	 * speeds */
1023 	pcd = (unsigned long long)(clk_get_rate(fbi->clk) / 10000);
1024 	pcd *= pixclock;
1025 	do_div(pcd, 100000000 * 2);
1026 	/* no need for this, since we should subtract 1 anyway. they cancel */
1027 	/* pcd += 1; */ /* make up for integer math truncations */
1028 	return (unsigned int)pcd;
1029 }
1030 
1031 /*
1032  * Some touchscreens need hsync information from the video driver to
1033  * function correctly. We export it here.  Note that 'hsync_time' and
1034  * the value returned from pxafb_get_hsync_time() is the *reciprocal*
1035  * of the hsync period in seconds.
1036  */
1037 static inline void set_hsync_time(struct pxafb_info *fbi, unsigned int pcd)
1038 {
1039 	unsigned long htime;
1040 
1041 	if ((pcd == 0) || (fbi->fb.var.hsync_len == 0)) {
1042 		fbi->hsync_time = 0;
1043 		return;
1044 	}
1045 
1046 	htime = clk_get_rate(fbi->clk) / (pcd * fbi->fb.var.hsync_len);
1047 
1048 	fbi->hsync_time = htime;
1049 }
1050 
1051 unsigned long pxafb_get_hsync_time(struct device *dev)
1052 {
1053 	struct pxafb_info *fbi = dev_get_drvdata(dev);
1054 
1055 	/* If display is blanked/suspended, hsync isn't active */
1056 	if (!fbi || (fbi->state != C_ENABLE))
1057 		return 0;
1058 
1059 	return fbi->hsync_time;
1060 }
1061 EXPORT_SYMBOL(pxafb_get_hsync_time);
1062 
1063 static int setup_frame_dma(struct pxafb_info *fbi, int dma, int pal,
1064 			   unsigned long start, size_t size)
1065 {
1066 	struct pxafb_dma_descriptor *dma_desc, *pal_desc;
1067 	unsigned int dma_desc_off, pal_desc_off;
1068 
1069 	if (dma < 0 || dma >= DMA_MAX * 2)
1070 		return -EINVAL;
1071 
1072 	dma_desc = &fbi->dma_buff->dma_desc[dma];
1073 	dma_desc_off = offsetof(struct pxafb_dma_buff, dma_desc[dma]);
1074 
1075 	dma_desc->fsadr = start;
1076 	dma_desc->fidr  = 0;
1077 	dma_desc->ldcmd = size;
1078 
1079 	if (pal < 0 || pal >= PAL_MAX * 2) {
1080 		dma_desc->fdadr = fbi->dma_buff_phys + dma_desc_off;
1081 		fbi->fdadr[dma] = fbi->dma_buff_phys + dma_desc_off;
1082 	} else {
1083 		pal_desc = &fbi->dma_buff->pal_desc[pal];
1084 		pal_desc_off = offsetof(struct pxafb_dma_buff, pal_desc[pal]);
1085 
1086 		pal_desc->fsadr = fbi->dma_buff_phys + pal * PALETTE_SIZE;
1087 		pal_desc->fidr  = 0;
1088 
1089 		if ((fbi->lccr4 & LCCR4_PAL_FOR_MASK) == LCCR4_PAL_FOR_0)
1090 			pal_desc->ldcmd = fbi->palette_size * sizeof(u16);
1091 		else
1092 			pal_desc->ldcmd = fbi->palette_size * sizeof(u32);
1093 
1094 		pal_desc->ldcmd |= LDCMD_PAL;
1095 
1096 		/* flip back and forth between palette and frame buffer */
1097 		pal_desc->fdadr = fbi->dma_buff_phys + dma_desc_off;
1098 		dma_desc->fdadr = fbi->dma_buff_phys + pal_desc_off;
1099 		fbi->fdadr[dma] = fbi->dma_buff_phys + dma_desc_off;
1100 	}
1101 
1102 	return 0;
1103 }
1104 
1105 static void setup_base_frame(struct pxafb_info *fbi,
1106                              struct fb_var_screeninfo *var,
1107                              int branch)
1108 {
1109 	struct fb_fix_screeninfo *fix = &fbi->fb.fix;
1110 	int nbytes, dma, pal, bpp = var->bits_per_pixel;
1111 	unsigned long offset;
1112 
1113 	dma = DMA_BASE + (branch ? DMA_MAX : 0);
1114 	pal = (bpp >= 16) ? PAL_NONE : PAL_BASE + (branch ? PAL_MAX : 0);
1115 
1116 	nbytes = fix->line_length * var->yres;
1117 	offset = fix->line_length * var->yoffset + fbi->video_mem_phys;
1118 
1119 	if (fbi->lccr0 & LCCR0_SDS) {
1120 		nbytes = nbytes / 2;
1121 		setup_frame_dma(fbi, dma + 1, PAL_NONE, offset + nbytes, nbytes);
1122 	}
1123 
1124 	setup_frame_dma(fbi, dma, pal, offset, nbytes);
1125 }
1126 
1127 #ifdef CONFIG_FB_PXA_SMARTPANEL
1128 static int setup_smart_dma(struct pxafb_info *fbi)
1129 {
1130 	struct pxafb_dma_descriptor *dma_desc;
1131 	unsigned long dma_desc_off, cmd_buff_off;
1132 
1133 	dma_desc = &fbi->dma_buff->dma_desc[DMA_CMD];
1134 	dma_desc_off = offsetof(struct pxafb_dma_buff, dma_desc[DMA_CMD]);
1135 	cmd_buff_off = offsetof(struct pxafb_dma_buff, cmd_buff);
1136 
1137 	dma_desc->fdadr = fbi->dma_buff_phys + dma_desc_off;
1138 	dma_desc->fsadr = fbi->dma_buff_phys + cmd_buff_off;
1139 	dma_desc->fidr  = 0;
1140 	dma_desc->ldcmd = fbi->n_smart_cmds * sizeof(uint16_t);
1141 
1142 	fbi->fdadr[DMA_CMD] = dma_desc->fdadr;
1143 	return 0;
1144 }
1145 
1146 int pxafb_smart_flush(struct fb_info *info)
1147 {
1148 	struct pxafb_info *fbi = container_of(info, struct pxafb_info, fb);
1149 	uint32_t prsr;
1150 	int ret = 0;
1151 
1152 	/* disable controller until all registers are set up */
1153 	lcd_writel(fbi, LCCR0, fbi->reg_lccr0 & ~LCCR0_ENB);
1154 
1155 	/* 1. make it an even number of commands to align on 32-bit boundary
1156 	 * 2. add the interrupt command to the end of the chain so we can
1157 	 *    keep track of the end of the transfer
1158 	 */
1159 
1160 	while (fbi->n_smart_cmds & 1)
1161 		fbi->smart_cmds[fbi->n_smart_cmds++] = SMART_CMD_NOOP;
1162 
1163 	fbi->smart_cmds[fbi->n_smart_cmds++] = SMART_CMD_INTERRUPT;
1164 	fbi->smart_cmds[fbi->n_smart_cmds++] = SMART_CMD_WAIT_FOR_VSYNC;
1165 	setup_smart_dma(fbi);
1166 
1167 	/* continue to execute next command */
1168 	prsr = lcd_readl(fbi, PRSR) | PRSR_ST_OK | PRSR_CON_NT;
1169 	lcd_writel(fbi, PRSR, prsr);
1170 
1171 	/* stop the processor in case it executed "wait for sync" cmd */
1172 	lcd_writel(fbi, CMDCR, 0x0001);
1173 
1174 	/* don't send interrupts for fifo underruns on channel 6 */
1175 	lcd_writel(fbi, LCCR5, LCCR5_IUM(6));
1176 
1177 	lcd_writel(fbi, LCCR1, fbi->reg_lccr1);
1178 	lcd_writel(fbi, LCCR2, fbi->reg_lccr2);
1179 	lcd_writel(fbi, LCCR3, fbi->reg_lccr3);
1180 	lcd_writel(fbi, LCCR4, fbi->reg_lccr4);
1181 	lcd_writel(fbi, FDADR0, fbi->fdadr[0]);
1182 	lcd_writel(fbi, FDADR6, fbi->fdadr[6]);
1183 
1184 	/* begin sending */
1185 	lcd_writel(fbi, LCCR0, fbi->reg_lccr0 | LCCR0_ENB);
1186 
1187 	if (wait_for_completion_timeout(&fbi->command_done, HZ/2) == 0) {
1188 		pr_warn("%s: timeout waiting for command done\n", __func__);
1189 		ret = -ETIMEDOUT;
1190 	}
1191 
1192 	/* quick disable */
1193 	prsr = lcd_readl(fbi, PRSR) & ~(PRSR_ST_OK | PRSR_CON_NT);
1194 	lcd_writel(fbi, PRSR, prsr);
1195 	lcd_writel(fbi, LCCR0, fbi->reg_lccr0 & ~LCCR0_ENB);
1196 	lcd_writel(fbi, FDADR6, 0);
1197 	fbi->n_smart_cmds = 0;
1198 	return ret;
1199 }
1200 
1201 int pxafb_smart_queue(struct fb_info *info, uint16_t *cmds, int n_cmds)
1202 {
1203 	int i;
1204 	struct pxafb_info *fbi = container_of(info, struct pxafb_info, fb);
1205 
1206 	for (i = 0; i < n_cmds; i++, cmds++) {
1207 		/* if it is a software delay, flush and delay */
1208 		if ((*cmds & 0xff00) == SMART_CMD_DELAY) {
1209 			pxafb_smart_flush(info);
1210 			mdelay(*cmds & 0xff);
1211 			continue;
1212 		}
1213 
1214 		/* leave 2 commands for INTERRUPT and WAIT_FOR_SYNC */
1215 		if (fbi->n_smart_cmds == CMD_BUFF_SIZE - 8)
1216 			pxafb_smart_flush(info);
1217 
1218 		fbi->smart_cmds[fbi->n_smart_cmds++] = *cmds;
1219 	}
1220 
1221 	return 0;
1222 }
1223 
1224 static unsigned int __smart_timing(unsigned time_ns, unsigned long lcd_clk)
1225 {
1226 	unsigned int t = (time_ns * (lcd_clk / 1000000) / 1000);
1227 	return (t == 0) ? 1 : t;
1228 }
1229 
1230 static void setup_smart_timing(struct pxafb_info *fbi,
1231 				struct fb_var_screeninfo *var)
1232 {
1233 	struct pxafb_mach_info *inf = fbi->inf;
1234 	struct pxafb_mode_info *mode = &inf->modes[0];
1235 	unsigned long lclk = clk_get_rate(fbi->clk);
1236 	unsigned t1, t2, t3, t4;
1237 
1238 	t1 = max(mode->a0csrd_set_hld, mode->a0cswr_set_hld);
1239 	t2 = max(mode->rd_pulse_width, mode->wr_pulse_width);
1240 	t3 = mode->op_hold_time;
1241 	t4 = mode->cmd_inh_time;
1242 
1243 	fbi->reg_lccr1 =
1244 		LCCR1_DisWdth(var->xres) |
1245 		LCCR1_BegLnDel(__smart_timing(t1, lclk)) |
1246 		LCCR1_EndLnDel(__smart_timing(t2, lclk)) |
1247 		LCCR1_HorSnchWdth(__smart_timing(t3, lclk));
1248 
1249 	fbi->reg_lccr2 = LCCR2_DisHght(var->yres);
1250 	fbi->reg_lccr3 = fbi->lccr3 | LCCR3_PixClkDiv(__smart_timing(t4, lclk));
1251 	fbi->reg_lccr3 |= (var->sync & FB_SYNC_HOR_HIGH_ACT) ? LCCR3_HSP : 0;
1252 	fbi->reg_lccr3 |= (var->sync & FB_SYNC_VERT_HIGH_ACT) ? LCCR3_VSP : 0;
1253 
1254 	/* FIXME: make this configurable */
1255 	fbi->reg_cmdcr = 1;
1256 }
1257 
1258 static int pxafb_smart_thread(void *arg)
1259 {
1260 	struct pxafb_info *fbi = arg;
1261 	struct pxafb_mach_info *inf = fbi->inf;
1262 
1263 	if (!inf->smart_update) {
1264 		pr_err("%s: not properly initialized, thread terminated\n",
1265 				__func__);
1266 		return -EINVAL;
1267 	}
1268 
1269 	pr_debug("%s(): task starting\n", __func__);
1270 
1271 	set_freezable();
1272 	while (!kthread_should_stop()) {
1273 
1274 		if (try_to_freeze())
1275 			continue;
1276 
1277 		mutex_lock(&fbi->ctrlr_lock);
1278 
1279 		if (fbi->state == C_ENABLE) {
1280 			inf->smart_update(&fbi->fb);
1281 			complete(&fbi->refresh_done);
1282 		}
1283 
1284 		mutex_unlock(&fbi->ctrlr_lock);
1285 
1286 		set_current_state(TASK_INTERRUPTIBLE);
1287 		schedule_timeout(msecs_to_jiffies(30));
1288 	}
1289 
1290 	pr_debug("%s(): task ending\n", __func__);
1291 	return 0;
1292 }
1293 
1294 static int pxafb_smart_init(struct pxafb_info *fbi)
1295 {
1296 	if (!(fbi->lccr0 & LCCR0_LCDT))
1297 		return 0;
1298 
1299 	fbi->smart_cmds = (uint16_t *) fbi->dma_buff->cmd_buff;
1300 	fbi->n_smart_cmds = 0;
1301 
1302 	init_completion(&fbi->command_done);
1303 	init_completion(&fbi->refresh_done);
1304 
1305 	fbi->smart_thread = kthread_run(pxafb_smart_thread, fbi,
1306 					"lcd_refresh");
1307 	if (IS_ERR(fbi->smart_thread)) {
1308 		pr_err("%s: unable to create kernel thread\n", __func__);
1309 		return PTR_ERR(fbi->smart_thread);
1310 	}
1311 
1312 	return 0;
1313 }
1314 #else
1315 static inline int pxafb_smart_init(struct pxafb_info *fbi) { return 0; }
1316 #endif /* CONFIG_FB_PXA_SMARTPANEL */
1317 
1318 static void setup_parallel_timing(struct pxafb_info *fbi,
1319 				  struct fb_var_screeninfo *var)
1320 {
1321 	unsigned int lines_per_panel, pcd = get_pcd(fbi, var->pixclock);
1322 
1323 	fbi->reg_lccr1 =
1324 		LCCR1_DisWdth(var->xres) +
1325 		LCCR1_HorSnchWdth(var->hsync_len) +
1326 		LCCR1_BegLnDel(var->left_margin) +
1327 		LCCR1_EndLnDel(var->right_margin);
1328 
1329 	/*
1330 	 * If we have a dual scan LCD, we need to halve
1331 	 * the YRES parameter.
1332 	 */
1333 	lines_per_panel = var->yres;
1334 	if ((fbi->lccr0 & LCCR0_SDS) == LCCR0_Dual)
1335 		lines_per_panel /= 2;
1336 
1337 	fbi->reg_lccr2 =
1338 		LCCR2_DisHght(lines_per_panel) +
1339 		LCCR2_VrtSnchWdth(var->vsync_len) +
1340 		LCCR2_BegFrmDel(var->upper_margin) +
1341 		LCCR2_EndFrmDel(var->lower_margin);
1342 
1343 	fbi->reg_lccr3 = fbi->lccr3 |
1344 		(var->sync & FB_SYNC_HOR_HIGH_ACT ?
1345 		 LCCR3_HorSnchH : LCCR3_HorSnchL) |
1346 		(var->sync & FB_SYNC_VERT_HIGH_ACT ?
1347 		 LCCR3_VrtSnchH : LCCR3_VrtSnchL);
1348 
1349 	if (pcd) {
1350 		fbi->reg_lccr3 |= LCCR3_PixClkDiv(pcd);
1351 		set_hsync_time(fbi, pcd);
1352 	}
1353 }
1354 
1355 /*
1356  * pxafb_activate_var():
1357  *	Configures LCD Controller based on entries in var parameter.
1358  *	Settings are only written to the controller if changes were made.
1359  */
1360 static int pxafb_activate_var(struct fb_var_screeninfo *var,
1361 			      struct pxafb_info *fbi)
1362 {
1363 	u_long flags;
1364 
1365 	/* Update shadow copy atomically */
1366 	local_irq_save(flags);
1367 
1368 #ifdef CONFIG_FB_PXA_SMARTPANEL
1369 	if (fbi->lccr0 & LCCR0_LCDT)
1370 		setup_smart_timing(fbi, var);
1371 	else
1372 #endif
1373 		setup_parallel_timing(fbi, var);
1374 
1375 	setup_base_frame(fbi, var, 0);
1376 
1377 	fbi->reg_lccr0 = fbi->lccr0 |
1378 		(LCCR0_LDM | LCCR0_SFM | LCCR0_IUM | LCCR0_EFM |
1379 		 LCCR0_QDM | LCCR0_BM  | LCCR0_OUM);
1380 
1381 	fbi->reg_lccr3 |= pxafb_var_to_lccr3(var);
1382 
1383 	fbi->reg_lccr4 = lcd_readl(fbi, LCCR4) & ~LCCR4_PAL_FOR_MASK;
1384 	fbi->reg_lccr4 |= (fbi->lccr4 & LCCR4_PAL_FOR_MASK);
1385 	local_irq_restore(flags);
1386 
1387 	/*
1388 	 * Only update the registers if the controller is enabled
1389 	 * and something has changed.
1390 	 */
1391 	if ((lcd_readl(fbi, LCCR0) != fbi->reg_lccr0) ||
1392 	    (lcd_readl(fbi, LCCR1) != fbi->reg_lccr1) ||
1393 	    (lcd_readl(fbi, LCCR2) != fbi->reg_lccr2) ||
1394 	    (lcd_readl(fbi, LCCR3) != fbi->reg_lccr3) ||
1395 	    (lcd_readl(fbi, LCCR4) != fbi->reg_lccr4) ||
1396 	    (lcd_readl(fbi, FDADR0) != fbi->fdadr[0]) ||
1397 	    ((fbi->lccr0 & LCCR0_SDS) &&
1398 	    (lcd_readl(fbi, FDADR1) != fbi->fdadr[1])))
1399 		pxafb_schedule_work(fbi, C_REENABLE);
1400 
1401 	return 0;
1402 }
1403 
1404 /*
1405  * NOTE!  The following functions are purely helpers for set_ctrlr_state.
1406  * Do not call them directly; set_ctrlr_state does the correct serialisation
1407  * to ensure that things happen in the right way 100% of time time.
1408  *	-- rmk
1409  */
1410 static inline void __pxafb_backlight_power(struct pxafb_info *fbi, int on)
1411 {
1412 	pr_debug("pxafb: backlight o%s\n", on ? "n" : "ff");
1413 
1414 	if (fbi->backlight_power)
1415 		fbi->backlight_power(on);
1416 }
1417 
1418 static inline void __pxafb_lcd_power(struct pxafb_info *fbi, int on)
1419 {
1420 	pr_debug("pxafb: LCD power o%s\n", on ? "n" : "ff");
1421 
1422 	if (fbi->lcd_power)
1423 		fbi->lcd_power(on, &fbi->fb.var);
1424 
1425 	if (fbi->lcd_supply && fbi->lcd_supply_enabled != on) {
1426 		int ret;
1427 
1428 		if (on)
1429 			ret = regulator_enable(fbi->lcd_supply);
1430 		else
1431 			ret = regulator_disable(fbi->lcd_supply);
1432 
1433 		if (ret < 0)
1434 			pr_warn("Unable to %s LCD supply regulator: %d\n",
1435 				on ? "enable" : "disable", ret);
1436 		else
1437 			fbi->lcd_supply_enabled = on;
1438 	}
1439 }
1440 
1441 static void pxafb_enable_controller(struct pxafb_info *fbi)
1442 {
1443 	pr_debug("pxafb: Enabling LCD controller\n");
1444 	pr_debug("fdadr0 0x%08x\n", (unsigned int) fbi->fdadr[0]);
1445 	pr_debug("fdadr1 0x%08x\n", (unsigned int) fbi->fdadr[1]);
1446 	pr_debug("reg_lccr0 0x%08x\n", (unsigned int) fbi->reg_lccr0);
1447 	pr_debug("reg_lccr1 0x%08x\n", (unsigned int) fbi->reg_lccr1);
1448 	pr_debug("reg_lccr2 0x%08x\n", (unsigned int) fbi->reg_lccr2);
1449 	pr_debug("reg_lccr3 0x%08x\n", (unsigned int) fbi->reg_lccr3);
1450 
1451 	/* enable LCD controller clock */
1452 	if (clk_prepare_enable(fbi->clk)) {
1453 		pr_err("%s: Failed to prepare clock\n", __func__);
1454 		return;
1455 	}
1456 
1457 	if (fbi->lccr0 & LCCR0_LCDT)
1458 		return;
1459 
1460 	/* Sequence from 11.7.10 */
1461 	lcd_writel(fbi, LCCR4, fbi->reg_lccr4);
1462 	lcd_writel(fbi, LCCR3, fbi->reg_lccr3);
1463 	lcd_writel(fbi, LCCR2, fbi->reg_lccr2);
1464 	lcd_writel(fbi, LCCR1, fbi->reg_lccr1);
1465 	lcd_writel(fbi, LCCR0, fbi->reg_lccr0 & ~LCCR0_ENB);
1466 
1467 	lcd_writel(fbi, FDADR0, fbi->fdadr[0]);
1468 	if (fbi->lccr0 & LCCR0_SDS)
1469 		lcd_writel(fbi, FDADR1, fbi->fdadr[1]);
1470 	lcd_writel(fbi, LCCR0, fbi->reg_lccr0 | LCCR0_ENB);
1471 }
1472 
1473 static void pxafb_disable_controller(struct pxafb_info *fbi)
1474 {
1475 	uint32_t lccr0;
1476 
1477 #ifdef CONFIG_FB_PXA_SMARTPANEL
1478 	if (fbi->lccr0 & LCCR0_LCDT) {
1479 		wait_for_completion_timeout(&fbi->refresh_done,
1480 				msecs_to_jiffies(200));
1481 		return;
1482 	}
1483 #endif
1484 
1485 	/* Clear LCD Status Register */
1486 	lcd_writel(fbi, LCSR, 0xffffffff);
1487 
1488 	lccr0 = lcd_readl(fbi, LCCR0) & ~LCCR0_LDM;
1489 	lcd_writel(fbi, LCCR0, lccr0);
1490 	lcd_writel(fbi, LCCR0, lccr0 | LCCR0_DIS);
1491 
1492 	wait_for_completion_timeout(&fbi->disable_done, msecs_to_jiffies(200));
1493 
1494 	/* disable LCD controller clock */
1495 	clk_disable_unprepare(fbi->clk);
1496 }
1497 
1498 /*
1499  *  pxafb_handle_irq: Handle 'LCD DONE' interrupts.
1500  */
1501 static irqreturn_t pxafb_handle_irq(int irq, void *dev_id)
1502 {
1503 	struct pxafb_info *fbi = dev_id;
1504 	unsigned int lccr0, lcsr;
1505 
1506 	lcsr = lcd_readl(fbi, LCSR);
1507 	if (lcsr & LCSR_LDD) {
1508 		lccr0 = lcd_readl(fbi, LCCR0);
1509 		lcd_writel(fbi, LCCR0, lccr0 | LCCR0_LDM);
1510 		complete(&fbi->disable_done);
1511 	}
1512 
1513 #ifdef CONFIG_FB_PXA_SMARTPANEL
1514 	if (lcsr & LCSR_CMD_INT)
1515 		complete(&fbi->command_done);
1516 #endif
1517 	lcd_writel(fbi, LCSR, lcsr);
1518 
1519 #ifdef CONFIG_FB_PXA_OVERLAY
1520 	{
1521 		unsigned int lcsr1 = lcd_readl(fbi, LCSR1);
1522 		if (lcsr1 & LCSR1_BS(1))
1523 			complete(&fbi->overlay[0].branch_done);
1524 
1525 		if (lcsr1 & LCSR1_BS(2))
1526 			complete(&fbi->overlay[1].branch_done);
1527 
1528 		lcd_writel(fbi, LCSR1, lcsr1);
1529 	}
1530 #endif
1531 	return IRQ_HANDLED;
1532 }
1533 
1534 /*
1535  * This function must be called from task context only, since it will
1536  * sleep when disabling the LCD controller, or if we get two contending
1537  * processes trying to alter state.
1538  */
1539 static void set_ctrlr_state(struct pxafb_info *fbi, u_int state)
1540 {
1541 	u_int old_state;
1542 
1543 	mutex_lock(&fbi->ctrlr_lock);
1544 
1545 	old_state = fbi->state;
1546 
1547 	/*
1548 	 * Hack around fbcon initialisation.
1549 	 */
1550 	if (old_state == C_STARTUP && state == C_REENABLE)
1551 		state = C_ENABLE;
1552 
1553 	switch (state) {
1554 	case C_DISABLE_CLKCHANGE:
1555 		/*
1556 		 * Disable controller for clock change.  If the
1557 		 * controller is already disabled, then do nothing.
1558 		 */
1559 		if (old_state != C_DISABLE && old_state != C_DISABLE_PM) {
1560 			fbi->state = state;
1561 			/* TODO __pxafb_lcd_power(fbi, 0); */
1562 			pxafb_disable_controller(fbi);
1563 		}
1564 		break;
1565 
1566 	case C_DISABLE_PM:
1567 	case C_DISABLE:
1568 		/*
1569 		 * Disable controller
1570 		 */
1571 		if (old_state != C_DISABLE) {
1572 			fbi->state = state;
1573 			__pxafb_backlight_power(fbi, 0);
1574 			__pxafb_lcd_power(fbi, 0);
1575 			if (old_state != C_DISABLE_CLKCHANGE)
1576 				pxafb_disable_controller(fbi);
1577 		}
1578 		break;
1579 
1580 	case C_ENABLE_CLKCHANGE:
1581 		/*
1582 		 * Enable the controller after clock change.  Only
1583 		 * do this if we were disabled for the clock change.
1584 		 */
1585 		if (old_state == C_DISABLE_CLKCHANGE) {
1586 			fbi->state = C_ENABLE;
1587 			pxafb_enable_controller(fbi);
1588 			/* TODO __pxafb_lcd_power(fbi, 1); */
1589 		}
1590 		break;
1591 
1592 	case C_REENABLE:
1593 		/*
1594 		 * Re-enable the controller only if it was already
1595 		 * enabled.  This is so we reprogram the control
1596 		 * registers.
1597 		 */
1598 		if (old_state == C_ENABLE) {
1599 			__pxafb_lcd_power(fbi, 0);
1600 			pxafb_disable_controller(fbi);
1601 			pxafb_enable_controller(fbi);
1602 			__pxafb_lcd_power(fbi, 1);
1603 		}
1604 		break;
1605 
1606 	case C_ENABLE_PM:
1607 		/*
1608 		 * Re-enable the controller after PM.  This is not
1609 		 * perfect - think about the case where we were doing
1610 		 * a clock change, and we suspended half-way through.
1611 		 */
1612 		if (old_state != C_DISABLE_PM)
1613 			break;
1614 		fallthrough;
1615 
1616 	case C_ENABLE:
1617 		/*
1618 		 * Power up the LCD screen, enable controller, and
1619 		 * turn on the backlight.
1620 		 */
1621 		if (old_state != C_ENABLE) {
1622 			fbi->state = C_ENABLE;
1623 			pxafb_enable_controller(fbi);
1624 			__pxafb_lcd_power(fbi, 1);
1625 			__pxafb_backlight_power(fbi, 1);
1626 		}
1627 		break;
1628 	}
1629 	mutex_unlock(&fbi->ctrlr_lock);
1630 }
1631 
1632 /*
1633  * Our LCD controller task (which is called when we blank or unblank)
1634  * via keventd.
1635  */
1636 static void pxafb_task(struct work_struct *work)
1637 {
1638 	struct pxafb_info *fbi =
1639 		container_of(work, struct pxafb_info, task);
1640 	u_int state = xchg(&fbi->task_state, -1);
1641 
1642 	set_ctrlr_state(fbi, state);
1643 }
1644 
1645 #ifdef CONFIG_CPU_FREQ
1646 /*
1647  * CPU clock speed change handler.  We need to adjust the LCD timing
1648  * parameters when the CPU clock is adjusted by the power management
1649  * subsystem.
1650  *
1651  * TODO: Determine why f->new != 10*get_lclk_frequency_10khz()
1652  */
1653 static int
1654 pxafb_freq_transition(struct notifier_block *nb, unsigned long val, void *data)
1655 {
1656 	struct pxafb_info *fbi = TO_INF(nb, freq_transition);
1657 	/* TODO struct cpufreq_freqs *f = data; */
1658 	u_int pcd;
1659 
1660 	switch (val) {
1661 	case CPUFREQ_PRECHANGE:
1662 #ifdef CONFIG_FB_PXA_OVERLAY
1663 		if (!(fbi->overlay[0].usage || fbi->overlay[1].usage))
1664 #endif
1665 			set_ctrlr_state(fbi, C_DISABLE_CLKCHANGE);
1666 		break;
1667 
1668 	case CPUFREQ_POSTCHANGE:
1669 		pcd = get_pcd(fbi, fbi->fb.var.pixclock);
1670 		set_hsync_time(fbi, pcd);
1671 		fbi->reg_lccr3 = (fbi->reg_lccr3 & ~0xff) |
1672 				  LCCR3_PixClkDiv(pcd);
1673 		set_ctrlr_state(fbi, C_ENABLE_CLKCHANGE);
1674 		break;
1675 	}
1676 	return 0;
1677 }
1678 #endif
1679 
1680 #ifdef CONFIG_PM
1681 /*
1682  * Power management hooks.  Note that we won't be called from IRQ context,
1683  * unlike the blank functions above, so we may sleep.
1684  */
1685 static int pxafb_suspend(struct device *dev)
1686 {
1687 	struct pxafb_info *fbi = dev_get_drvdata(dev);
1688 
1689 	set_ctrlr_state(fbi, C_DISABLE_PM);
1690 	return 0;
1691 }
1692 
1693 static int pxafb_resume(struct device *dev)
1694 {
1695 	struct pxafb_info *fbi = dev_get_drvdata(dev);
1696 
1697 	set_ctrlr_state(fbi, C_ENABLE_PM);
1698 	return 0;
1699 }
1700 
1701 static const struct dev_pm_ops pxafb_pm_ops = {
1702 	.suspend	= pxafb_suspend,
1703 	.resume		= pxafb_resume,
1704 };
1705 #endif
1706 
1707 static int pxafb_init_video_memory(struct pxafb_info *fbi)
1708 {
1709 	int size = PAGE_ALIGN(fbi->video_mem_size);
1710 
1711 	fbi->video_mem = alloc_pages_exact(size, GFP_KERNEL | __GFP_ZERO);
1712 	if (fbi->video_mem == NULL)
1713 		return -ENOMEM;
1714 
1715 	fbi->video_mem_phys = virt_to_phys(fbi->video_mem);
1716 	fbi->video_mem_size = size;
1717 
1718 	fbi->fb.fix.smem_start	= fbi->video_mem_phys;
1719 	fbi->fb.fix.smem_len	= fbi->video_mem_size;
1720 	fbi->fb.screen_base	= fbi->video_mem;
1721 
1722 	return fbi->video_mem ? 0 : -ENOMEM;
1723 }
1724 
1725 static void pxafb_decode_mach_info(struct pxafb_info *fbi,
1726 				   struct pxafb_mach_info *inf)
1727 {
1728 	unsigned int lcd_conn = inf->lcd_conn;
1729 	struct pxafb_mode_info *m;
1730 	int i;
1731 
1732 	fbi->cmap_inverse	= inf->cmap_inverse;
1733 	fbi->cmap_static	= inf->cmap_static;
1734 	fbi->lccr4 		= inf->lccr4;
1735 
1736 	switch (lcd_conn & LCD_TYPE_MASK) {
1737 	case LCD_TYPE_MONO_STN:
1738 		fbi->lccr0 = LCCR0_CMS;
1739 		break;
1740 	case LCD_TYPE_MONO_DSTN:
1741 		fbi->lccr0 = LCCR0_CMS | LCCR0_SDS;
1742 		break;
1743 	case LCD_TYPE_COLOR_STN:
1744 		fbi->lccr0 = 0;
1745 		break;
1746 	case LCD_TYPE_COLOR_DSTN:
1747 		fbi->lccr0 = LCCR0_SDS;
1748 		break;
1749 	case LCD_TYPE_COLOR_TFT:
1750 		fbi->lccr0 = LCCR0_PAS;
1751 		break;
1752 	case LCD_TYPE_SMART_PANEL:
1753 		fbi->lccr0 = LCCR0_LCDT | LCCR0_PAS;
1754 		break;
1755 	default:
1756 		/* fall back to backward compatibility way */
1757 		fbi->lccr0 = inf->lccr0;
1758 		fbi->lccr3 = inf->lccr3;
1759 		goto decode_mode;
1760 	}
1761 
1762 	if (lcd_conn == LCD_MONO_STN_8BPP)
1763 		fbi->lccr0 |= LCCR0_DPD;
1764 
1765 	fbi->lccr0 |= (lcd_conn & LCD_ALTERNATE_MAPPING) ? LCCR0_LDDALT : 0;
1766 
1767 	fbi->lccr3 = LCCR3_Acb((inf->lcd_conn >> 10) & 0xff);
1768 	fbi->lccr3 |= (lcd_conn & LCD_BIAS_ACTIVE_LOW) ? LCCR3_OEP : 0;
1769 	fbi->lccr3 |= (lcd_conn & LCD_PCLK_EDGE_FALL)  ? LCCR3_PCP : 0;
1770 
1771 decode_mode:
1772 	pxafb_setmode(&fbi->fb.var, &inf->modes[0]);
1773 
1774 	/* decide video memory size as follows:
1775 	 * 1. default to mode of maximum resolution
1776 	 * 2. allow platform to override
1777 	 * 3. allow module parameter to override
1778 	 */
1779 	for (i = 0, m = &inf->modes[0]; i < inf->num_modes; i++, m++)
1780 		fbi->video_mem_size = max_t(size_t, fbi->video_mem_size,
1781 				m->xres * m->yres * m->bpp / 8);
1782 
1783 	if (inf->video_mem_size > fbi->video_mem_size)
1784 		fbi->video_mem_size = inf->video_mem_size;
1785 
1786 	if (video_mem_size > fbi->video_mem_size)
1787 		fbi->video_mem_size = video_mem_size;
1788 }
1789 
1790 static struct pxafb_info *pxafb_init_fbinfo(struct device *dev,
1791 					    struct pxafb_mach_info *inf)
1792 {
1793 	struct pxafb_info *fbi;
1794 	void *addr;
1795 
1796 	/* Alloc the pxafb_info and pseudo_palette in one step */
1797 	fbi = devm_kzalloc(dev, sizeof(struct pxafb_info) + sizeof(u32) * 16,
1798 			   GFP_KERNEL);
1799 	if (!fbi)
1800 		return ERR_PTR(-ENOMEM);
1801 
1802 	fbi->dev = dev;
1803 	fbi->inf = inf;
1804 
1805 	fbi->clk = devm_clk_get(dev, NULL);
1806 	if (IS_ERR(fbi->clk))
1807 		return ERR_CAST(fbi->clk);
1808 
1809 	strcpy(fbi->fb.fix.id, PXA_NAME);
1810 
1811 	fbi->fb.fix.type	= FB_TYPE_PACKED_PIXELS;
1812 	fbi->fb.fix.type_aux	= 0;
1813 	fbi->fb.fix.xpanstep	= 0;
1814 	fbi->fb.fix.ypanstep	= 1;
1815 	fbi->fb.fix.ywrapstep	= 0;
1816 	fbi->fb.fix.accel	= FB_ACCEL_NONE;
1817 
1818 	fbi->fb.var.nonstd	= 0;
1819 	fbi->fb.var.activate	= FB_ACTIVATE_NOW;
1820 	fbi->fb.var.height	= -1;
1821 	fbi->fb.var.width	= -1;
1822 	fbi->fb.var.accel_flags	= FB_ACCELF_TEXT;
1823 	fbi->fb.var.vmode	= FB_VMODE_NONINTERLACED;
1824 
1825 	fbi->fb.fbops		= &pxafb_ops;
1826 	fbi->fb.node		= -1;
1827 
1828 	addr = fbi;
1829 	addr = addr + sizeof(struct pxafb_info);
1830 	fbi->fb.pseudo_palette	= addr;
1831 
1832 	fbi->state		= C_STARTUP;
1833 	fbi->task_state		= (u_char)-1;
1834 
1835 	pxafb_decode_mach_info(fbi, inf);
1836 
1837 #ifdef CONFIG_FB_PXA_OVERLAY
1838 	/* place overlay(s) on top of base */
1839 	if (pxafb_overlay_supported())
1840 		fbi->lccr0 |= LCCR0_OUC;
1841 #endif
1842 
1843 	init_waitqueue_head(&fbi->ctrlr_wait);
1844 	INIT_WORK(&fbi->task, pxafb_task);
1845 	mutex_init(&fbi->ctrlr_lock);
1846 	init_completion(&fbi->disable_done);
1847 
1848 	return fbi;
1849 }
1850 
1851 #ifdef CONFIG_FB_PXA_PARAMETERS
1852 static int parse_opt_mode(struct device *dev, const char *this_opt,
1853 			  struct pxafb_mach_info *inf)
1854 {
1855 	const char *name = this_opt+5;
1856 	unsigned int namelen = strlen(name);
1857 	int res_specified = 0, bpp_specified = 0;
1858 	unsigned int xres = 0, yres = 0, bpp = 0;
1859 	int yres_specified = 0;
1860 	int i;
1861 	for (i = namelen-1; i >= 0; i--) {
1862 		switch (name[i]) {
1863 		case '-':
1864 			namelen = i;
1865 			if (!bpp_specified && !yres_specified) {
1866 				bpp = simple_strtoul(&name[i+1], NULL, 0);
1867 				bpp_specified = 1;
1868 			} else
1869 				goto done;
1870 			break;
1871 		case 'x':
1872 			if (!yres_specified) {
1873 				yres = simple_strtoul(&name[i+1], NULL, 0);
1874 				yres_specified = 1;
1875 			} else
1876 				goto done;
1877 			break;
1878 		case '0' ... '9':
1879 			break;
1880 		default:
1881 			goto done;
1882 		}
1883 	}
1884 	if (i < 0 && yres_specified) {
1885 		xres = simple_strtoul(name, NULL, 0);
1886 		res_specified = 1;
1887 	}
1888 done:
1889 	if (res_specified) {
1890 		dev_info(dev, "overriding resolution: %dx%d\n", xres, yres);
1891 		inf->modes[0].xres = xres; inf->modes[0].yres = yres;
1892 	}
1893 	if (bpp_specified)
1894 		switch (bpp) {
1895 		case 1:
1896 		case 2:
1897 		case 4:
1898 		case 8:
1899 		case 16:
1900 			inf->modes[0].bpp = bpp;
1901 			dev_info(dev, "overriding bit depth: %d\n", bpp);
1902 			break;
1903 		default:
1904 			dev_err(dev, "Depth %d is not valid\n", bpp);
1905 			return -EINVAL;
1906 		}
1907 	return 0;
1908 }
1909 
1910 static int parse_opt(struct device *dev, char *this_opt,
1911 		     struct pxafb_mach_info *inf)
1912 {
1913 	struct pxafb_mode_info *mode = &inf->modes[0];
1914 	char s[64];
1915 
1916 	s[0] = '\0';
1917 
1918 	if (!strncmp(this_opt, "vmem:", 5)) {
1919 		video_mem_size = memparse(this_opt + 5, NULL);
1920 	} else if (!strncmp(this_opt, "mode:", 5)) {
1921 		return parse_opt_mode(dev, this_opt, inf);
1922 	} else if (!strncmp(this_opt, "pixclock:", 9)) {
1923 		mode->pixclock = simple_strtoul(this_opt+9, NULL, 0);
1924 		sprintf(s, "pixclock: %ld\n", mode->pixclock);
1925 	} else if (!strncmp(this_opt, "left:", 5)) {
1926 		mode->left_margin = simple_strtoul(this_opt+5, NULL, 0);
1927 		sprintf(s, "left: %u\n", mode->left_margin);
1928 	} else if (!strncmp(this_opt, "right:", 6)) {
1929 		mode->right_margin = simple_strtoul(this_opt+6, NULL, 0);
1930 		sprintf(s, "right: %u\n", mode->right_margin);
1931 	} else if (!strncmp(this_opt, "upper:", 6)) {
1932 		mode->upper_margin = simple_strtoul(this_opt+6, NULL, 0);
1933 		sprintf(s, "upper: %u\n", mode->upper_margin);
1934 	} else if (!strncmp(this_opt, "lower:", 6)) {
1935 		mode->lower_margin = simple_strtoul(this_opt+6, NULL, 0);
1936 		sprintf(s, "lower: %u\n", mode->lower_margin);
1937 	} else if (!strncmp(this_opt, "hsynclen:", 9)) {
1938 		mode->hsync_len = simple_strtoul(this_opt+9, NULL, 0);
1939 		sprintf(s, "hsynclen: %u\n", mode->hsync_len);
1940 	} else if (!strncmp(this_opt, "vsynclen:", 9)) {
1941 		mode->vsync_len = simple_strtoul(this_opt+9, NULL, 0);
1942 		sprintf(s, "vsynclen: %u\n", mode->vsync_len);
1943 	} else if (!strncmp(this_opt, "hsync:", 6)) {
1944 		if (simple_strtoul(this_opt+6, NULL, 0) == 0) {
1945 			sprintf(s, "hsync: Active Low\n");
1946 			mode->sync &= ~FB_SYNC_HOR_HIGH_ACT;
1947 		} else {
1948 			sprintf(s, "hsync: Active High\n");
1949 			mode->sync |= FB_SYNC_HOR_HIGH_ACT;
1950 		}
1951 	} else if (!strncmp(this_opt, "vsync:", 6)) {
1952 		if (simple_strtoul(this_opt+6, NULL, 0) == 0) {
1953 			sprintf(s, "vsync: Active Low\n");
1954 			mode->sync &= ~FB_SYNC_VERT_HIGH_ACT;
1955 		} else {
1956 			sprintf(s, "vsync: Active High\n");
1957 			mode->sync |= FB_SYNC_VERT_HIGH_ACT;
1958 		}
1959 	} else if (!strncmp(this_opt, "dpc:", 4)) {
1960 		if (simple_strtoul(this_opt+4, NULL, 0) == 0) {
1961 			sprintf(s, "double pixel clock: false\n");
1962 			inf->lccr3 &= ~LCCR3_DPC;
1963 		} else {
1964 			sprintf(s, "double pixel clock: true\n");
1965 			inf->lccr3 |= LCCR3_DPC;
1966 		}
1967 	} else if (!strncmp(this_opt, "outputen:", 9)) {
1968 		if (simple_strtoul(this_opt+9, NULL, 0) == 0) {
1969 			sprintf(s, "output enable: active low\n");
1970 			inf->lccr3 = (inf->lccr3 & ~LCCR3_OEP) | LCCR3_OutEnL;
1971 		} else {
1972 			sprintf(s, "output enable: active high\n");
1973 			inf->lccr3 = (inf->lccr3 & ~LCCR3_OEP) | LCCR3_OutEnH;
1974 		}
1975 	} else if (!strncmp(this_opt, "pixclockpol:", 12)) {
1976 		if (simple_strtoul(this_opt+12, NULL, 0) == 0) {
1977 			sprintf(s, "pixel clock polarity: falling edge\n");
1978 			inf->lccr3 = (inf->lccr3 & ~LCCR3_PCP) | LCCR3_PixFlEdg;
1979 		} else {
1980 			sprintf(s, "pixel clock polarity: rising edge\n");
1981 			inf->lccr3 = (inf->lccr3 & ~LCCR3_PCP) | LCCR3_PixRsEdg;
1982 		}
1983 	} else if (!strncmp(this_opt, "color", 5)) {
1984 		inf->lccr0 = (inf->lccr0 & ~LCCR0_CMS) | LCCR0_Color;
1985 	} else if (!strncmp(this_opt, "mono", 4)) {
1986 		inf->lccr0 = (inf->lccr0 & ~LCCR0_CMS) | LCCR0_Mono;
1987 	} else if (!strncmp(this_opt, "active", 6)) {
1988 		inf->lccr0 = (inf->lccr0 & ~LCCR0_PAS) | LCCR0_Act;
1989 	} else if (!strncmp(this_opt, "passive", 7)) {
1990 		inf->lccr0 = (inf->lccr0 & ~LCCR0_PAS) | LCCR0_Pas;
1991 	} else if (!strncmp(this_opt, "single", 6)) {
1992 		inf->lccr0 = (inf->lccr0 & ~LCCR0_SDS) | LCCR0_Sngl;
1993 	} else if (!strncmp(this_opt, "dual", 4)) {
1994 		inf->lccr0 = (inf->lccr0 & ~LCCR0_SDS) | LCCR0_Dual;
1995 	} else if (!strncmp(this_opt, "4pix", 4)) {
1996 		inf->lccr0 = (inf->lccr0 & ~LCCR0_DPD) | LCCR0_4PixMono;
1997 	} else if (!strncmp(this_opt, "8pix", 4)) {
1998 		inf->lccr0 = (inf->lccr0 & ~LCCR0_DPD) | LCCR0_8PixMono;
1999 	} else {
2000 		dev_err(dev, "unknown option: %s\n", this_opt);
2001 		return -EINVAL;
2002 	}
2003 
2004 	if (s[0] != '\0')
2005 		dev_info(dev, "override %s", s);
2006 
2007 	return 0;
2008 }
2009 
2010 static int pxafb_parse_options(struct device *dev, char *options,
2011 			       struct pxafb_mach_info *inf)
2012 {
2013 	char *this_opt;
2014 	int ret;
2015 
2016 	if (!options || !*options)
2017 		return 0;
2018 
2019 	dev_dbg(dev, "options are \"%s\"\n", options ? options : "null");
2020 
2021 	/* could be made table driven or similar?... */
2022 	while ((this_opt = strsep(&options, ",")) != NULL) {
2023 		ret = parse_opt(dev, this_opt, inf);
2024 		if (ret)
2025 			return ret;
2026 	}
2027 	return 0;
2028 }
2029 
2030 static char g_options[256] = "";
2031 
2032 #ifndef MODULE
2033 static int __init pxafb_setup_options(void)
2034 {
2035 	char *options = NULL;
2036 
2037 	if (fb_get_options("pxafb", &options))
2038 		return -ENODEV;
2039 
2040 	if (options)
2041 		strscpy(g_options, options, sizeof(g_options));
2042 
2043 	return 0;
2044 }
2045 #else
2046 #define pxafb_setup_options()		(0)
2047 
2048 module_param_string(options, g_options, sizeof(g_options), 0);
2049 MODULE_PARM_DESC(options, "LCD parameters (see Documentation/fb/pxafb.rst)");
2050 #endif
2051 
2052 #else
2053 #define pxafb_parse_options(...)	(0)
2054 #define pxafb_setup_options()		(0)
2055 #endif
2056 
2057 #ifdef DEBUG_VAR
2058 /* Check for various illegal bit-combinations. Currently only
2059  * a warning is given. */
2060 static void pxafb_check_options(struct device *dev, struct pxafb_mach_info *inf)
2061 {
2062 	if (inf->lcd_conn)
2063 		return;
2064 
2065 	if (inf->lccr0 & LCCR0_INVALID_CONFIG_MASK)
2066 		dev_warn(dev, "machine LCCR0 setting contains "
2067 				"illegal bits: %08x\n",
2068 			inf->lccr0 & LCCR0_INVALID_CONFIG_MASK);
2069 	if (inf->lccr3 & LCCR3_INVALID_CONFIG_MASK)
2070 		dev_warn(dev, "machine LCCR3 setting contains "
2071 				"illegal bits: %08x\n",
2072 			inf->lccr3 & LCCR3_INVALID_CONFIG_MASK);
2073 	if (inf->lccr0 & LCCR0_DPD &&
2074 	    ((inf->lccr0 & LCCR0_PAS) != LCCR0_Pas ||
2075 	     (inf->lccr0 & LCCR0_SDS) != LCCR0_Sngl ||
2076 	     (inf->lccr0 & LCCR0_CMS) != LCCR0_Mono))
2077 		dev_warn(dev, "Double Pixel Data (DPD) mode is "
2078 				"only valid in passive mono"
2079 				" single panel mode\n");
2080 	if ((inf->lccr0 & LCCR0_PAS) == LCCR0_Act &&
2081 	    (inf->lccr0 & LCCR0_SDS) == LCCR0_Dual)
2082 		dev_warn(dev, "Dual panel only valid in passive mode\n");
2083 	if ((inf->lccr0 & LCCR0_PAS) == LCCR0_Pas &&
2084 	     (inf->modes->upper_margin || inf->modes->lower_margin))
2085 		dev_warn(dev, "Upper and lower margins must be 0 in "
2086 				"passive mode\n");
2087 }
2088 #else
2089 #define pxafb_check_options(...)	do {} while (0)
2090 #endif
2091 
2092 #if defined(CONFIG_OF)
2093 static const char * const lcd_types[] = {
2094 	"unknown", "mono-stn", "mono-dstn", "color-stn", "color-dstn",
2095 	"color-tft", "smart-panel", NULL
2096 };
2097 
2098 static int of_get_pxafb_display(struct device *dev, struct device_node *disp,
2099 				struct pxafb_mach_info *info, u32 bus_width)
2100 {
2101 	struct display_timings *timings;
2102 	struct videomode vm;
2103 	int i, ret = -EINVAL;
2104 	const char *s;
2105 
2106 	ret = of_property_read_string(disp, "lcd-type", &s);
2107 	if (ret)
2108 		s = "color-tft";
2109 
2110 	i = match_string(lcd_types, -1, s);
2111 	if (i < 0) {
2112 		dev_err(dev, "lcd-type %s is unknown\n", s);
2113 		return i;
2114 	}
2115 	info->lcd_conn |= LCD_CONN_TYPE(i);
2116 	info->lcd_conn |= LCD_CONN_WIDTH(bus_width);
2117 
2118 	timings = of_get_display_timings(disp);
2119 	if (!timings)
2120 		return -EINVAL;
2121 
2122 	ret = -ENOMEM;
2123 	info->modes = devm_kcalloc(dev, timings->num_timings,
2124 				   sizeof(info->modes[0]),
2125 				   GFP_KERNEL);
2126 	if (!info->modes)
2127 		goto out;
2128 	info->num_modes = timings->num_timings;
2129 
2130 	for (i = 0; i < timings->num_timings; i++) {
2131 		ret = videomode_from_timings(timings, &vm, i);
2132 		if (ret) {
2133 			dev_err(dev, "videomode_from_timings %d failed: %d\n",
2134 				i, ret);
2135 			goto out;
2136 		}
2137 		if (vm.flags & DISPLAY_FLAGS_PIXDATA_POSEDGE)
2138 			info->lcd_conn |= LCD_PCLK_EDGE_RISE;
2139 		if (vm.flags & DISPLAY_FLAGS_PIXDATA_NEGEDGE)
2140 			info->lcd_conn |= LCD_PCLK_EDGE_FALL;
2141 		if (vm.flags & DISPLAY_FLAGS_DE_HIGH)
2142 			info->lcd_conn |= LCD_BIAS_ACTIVE_HIGH;
2143 		if (vm.flags & DISPLAY_FLAGS_DE_LOW)
2144 			info->lcd_conn |= LCD_BIAS_ACTIVE_LOW;
2145 		if (vm.flags & DISPLAY_FLAGS_HSYNC_HIGH)
2146 			info->modes[i].sync |= FB_SYNC_HOR_HIGH_ACT;
2147 		if (vm.flags & DISPLAY_FLAGS_VSYNC_HIGH)
2148 			info->modes[i].sync |= FB_SYNC_VERT_HIGH_ACT;
2149 
2150 		info->modes[i].pixclock = 1000000000UL / (vm.pixelclock / 1000);
2151 		info->modes[i].xres = vm.hactive;
2152 		info->modes[i].yres = vm.vactive;
2153 		info->modes[i].hsync_len = vm.hsync_len;
2154 		info->modes[i].left_margin = vm.hback_porch;
2155 		info->modes[i].right_margin = vm.hfront_porch;
2156 		info->modes[i].vsync_len = vm.vsync_len;
2157 		info->modes[i].upper_margin = vm.vback_porch;
2158 		info->modes[i].lower_margin = vm.vfront_porch;
2159 	}
2160 	ret = 0;
2161 
2162 out:
2163 	display_timings_release(timings);
2164 	return ret;
2165 }
2166 
2167 static int of_get_pxafb_mode_info(struct device *dev,
2168 				  struct pxafb_mach_info *info)
2169 {
2170 	struct device_node *display, *np;
2171 	u32 bus_width;
2172 	int ret, i;
2173 
2174 	np = of_graph_get_next_endpoint(dev->of_node, NULL);
2175 	if (!np) {
2176 		dev_err(dev, "could not find endpoint\n");
2177 		return -EINVAL;
2178 	}
2179 	ret = of_property_read_u32(np, "bus-width", &bus_width);
2180 	if (ret) {
2181 		dev_err(dev, "no bus-width specified: %d\n", ret);
2182 		of_node_put(np);
2183 		return ret;
2184 	}
2185 
2186 	display = of_graph_get_remote_port_parent(np);
2187 	of_node_put(np);
2188 	if (!display) {
2189 		dev_err(dev, "no display defined\n");
2190 		return -EINVAL;
2191 	}
2192 
2193 	ret = of_get_pxafb_display(dev, display, info, bus_width);
2194 	of_node_put(display);
2195 	if (ret)
2196 		return ret;
2197 
2198 	for (i = 0; i < info->num_modes; i++)
2199 		info->modes[i].bpp = bus_width;
2200 
2201 	return 0;
2202 }
2203 
2204 static struct pxafb_mach_info *of_pxafb_of_mach_info(struct device *dev)
2205 {
2206 	int ret;
2207 	struct pxafb_mach_info *info;
2208 
2209 	if (!dev->of_node)
2210 		return NULL;
2211 	info = devm_kzalloc(dev, sizeof(*info), GFP_KERNEL);
2212 	if (!info)
2213 		return ERR_PTR(-ENOMEM);
2214 	ret = of_get_pxafb_mode_info(dev, info);
2215 	if (ret)
2216 		return ERR_PTR(ret);
2217 
2218 	/*
2219 	 * On purpose, neither lccrX registers nor video memory size can be
2220 	 * specified through device-tree, they are considered more a debug hack
2221 	 * available through command line.
2222 	 */
2223 	return info;
2224 }
2225 #else
2226 static struct pxafb_mach_info *of_pxafb_of_mach_info(struct device *dev)
2227 {
2228 	return NULL;
2229 }
2230 #endif
2231 
2232 static int pxafb_probe(struct platform_device *dev)
2233 {
2234 	struct pxafb_info *fbi;
2235 	struct pxafb_mach_info *inf, *pdata;
2236 	int i, irq, ret;
2237 
2238 	dev_dbg(&dev->dev, "pxafb_probe\n");
2239 
2240 	ret = -ENOMEM;
2241 	pdata = dev_get_platdata(&dev->dev);
2242 	inf = devm_kmalloc(&dev->dev, sizeof(*inf), GFP_KERNEL);
2243 	if (!inf)
2244 		goto failed;
2245 
2246 	if (pdata) {
2247 		*inf = *pdata;
2248 		inf->modes =
2249 			devm_kmalloc_array(&dev->dev, pdata->num_modes,
2250 					   sizeof(inf->modes[0]), GFP_KERNEL);
2251 		if (!inf->modes)
2252 			goto failed;
2253 		for (i = 0; i < inf->num_modes; i++)
2254 			inf->modes[i] = pdata->modes[i];
2255 	} else {
2256 		inf = of_pxafb_of_mach_info(&dev->dev);
2257 	}
2258 
2259 	if (IS_ERR_OR_NULL(inf))
2260 		goto failed;
2261 
2262 	ret = pxafb_parse_options(&dev->dev, g_options, inf);
2263 	if (ret < 0)
2264 		goto failed;
2265 
2266 	pxafb_check_options(&dev->dev, inf);
2267 
2268 	dev_dbg(&dev->dev, "got a %dx%dx%d LCD\n",
2269 			inf->modes->xres,
2270 			inf->modes->yres,
2271 			inf->modes->bpp);
2272 	if (inf->modes->xres == 0 ||
2273 	    inf->modes->yres == 0 ||
2274 	    inf->modes->bpp == 0) {
2275 		dev_err(&dev->dev, "Invalid resolution or bit depth\n");
2276 		ret = -EINVAL;
2277 		goto failed;
2278 	}
2279 
2280 	fbi = pxafb_init_fbinfo(&dev->dev, inf);
2281 	if (IS_ERR(fbi)) {
2282 		dev_err(&dev->dev, "Failed to initialize framebuffer device\n");
2283 		ret = PTR_ERR(fbi);
2284 		goto failed;
2285 	}
2286 
2287 	if (cpu_is_pxa3xx() && inf->acceleration_enabled)
2288 		fbi->fb.fix.accel = FB_ACCEL_PXA3XX;
2289 
2290 	fbi->backlight_power = inf->pxafb_backlight_power;
2291 	fbi->lcd_power = inf->pxafb_lcd_power;
2292 
2293 	fbi->lcd_supply = devm_regulator_get_optional(&dev->dev, "lcd");
2294 	if (IS_ERR(fbi->lcd_supply)) {
2295 		if (PTR_ERR(fbi->lcd_supply) == -EPROBE_DEFER)
2296 			return -EPROBE_DEFER;
2297 
2298 		fbi->lcd_supply = NULL;
2299 	}
2300 
2301 	fbi->mmio_base = devm_platform_ioremap_resource(dev, 0);
2302 	if (IS_ERR(fbi->mmio_base)) {
2303 		dev_err(&dev->dev, "failed to get I/O memory\n");
2304 		ret = PTR_ERR(fbi->mmio_base);
2305 		goto failed;
2306 	}
2307 
2308 	fbi->dma_buff_size = PAGE_ALIGN(sizeof(struct pxafb_dma_buff));
2309 	fbi->dma_buff = dma_alloc_coherent(fbi->dev, fbi->dma_buff_size,
2310 				&fbi->dma_buff_phys, GFP_KERNEL);
2311 	if (fbi->dma_buff == NULL) {
2312 		dev_err(&dev->dev, "failed to allocate memory for DMA\n");
2313 		ret = -ENOMEM;
2314 		goto failed;
2315 	}
2316 
2317 	ret = pxafb_init_video_memory(fbi);
2318 	if (ret) {
2319 		dev_err(&dev->dev, "Failed to allocate video RAM: %d\n", ret);
2320 		ret = -ENOMEM;
2321 		goto failed_free_dma;
2322 	}
2323 
2324 	irq = platform_get_irq(dev, 0);
2325 	if (irq < 0) {
2326 		ret = -ENODEV;
2327 		goto failed_free_mem;
2328 	}
2329 
2330 	ret = devm_request_irq(&dev->dev, irq, pxafb_handle_irq, 0, "LCD", fbi);
2331 	if (ret) {
2332 		dev_err(&dev->dev, "request_irq failed: %d\n", ret);
2333 		ret = -EBUSY;
2334 		goto failed_free_mem;
2335 	}
2336 
2337 	ret = pxafb_smart_init(fbi);
2338 	if (ret) {
2339 		dev_err(&dev->dev, "failed to initialize smartpanel\n");
2340 		goto failed_free_mem;
2341 	}
2342 
2343 	/*
2344 	 * This makes sure that our colour bitfield
2345 	 * descriptors are correctly initialised.
2346 	 */
2347 	ret = pxafb_check_var(&fbi->fb.var, &fbi->fb);
2348 	if (ret) {
2349 		dev_err(&dev->dev, "failed to get suitable mode\n");
2350 		goto failed_free_mem;
2351 	}
2352 
2353 	ret = pxafb_set_par(&fbi->fb);
2354 	if (ret) {
2355 		dev_err(&dev->dev, "Failed to set parameters\n");
2356 		goto failed_free_mem;
2357 	}
2358 
2359 	platform_set_drvdata(dev, fbi);
2360 
2361 	ret = register_framebuffer(&fbi->fb);
2362 	if (ret < 0) {
2363 		dev_err(&dev->dev,
2364 			"Failed to register framebuffer device: %d\n", ret);
2365 		goto failed_free_cmap;
2366 	}
2367 
2368 	pxafb_overlay_init(fbi);
2369 
2370 #ifdef CONFIG_CPU_FREQ
2371 	fbi->freq_transition.notifier_call = pxafb_freq_transition;
2372 	cpufreq_register_notifier(&fbi->freq_transition,
2373 				CPUFREQ_TRANSITION_NOTIFIER);
2374 #endif
2375 
2376 	/*
2377 	 * Ok, now enable the LCD controller
2378 	 */
2379 	set_ctrlr_state(fbi, C_ENABLE);
2380 
2381 	return 0;
2382 
2383 failed_free_cmap:
2384 	if (fbi->fb.cmap.len)
2385 		fb_dealloc_cmap(&fbi->fb.cmap);
2386 failed_free_mem:
2387 	free_pages_exact(fbi->video_mem, fbi->video_mem_size);
2388 failed_free_dma:
2389 	dma_free_coherent(&dev->dev, fbi->dma_buff_size,
2390 			fbi->dma_buff, fbi->dma_buff_phys);
2391 failed:
2392 	return ret;
2393 }
2394 
2395 static void pxafb_remove(struct platform_device *dev)
2396 {
2397 	struct pxafb_info *fbi = platform_get_drvdata(dev);
2398 	struct fb_info *info;
2399 
2400 	if (!fbi)
2401 		return;
2402 
2403 	info = &fbi->fb;
2404 
2405 	pxafb_overlay_exit(fbi);
2406 	unregister_framebuffer(info);
2407 
2408 	pxafb_disable_controller(fbi);
2409 
2410 	if (fbi->fb.cmap.len)
2411 		fb_dealloc_cmap(&fbi->fb.cmap);
2412 
2413 	free_pages_exact(fbi->video_mem, fbi->video_mem_size);
2414 
2415 	dma_free_coherent(&dev->dev, fbi->dma_buff_size, fbi->dma_buff,
2416 			  fbi->dma_buff_phys);
2417 }
2418 
2419 static const struct of_device_id pxafb_of_dev_id[] = {
2420 	{ .compatible = "marvell,pxa270-lcdc", },
2421 	{ .compatible = "marvell,pxa300-lcdc", },
2422 	{ .compatible = "marvell,pxa2xx-lcdc", },
2423 	{ /* sentinel */ }
2424 };
2425 MODULE_DEVICE_TABLE(of, pxafb_of_dev_id);
2426 
2427 static struct platform_driver pxafb_driver = {
2428 	.probe		= pxafb_probe,
2429 	.remove_new 	= pxafb_remove,
2430 	.driver		= {
2431 		.name	= "pxa2xx-fb",
2432 		.of_match_table = pxafb_of_dev_id,
2433 #ifdef CONFIG_PM
2434 		.pm	= &pxafb_pm_ops,
2435 #endif
2436 	},
2437 };
2438 
2439 static int __init pxafb_init(void)
2440 {
2441 	if (pxafb_setup_options())
2442 		return -EINVAL;
2443 
2444 	return platform_driver_register(&pxafb_driver);
2445 }
2446 
2447 static void __exit pxafb_exit(void)
2448 {
2449 	platform_driver_unregister(&pxafb_driver);
2450 }
2451 
2452 module_init(pxafb_init);
2453 module_exit(pxafb_exit);
2454 
2455 MODULE_DESCRIPTION("loadable framebuffer driver for PXA");
2456 MODULE_LICENSE("GPL");
2457