xref: /openbmc/linux/drivers/video/fbdev/intelfb/intelfbhw.c (revision eb3fcf007fffe5830d815e713591f3e858f2a365)
1 /*
2  * intelfb
3  *
4  * Linux framebuffer driver for Intel(R) 865G integrated graphics chips.
5  *
6  * Copyright © 2002, 2003 David Dawes <dawes@xfree86.org>
7  *                   2004 Sylvain Meyer
8  *
9  * This driver consists of two parts.  The first part (intelfbdrv.c) provides
10  * the basic fbdev interfaces, is derived in part from the radeonfb and
11  * vesafb drivers, and is covered by the GPL.  The second part (intelfbhw.c)
12  * provides the code to program the hardware.  Most of it is derived from
13  * the i810/i830 XFree86 driver.  The HW-specific code is covered here
14  * under a dual license (GPL and MIT/XFree86 license).
15  *
16  * Author: David Dawes
17  *
18  */
19 
20 /* $DHD: intelfb/intelfbhw.c,v 1.9 2003/06/27 15:06:25 dawes Exp $ */
21 
22 #include <linux/module.h>
23 #include <linux/kernel.h>
24 #include <linux/errno.h>
25 #include <linux/string.h>
26 #include <linux/mm.h>
27 #include <linux/delay.h>
28 #include <linux/fb.h>
29 #include <linux/ioport.h>
30 #include <linux/init.h>
31 #include <linux/pci.h>
32 #include <linux/vmalloc.h>
33 #include <linux/pagemap.h>
34 #include <linux/interrupt.h>
35 
36 #include <asm/io.h>
37 
38 #include "intelfb.h"
39 #include "intelfbhw.h"
40 
41 struct pll_min_max {
42 	int min_m, max_m, min_m1, max_m1;
43 	int min_m2, max_m2, min_n, max_n;
44 	int min_p, max_p, min_p1, max_p1;
45 	int min_vco, max_vco, p_transition_clk, ref_clk;
46 	int p_inc_lo, p_inc_hi;
47 };
48 
49 #define PLLS_I8xx 0
50 #define PLLS_I9xx 1
51 #define PLLS_MAX 2
52 
53 static struct pll_min_max plls[PLLS_MAX] = {
54 	{ 108, 140, 18, 26,
55 	  6, 16, 3, 16,
56 	  4, 128, 0, 31,
57 	  930000, 1400000, 165000, 48000,
58 	  4, 2 },		/* I8xx */
59 
60 	{ 75, 120, 10, 20,
61 	  5, 9, 4, 7,
62 	  5, 80, 1, 8,
63 	  1400000, 2800000, 200000, 96000,
64 	  10, 5 }		/* I9xx */
65 };
66 
67 int intelfbhw_get_chipset(struct pci_dev *pdev, struct intelfb_info *dinfo)
68 {
69 	u32 tmp;
70 	if (!pdev || !dinfo)
71 		return 1;
72 
73 	switch (pdev->device) {
74 	case PCI_DEVICE_ID_INTEL_830M:
75 		dinfo->name = "Intel(R) 830M";
76 		dinfo->chipset = INTEL_830M;
77 		dinfo->mobile = 1;
78 		dinfo->pll_index = PLLS_I8xx;
79 		return 0;
80 	case PCI_DEVICE_ID_INTEL_845G:
81 		dinfo->name = "Intel(R) 845G";
82 		dinfo->chipset = INTEL_845G;
83 		dinfo->mobile = 0;
84 		dinfo->pll_index = PLLS_I8xx;
85 		return 0;
86 	case PCI_DEVICE_ID_INTEL_854:
87 		dinfo->mobile = 1;
88 		dinfo->name = "Intel(R) 854";
89 		dinfo->chipset = INTEL_854;
90 		return 0;
91 	case PCI_DEVICE_ID_INTEL_85XGM:
92 		tmp = 0;
93 		dinfo->mobile = 1;
94 		dinfo->pll_index = PLLS_I8xx;
95 		pci_read_config_dword(pdev, INTEL_85X_CAPID, &tmp);
96 		switch ((tmp >> INTEL_85X_VARIANT_SHIFT) &
97 			INTEL_85X_VARIANT_MASK) {
98 		case INTEL_VAR_855GME:
99 			dinfo->name = "Intel(R) 855GME";
100 			dinfo->chipset = INTEL_855GME;
101 			return 0;
102 		case INTEL_VAR_855GM:
103 			dinfo->name = "Intel(R) 855GM";
104 			dinfo->chipset = INTEL_855GM;
105 			return 0;
106 		case INTEL_VAR_852GME:
107 			dinfo->name = "Intel(R) 852GME";
108 			dinfo->chipset = INTEL_852GME;
109 			return 0;
110 		case INTEL_VAR_852GM:
111 			dinfo->name = "Intel(R) 852GM";
112 			dinfo->chipset = INTEL_852GM;
113 			return 0;
114 		default:
115 			dinfo->name = "Intel(R) 852GM/855GM";
116 			dinfo->chipset = INTEL_85XGM;
117 			return 0;
118 		}
119 		break;
120 	case PCI_DEVICE_ID_INTEL_865G:
121 		dinfo->name = "Intel(R) 865G";
122 		dinfo->chipset = INTEL_865G;
123 		dinfo->mobile = 0;
124 		dinfo->pll_index = PLLS_I8xx;
125 		return 0;
126 	case PCI_DEVICE_ID_INTEL_915G:
127 		dinfo->name = "Intel(R) 915G";
128 		dinfo->chipset = INTEL_915G;
129 		dinfo->mobile = 0;
130 		dinfo->pll_index = PLLS_I9xx;
131 		return 0;
132 	case PCI_DEVICE_ID_INTEL_915GM:
133 		dinfo->name = "Intel(R) 915GM";
134 		dinfo->chipset = INTEL_915GM;
135 		dinfo->mobile = 1;
136 		dinfo->pll_index = PLLS_I9xx;
137 		return 0;
138 	case PCI_DEVICE_ID_INTEL_945G:
139 		dinfo->name = "Intel(R) 945G";
140 		dinfo->chipset = INTEL_945G;
141 		dinfo->mobile = 0;
142 		dinfo->pll_index = PLLS_I9xx;
143 		return 0;
144 	case PCI_DEVICE_ID_INTEL_945GM:
145 		dinfo->name = "Intel(R) 945GM";
146 		dinfo->chipset = INTEL_945GM;
147 		dinfo->mobile = 1;
148 		dinfo->pll_index = PLLS_I9xx;
149 		return 0;
150 	case PCI_DEVICE_ID_INTEL_945GME:
151 		dinfo->name = "Intel(R) 945GME";
152 		dinfo->chipset = INTEL_945GME;
153 		dinfo->mobile = 1;
154 		dinfo->pll_index = PLLS_I9xx;
155 		return 0;
156 	case PCI_DEVICE_ID_INTEL_965G:
157 		dinfo->name = "Intel(R) 965G";
158 		dinfo->chipset = INTEL_965G;
159 		dinfo->mobile = 0;
160 		dinfo->pll_index = PLLS_I9xx;
161 		return 0;
162 	case PCI_DEVICE_ID_INTEL_965GM:
163 		dinfo->name = "Intel(R) 965GM";
164 		dinfo->chipset = INTEL_965GM;
165 		dinfo->mobile = 1;
166 		dinfo->pll_index = PLLS_I9xx;
167 		return 0;
168 	default:
169 		return 1;
170 	}
171 }
172 
173 int intelfbhw_get_memory(struct pci_dev *pdev, int *aperture_size,
174 			 int *stolen_size)
175 {
176 	struct pci_dev *bridge_dev;
177 	u16 tmp;
178 	int stolen_overhead;
179 
180 	if (!pdev || !aperture_size || !stolen_size)
181 		return 1;
182 
183 	/* Find the bridge device.  It is always 0:0.0 */
184 	if (!(bridge_dev = pci_get_bus_and_slot(0, PCI_DEVFN(0, 0)))) {
185 		ERR_MSG("cannot find bridge device\n");
186 		return 1;
187 	}
188 
189 	/* Get the fb aperture size and "stolen" memory amount. */
190 	tmp = 0;
191 	pci_read_config_word(bridge_dev, INTEL_GMCH_CTRL, &tmp);
192 	pci_dev_put(bridge_dev);
193 
194 	switch (pdev->device) {
195 	case PCI_DEVICE_ID_INTEL_915G:
196 	case PCI_DEVICE_ID_INTEL_915GM:
197 	case PCI_DEVICE_ID_INTEL_945G:
198 	case PCI_DEVICE_ID_INTEL_945GM:
199 	case PCI_DEVICE_ID_INTEL_945GME:
200 	case PCI_DEVICE_ID_INTEL_965G:
201 	case PCI_DEVICE_ID_INTEL_965GM:
202 		/* 915, 945 and 965 chipsets support a 256MB aperture.
203 		   Aperture size is determined by inspected the
204 		   base address of the aperture. */
205 		if (pci_resource_start(pdev, 2) & 0x08000000)
206 			*aperture_size = MB(128);
207 		else
208 			*aperture_size = MB(256);
209 		break;
210 	default:
211 		if ((tmp & INTEL_GMCH_MEM_MASK) == INTEL_GMCH_MEM_64M)
212 			*aperture_size = MB(64);
213 		else
214 			*aperture_size = MB(128);
215 		break;
216 	}
217 
218 	/* Stolen memory size is reduced by the GTT and the popup.
219 	   GTT is 1K per MB of aperture size, and popup is 4K. */
220 	stolen_overhead = (*aperture_size / MB(1)) + 4;
221 	switch(pdev->device) {
222 	case PCI_DEVICE_ID_INTEL_830M:
223 	case PCI_DEVICE_ID_INTEL_845G:
224 		switch (tmp & INTEL_830_GMCH_GMS_MASK) {
225 		case INTEL_830_GMCH_GMS_STOLEN_512:
226 			*stolen_size = KB(512) - KB(stolen_overhead);
227 			return 0;
228 		case INTEL_830_GMCH_GMS_STOLEN_1024:
229 			*stolen_size = MB(1) - KB(stolen_overhead);
230 			return 0;
231 		case INTEL_830_GMCH_GMS_STOLEN_8192:
232 			*stolen_size = MB(8) - KB(stolen_overhead);
233 			return 0;
234 		case INTEL_830_GMCH_GMS_LOCAL:
235 			ERR_MSG("only local memory found\n");
236 			return 1;
237 		case INTEL_830_GMCH_GMS_DISABLED:
238 			ERR_MSG("video memory is disabled\n");
239 			return 1;
240 		default:
241 			ERR_MSG("unexpected GMCH_GMS value: 0x%02x\n",
242 				tmp & INTEL_830_GMCH_GMS_MASK);
243 			return 1;
244 		}
245 		break;
246 	default:
247 		switch (tmp & INTEL_855_GMCH_GMS_MASK) {
248 		case INTEL_855_GMCH_GMS_STOLEN_1M:
249 			*stolen_size = MB(1) - KB(stolen_overhead);
250 			return 0;
251 		case INTEL_855_GMCH_GMS_STOLEN_4M:
252 			*stolen_size = MB(4) - KB(stolen_overhead);
253 			return 0;
254 		case INTEL_855_GMCH_GMS_STOLEN_8M:
255 			*stolen_size = MB(8) - KB(stolen_overhead);
256 			return 0;
257 		case INTEL_855_GMCH_GMS_STOLEN_16M:
258 			*stolen_size = MB(16) - KB(stolen_overhead);
259 			return 0;
260 		case INTEL_855_GMCH_GMS_STOLEN_32M:
261 			*stolen_size = MB(32) - KB(stolen_overhead);
262 			return 0;
263 		case INTEL_915G_GMCH_GMS_STOLEN_48M:
264 			*stolen_size = MB(48) - KB(stolen_overhead);
265 			return 0;
266 		case INTEL_915G_GMCH_GMS_STOLEN_64M:
267 			*stolen_size = MB(64) - KB(stolen_overhead);
268 			return 0;
269 		case INTEL_855_GMCH_GMS_DISABLED:
270 			ERR_MSG("video memory is disabled\n");
271 			return 0;
272 		default:
273 			ERR_MSG("unexpected GMCH_GMS value: 0x%02x\n",
274 				tmp & INTEL_855_GMCH_GMS_MASK);
275 			return 1;
276 		}
277 	}
278 }
279 
280 int intelfbhw_check_non_crt(struct intelfb_info *dinfo)
281 {
282 	int dvo = 0;
283 
284 	if (INREG(LVDS) & PORT_ENABLE)
285 		dvo |= LVDS_PORT;
286 	if (INREG(DVOA) & PORT_ENABLE)
287 		dvo |= DVOA_PORT;
288 	if (INREG(DVOB) & PORT_ENABLE)
289 		dvo |= DVOB_PORT;
290 	if (INREG(DVOC) & PORT_ENABLE)
291 		dvo |= DVOC_PORT;
292 
293 	return dvo;
294 }
295 
296 const char * intelfbhw_dvo_to_string(int dvo)
297 {
298 	if (dvo & DVOA_PORT)
299 		return "DVO port A";
300 	else if (dvo & DVOB_PORT)
301 		return "DVO port B";
302 	else if (dvo & DVOC_PORT)
303 		return "DVO port C";
304 	else if (dvo & LVDS_PORT)
305 		return "LVDS port";
306 	else
307 		return NULL;
308 }
309 
310 
311 int intelfbhw_validate_mode(struct intelfb_info *dinfo,
312 			    struct fb_var_screeninfo *var)
313 {
314 	int bytes_per_pixel;
315 	int tmp;
316 
317 #if VERBOSE > 0
318 	DBG_MSG("intelfbhw_validate_mode\n");
319 #endif
320 
321 	bytes_per_pixel = var->bits_per_pixel / 8;
322 	if (bytes_per_pixel == 3)
323 		bytes_per_pixel = 4;
324 
325 	/* Check if enough video memory. */
326 	tmp = var->yres_virtual * var->xres_virtual * bytes_per_pixel;
327 	if (tmp > dinfo->fb.size) {
328 		WRN_MSG("Not enough video ram for mode "
329 			"(%d KByte vs %d KByte).\n",
330 			BtoKB(tmp), BtoKB(dinfo->fb.size));
331 		return 1;
332 	}
333 
334 	/* Check if x/y limits are OK. */
335 	if (var->xres - 1 > HACTIVE_MASK) {
336 		WRN_MSG("X resolution too large (%d vs %d).\n",
337 			var->xres, HACTIVE_MASK + 1);
338 		return 1;
339 	}
340 	if (var->yres - 1 > VACTIVE_MASK) {
341 		WRN_MSG("Y resolution too large (%d vs %d).\n",
342 			var->yres, VACTIVE_MASK + 1);
343 		return 1;
344 	}
345 	if (var->xres < 4) {
346 		WRN_MSG("X resolution too small (%d vs 4).\n", var->xres);
347 		return 1;
348 	}
349 	if (var->yres < 4) {
350 		WRN_MSG("Y resolution too small (%d vs 4).\n", var->yres);
351 		return 1;
352 	}
353 
354 	/* Check for doublescan modes. */
355 	if (var->vmode & FB_VMODE_DOUBLE) {
356 		WRN_MSG("Mode is double-scan.\n");
357 		return 1;
358 	}
359 
360 	if ((var->vmode & FB_VMODE_INTERLACED) && (var->yres & 1)) {
361 		WRN_MSG("Odd number of lines in interlaced mode\n");
362 		return 1;
363 	}
364 
365 	/* Check if clock is OK. */
366 	tmp = 1000000000 / var->pixclock;
367 	if (tmp < MIN_CLOCK) {
368 		WRN_MSG("Pixel clock is too low (%d MHz vs %d MHz).\n",
369 			(tmp + 500) / 1000, MIN_CLOCK / 1000);
370 		return 1;
371 	}
372 	if (tmp > MAX_CLOCK) {
373 		WRN_MSG("Pixel clock is too high (%d MHz vs %d MHz).\n",
374 			(tmp + 500) / 1000, MAX_CLOCK / 1000);
375 		return 1;
376 	}
377 
378 	return 0;
379 }
380 
381 int intelfbhw_pan_display(struct fb_var_screeninfo *var, struct fb_info *info)
382 {
383 	struct intelfb_info *dinfo = GET_DINFO(info);
384 	u32 offset, xoffset, yoffset;
385 
386 #if VERBOSE > 0
387 	DBG_MSG("intelfbhw_pan_display\n");
388 #endif
389 
390 	xoffset = ROUND_DOWN_TO(var->xoffset, 8);
391 	yoffset = var->yoffset;
392 
393 	if ((xoffset + info->var.xres > info->var.xres_virtual) ||
394 	    (yoffset + info->var.yres > info->var.yres_virtual))
395 		return -EINVAL;
396 
397 	offset = (yoffset * dinfo->pitch) +
398 		 (xoffset * info->var.bits_per_pixel) / 8;
399 
400 	offset += dinfo->fb.offset << 12;
401 
402 	dinfo->vsync.pan_offset = offset;
403 	if ((var->activate & FB_ACTIVATE_VBL) &&
404 	    !intelfbhw_enable_irq(dinfo))
405 		dinfo->vsync.pan_display = 1;
406 	else {
407 		dinfo->vsync.pan_display = 0;
408 		OUTREG(DSPABASE, offset);
409 	}
410 
411 	return 0;
412 }
413 
414 /* Blank the screen. */
415 void intelfbhw_do_blank(int blank, struct fb_info *info)
416 {
417 	struct intelfb_info *dinfo = GET_DINFO(info);
418 	u32 tmp;
419 
420 #if VERBOSE > 0
421 	DBG_MSG("intelfbhw_do_blank: blank is %d\n", blank);
422 #endif
423 
424 	/* Turn plane A on or off */
425 	tmp = INREG(DSPACNTR);
426 	if (blank)
427 		tmp &= ~DISPPLANE_PLANE_ENABLE;
428 	else
429 		tmp |= DISPPLANE_PLANE_ENABLE;
430 	OUTREG(DSPACNTR, tmp);
431 	/* Flush */
432 	tmp = INREG(DSPABASE);
433 	OUTREG(DSPABASE, tmp);
434 
435 	/* Turn off/on the HW cursor */
436 #if VERBOSE > 0
437 	DBG_MSG("cursor_on is %d\n", dinfo->cursor_on);
438 #endif
439 	if (dinfo->cursor_on) {
440 		if (blank)
441 			intelfbhw_cursor_hide(dinfo);
442 		else
443 			intelfbhw_cursor_show(dinfo);
444 		dinfo->cursor_on = 1;
445 	}
446 	dinfo->cursor_blanked = blank;
447 
448 	/* Set DPMS level */
449 	tmp = INREG(ADPA) & ~ADPA_DPMS_CONTROL_MASK;
450 	switch (blank) {
451 	case FB_BLANK_UNBLANK:
452 	case FB_BLANK_NORMAL:
453 		tmp |= ADPA_DPMS_D0;
454 		break;
455 	case FB_BLANK_VSYNC_SUSPEND:
456 		tmp |= ADPA_DPMS_D1;
457 		break;
458 	case FB_BLANK_HSYNC_SUSPEND:
459 		tmp |= ADPA_DPMS_D2;
460 		break;
461 	case FB_BLANK_POWERDOWN:
462 		tmp |= ADPA_DPMS_D3;
463 		break;
464 	}
465 	OUTREG(ADPA, tmp);
466 
467 	return;
468 }
469 
470 
471 /* Check which pipe is connected to an active display plane. */
472 int intelfbhw_active_pipe(const struct intelfb_hwstate *hw)
473 {
474 	int pipe = -1;
475 
476 	/* keep old default behaviour - prefer PIPE_A */
477 	if (hw->disp_b_ctrl & DISPPLANE_PLANE_ENABLE) {
478 		pipe = (hw->disp_b_ctrl >> DISPPLANE_SEL_PIPE_SHIFT);
479 		pipe &= PIPE_MASK;
480 		if (unlikely(pipe == PIPE_A))
481 			return PIPE_A;
482 	}
483 	if (hw->disp_a_ctrl & DISPPLANE_PLANE_ENABLE) {
484 		pipe = (hw->disp_a_ctrl >> DISPPLANE_SEL_PIPE_SHIFT);
485 		pipe &= PIPE_MASK;
486 		if (likely(pipe == PIPE_A))
487 			return PIPE_A;
488 	}
489 	/* Impossible that no pipe is selected - return PIPE_A */
490 	WARN_ON(pipe == -1);
491 	if (unlikely(pipe == -1))
492 		pipe = PIPE_A;
493 
494 	return pipe;
495 }
496 
497 void intelfbhw_setcolreg(struct intelfb_info *dinfo, unsigned regno,
498 			 unsigned red, unsigned green, unsigned blue,
499 			 unsigned transp)
500 {
501 	u32 palette_reg = (dinfo->pipe == PIPE_A) ?
502 			  PALETTE_A : PALETTE_B;
503 
504 #if VERBOSE > 0
505 	DBG_MSG("intelfbhw_setcolreg: %d: (%d, %d, %d)\n",
506 		regno, red, green, blue);
507 #endif
508 
509 	OUTREG(palette_reg + (regno << 2),
510 	       (red << PALETTE_8_RED_SHIFT) |
511 	       (green << PALETTE_8_GREEN_SHIFT) |
512 	       (blue << PALETTE_8_BLUE_SHIFT));
513 }
514 
515 
516 int intelfbhw_read_hw_state(struct intelfb_info *dinfo,
517 			    struct intelfb_hwstate *hw, int flag)
518 {
519 	int i;
520 
521 #if VERBOSE > 0
522 	DBG_MSG("intelfbhw_read_hw_state\n");
523 #endif
524 
525 	if (!hw || !dinfo)
526 		return -1;
527 
528 	/* Read in as much of the HW state as possible. */
529 	hw->vga0_divisor = INREG(VGA0_DIVISOR);
530 	hw->vga1_divisor = INREG(VGA1_DIVISOR);
531 	hw->vga_pd = INREG(VGAPD);
532 	hw->dpll_a = INREG(DPLL_A);
533 	hw->dpll_b = INREG(DPLL_B);
534 	hw->fpa0 = INREG(FPA0);
535 	hw->fpa1 = INREG(FPA1);
536 	hw->fpb0 = INREG(FPB0);
537 	hw->fpb1 = INREG(FPB1);
538 
539 	if (flag == 1)
540 		return flag;
541 
542 #if 0
543 	/* This seems to be a problem with the 852GM/855GM */
544 	for (i = 0; i < PALETTE_8_ENTRIES; i++) {
545 		hw->palette_a[i] = INREG(PALETTE_A + (i << 2));
546 		hw->palette_b[i] = INREG(PALETTE_B + (i << 2));
547 	}
548 #endif
549 
550 	if (flag == 2)
551 		return flag;
552 
553 	hw->htotal_a = INREG(HTOTAL_A);
554 	hw->hblank_a = INREG(HBLANK_A);
555 	hw->hsync_a = INREG(HSYNC_A);
556 	hw->vtotal_a = INREG(VTOTAL_A);
557 	hw->vblank_a = INREG(VBLANK_A);
558 	hw->vsync_a = INREG(VSYNC_A);
559 	hw->src_size_a = INREG(SRC_SIZE_A);
560 	hw->bclrpat_a = INREG(BCLRPAT_A);
561 	hw->htotal_b = INREG(HTOTAL_B);
562 	hw->hblank_b = INREG(HBLANK_B);
563 	hw->hsync_b = INREG(HSYNC_B);
564 	hw->vtotal_b = INREG(VTOTAL_B);
565 	hw->vblank_b = INREG(VBLANK_B);
566 	hw->vsync_b = INREG(VSYNC_B);
567 	hw->src_size_b = INREG(SRC_SIZE_B);
568 	hw->bclrpat_b = INREG(BCLRPAT_B);
569 
570 	if (flag == 3)
571 		return flag;
572 
573 	hw->adpa = INREG(ADPA);
574 	hw->dvoa = INREG(DVOA);
575 	hw->dvob = INREG(DVOB);
576 	hw->dvoc = INREG(DVOC);
577 	hw->dvoa_srcdim = INREG(DVOA_SRCDIM);
578 	hw->dvob_srcdim = INREG(DVOB_SRCDIM);
579 	hw->dvoc_srcdim = INREG(DVOC_SRCDIM);
580 	hw->lvds = INREG(LVDS);
581 
582 	if (flag == 4)
583 		return flag;
584 
585 	hw->pipe_a_conf = INREG(PIPEACONF);
586 	hw->pipe_b_conf = INREG(PIPEBCONF);
587 	hw->disp_arb = INREG(DISPARB);
588 
589 	if (flag == 5)
590 		return flag;
591 
592 	hw->cursor_a_control = INREG(CURSOR_A_CONTROL);
593 	hw->cursor_b_control = INREG(CURSOR_B_CONTROL);
594 	hw->cursor_a_base = INREG(CURSOR_A_BASEADDR);
595 	hw->cursor_b_base = INREG(CURSOR_B_BASEADDR);
596 
597 	if (flag == 6)
598 		return flag;
599 
600 	for (i = 0; i < 4; i++) {
601 		hw->cursor_a_palette[i] = INREG(CURSOR_A_PALETTE0 + (i << 2));
602 		hw->cursor_b_palette[i] = INREG(CURSOR_B_PALETTE0 + (i << 2));
603 	}
604 
605 	if (flag == 7)
606 		return flag;
607 
608 	hw->cursor_size = INREG(CURSOR_SIZE);
609 
610 	if (flag == 8)
611 		return flag;
612 
613 	hw->disp_a_ctrl = INREG(DSPACNTR);
614 	hw->disp_b_ctrl = INREG(DSPBCNTR);
615 	hw->disp_a_base = INREG(DSPABASE);
616 	hw->disp_b_base = INREG(DSPBBASE);
617 	hw->disp_a_stride = INREG(DSPASTRIDE);
618 	hw->disp_b_stride = INREG(DSPBSTRIDE);
619 
620 	if (flag == 9)
621 		return flag;
622 
623 	hw->vgacntrl = INREG(VGACNTRL);
624 
625 	if (flag == 10)
626 		return flag;
627 
628 	hw->add_id = INREG(ADD_ID);
629 
630 	if (flag == 11)
631 		return flag;
632 
633 	for (i = 0; i < 7; i++) {
634 		hw->swf0x[i] = INREG(SWF00 + (i << 2));
635 		hw->swf1x[i] = INREG(SWF10 + (i << 2));
636 		if (i < 3)
637 			hw->swf3x[i] = INREG(SWF30 + (i << 2));
638 	}
639 
640 	for (i = 0; i < 8; i++)
641 		hw->fence[i] = INREG(FENCE + (i << 2));
642 
643 	hw->instpm = INREG(INSTPM);
644 	hw->mem_mode = INREG(MEM_MODE);
645 	hw->fw_blc_0 = INREG(FW_BLC_0);
646 	hw->fw_blc_1 = INREG(FW_BLC_1);
647 
648 	hw->hwstam = INREG16(HWSTAM);
649 	hw->ier = INREG16(IER);
650 	hw->iir = INREG16(IIR);
651 	hw->imr = INREG16(IMR);
652 
653 	return 0;
654 }
655 
656 
657 static int calc_vclock3(int index, int m, int n, int p)
658 {
659 	if (p == 0 || n == 0)
660 		return 0;
661 	return plls[index].ref_clk * m / n / p;
662 }
663 
664 static int calc_vclock(int index, int m1, int m2, int n, int p1, int p2,
665 		       int lvds)
666 {
667 	struct pll_min_max *pll = &plls[index];
668 	u32 m, vco, p;
669 
670 	m = (5 * (m1 + 2)) + (m2 + 2);
671 	n += 2;
672 	vco = pll->ref_clk * m / n;
673 
674 	if (index == PLLS_I8xx)
675 		p = ((p1 + 2) * (1 << (p2 + 1)));
676 	else
677 		p = ((p1) * (p2 ? 5 : 10));
678 	return vco / p;
679 }
680 
681 #if REGDUMP
682 static void intelfbhw_get_p1p2(struct intelfb_info *dinfo, int dpll,
683 			       int *o_p1, int *o_p2)
684 {
685 	int p1, p2;
686 
687 	if (IS_I9XX(dinfo)) {
688 		if (dpll & DPLL_P1_FORCE_DIV2)
689 			p1 = 1;
690 		else
691 			p1 = (dpll >> DPLL_P1_SHIFT) & 0xff;
692 
693 		p1 = ffs(p1);
694 
695 		p2 = (dpll >> DPLL_I9XX_P2_SHIFT) & DPLL_P2_MASK;
696 	} else {
697 		if (dpll & DPLL_P1_FORCE_DIV2)
698 			p1 = 0;
699 		else
700 			p1 = (dpll >> DPLL_P1_SHIFT) & DPLL_P1_MASK;
701 		p2 = (dpll >> DPLL_P2_SHIFT) & DPLL_P2_MASK;
702 	}
703 
704 	*o_p1 = p1;
705 	*o_p2 = p2;
706 }
707 #endif
708 
709 
710 void intelfbhw_print_hw_state(struct intelfb_info *dinfo,
711 			      struct intelfb_hwstate *hw)
712 {
713 #if REGDUMP
714 	int i, m1, m2, n, p1, p2;
715 	int index = dinfo->pll_index;
716 	DBG_MSG("intelfbhw_print_hw_state\n");
717 
718 	if (!hw)
719 		return;
720 	/* Read in as much of the HW state as possible. */
721 	printk("hw state dump start\n");
722 	printk("	VGA0_DIVISOR:		0x%08x\n", hw->vga0_divisor);
723 	printk("	VGA1_DIVISOR:		0x%08x\n", hw->vga1_divisor);
724 	printk("	VGAPD:			0x%08x\n", hw->vga_pd);
725 	n = (hw->vga0_divisor >> FP_N_DIVISOR_SHIFT) & FP_DIVISOR_MASK;
726 	m1 = (hw->vga0_divisor >> FP_M1_DIVISOR_SHIFT) & FP_DIVISOR_MASK;
727 	m2 = (hw->vga0_divisor >> FP_M2_DIVISOR_SHIFT) & FP_DIVISOR_MASK;
728 
729 	intelfbhw_get_p1p2(dinfo, hw->vga_pd, &p1, &p2);
730 
731 	printk("	VGA0: (m1, m2, n, p1, p2) = (%d, %d, %d, %d, %d)\n",
732 	       m1, m2, n, p1, p2);
733 	printk("	VGA0: clock is %d\n",
734 	       calc_vclock(index, m1, m2, n, p1, p2, 0));
735 
736 	n = (hw->vga1_divisor >> FP_N_DIVISOR_SHIFT) & FP_DIVISOR_MASK;
737 	m1 = (hw->vga1_divisor >> FP_M1_DIVISOR_SHIFT) & FP_DIVISOR_MASK;
738 	m2 = (hw->vga1_divisor >> FP_M2_DIVISOR_SHIFT) & FP_DIVISOR_MASK;
739 
740 	intelfbhw_get_p1p2(dinfo, hw->vga_pd, &p1, &p2);
741 	printk("	VGA1: (m1, m2, n, p1, p2) = (%d, %d, %d, %d, %d)\n",
742 	       m1, m2, n, p1, p2);
743 	printk("	VGA1: clock is %d\n",
744 	       calc_vclock(index, m1, m2, n, p1, p2, 0));
745 
746 	printk("	DPLL_A:			0x%08x\n", hw->dpll_a);
747 	printk("	DPLL_B:			0x%08x\n", hw->dpll_b);
748 	printk("	FPA0:			0x%08x\n", hw->fpa0);
749 	printk("	FPA1:			0x%08x\n", hw->fpa1);
750 	printk("	FPB0:			0x%08x\n", hw->fpb0);
751 	printk("	FPB1:			0x%08x\n", hw->fpb1);
752 
753 	n = (hw->fpa0 >> FP_N_DIVISOR_SHIFT) & FP_DIVISOR_MASK;
754 	m1 = (hw->fpa0 >> FP_M1_DIVISOR_SHIFT) & FP_DIVISOR_MASK;
755 	m2 = (hw->fpa0 >> FP_M2_DIVISOR_SHIFT) & FP_DIVISOR_MASK;
756 
757 	intelfbhw_get_p1p2(dinfo, hw->dpll_a, &p1, &p2);
758 
759 	printk("	PLLA0: (m1, m2, n, p1, p2) = (%d, %d, %d, %d, %d)\n",
760 	       m1, m2, n, p1, p2);
761 	printk("	PLLA0: clock is %d\n",
762 	       calc_vclock(index, m1, m2, n, p1, p2, 0));
763 
764 	n = (hw->fpa1 >> FP_N_DIVISOR_SHIFT) & FP_DIVISOR_MASK;
765 	m1 = (hw->fpa1 >> FP_M1_DIVISOR_SHIFT) & FP_DIVISOR_MASK;
766 	m2 = (hw->fpa1 >> FP_M2_DIVISOR_SHIFT) & FP_DIVISOR_MASK;
767 
768 	intelfbhw_get_p1p2(dinfo, hw->dpll_a, &p1, &p2);
769 
770 	printk("	PLLA1: (m1, m2, n, p1, p2) = (%d, %d, %d, %d, %d)\n",
771 	       m1, m2, n, p1, p2);
772 	printk("	PLLA1: clock is %d\n",
773 	       calc_vclock(index, m1, m2, n, p1, p2, 0));
774 
775 #if 0
776 	printk("	PALETTE_A:\n");
777 	for (i = 0; i < PALETTE_8_ENTRIES)
778 		printk("	%3d:	0x%08x\n", i, hw->palette_a[i]);
779 	printk("	PALETTE_B:\n");
780 	for (i = 0; i < PALETTE_8_ENTRIES)
781 		printk("	%3d:	0x%08x\n", i, hw->palette_b[i]);
782 #endif
783 
784 	printk("	HTOTAL_A:		0x%08x\n", hw->htotal_a);
785 	printk("	HBLANK_A:		0x%08x\n", hw->hblank_a);
786 	printk("	HSYNC_A:		0x%08x\n", hw->hsync_a);
787 	printk("	VTOTAL_A:		0x%08x\n", hw->vtotal_a);
788 	printk("	VBLANK_A:		0x%08x\n", hw->vblank_a);
789 	printk("	VSYNC_A:		0x%08x\n", hw->vsync_a);
790 	printk("	SRC_SIZE_A:		0x%08x\n", hw->src_size_a);
791 	printk("	BCLRPAT_A:		0x%08x\n", hw->bclrpat_a);
792 	printk("	HTOTAL_B:		0x%08x\n", hw->htotal_b);
793 	printk("	HBLANK_B:		0x%08x\n", hw->hblank_b);
794 	printk("	HSYNC_B:		0x%08x\n", hw->hsync_b);
795 	printk("	VTOTAL_B:		0x%08x\n", hw->vtotal_b);
796 	printk("	VBLANK_B:		0x%08x\n", hw->vblank_b);
797 	printk("	VSYNC_B:		0x%08x\n", hw->vsync_b);
798 	printk("	SRC_SIZE_B:		0x%08x\n", hw->src_size_b);
799 	printk("	BCLRPAT_B:		0x%08x\n", hw->bclrpat_b);
800 
801 	printk("	ADPA:			0x%08x\n", hw->adpa);
802 	printk("	DVOA:			0x%08x\n", hw->dvoa);
803 	printk("	DVOB:			0x%08x\n", hw->dvob);
804 	printk("	DVOC:			0x%08x\n", hw->dvoc);
805 	printk("	DVOA_SRCDIM:		0x%08x\n", hw->dvoa_srcdim);
806 	printk("	DVOB_SRCDIM:		0x%08x\n", hw->dvob_srcdim);
807 	printk("	DVOC_SRCDIM:		0x%08x\n", hw->dvoc_srcdim);
808 	printk("	LVDS:			0x%08x\n", hw->lvds);
809 
810 	printk("	PIPEACONF:		0x%08x\n", hw->pipe_a_conf);
811 	printk("	PIPEBCONF:		0x%08x\n", hw->pipe_b_conf);
812 	printk("	DISPARB:		0x%08x\n", hw->disp_arb);
813 
814 	printk("	CURSOR_A_CONTROL:	0x%08x\n", hw->cursor_a_control);
815 	printk("	CURSOR_B_CONTROL:	0x%08x\n", hw->cursor_b_control);
816 	printk("	CURSOR_A_BASEADDR:	0x%08x\n", hw->cursor_a_base);
817 	printk("	CURSOR_B_BASEADDR:	0x%08x\n", hw->cursor_b_base);
818 
819 	printk("	CURSOR_A_PALETTE:	");
820 	for (i = 0; i < 4; i++) {
821 		printk("0x%08x", hw->cursor_a_palette[i]);
822 		if (i < 3)
823 			printk(", ");
824 	}
825 	printk("\n");
826 	printk("	CURSOR_B_PALETTE:	");
827 	for (i = 0; i < 4; i++) {
828 		printk("0x%08x", hw->cursor_b_palette[i]);
829 		if (i < 3)
830 			printk(", ");
831 	}
832 	printk("\n");
833 
834 	printk("	CURSOR_SIZE:		0x%08x\n", hw->cursor_size);
835 
836 	printk("	DSPACNTR:		0x%08x\n", hw->disp_a_ctrl);
837 	printk("	DSPBCNTR:		0x%08x\n", hw->disp_b_ctrl);
838 	printk("	DSPABASE:		0x%08x\n", hw->disp_a_base);
839 	printk("	DSPBBASE:		0x%08x\n", hw->disp_b_base);
840 	printk("	DSPASTRIDE:		0x%08x\n", hw->disp_a_stride);
841 	printk("	DSPBSTRIDE:		0x%08x\n", hw->disp_b_stride);
842 
843 	printk("	VGACNTRL:		0x%08x\n", hw->vgacntrl);
844 	printk("	ADD_ID:			0x%08x\n", hw->add_id);
845 
846 	for (i = 0; i < 7; i++) {
847 		printk("	SWF0%d			0x%08x\n", i,
848 			hw->swf0x[i]);
849 	}
850 	for (i = 0; i < 7; i++) {
851 		printk("	SWF1%d			0x%08x\n", i,
852 			hw->swf1x[i]);
853 	}
854 	for (i = 0; i < 3; i++) {
855 		printk("	SWF3%d			0x%08x\n", i,
856 		       hw->swf3x[i]);
857 	}
858 	for (i = 0; i < 8; i++)
859 		printk("	FENCE%d			0x%08x\n", i,
860 		       hw->fence[i]);
861 
862 	printk("	INSTPM			0x%08x\n", hw->instpm);
863 	printk("	MEM_MODE		0x%08x\n", hw->mem_mode);
864 	printk("	FW_BLC_0		0x%08x\n", hw->fw_blc_0);
865 	printk("	FW_BLC_1		0x%08x\n", hw->fw_blc_1);
866 
867 	printk("	HWSTAM			0x%04x\n", hw->hwstam);
868 	printk("	IER			0x%04x\n", hw->ier);
869 	printk("	IIR			0x%04x\n", hw->iir);
870 	printk("	IMR			0x%04x\n", hw->imr);
871 	printk("hw state dump end\n");
872 #endif
873 }
874 
875 
876 
877 /* Split the M parameter into M1 and M2. */
878 static int splitm(int index, unsigned int m, unsigned int *retm1,
879 		  unsigned int *retm2)
880 {
881 	int m1, m2;
882 	int testm;
883 	struct pll_min_max *pll = &plls[index];
884 
885 	/* no point optimising too much - brute force m */
886 	for (m1 = pll->min_m1; m1 < pll->max_m1 + 1; m1++) {
887 		for (m2 = pll->min_m2; m2 < pll->max_m2 + 1; m2++) {
888 			testm = (5 * (m1 + 2)) + (m2 + 2);
889 			if (testm == m) {
890 				*retm1 = (unsigned int)m1;
891 				*retm2 = (unsigned int)m2;
892 				return 0;
893 			}
894 		}
895 	}
896 	return 1;
897 }
898 
899 /* Split the P parameter into P1 and P2. */
900 static int splitp(int index, unsigned int p, unsigned int *retp1,
901 		  unsigned int *retp2)
902 {
903 	int p1, p2;
904 	struct pll_min_max *pll = &plls[index];
905 
906 	if (index == PLLS_I9xx) {
907 		p2 = (p % 10) ? 1 : 0;
908 
909 		p1 = p / (p2 ? 5 : 10);
910 
911 		*retp1 = (unsigned int)p1;
912 		*retp2 = (unsigned int)p2;
913 		return 0;
914 	}
915 
916 	if (p % 4 == 0)
917 		p2 = 1;
918 	else
919 		p2 = 0;
920 	p1 = (p / (1 << (p2 + 1))) - 2;
921 	if (p % 4 == 0 && p1 < pll->min_p1) {
922 		p2 = 0;
923 		p1 = (p / (1 << (p2 + 1))) - 2;
924 	}
925 	if (p1 < pll->min_p1 || p1 > pll->max_p1 ||
926 	    (p1 + 2) * (1 << (p2 + 1)) != p) {
927 		return 1;
928 	} else {
929 		*retp1 = (unsigned int)p1;
930 		*retp2 = (unsigned int)p2;
931 		return 0;
932 	}
933 }
934 
935 static int calc_pll_params(int index, int clock, u32 *retm1, u32 *retm2,
936 			   u32 *retn, u32 *retp1, u32 *retp2, u32 *retclock)
937 {
938 	u32 m1, m2, n, p1, p2, n1, testm;
939 	u32 f_vco, p, p_best = 0, m, f_out = 0;
940 	u32 err_max, err_target, err_best = 10000000;
941 	u32 n_best = 0, m_best = 0, f_best, f_err;
942 	u32 p_min, p_max, p_inc, div_max;
943 	struct pll_min_max *pll = &plls[index];
944 
945 	/* Accept 0.5% difference, but aim for 0.1% */
946 	err_max = 5 * clock / 1000;
947 	err_target = clock / 1000;
948 
949 	DBG_MSG("Clock is %d\n", clock);
950 
951 	div_max = pll->max_vco / clock;
952 
953 	p_inc = (clock <= pll->p_transition_clk) ? pll->p_inc_lo : pll->p_inc_hi;
954 	p_min = p_inc;
955 	p_max = ROUND_DOWN_TO(div_max, p_inc);
956 	if (p_min < pll->min_p)
957 		p_min = pll->min_p;
958 	if (p_max > pll->max_p)
959 		p_max = pll->max_p;
960 
961 	DBG_MSG("p range is %d-%d (%d)\n", p_min, p_max, p_inc);
962 
963 	p = p_min;
964 	do {
965 		if (splitp(index, p, &p1, &p2)) {
966 			WRN_MSG("cannot split p = %d\n", p);
967 			p += p_inc;
968 			continue;
969 		}
970 		n = pll->min_n;
971 		f_vco = clock * p;
972 
973 		do {
974 			m = ROUND_UP_TO(f_vco * n, pll->ref_clk) / pll->ref_clk;
975 			if (m < pll->min_m)
976 				m = pll->min_m + 1;
977 			if (m > pll->max_m)
978 				m = pll->max_m - 1;
979 			for (testm = m - 1; testm <= m; testm++) {
980 				f_out = calc_vclock3(index, testm, n, p);
981 				if (splitm(index, testm, &m1, &m2)) {
982 					WRN_MSG("cannot split m = %d\n",
983 						testm);
984 					continue;
985 				}
986 				if (clock > f_out)
987 					f_err = clock - f_out;
988 				else/* slightly bias the error for bigger clocks */
989 					f_err = f_out - clock + 1;
990 
991 				if (f_err < err_best) {
992 					m_best = testm;
993 					n_best = n;
994 					p_best = p;
995 					f_best = f_out;
996 					err_best = f_err;
997 				}
998 			}
999 			n++;
1000 		} while ((n <= pll->max_n) && (f_out >= clock));
1001 		p += p_inc;
1002 	} while ((p <= p_max));
1003 
1004 	if (!m_best) {
1005 		WRN_MSG("cannot find parameters for clock %d\n", clock);
1006 		return 1;
1007 	}
1008 	m = m_best;
1009 	n = n_best;
1010 	p = p_best;
1011 	splitm(index, m, &m1, &m2);
1012 	splitp(index, p, &p1, &p2);
1013 	n1 = n - 2;
1014 
1015 	DBG_MSG("m, n, p: %d (%d,%d), %d (%d), %d (%d,%d), "
1016 		"f: %d (%d), VCO: %d\n",
1017 		m, m1, m2, n, n1, p, p1, p2,
1018 		calc_vclock3(index, m, n, p),
1019 		calc_vclock(index, m1, m2, n1, p1, p2, 0),
1020 		calc_vclock3(index, m, n, p) * p);
1021 	*retm1 = m1;
1022 	*retm2 = m2;
1023 	*retn = n1;
1024 	*retp1 = p1;
1025 	*retp2 = p2;
1026 	*retclock = calc_vclock(index, m1, m2, n1, p1, p2, 0);
1027 
1028 	return 0;
1029 }
1030 
1031 static __inline__ int check_overflow(u32 value, u32 limit,
1032 				     const char *description)
1033 {
1034 	if (value > limit) {
1035 		WRN_MSG("%s value %d exceeds limit %d\n",
1036 			description, value, limit);
1037 		return 1;
1038 	}
1039 	return 0;
1040 }
1041 
1042 /* It is assumed that hw is filled in with the initial state information. */
1043 int intelfbhw_mode_to_hw(struct intelfb_info *dinfo,
1044 			 struct intelfb_hwstate *hw,
1045 			 struct fb_var_screeninfo *var)
1046 {
1047 	int pipe = intelfbhw_active_pipe(hw);
1048 	u32 *dpll, *fp0, *fp1;
1049 	u32 m1, m2, n, p1, p2, clock_target, clock;
1050 	u32 hsync_start, hsync_end, hblank_start, hblank_end, htotal, hactive;
1051 	u32 vsync_start, vsync_end, vblank_start, vblank_end, vtotal, vactive;
1052 	u32 vsync_pol, hsync_pol;
1053 	u32 *vs, *vb, *vt, *hs, *hb, *ht, *ss, *pipe_conf;
1054 	u32 stride_alignment;
1055 
1056 	DBG_MSG("intelfbhw_mode_to_hw\n");
1057 
1058 	/* Disable VGA */
1059 	hw->vgacntrl |= VGA_DISABLE;
1060 
1061 	/* Set which pipe's registers will be set. */
1062 	if (pipe == PIPE_B) {
1063 		dpll = &hw->dpll_b;
1064 		fp0 = &hw->fpb0;
1065 		fp1 = &hw->fpb1;
1066 		hs = &hw->hsync_b;
1067 		hb = &hw->hblank_b;
1068 		ht = &hw->htotal_b;
1069 		vs = &hw->vsync_b;
1070 		vb = &hw->vblank_b;
1071 		vt = &hw->vtotal_b;
1072 		ss = &hw->src_size_b;
1073 		pipe_conf = &hw->pipe_b_conf;
1074 	} else {
1075 		dpll = &hw->dpll_a;
1076 		fp0 = &hw->fpa0;
1077 		fp1 = &hw->fpa1;
1078 		hs = &hw->hsync_a;
1079 		hb = &hw->hblank_a;
1080 		ht = &hw->htotal_a;
1081 		vs = &hw->vsync_a;
1082 		vb = &hw->vblank_a;
1083 		vt = &hw->vtotal_a;
1084 		ss = &hw->src_size_a;
1085 		pipe_conf = &hw->pipe_a_conf;
1086 	}
1087 
1088 	/* Use ADPA register for sync control. */
1089 	hw->adpa &= ~ADPA_USE_VGA_HVPOLARITY;
1090 
1091 	/* sync polarity */
1092 	hsync_pol = (var->sync & FB_SYNC_HOR_HIGH_ACT) ?
1093 			ADPA_SYNC_ACTIVE_HIGH : ADPA_SYNC_ACTIVE_LOW;
1094 	vsync_pol = (var->sync & FB_SYNC_VERT_HIGH_ACT) ?
1095 			ADPA_SYNC_ACTIVE_HIGH : ADPA_SYNC_ACTIVE_LOW;
1096 	hw->adpa &= ~((ADPA_SYNC_ACTIVE_MASK << ADPA_VSYNC_ACTIVE_SHIFT) |
1097 		      (ADPA_SYNC_ACTIVE_MASK << ADPA_HSYNC_ACTIVE_SHIFT));
1098 	hw->adpa |= (hsync_pol << ADPA_HSYNC_ACTIVE_SHIFT) |
1099 		    (vsync_pol << ADPA_VSYNC_ACTIVE_SHIFT);
1100 
1101 	/* Connect correct pipe to the analog port DAC */
1102 	hw->adpa &= ~(PIPE_MASK << ADPA_PIPE_SELECT_SHIFT);
1103 	hw->adpa |= (pipe << ADPA_PIPE_SELECT_SHIFT);
1104 
1105 	/* Set DPMS state to D0 (on) */
1106 	hw->adpa &= ~ADPA_DPMS_CONTROL_MASK;
1107 	hw->adpa |= ADPA_DPMS_D0;
1108 
1109 	hw->adpa |= ADPA_DAC_ENABLE;
1110 
1111 	*dpll |= (DPLL_VCO_ENABLE | DPLL_VGA_MODE_DISABLE);
1112 	*dpll &= ~(DPLL_RATE_SELECT_MASK | DPLL_REFERENCE_SELECT_MASK);
1113 	*dpll |= (DPLL_REFERENCE_DEFAULT | DPLL_RATE_SELECT_FP0);
1114 
1115 	/* Desired clock in kHz */
1116 	clock_target = 1000000000 / var->pixclock;
1117 
1118 	if (calc_pll_params(dinfo->pll_index, clock_target, &m1, &m2,
1119 			    &n, &p1, &p2, &clock)) {
1120 		WRN_MSG("calc_pll_params failed\n");
1121 		return 1;
1122 	}
1123 
1124 	/* Check for overflow. */
1125 	if (check_overflow(p1, DPLL_P1_MASK, "PLL P1 parameter"))
1126 		return 1;
1127 	if (check_overflow(p2, DPLL_P2_MASK, "PLL P2 parameter"))
1128 		return 1;
1129 	if (check_overflow(m1, FP_DIVISOR_MASK, "PLL M1 parameter"))
1130 		return 1;
1131 	if (check_overflow(m2, FP_DIVISOR_MASK, "PLL M2 parameter"))
1132 		return 1;
1133 	if (check_overflow(n, FP_DIVISOR_MASK, "PLL N parameter"))
1134 		return 1;
1135 
1136 	*dpll &= ~DPLL_P1_FORCE_DIV2;
1137 	*dpll &= ~((DPLL_P2_MASK << DPLL_P2_SHIFT) |
1138 		   (DPLL_P1_MASK << DPLL_P1_SHIFT));
1139 
1140 	if (IS_I9XX(dinfo)) {
1141 		*dpll |= (p2 << DPLL_I9XX_P2_SHIFT);
1142 		*dpll |= (1 << (p1 - 1)) << DPLL_P1_SHIFT;
1143 	} else
1144 		*dpll |= (p2 << DPLL_P2_SHIFT) | (p1 << DPLL_P1_SHIFT);
1145 
1146 	*fp0 = (n << FP_N_DIVISOR_SHIFT) |
1147 	       (m1 << FP_M1_DIVISOR_SHIFT) |
1148 	       (m2 << FP_M2_DIVISOR_SHIFT);
1149 	*fp1 = *fp0;
1150 
1151 	hw->dvob &= ~PORT_ENABLE;
1152 	hw->dvoc &= ~PORT_ENABLE;
1153 
1154 	/* Use display plane A. */
1155 	hw->disp_a_ctrl |= DISPPLANE_PLANE_ENABLE;
1156 	hw->disp_a_ctrl &= ~DISPPLANE_GAMMA_ENABLE;
1157 	hw->disp_a_ctrl &= ~DISPPLANE_PIXFORMAT_MASK;
1158 	switch (intelfb_var_to_depth(var)) {
1159 	case 8:
1160 		hw->disp_a_ctrl |= DISPPLANE_8BPP | DISPPLANE_GAMMA_ENABLE;
1161 		break;
1162 	case 15:
1163 		hw->disp_a_ctrl |= DISPPLANE_15_16BPP;
1164 		break;
1165 	case 16:
1166 		hw->disp_a_ctrl |= DISPPLANE_16BPP;
1167 		break;
1168 	case 24:
1169 		hw->disp_a_ctrl |= DISPPLANE_32BPP_NO_ALPHA;
1170 		break;
1171 	}
1172 	hw->disp_a_ctrl &= ~(PIPE_MASK << DISPPLANE_SEL_PIPE_SHIFT);
1173 	hw->disp_a_ctrl |= (pipe << DISPPLANE_SEL_PIPE_SHIFT);
1174 
1175 	/* Set CRTC registers. */
1176 	hactive = var->xres;
1177 	hsync_start = hactive + var->right_margin;
1178 	hsync_end = hsync_start + var->hsync_len;
1179 	htotal = hsync_end + var->left_margin;
1180 	hblank_start = hactive;
1181 	hblank_end = htotal;
1182 
1183 	DBG_MSG("H: act %d, ss %d, se %d, tot %d bs %d, be %d\n",
1184 		hactive, hsync_start, hsync_end, htotal, hblank_start,
1185 		hblank_end);
1186 
1187 	vactive = var->yres;
1188 	if (var->vmode & FB_VMODE_INTERLACED)
1189 		vactive--; /* the chip adds 2 halflines automatically */
1190 	vsync_start = vactive + var->lower_margin;
1191 	vsync_end = vsync_start + var->vsync_len;
1192 	vtotal = vsync_end + var->upper_margin;
1193 	vblank_start = vactive;
1194 	vblank_end = vsync_end + 1;
1195 
1196 	DBG_MSG("V: act %d, ss %d, se %d, tot %d bs %d, be %d\n",
1197 		vactive, vsync_start, vsync_end, vtotal, vblank_start,
1198 		vblank_end);
1199 
1200 	/* Adjust for register values, and check for overflow. */
1201 	hactive--;
1202 	if (check_overflow(hactive, HACTIVE_MASK, "CRTC hactive"))
1203 		return 1;
1204 	hsync_start--;
1205 	if (check_overflow(hsync_start, HSYNCSTART_MASK, "CRTC hsync_start"))
1206 		return 1;
1207 	hsync_end--;
1208 	if (check_overflow(hsync_end, HSYNCEND_MASK, "CRTC hsync_end"))
1209 		return 1;
1210 	htotal--;
1211 	if (check_overflow(htotal, HTOTAL_MASK, "CRTC htotal"))
1212 		return 1;
1213 	hblank_start--;
1214 	if (check_overflow(hblank_start, HBLANKSTART_MASK, "CRTC hblank_start"))
1215 		return 1;
1216 	hblank_end--;
1217 	if (check_overflow(hblank_end, HBLANKEND_MASK, "CRTC hblank_end"))
1218 		return 1;
1219 
1220 	vactive--;
1221 	if (check_overflow(vactive, VACTIVE_MASK, "CRTC vactive"))
1222 		return 1;
1223 	vsync_start--;
1224 	if (check_overflow(vsync_start, VSYNCSTART_MASK, "CRTC vsync_start"))
1225 		return 1;
1226 	vsync_end--;
1227 	if (check_overflow(vsync_end, VSYNCEND_MASK, "CRTC vsync_end"))
1228 		return 1;
1229 	vtotal--;
1230 	if (check_overflow(vtotal, VTOTAL_MASK, "CRTC vtotal"))
1231 		return 1;
1232 	vblank_start--;
1233 	if (check_overflow(vblank_start, VBLANKSTART_MASK, "CRTC vblank_start"))
1234 		return 1;
1235 	vblank_end--;
1236 	if (check_overflow(vblank_end, VBLANKEND_MASK, "CRTC vblank_end"))
1237 		return 1;
1238 
1239 	*ht = (htotal << HTOTAL_SHIFT) | (hactive << HACTIVE_SHIFT);
1240 	*hb = (hblank_start << HBLANKSTART_SHIFT) |
1241 	      (hblank_end << HSYNCEND_SHIFT);
1242 	*hs = (hsync_start << HSYNCSTART_SHIFT) | (hsync_end << HSYNCEND_SHIFT);
1243 
1244 	*vt = (vtotal << VTOTAL_SHIFT) | (vactive << VACTIVE_SHIFT);
1245 	*vb = (vblank_start << VBLANKSTART_SHIFT) |
1246 	      (vblank_end << VSYNCEND_SHIFT);
1247 	*vs = (vsync_start << VSYNCSTART_SHIFT) | (vsync_end << VSYNCEND_SHIFT);
1248 	*ss = (hactive << SRC_SIZE_HORIZ_SHIFT) |
1249 	      (vactive << SRC_SIZE_VERT_SHIFT);
1250 
1251 	hw->disp_a_stride = dinfo->pitch;
1252 	DBG_MSG("pitch is %d\n", hw->disp_a_stride);
1253 
1254 	hw->disp_a_base = hw->disp_a_stride * var->yoffset +
1255 			  var->xoffset * var->bits_per_pixel / 8;
1256 
1257 	hw->disp_a_base += dinfo->fb.offset << 12;
1258 
1259 	/* Check stride alignment. */
1260 	stride_alignment = IS_I9XX(dinfo) ? STRIDE_ALIGNMENT_I9XX :
1261 					    STRIDE_ALIGNMENT;
1262 	if (hw->disp_a_stride % stride_alignment != 0) {
1263 		WRN_MSG("display stride %d has bad alignment %d\n",
1264 			hw->disp_a_stride, stride_alignment);
1265 		return 1;
1266 	}
1267 
1268 	/* Set the palette to 8-bit mode. */
1269 	*pipe_conf &= ~PIPECONF_GAMMA;
1270 
1271 	if (var->vmode & FB_VMODE_INTERLACED)
1272 		*pipe_conf |= PIPECONF_INTERLACE_W_FIELD_INDICATION;
1273 	else
1274 		*pipe_conf &= ~PIPECONF_INTERLACE_MASK;
1275 
1276 	return 0;
1277 }
1278 
1279 /* Program a (non-VGA) video mode. */
1280 int intelfbhw_program_mode(struct intelfb_info *dinfo,
1281 			   const struct intelfb_hwstate *hw, int blank)
1282 {
1283 	u32 tmp;
1284 	const u32 *dpll, *fp0, *fp1, *pipe_conf;
1285 	const u32 *hs, *ht, *hb, *vs, *vt, *vb, *ss;
1286 	u32 dpll_reg, fp0_reg, fp1_reg, pipe_conf_reg, pipe_stat_reg;
1287 	u32 hsync_reg, htotal_reg, hblank_reg;
1288 	u32 vsync_reg, vtotal_reg, vblank_reg;
1289 	u32 src_size_reg;
1290 	u32 count, tmp_val[3];
1291 
1292 	/* Assume single pipe */
1293 
1294 #if VERBOSE > 0
1295 	DBG_MSG("intelfbhw_program_mode\n");
1296 #endif
1297 
1298 	/* Disable VGA */
1299 	tmp = INREG(VGACNTRL);
1300 	tmp |= VGA_DISABLE;
1301 	OUTREG(VGACNTRL, tmp);
1302 
1303 	dinfo->pipe = intelfbhw_active_pipe(hw);
1304 
1305 	if (dinfo->pipe == PIPE_B) {
1306 		dpll = &hw->dpll_b;
1307 		fp0 = &hw->fpb0;
1308 		fp1 = &hw->fpb1;
1309 		pipe_conf = &hw->pipe_b_conf;
1310 		hs = &hw->hsync_b;
1311 		hb = &hw->hblank_b;
1312 		ht = &hw->htotal_b;
1313 		vs = &hw->vsync_b;
1314 		vb = &hw->vblank_b;
1315 		vt = &hw->vtotal_b;
1316 		ss = &hw->src_size_b;
1317 		dpll_reg = DPLL_B;
1318 		fp0_reg = FPB0;
1319 		fp1_reg = FPB1;
1320 		pipe_conf_reg = PIPEBCONF;
1321 		pipe_stat_reg = PIPEBSTAT;
1322 		hsync_reg = HSYNC_B;
1323 		htotal_reg = HTOTAL_B;
1324 		hblank_reg = HBLANK_B;
1325 		vsync_reg = VSYNC_B;
1326 		vtotal_reg = VTOTAL_B;
1327 		vblank_reg = VBLANK_B;
1328 		src_size_reg = SRC_SIZE_B;
1329 	} else {
1330 		dpll = &hw->dpll_a;
1331 		fp0 = &hw->fpa0;
1332 		fp1 = &hw->fpa1;
1333 		pipe_conf = &hw->pipe_a_conf;
1334 		hs = &hw->hsync_a;
1335 		hb = &hw->hblank_a;
1336 		ht = &hw->htotal_a;
1337 		vs = &hw->vsync_a;
1338 		vb = &hw->vblank_a;
1339 		vt = &hw->vtotal_a;
1340 		ss = &hw->src_size_a;
1341 		dpll_reg = DPLL_A;
1342 		fp0_reg = FPA0;
1343 		fp1_reg = FPA1;
1344 		pipe_conf_reg = PIPEACONF;
1345 		pipe_stat_reg = PIPEASTAT;
1346 		hsync_reg = HSYNC_A;
1347 		htotal_reg = HTOTAL_A;
1348 		hblank_reg = HBLANK_A;
1349 		vsync_reg = VSYNC_A;
1350 		vtotal_reg = VTOTAL_A;
1351 		vblank_reg = VBLANK_A;
1352 		src_size_reg = SRC_SIZE_A;
1353 	}
1354 
1355 	/* turn off pipe */
1356 	tmp = INREG(pipe_conf_reg);
1357 	tmp &= ~PIPECONF_ENABLE;
1358 	OUTREG(pipe_conf_reg, tmp);
1359 
1360 	count = 0;
1361 	do {
1362 		tmp_val[count % 3] = INREG(PIPEA_DSL);
1363 		if ((tmp_val[0] == tmp_val[1]) && (tmp_val[1] == tmp_val[2]))
1364 			break;
1365 		count++;
1366 		udelay(1);
1367 		if (count % 200 == 0) {
1368 			tmp = INREG(pipe_conf_reg);
1369 			tmp &= ~PIPECONF_ENABLE;
1370 			OUTREG(pipe_conf_reg, tmp);
1371 		}
1372 	} while (count < 2000);
1373 
1374 	OUTREG(ADPA, INREG(ADPA) & ~ADPA_DAC_ENABLE);
1375 
1376 	/* Disable planes A and B. */
1377 	tmp = INREG(DSPACNTR);
1378 	tmp &= ~DISPPLANE_PLANE_ENABLE;
1379 	OUTREG(DSPACNTR, tmp);
1380 	tmp = INREG(DSPBCNTR);
1381 	tmp &= ~DISPPLANE_PLANE_ENABLE;
1382 	OUTREG(DSPBCNTR, tmp);
1383 
1384 	/* Wait for vblank. For now, just wait for a 50Hz cycle (20ms)) */
1385 	mdelay(20);
1386 
1387 	OUTREG(DVOB, INREG(DVOB) & ~PORT_ENABLE);
1388 	OUTREG(DVOC, INREG(DVOC) & ~PORT_ENABLE);
1389 	OUTREG(ADPA, INREG(ADPA) & ~ADPA_DAC_ENABLE);
1390 
1391 	/* Disable Sync */
1392 	tmp = INREG(ADPA);
1393 	tmp &= ~ADPA_DPMS_CONTROL_MASK;
1394 	tmp |= ADPA_DPMS_D3;
1395 	OUTREG(ADPA, tmp);
1396 
1397 	/* do some funky magic - xyzzy */
1398 	OUTREG(0x61204, 0xabcd0000);
1399 
1400 	/* turn off PLL */
1401 	tmp = INREG(dpll_reg);
1402 	tmp &= ~DPLL_VCO_ENABLE;
1403 	OUTREG(dpll_reg, tmp);
1404 
1405 	/* Set PLL parameters */
1406 	OUTREG(fp0_reg, *fp0);
1407 	OUTREG(fp1_reg, *fp1);
1408 
1409 	/* Enable PLL */
1410 	OUTREG(dpll_reg, *dpll);
1411 
1412 	/* Set DVOs B/C */
1413 	OUTREG(DVOB, hw->dvob);
1414 	OUTREG(DVOC, hw->dvoc);
1415 
1416 	/* undo funky magic */
1417 	OUTREG(0x61204, 0x00000000);
1418 
1419 	/* Set ADPA */
1420 	OUTREG(ADPA, INREG(ADPA) | ADPA_DAC_ENABLE);
1421 	OUTREG(ADPA, (hw->adpa & ~(ADPA_DPMS_CONTROL_MASK)) | ADPA_DPMS_D3);
1422 
1423 	/* Set pipe parameters */
1424 	OUTREG(hsync_reg, *hs);
1425 	OUTREG(hblank_reg, *hb);
1426 	OUTREG(htotal_reg, *ht);
1427 	OUTREG(vsync_reg, *vs);
1428 	OUTREG(vblank_reg, *vb);
1429 	OUTREG(vtotal_reg, *vt);
1430 	OUTREG(src_size_reg, *ss);
1431 
1432 	switch (dinfo->info->var.vmode & (FB_VMODE_INTERLACED |
1433 					  FB_VMODE_ODD_FLD_FIRST)) {
1434 	case FB_VMODE_INTERLACED | FB_VMODE_ODD_FLD_FIRST:
1435 		OUTREG(pipe_stat_reg, 0xFFFF | PIPESTAT_FLD_EVT_ODD_EN);
1436 		break;
1437 	case FB_VMODE_INTERLACED: /* even lines first */
1438 		OUTREG(pipe_stat_reg, 0xFFFF | PIPESTAT_FLD_EVT_EVEN_EN);
1439 		break;
1440 	default:		/* non-interlaced */
1441 		OUTREG(pipe_stat_reg, 0xFFFF); /* clear all status bits only */
1442 	}
1443 	/* Enable pipe */
1444 	OUTREG(pipe_conf_reg, *pipe_conf | PIPECONF_ENABLE);
1445 
1446 	/* Enable sync */
1447 	tmp = INREG(ADPA);
1448 	tmp &= ~ADPA_DPMS_CONTROL_MASK;
1449 	tmp |= ADPA_DPMS_D0;
1450 	OUTREG(ADPA, tmp);
1451 
1452 	/* setup display plane */
1453 	if (dinfo->pdev->device == PCI_DEVICE_ID_INTEL_830M) {
1454 		/*
1455 		 *      i830M errata: the display plane must be enabled
1456 		 *      to allow writes to the other bits in the plane
1457 		 *      control register.
1458 		 */
1459 		tmp = INREG(DSPACNTR);
1460 		if ((tmp & DISPPLANE_PLANE_ENABLE) != DISPPLANE_PLANE_ENABLE) {
1461 			tmp |= DISPPLANE_PLANE_ENABLE;
1462 			OUTREG(DSPACNTR, tmp);
1463 			OUTREG(DSPACNTR,
1464 			       hw->disp_a_ctrl|DISPPLANE_PLANE_ENABLE);
1465 			mdelay(1);
1466 		}
1467 	}
1468 
1469 	OUTREG(DSPACNTR, hw->disp_a_ctrl & ~DISPPLANE_PLANE_ENABLE);
1470 	OUTREG(DSPASTRIDE, hw->disp_a_stride);
1471 	OUTREG(DSPABASE, hw->disp_a_base);
1472 
1473 	/* Enable plane */
1474 	if (!blank) {
1475 		tmp = INREG(DSPACNTR);
1476 		tmp |= DISPPLANE_PLANE_ENABLE;
1477 		OUTREG(DSPACNTR, tmp);
1478 		OUTREG(DSPABASE, hw->disp_a_base);
1479 	}
1480 
1481 	return 0;
1482 }
1483 
1484 /* forward declarations */
1485 static void refresh_ring(struct intelfb_info *dinfo);
1486 static void reset_state(struct intelfb_info *dinfo);
1487 static void do_flush(struct intelfb_info *dinfo);
1488 
1489 static  u32 get_ring_space(struct intelfb_info *dinfo)
1490 {
1491 	u32 ring_space;
1492 
1493 	if (dinfo->ring_tail >= dinfo->ring_head)
1494 		ring_space = dinfo->ring.size -
1495 			(dinfo->ring_tail - dinfo->ring_head);
1496 	else
1497 		ring_space = dinfo->ring_head - dinfo->ring_tail;
1498 
1499 	if (ring_space > RING_MIN_FREE)
1500 		ring_space -= RING_MIN_FREE;
1501 	else
1502 		ring_space = 0;
1503 
1504 	return ring_space;
1505 }
1506 
1507 static int wait_ring(struct intelfb_info *dinfo, int n)
1508 {
1509 	int i = 0;
1510 	unsigned long end;
1511 	u32 last_head = INREG(PRI_RING_HEAD) & RING_HEAD_MASK;
1512 
1513 #if VERBOSE > 0
1514 	DBG_MSG("wait_ring: %d\n", n);
1515 #endif
1516 
1517 	end = jiffies + (HZ * 3);
1518 	while (dinfo->ring_space < n) {
1519 		dinfo->ring_head = INREG(PRI_RING_HEAD) & RING_HEAD_MASK;
1520 		dinfo->ring_space = get_ring_space(dinfo);
1521 
1522 		if (dinfo->ring_head != last_head) {
1523 			end = jiffies + (HZ * 3);
1524 			last_head = dinfo->ring_head;
1525 		}
1526 		i++;
1527 		if (time_before(end, jiffies)) {
1528 			if (!i) {
1529 				/* Try again */
1530 				reset_state(dinfo);
1531 				refresh_ring(dinfo);
1532 				do_flush(dinfo);
1533 				end = jiffies + (HZ * 3);
1534 				i = 1;
1535 			} else {
1536 				WRN_MSG("ring buffer : space: %d wanted %d\n",
1537 					dinfo->ring_space, n);
1538 				WRN_MSG("lockup - turning off hardware "
1539 					"acceleration\n");
1540 				dinfo->ring_lockup = 1;
1541 				break;
1542 			}
1543 		}
1544 		udelay(1);
1545 	}
1546 	return i;
1547 }
1548 
1549 static void do_flush(struct intelfb_info *dinfo)
1550 {
1551 	START_RING(2);
1552 	OUT_RING(MI_FLUSH | MI_WRITE_DIRTY_STATE | MI_INVALIDATE_MAP_CACHE);
1553 	OUT_RING(MI_NOOP);
1554 	ADVANCE_RING();
1555 }
1556 
1557 void intelfbhw_do_sync(struct intelfb_info *dinfo)
1558 {
1559 #if VERBOSE > 0
1560 	DBG_MSG("intelfbhw_do_sync\n");
1561 #endif
1562 
1563 	if (!dinfo->accel)
1564 		return;
1565 
1566 	/*
1567 	 * Send a flush, then wait until the ring is empty.  This is what
1568 	 * the XFree86 driver does, and actually it doesn't seem a lot worse
1569 	 * than the recommended method (both have problems).
1570 	 */
1571 	do_flush(dinfo);
1572 	wait_ring(dinfo, dinfo->ring.size - RING_MIN_FREE);
1573 	dinfo->ring_space = dinfo->ring.size - RING_MIN_FREE;
1574 }
1575 
1576 static void refresh_ring(struct intelfb_info *dinfo)
1577 {
1578 #if VERBOSE > 0
1579 	DBG_MSG("refresh_ring\n");
1580 #endif
1581 
1582 	dinfo->ring_head = INREG(PRI_RING_HEAD) & RING_HEAD_MASK;
1583 	dinfo->ring_tail = INREG(PRI_RING_TAIL) & RING_TAIL_MASK;
1584 	dinfo->ring_space = get_ring_space(dinfo);
1585 }
1586 
1587 static void reset_state(struct intelfb_info *dinfo)
1588 {
1589 	int i;
1590 	u32 tmp;
1591 
1592 #if VERBOSE > 0
1593 	DBG_MSG("reset_state\n");
1594 #endif
1595 
1596 	for (i = 0; i < FENCE_NUM; i++)
1597 		OUTREG(FENCE + (i << 2), 0);
1598 
1599 	/* Flush the ring buffer if it's enabled. */
1600 	tmp = INREG(PRI_RING_LENGTH);
1601 	if (tmp & RING_ENABLE) {
1602 #if VERBOSE > 0
1603 		DBG_MSG("reset_state: ring was enabled\n");
1604 #endif
1605 		refresh_ring(dinfo);
1606 		intelfbhw_do_sync(dinfo);
1607 		DO_RING_IDLE();
1608 	}
1609 
1610 	OUTREG(PRI_RING_LENGTH, 0);
1611 	OUTREG(PRI_RING_HEAD, 0);
1612 	OUTREG(PRI_RING_TAIL, 0);
1613 	OUTREG(PRI_RING_START, 0);
1614 }
1615 
1616 /* Stop the 2D engine, and turn off the ring buffer. */
1617 void intelfbhw_2d_stop(struct intelfb_info *dinfo)
1618 {
1619 #if VERBOSE > 0
1620 	DBG_MSG("intelfbhw_2d_stop: accel: %d, ring_active: %d\n",
1621 		dinfo->accel, dinfo->ring_active);
1622 #endif
1623 
1624 	if (!dinfo->accel)
1625 		return;
1626 
1627 	dinfo->ring_active = 0;
1628 	reset_state(dinfo);
1629 }
1630 
1631 /*
1632  * Enable the ring buffer, and initialise the 2D engine.
1633  * It is assumed that the graphics engine has been stopped by previously
1634  * calling intelfb_2d_stop().
1635  */
1636 void intelfbhw_2d_start(struct intelfb_info *dinfo)
1637 {
1638 #if VERBOSE > 0
1639 	DBG_MSG("intelfbhw_2d_start: accel: %d, ring_active: %d\n",
1640 		dinfo->accel, dinfo->ring_active);
1641 #endif
1642 
1643 	if (!dinfo->accel)
1644 		return;
1645 
1646 	/* Initialise the primary ring buffer. */
1647 	OUTREG(PRI_RING_LENGTH, 0);
1648 	OUTREG(PRI_RING_TAIL, 0);
1649 	OUTREG(PRI_RING_HEAD, 0);
1650 
1651 	OUTREG(PRI_RING_START, dinfo->ring.physical & RING_START_MASK);
1652 	OUTREG(PRI_RING_LENGTH,
1653 		((dinfo->ring.size - GTT_PAGE_SIZE) & RING_LENGTH_MASK) |
1654 		RING_NO_REPORT | RING_ENABLE);
1655 	refresh_ring(dinfo);
1656 	dinfo->ring_active = 1;
1657 }
1658 
1659 /* 2D fillrect (solid fill or invert) */
1660 void intelfbhw_do_fillrect(struct intelfb_info *dinfo, u32 x, u32 y, u32 w,
1661 			   u32 h, u32 color, u32 pitch, u32 bpp, u32 rop)
1662 {
1663 	u32 br00, br09, br13, br14, br16;
1664 
1665 #if VERBOSE > 0
1666 	DBG_MSG("intelfbhw_do_fillrect: (%d,%d) %dx%d, c 0x%06x, p %d bpp %d, "
1667 		"rop 0x%02x\n", x, y, w, h, color, pitch, bpp, rop);
1668 #endif
1669 
1670 	br00 = COLOR_BLT_CMD;
1671 	br09 = dinfo->fb_start + (y * pitch + x * (bpp / 8));
1672 	br13 = (rop << ROP_SHIFT) | pitch;
1673 	br14 = (h << HEIGHT_SHIFT) | ((w * (bpp / 8)) << WIDTH_SHIFT);
1674 	br16 = color;
1675 
1676 	switch (bpp) {
1677 	case 8:
1678 		br13 |= COLOR_DEPTH_8;
1679 		break;
1680 	case 16:
1681 		br13 |= COLOR_DEPTH_16;
1682 		break;
1683 	case 32:
1684 		br13 |= COLOR_DEPTH_32;
1685 		br00 |= WRITE_ALPHA | WRITE_RGB;
1686 		break;
1687 	}
1688 
1689 	START_RING(6);
1690 	OUT_RING(br00);
1691 	OUT_RING(br13);
1692 	OUT_RING(br14);
1693 	OUT_RING(br09);
1694 	OUT_RING(br16);
1695 	OUT_RING(MI_NOOP);
1696 	ADVANCE_RING();
1697 
1698 #if VERBOSE > 0
1699 	DBG_MSG("ring = 0x%08x, 0x%08x (%d)\n", dinfo->ring_head,
1700 		dinfo->ring_tail, dinfo->ring_space);
1701 #endif
1702 }
1703 
1704 void
1705 intelfbhw_do_bitblt(struct intelfb_info *dinfo, u32 curx, u32 cury,
1706 		    u32 dstx, u32 dsty, u32 w, u32 h, u32 pitch, u32 bpp)
1707 {
1708 	u32 br00, br09, br11, br12, br13, br22, br23, br26;
1709 
1710 #if VERBOSE > 0
1711 	DBG_MSG("intelfbhw_do_bitblt: (%d,%d)->(%d,%d) %dx%d, p %d bpp %d\n",
1712 		curx, cury, dstx, dsty, w, h, pitch, bpp);
1713 #endif
1714 
1715 	br00 = XY_SRC_COPY_BLT_CMD;
1716 	br09 = dinfo->fb_start;
1717 	br11 = (pitch << PITCH_SHIFT);
1718 	br12 = dinfo->fb_start;
1719 	br13 = (SRC_ROP_GXCOPY << ROP_SHIFT) | (pitch << PITCH_SHIFT);
1720 	br22 = (dstx << WIDTH_SHIFT) | (dsty << HEIGHT_SHIFT);
1721 	br23 = ((dstx + w) << WIDTH_SHIFT) |
1722 	       ((dsty + h) << HEIGHT_SHIFT);
1723 	br26 = (curx << WIDTH_SHIFT) | (cury << HEIGHT_SHIFT);
1724 
1725 	switch (bpp) {
1726 	case 8:
1727 		br13 |= COLOR_DEPTH_8;
1728 		break;
1729 	case 16:
1730 		br13 |= COLOR_DEPTH_16;
1731 		break;
1732 	case 32:
1733 		br13 |= COLOR_DEPTH_32;
1734 		br00 |= WRITE_ALPHA | WRITE_RGB;
1735 		break;
1736 	}
1737 
1738 	START_RING(8);
1739 	OUT_RING(br00);
1740 	OUT_RING(br13);
1741 	OUT_RING(br22);
1742 	OUT_RING(br23);
1743 	OUT_RING(br09);
1744 	OUT_RING(br26);
1745 	OUT_RING(br11);
1746 	OUT_RING(br12);
1747 	ADVANCE_RING();
1748 }
1749 
1750 int intelfbhw_do_drawglyph(struct intelfb_info *dinfo, u32 fg, u32 bg, u32 w,
1751 			   u32 h, const u8* cdat, u32 x, u32 y, u32 pitch,
1752 			   u32 bpp)
1753 {
1754 	int nbytes, ndwords, pad, tmp;
1755 	u32 br00, br09, br13, br18, br19, br22, br23;
1756 	int dat, ix, iy, iw;
1757 	int i, j;
1758 
1759 #if VERBOSE > 0
1760 	DBG_MSG("intelfbhw_do_drawglyph: (%d,%d) %dx%d\n", x, y, w, h);
1761 #endif
1762 
1763 	/* size in bytes of a padded scanline */
1764 	nbytes = ROUND_UP_TO(w, 16) / 8;
1765 
1766 	/* Total bytes of padded scanline data to write out. */
1767 	nbytes = nbytes * h;
1768 
1769 	/*
1770 	 * Check if the glyph data exceeds the immediate mode limit.
1771 	 * It would take a large font (1K pixels) to hit this limit.
1772 	 */
1773 	if (nbytes > MAX_MONO_IMM_SIZE)
1774 		return 0;
1775 
1776 	/* Src data is packaged a dword (32-bit) at a time. */
1777 	ndwords = ROUND_UP_TO(nbytes, 4) / 4;
1778 
1779 	/*
1780 	 * Ring has to be padded to a quad word. But because the command starts
1781 	   with 7 bytes, pad only if there is an even number of ndwords
1782 	 */
1783 	pad = !(ndwords % 2);
1784 
1785 	tmp = (XY_MONO_SRC_IMM_BLT_CMD & DW_LENGTH_MASK) + ndwords;
1786 	br00 = (XY_MONO_SRC_IMM_BLT_CMD & ~DW_LENGTH_MASK) | tmp;
1787 	br09 = dinfo->fb_start;
1788 	br13 = (SRC_ROP_GXCOPY << ROP_SHIFT) | (pitch << PITCH_SHIFT);
1789 	br18 = bg;
1790 	br19 = fg;
1791 	br22 = (x << WIDTH_SHIFT) | (y << HEIGHT_SHIFT);
1792 	br23 = ((x + w) << WIDTH_SHIFT) | ((y + h) << HEIGHT_SHIFT);
1793 
1794 	switch (bpp) {
1795 	case 8:
1796 		br13 |= COLOR_DEPTH_8;
1797 		break;
1798 	case 16:
1799 		br13 |= COLOR_DEPTH_16;
1800 		break;
1801 	case 32:
1802 		br13 |= COLOR_DEPTH_32;
1803 		br00 |= WRITE_ALPHA | WRITE_RGB;
1804 		break;
1805 	}
1806 
1807 	START_RING(8 + ndwords);
1808 	OUT_RING(br00);
1809 	OUT_RING(br13);
1810 	OUT_RING(br22);
1811 	OUT_RING(br23);
1812 	OUT_RING(br09);
1813 	OUT_RING(br18);
1814 	OUT_RING(br19);
1815 	ix = iy = 0;
1816 	iw = ROUND_UP_TO(w, 8) / 8;
1817 	while (ndwords--) {
1818 		dat = 0;
1819 		for (j = 0; j < 2; ++j) {
1820 			for (i = 0; i < 2; ++i) {
1821 				if (ix != iw || i == 0)
1822 					dat |= cdat[iy*iw + ix++] << (i+j*2)*8;
1823 			}
1824 			if (ix == iw && iy != (h-1)) {
1825 				ix = 0;
1826 				++iy;
1827 			}
1828 		}
1829 		OUT_RING(dat);
1830 	}
1831 	if (pad)
1832 		OUT_RING(MI_NOOP);
1833 	ADVANCE_RING();
1834 
1835 	return 1;
1836 }
1837 
1838 /* HW cursor functions. */
1839 void intelfbhw_cursor_init(struct intelfb_info *dinfo)
1840 {
1841 	u32 tmp;
1842 
1843 #if VERBOSE > 0
1844 	DBG_MSG("intelfbhw_cursor_init\n");
1845 #endif
1846 
1847 	if (dinfo->mobile || IS_I9XX(dinfo)) {
1848 		if (!dinfo->cursor.physical)
1849 			return;
1850 		tmp = INREG(CURSOR_A_CONTROL);
1851 		tmp &= ~(CURSOR_MODE_MASK | CURSOR_MOBILE_GAMMA_ENABLE |
1852 			 CURSOR_MEM_TYPE_LOCAL |
1853 			 (1 << CURSOR_PIPE_SELECT_SHIFT));
1854 		tmp |= CURSOR_MODE_DISABLE;
1855 		OUTREG(CURSOR_A_CONTROL, tmp);
1856 		OUTREG(CURSOR_A_BASEADDR, dinfo->cursor.physical);
1857 	} else {
1858 		tmp = INREG(CURSOR_CONTROL);
1859 		tmp &= ~(CURSOR_FORMAT_MASK | CURSOR_GAMMA_ENABLE |
1860 			 CURSOR_ENABLE | CURSOR_STRIDE_MASK);
1861 		tmp |= CURSOR_FORMAT_3C;
1862 		OUTREG(CURSOR_CONTROL, tmp);
1863 		OUTREG(CURSOR_A_BASEADDR, dinfo->cursor.offset << 12);
1864 		tmp = (64 << CURSOR_SIZE_H_SHIFT) |
1865 		      (64 << CURSOR_SIZE_V_SHIFT);
1866 		OUTREG(CURSOR_SIZE, tmp);
1867 	}
1868 }
1869 
1870 void intelfbhw_cursor_hide(struct intelfb_info *dinfo)
1871 {
1872 	u32 tmp;
1873 
1874 #if VERBOSE > 0
1875 	DBG_MSG("intelfbhw_cursor_hide\n");
1876 #endif
1877 
1878 	dinfo->cursor_on = 0;
1879 	if (dinfo->mobile || IS_I9XX(dinfo)) {
1880 		if (!dinfo->cursor.physical)
1881 			return;
1882 		tmp = INREG(CURSOR_A_CONTROL);
1883 		tmp &= ~CURSOR_MODE_MASK;
1884 		tmp |= CURSOR_MODE_DISABLE;
1885 		OUTREG(CURSOR_A_CONTROL, tmp);
1886 		/* Flush changes */
1887 		OUTREG(CURSOR_A_BASEADDR, dinfo->cursor.physical);
1888 	} else {
1889 		tmp = INREG(CURSOR_CONTROL);
1890 		tmp &= ~CURSOR_ENABLE;
1891 		OUTREG(CURSOR_CONTROL, tmp);
1892 	}
1893 }
1894 
1895 void intelfbhw_cursor_show(struct intelfb_info *dinfo)
1896 {
1897 	u32 tmp;
1898 
1899 #if VERBOSE > 0
1900 	DBG_MSG("intelfbhw_cursor_show\n");
1901 #endif
1902 
1903 	dinfo->cursor_on = 1;
1904 
1905 	if (dinfo->cursor_blanked)
1906 		return;
1907 
1908 	if (dinfo->mobile || IS_I9XX(dinfo)) {
1909 		if (!dinfo->cursor.physical)
1910 			return;
1911 		tmp = INREG(CURSOR_A_CONTROL);
1912 		tmp &= ~CURSOR_MODE_MASK;
1913 		tmp |= CURSOR_MODE_64_4C_AX;
1914 		OUTREG(CURSOR_A_CONTROL, tmp);
1915 		/* Flush changes */
1916 		OUTREG(CURSOR_A_BASEADDR, dinfo->cursor.physical);
1917 	} else {
1918 		tmp = INREG(CURSOR_CONTROL);
1919 		tmp |= CURSOR_ENABLE;
1920 		OUTREG(CURSOR_CONTROL, tmp);
1921 	}
1922 }
1923 
1924 void intelfbhw_cursor_setpos(struct intelfb_info *dinfo, int x, int y)
1925 {
1926 	u32 tmp;
1927 
1928 #if VERBOSE > 0
1929 	DBG_MSG("intelfbhw_cursor_setpos: (%d, %d)\n", x, y);
1930 #endif
1931 
1932 	/*
1933 	 * Sets the position. The coordinates are assumed to already
1934 	 * have any offset adjusted. Assume that the cursor is never
1935 	 * completely off-screen, and that x, y are always >= 0.
1936 	 */
1937 
1938 	tmp = ((x & CURSOR_POS_MASK) << CURSOR_X_SHIFT) |
1939 	      ((y & CURSOR_POS_MASK) << CURSOR_Y_SHIFT);
1940 	OUTREG(CURSOR_A_POSITION, tmp);
1941 
1942 	if (IS_I9XX(dinfo))
1943 		OUTREG(CURSOR_A_BASEADDR, dinfo->cursor.physical);
1944 }
1945 
1946 void intelfbhw_cursor_setcolor(struct intelfb_info *dinfo, u32 bg, u32 fg)
1947 {
1948 #if VERBOSE > 0
1949 	DBG_MSG("intelfbhw_cursor_setcolor\n");
1950 #endif
1951 
1952 	OUTREG(CURSOR_A_PALETTE0, bg & CURSOR_PALETTE_MASK);
1953 	OUTREG(CURSOR_A_PALETTE1, fg & CURSOR_PALETTE_MASK);
1954 	OUTREG(CURSOR_A_PALETTE2, fg & CURSOR_PALETTE_MASK);
1955 	OUTREG(CURSOR_A_PALETTE3, bg & CURSOR_PALETTE_MASK);
1956 }
1957 
1958 void intelfbhw_cursor_load(struct intelfb_info *dinfo, int width, int height,
1959 			   u8 *data)
1960 {
1961 	u8 __iomem *addr = (u8 __iomem *)dinfo->cursor.virtual;
1962 	int i, j, w = width / 8;
1963 	int mod = width % 8, t_mask, d_mask;
1964 
1965 #if VERBOSE > 0
1966 	DBG_MSG("intelfbhw_cursor_load\n");
1967 #endif
1968 
1969 	if (!dinfo->cursor.virtual)
1970 		return;
1971 
1972 	t_mask = 0xff >> mod;
1973 	d_mask = ~(0xff >> mod);
1974 	for (i = height; i--; ) {
1975 		for (j = 0; j < w; j++) {
1976 			writeb(0x00, addr + j);
1977 			writeb(*(data++), addr + j+8);
1978 		}
1979 		if (mod) {
1980 			writeb(t_mask, addr + j);
1981 			writeb(*(data++) & d_mask, addr + j+8);
1982 		}
1983 		addr += 16;
1984 	}
1985 }
1986 
1987 void intelfbhw_cursor_reset(struct intelfb_info *dinfo)
1988 {
1989 	u8 __iomem *addr = (u8 __iomem *)dinfo->cursor.virtual;
1990 	int i, j;
1991 
1992 #if VERBOSE > 0
1993 	DBG_MSG("intelfbhw_cursor_reset\n");
1994 #endif
1995 
1996 	if (!dinfo->cursor.virtual)
1997 		return;
1998 
1999 	for (i = 64; i--; ) {
2000 		for (j = 0; j < 8; j++) {
2001 			writeb(0xff, addr + j+0);
2002 			writeb(0x00, addr + j+8);
2003 		}
2004 		addr += 16;
2005 	}
2006 }
2007 
2008 static irqreturn_t intelfbhw_irq(int irq, void *dev_id)
2009 {
2010 	u16 tmp;
2011 	struct intelfb_info *dinfo = dev_id;
2012 
2013 	spin_lock(&dinfo->int_lock);
2014 
2015 	tmp = INREG16(IIR);
2016 	if (dinfo->info->var.vmode & FB_VMODE_INTERLACED)
2017 		tmp &= PIPE_A_EVENT_INTERRUPT;
2018 	else
2019 		tmp &= VSYNC_PIPE_A_INTERRUPT; /* non-interlaced */
2020 
2021 	if (tmp == 0) {
2022 		spin_unlock(&dinfo->int_lock);
2023 		return IRQ_RETVAL(0); /* not us */
2024 	}
2025 
2026 	/* clear status bits 0-15 ASAP and don't touch bits 16-31 */
2027 	OUTREG(PIPEASTAT, INREG(PIPEASTAT));
2028 
2029 	OUTREG16(IIR, tmp);
2030 	if (dinfo->vsync.pan_display) {
2031 		dinfo->vsync.pan_display = 0;
2032 		OUTREG(DSPABASE, dinfo->vsync.pan_offset);
2033 	}
2034 
2035 	dinfo->vsync.count++;
2036 	wake_up_interruptible(&dinfo->vsync.wait);
2037 
2038 	spin_unlock(&dinfo->int_lock);
2039 
2040 	return IRQ_RETVAL(1);
2041 }
2042 
2043 int intelfbhw_enable_irq(struct intelfb_info *dinfo)
2044 {
2045 	u16 tmp;
2046 	if (!test_and_set_bit(0, &dinfo->irq_flags)) {
2047 		if (request_irq(dinfo->pdev->irq, intelfbhw_irq, IRQF_SHARED,
2048 				"intelfb", dinfo)) {
2049 			clear_bit(0, &dinfo->irq_flags);
2050 			return -EINVAL;
2051 		}
2052 
2053 		spin_lock_irq(&dinfo->int_lock);
2054 		OUTREG16(HWSTAM, 0xfffe); /* i830 DRM uses ffff */
2055 		OUTREG16(IMR, 0);
2056 	} else
2057 		spin_lock_irq(&dinfo->int_lock);
2058 
2059 	if (dinfo->info->var.vmode & FB_VMODE_INTERLACED)
2060 		tmp = PIPE_A_EVENT_INTERRUPT;
2061 	else
2062 		tmp = VSYNC_PIPE_A_INTERRUPT; /* non-interlaced */
2063 	if (tmp != INREG16(IER)) {
2064 		DBG_MSG("changing IER to 0x%X\n", tmp);
2065 		OUTREG16(IER, tmp);
2066 	}
2067 
2068 	spin_unlock_irq(&dinfo->int_lock);
2069 	return 0;
2070 }
2071 
2072 void intelfbhw_disable_irq(struct intelfb_info *dinfo)
2073 {
2074 	if (test_and_clear_bit(0, &dinfo->irq_flags)) {
2075 		if (dinfo->vsync.pan_display) {
2076 			dinfo->vsync.pan_display = 0;
2077 			OUTREG(DSPABASE, dinfo->vsync.pan_offset);
2078 		}
2079 		spin_lock_irq(&dinfo->int_lock);
2080 		OUTREG16(HWSTAM, 0xffff);
2081 		OUTREG16(IMR, 0xffff);
2082 		OUTREG16(IER, 0x0);
2083 
2084 		OUTREG16(IIR, INREG16(IIR)); /* clear IRQ requests */
2085 		spin_unlock_irq(&dinfo->int_lock);
2086 
2087 		free_irq(dinfo->pdev->irq, dinfo);
2088 	}
2089 }
2090 
2091 int intelfbhw_wait_for_vsync(struct intelfb_info *dinfo, u32 pipe)
2092 {
2093 	struct intelfb_vsync *vsync;
2094 	unsigned int count;
2095 	int ret;
2096 
2097 	switch (pipe) {
2098 		case 0:
2099 			vsync = &dinfo->vsync;
2100 			break;
2101 		default:
2102 			return -ENODEV;
2103 	}
2104 
2105 	ret = intelfbhw_enable_irq(dinfo);
2106 	if (ret)
2107 		return ret;
2108 
2109 	count = vsync->count;
2110 	ret = wait_event_interruptible_timeout(vsync->wait,
2111 					       count != vsync->count, HZ / 10);
2112 	if (ret < 0)
2113 		return ret;
2114 	if (ret == 0) {
2115 		DBG_MSG("wait_for_vsync timed out!\n");
2116 		return -ETIMEDOUT;
2117 	}
2118 
2119 	return 0;
2120 }
2121