1 /* 2 * intelfb 3 * 4 * Linux framebuffer driver for Intel(R) 865G integrated graphics chips. 5 * 6 * Copyright © 2002, 2003 David Dawes <dawes@xfree86.org> 7 * 2004 Sylvain Meyer 8 * 9 * This driver consists of two parts. The first part (intelfbdrv.c) provides 10 * the basic fbdev interfaces, is derived in part from the radeonfb and 11 * vesafb drivers, and is covered by the GPL. The second part (intelfbhw.c) 12 * provides the code to program the hardware. Most of it is derived from 13 * the i810/i830 XFree86 driver. The HW-specific code is covered here 14 * under a dual license (GPL and MIT/XFree86 license). 15 * 16 * Author: David Dawes 17 * 18 */ 19 20 /* $DHD: intelfb/intelfbhw.c,v 1.9 2003/06/27 15:06:25 dawes Exp $ */ 21 22 #include <linux/module.h> 23 #include <linux/kernel.h> 24 #include <linux/errno.h> 25 #include <linux/string.h> 26 #include <linux/mm.h> 27 #include <linux/delay.h> 28 #include <linux/fb.h> 29 #include <linux/ioport.h> 30 #include <linux/init.h> 31 #include <linux/pci.h> 32 #include <linux/vmalloc.h> 33 #include <linux/pagemap.h> 34 #include <linux/interrupt.h> 35 36 #include <asm/io.h> 37 38 #include "intelfb.h" 39 #include "intelfbhw.h" 40 41 struct pll_min_max { 42 int min_m, max_m, min_m1, max_m1; 43 int min_m2, max_m2, min_n, max_n; 44 int min_p, max_p, min_p1, max_p1; 45 int min_vco, max_vco, p_transition_clk, ref_clk; 46 int p_inc_lo, p_inc_hi; 47 }; 48 49 #define PLLS_I8xx 0 50 #define PLLS_I9xx 1 51 #define PLLS_MAX 2 52 53 static struct pll_min_max plls[PLLS_MAX] = { 54 { 108, 140, 18, 26, 55 6, 16, 3, 16, 56 4, 128, 0, 31, 57 930000, 1400000, 165000, 48000, 58 4, 2 }, /* I8xx */ 59 60 { 75, 120, 10, 20, 61 5, 9, 4, 7, 62 5, 80, 1, 8, 63 1400000, 2800000, 200000, 96000, 64 10, 5 } /* I9xx */ 65 }; 66 67 int intelfbhw_get_chipset(struct pci_dev *pdev, struct intelfb_info *dinfo) 68 { 69 u32 tmp; 70 if (!pdev || !dinfo) 71 return 1; 72 73 switch (pdev->device) { 74 case PCI_DEVICE_ID_INTEL_830M: 75 dinfo->name = "Intel(R) 830M"; 76 dinfo->chipset = INTEL_830M; 77 dinfo->mobile = 1; 78 dinfo->pll_index = PLLS_I8xx; 79 return 0; 80 case PCI_DEVICE_ID_INTEL_845G: 81 dinfo->name = "Intel(R) 845G"; 82 dinfo->chipset = INTEL_845G; 83 dinfo->mobile = 0; 84 dinfo->pll_index = PLLS_I8xx; 85 return 0; 86 case PCI_DEVICE_ID_INTEL_854: 87 dinfo->mobile = 1; 88 dinfo->name = "Intel(R) 854"; 89 dinfo->chipset = INTEL_854; 90 return 0; 91 case PCI_DEVICE_ID_INTEL_85XGM: 92 tmp = 0; 93 dinfo->mobile = 1; 94 dinfo->pll_index = PLLS_I8xx; 95 pci_read_config_dword(pdev, INTEL_85X_CAPID, &tmp); 96 switch ((tmp >> INTEL_85X_VARIANT_SHIFT) & 97 INTEL_85X_VARIANT_MASK) { 98 case INTEL_VAR_855GME: 99 dinfo->name = "Intel(R) 855GME"; 100 dinfo->chipset = INTEL_855GME; 101 return 0; 102 case INTEL_VAR_855GM: 103 dinfo->name = "Intel(R) 855GM"; 104 dinfo->chipset = INTEL_855GM; 105 return 0; 106 case INTEL_VAR_852GME: 107 dinfo->name = "Intel(R) 852GME"; 108 dinfo->chipset = INTEL_852GME; 109 return 0; 110 case INTEL_VAR_852GM: 111 dinfo->name = "Intel(R) 852GM"; 112 dinfo->chipset = INTEL_852GM; 113 return 0; 114 default: 115 dinfo->name = "Intel(R) 852GM/855GM"; 116 dinfo->chipset = INTEL_85XGM; 117 return 0; 118 } 119 break; 120 case PCI_DEVICE_ID_INTEL_865G: 121 dinfo->name = "Intel(R) 865G"; 122 dinfo->chipset = INTEL_865G; 123 dinfo->mobile = 0; 124 dinfo->pll_index = PLLS_I8xx; 125 return 0; 126 case PCI_DEVICE_ID_INTEL_915G: 127 dinfo->name = "Intel(R) 915G"; 128 dinfo->chipset = INTEL_915G; 129 dinfo->mobile = 0; 130 dinfo->pll_index = PLLS_I9xx; 131 return 0; 132 case PCI_DEVICE_ID_INTEL_915GM: 133 dinfo->name = "Intel(R) 915GM"; 134 dinfo->chipset = INTEL_915GM; 135 dinfo->mobile = 1; 136 dinfo->pll_index = PLLS_I9xx; 137 return 0; 138 case PCI_DEVICE_ID_INTEL_945G: 139 dinfo->name = "Intel(R) 945G"; 140 dinfo->chipset = INTEL_945G; 141 dinfo->mobile = 0; 142 dinfo->pll_index = PLLS_I9xx; 143 return 0; 144 case PCI_DEVICE_ID_INTEL_945GM: 145 dinfo->name = "Intel(R) 945GM"; 146 dinfo->chipset = INTEL_945GM; 147 dinfo->mobile = 1; 148 dinfo->pll_index = PLLS_I9xx; 149 return 0; 150 case PCI_DEVICE_ID_INTEL_945GME: 151 dinfo->name = "Intel(R) 945GME"; 152 dinfo->chipset = INTEL_945GME; 153 dinfo->mobile = 1; 154 dinfo->pll_index = PLLS_I9xx; 155 return 0; 156 case PCI_DEVICE_ID_INTEL_965G: 157 dinfo->name = "Intel(R) 965G"; 158 dinfo->chipset = INTEL_965G; 159 dinfo->mobile = 0; 160 dinfo->pll_index = PLLS_I9xx; 161 return 0; 162 case PCI_DEVICE_ID_INTEL_965GM: 163 dinfo->name = "Intel(R) 965GM"; 164 dinfo->chipset = INTEL_965GM; 165 dinfo->mobile = 1; 166 dinfo->pll_index = PLLS_I9xx; 167 return 0; 168 default: 169 return 1; 170 } 171 } 172 173 int intelfbhw_get_memory(struct pci_dev *pdev, int *aperture_size, 174 int *stolen_size) 175 { 176 struct pci_dev *bridge_dev; 177 u16 tmp; 178 int stolen_overhead; 179 180 if (!pdev || !aperture_size || !stolen_size) 181 return 1; 182 183 /* Find the bridge device. It is always 0:0.0 */ 184 if (!(bridge_dev = pci_get_bus_and_slot(0, PCI_DEVFN(0, 0)))) { 185 ERR_MSG("cannot find bridge device\n"); 186 return 1; 187 } 188 189 /* Get the fb aperture size and "stolen" memory amount. */ 190 tmp = 0; 191 pci_read_config_word(bridge_dev, INTEL_GMCH_CTRL, &tmp); 192 pci_dev_put(bridge_dev); 193 194 switch (pdev->device) { 195 case PCI_DEVICE_ID_INTEL_915G: 196 case PCI_DEVICE_ID_INTEL_915GM: 197 case PCI_DEVICE_ID_INTEL_945G: 198 case PCI_DEVICE_ID_INTEL_945GM: 199 case PCI_DEVICE_ID_INTEL_945GME: 200 case PCI_DEVICE_ID_INTEL_965G: 201 case PCI_DEVICE_ID_INTEL_965GM: 202 /* 915, 945 and 965 chipsets support a 256MB aperture. 203 Aperture size is determined by inspected the 204 base address of the aperture. */ 205 if (pci_resource_start(pdev, 2) & 0x08000000) 206 *aperture_size = MB(128); 207 else 208 *aperture_size = MB(256); 209 break; 210 default: 211 if ((tmp & INTEL_GMCH_MEM_MASK) == INTEL_GMCH_MEM_64M) 212 *aperture_size = MB(64); 213 else 214 *aperture_size = MB(128); 215 break; 216 } 217 218 /* Stolen memory size is reduced by the GTT and the popup. 219 GTT is 1K per MB of aperture size, and popup is 4K. */ 220 stolen_overhead = (*aperture_size / MB(1)) + 4; 221 switch(pdev->device) { 222 case PCI_DEVICE_ID_INTEL_830M: 223 case PCI_DEVICE_ID_INTEL_845G: 224 switch (tmp & INTEL_830_GMCH_GMS_MASK) { 225 case INTEL_830_GMCH_GMS_STOLEN_512: 226 *stolen_size = KB(512) - KB(stolen_overhead); 227 return 0; 228 case INTEL_830_GMCH_GMS_STOLEN_1024: 229 *stolen_size = MB(1) - KB(stolen_overhead); 230 return 0; 231 case INTEL_830_GMCH_GMS_STOLEN_8192: 232 *stolen_size = MB(8) - KB(stolen_overhead); 233 return 0; 234 case INTEL_830_GMCH_GMS_LOCAL: 235 ERR_MSG("only local memory found\n"); 236 return 1; 237 case INTEL_830_GMCH_GMS_DISABLED: 238 ERR_MSG("video memory is disabled\n"); 239 return 1; 240 default: 241 ERR_MSG("unexpected GMCH_GMS value: 0x%02x\n", 242 tmp & INTEL_830_GMCH_GMS_MASK); 243 return 1; 244 } 245 break; 246 default: 247 switch (tmp & INTEL_855_GMCH_GMS_MASK) { 248 case INTEL_855_GMCH_GMS_STOLEN_1M: 249 *stolen_size = MB(1) - KB(stolen_overhead); 250 return 0; 251 case INTEL_855_GMCH_GMS_STOLEN_4M: 252 *stolen_size = MB(4) - KB(stolen_overhead); 253 return 0; 254 case INTEL_855_GMCH_GMS_STOLEN_8M: 255 *stolen_size = MB(8) - KB(stolen_overhead); 256 return 0; 257 case INTEL_855_GMCH_GMS_STOLEN_16M: 258 *stolen_size = MB(16) - KB(stolen_overhead); 259 return 0; 260 case INTEL_855_GMCH_GMS_STOLEN_32M: 261 *stolen_size = MB(32) - KB(stolen_overhead); 262 return 0; 263 case INTEL_915G_GMCH_GMS_STOLEN_48M: 264 *stolen_size = MB(48) - KB(stolen_overhead); 265 return 0; 266 case INTEL_915G_GMCH_GMS_STOLEN_64M: 267 *stolen_size = MB(64) - KB(stolen_overhead); 268 return 0; 269 case INTEL_855_GMCH_GMS_DISABLED: 270 ERR_MSG("video memory is disabled\n"); 271 return 0; 272 default: 273 ERR_MSG("unexpected GMCH_GMS value: 0x%02x\n", 274 tmp & INTEL_855_GMCH_GMS_MASK); 275 return 1; 276 } 277 } 278 } 279 280 int intelfbhw_check_non_crt(struct intelfb_info *dinfo) 281 { 282 int dvo = 0; 283 284 if (INREG(LVDS) & PORT_ENABLE) 285 dvo |= LVDS_PORT; 286 if (INREG(DVOA) & PORT_ENABLE) 287 dvo |= DVOA_PORT; 288 if (INREG(DVOB) & PORT_ENABLE) 289 dvo |= DVOB_PORT; 290 if (INREG(DVOC) & PORT_ENABLE) 291 dvo |= DVOC_PORT; 292 293 return dvo; 294 } 295 296 const char * intelfbhw_dvo_to_string(int dvo) 297 { 298 if (dvo & DVOA_PORT) 299 return "DVO port A"; 300 else if (dvo & DVOB_PORT) 301 return "DVO port B"; 302 else if (dvo & DVOC_PORT) 303 return "DVO port C"; 304 else if (dvo & LVDS_PORT) 305 return "LVDS port"; 306 else 307 return NULL; 308 } 309 310 311 int intelfbhw_validate_mode(struct intelfb_info *dinfo, 312 struct fb_var_screeninfo *var) 313 { 314 int bytes_per_pixel; 315 int tmp; 316 317 #if VERBOSE > 0 318 DBG_MSG("intelfbhw_validate_mode\n"); 319 #endif 320 321 bytes_per_pixel = var->bits_per_pixel / 8; 322 if (bytes_per_pixel == 3) 323 bytes_per_pixel = 4; 324 325 /* Check if enough video memory. */ 326 tmp = var->yres_virtual * var->xres_virtual * bytes_per_pixel; 327 if (tmp > dinfo->fb.size) { 328 WRN_MSG("Not enough video ram for mode " 329 "(%d KByte vs %d KByte).\n", 330 BtoKB(tmp), BtoKB(dinfo->fb.size)); 331 return 1; 332 } 333 334 /* Check if x/y limits are OK. */ 335 if (var->xres - 1 > HACTIVE_MASK) { 336 WRN_MSG("X resolution too large (%d vs %d).\n", 337 var->xres, HACTIVE_MASK + 1); 338 return 1; 339 } 340 if (var->yres - 1 > VACTIVE_MASK) { 341 WRN_MSG("Y resolution too large (%d vs %d).\n", 342 var->yres, VACTIVE_MASK + 1); 343 return 1; 344 } 345 if (var->xres < 4) { 346 WRN_MSG("X resolution too small (%d vs 4).\n", var->xres); 347 return 1; 348 } 349 if (var->yres < 4) { 350 WRN_MSG("Y resolution too small (%d vs 4).\n", var->yres); 351 return 1; 352 } 353 354 /* Check for doublescan modes. */ 355 if (var->vmode & FB_VMODE_DOUBLE) { 356 WRN_MSG("Mode is double-scan.\n"); 357 return 1; 358 } 359 360 if ((var->vmode & FB_VMODE_INTERLACED) && (var->yres & 1)) { 361 WRN_MSG("Odd number of lines in interlaced mode\n"); 362 return 1; 363 } 364 365 /* Check if clock is OK. */ 366 tmp = 1000000000 / var->pixclock; 367 if (tmp < MIN_CLOCK) { 368 WRN_MSG("Pixel clock is too low (%d MHz vs %d MHz).\n", 369 (tmp + 500) / 1000, MIN_CLOCK / 1000); 370 return 1; 371 } 372 if (tmp > MAX_CLOCK) { 373 WRN_MSG("Pixel clock is too high (%d MHz vs %d MHz).\n", 374 (tmp + 500) / 1000, MAX_CLOCK / 1000); 375 return 1; 376 } 377 378 return 0; 379 } 380 381 int intelfbhw_pan_display(struct fb_var_screeninfo *var, struct fb_info *info) 382 { 383 struct intelfb_info *dinfo = GET_DINFO(info); 384 u32 offset, xoffset, yoffset; 385 386 #if VERBOSE > 0 387 DBG_MSG("intelfbhw_pan_display\n"); 388 #endif 389 390 xoffset = ROUND_DOWN_TO(var->xoffset, 8); 391 yoffset = var->yoffset; 392 393 if ((xoffset + info->var.xres > info->var.xres_virtual) || 394 (yoffset + info->var.yres > info->var.yres_virtual)) 395 return -EINVAL; 396 397 offset = (yoffset * dinfo->pitch) + 398 (xoffset * info->var.bits_per_pixel) / 8; 399 400 offset += dinfo->fb.offset << 12; 401 402 dinfo->vsync.pan_offset = offset; 403 if ((var->activate & FB_ACTIVATE_VBL) && 404 !intelfbhw_enable_irq(dinfo)) 405 dinfo->vsync.pan_display = 1; 406 else { 407 dinfo->vsync.pan_display = 0; 408 OUTREG(DSPABASE, offset); 409 } 410 411 return 0; 412 } 413 414 /* Blank the screen. */ 415 void intelfbhw_do_blank(int blank, struct fb_info *info) 416 { 417 struct intelfb_info *dinfo = GET_DINFO(info); 418 u32 tmp; 419 420 #if VERBOSE > 0 421 DBG_MSG("intelfbhw_do_blank: blank is %d\n", blank); 422 #endif 423 424 /* Turn plane A on or off */ 425 tmp = INREG(DSPACNTR); 426 if (blank) 427 tmp &= ~DISPPLANE_PLANE_ENABLE; 428 else 429 tmp |= DISPPLANE_PLANE_ENABLE; 430 OUTREG(DSPACNTR, tmp); 431 /* Flush */ 432 tmp = INREG(DSPABASE); 433 OUTREG(DSPABASE, tmp); 434 435 /* Turn off/on the HW cursor */ 436 #if VERBOSE > 0 437 DBG_MSG("cursor_on is %d\n", dinfo->cursor_on); 438 #endif 439 if (dinfo->cursor_on) { 440 if (blank) 441 intelfbhw_cursor_hide(dinfo); 442 else 443 intelfbhw_cursor_show(dinfo); 444 dinfo->cursor_on = 1; 445 } 446 dinfo->cursor_blanked = blank; 447 448 /* Set DPMS level */ 449 tmp = INREG(ADPA) & ~ADPA_DPMS_CONTROL_MASK; 450 switch (blank) { 451 case FB_BLANK_UNBLANK: 452 case FB_BLANK_NORMAL: 453 tmp |= ADPA_DPMS_D0; 454 break; 455 case FB_BLANK_VSYNC_SUSPEND: 456 tmp |= ADPA_DPMS_D1; 457 break; 458 case FB_BLANK_HSYNC_SUSPEND: 459 tmp |= ADPA_DPMS_D2; 460 break; 461 case FB_BLANK_POWERDOWN: 462 tmp |= ADPA_DPMS_D3; 463 break; 464 } 465 OUTREG(ADPA, tmp); 466 467 return; 468 } 469 470 471 /* Check which pipe is connected to an active display plane. */ 472 int intelfbhw_active_pipe(const struct intelfb_hwstate *hw) 473 { 474 int pipe = -1; 475 476 /* keep old default behaviour - prefer PIPE_A */ 477 if (hw->disp_b_ctrl & DISPPLANE_PLANE_ENABLE) { 478 pipe = (hw->disp_b_ctrl >> DISPPLANE_SEL_PIPE_SHIFT); 479 pipe &= PIPE_MASK; 480 if (unlikely(pipe == PIPE_A)) 481 return PIPE_A; 482 } 483 if (hw->disp_a_ctrl & DISPPLANE_PLANE_ENABLE) { 484 pipe = (hw->disp_a_ctrl >> DISPPLANE_SEL_PIPE_SHIFT); 485 pipe &= PIPE_MASK; 486 if (likely(pipe == PIPE_A)) 487 return PIPE_A; 488 } 489 /* Impossible that no pipe is selected - return PIPE_A */ 490 WARN_ON(pipe == -1); 491 if (unlikely(pipe == -1)) 492 pipe = PIPE_A; 493 494 return pipe; 495 } 496 497 void intelfbhw_setcolreg(struct intelfb_info *dinfo, unsigned regno, 498 unsigned red, unsigned green, unsigned blue, 499 unsigned transp) 500 { 501 u32 palette_reg = (dinfo->pipe == PIPE_A) ? 502 PALETTE_A : PALETTE_B; 503 504 #if VERBOSE > 0 505 DBG_MSG("intelfbhw_setcolreg: %d: (%d, %d, %d)\n", 506 regno, red, green, blue); 507 #endif 508 509 OUTREG(palette_reg + (regno << 2), 510 (red << PALETTE_8_RED_SHIFT) | 511 (green << PALETTE_8_GREEN_SHIFT) | 512 (blue << PALETTE_8_BLUE_SHIFT)); 513 } 514 515 516 int intelfbhw_read_hw_state(struct intelfb_info *dinfo, 517 struct intelfb_hwstate *hw, int flag) 518 { 519 int i; 520 521 #if VERBOSE > 0 522 DBG_MSG("intelfbhw_read_hw_state\n"); 523 #endif 524 525 if (!hw || !dinfo) 526 return -1; 527 528 /* Read in as much of the HW state as possible. */ 529 hw->vga0_divisor = INREG(VGA0_DIVISOR); 530 hw->vga1_divisor = INREG(VGA1_DIVISOR); 531 hw->vga_pd = INREG(VGAPD); 532 hw->dpll_a = INREG(DPLL_A); 533 hw->dpll_b = INREG(DPLL_B); 534 hw->fpa0 = INREG(FPA0); 535 hw->fpa1 = INREG(FPA1); 536 hw->fpb0 = INREG(FPB0); 537 hw->fpb1 = INREG(FPB1); 538 539 if (flag == 1) 540 return flag; 541 542 #if 0 543 /* This seems to be a problem with the 852GM/855GM */ 544 for (i = 0; i < PALETTE_8_ENTRIES; i++) { 545 hw->palette_a[i] = INREG(PALETTE_A + (i << 2)); 546 hw->palette_b[i] = INREG(PALETTE_B + (i << 2)); 547 } 548 #endif 549 550 if (flag == 2) 551 return flag; 552 553 hw->htotal_a = INREG(HTOTAL_A); 554 hw->hblank_a = INREG(HBLANK_A); 555 hw->hsync_a = INREG(HSYNC_A); 556 hw->vtotal_a = INREG(VTOTAL_A); 557 hw->vblank_a = INREG(VBLANK_A); 558 hw->vsync_a = INREG(VSYNC_A); 559 hw->src_size_a = INREG(SRC_SIZE_A); 560 hw->bclrpat_a = INREG(BCLRPAT_A); 561 hw->htotal_b = INREG(HTOTAL_B); 562 hw->hblank_b = INREG(HBLANK_B); 563 hw->hsync_b = INREG(HSYNC_B); 564 hw->vtotal_b = INREG(VTOTAL_B); 565 hw->vblank_b = INREG(VBLANK_B); 566 hw->vsync_b = INREG(VSYNC_B); 567 hw->src_size_b = INREG(SRC_SIZE_B); 568 hw->bclrpat_b = INREG(BCLRPAT_B); 569 570 if (flag == 3) 571 return flag; 572 573 hw->adpa = INREG(ADPA); 574 hw->dvoa = INREG(DVOA); 575 hw->dvob = INREG(DVOB); 576 hw->dvoc = INREG(DVOC); 577 hw->dvoa_srcdim = INREG(DVOA_SRCDIM); 578 hw->dvob_srcdim = INREG(DVOB_SRCDIM); 579 hw->dvoc_srcdim = INREG(DVOC_SRCDIM); 580 hw->lvds = INREG(LVDS); 581 582 if (flag == 4) 583 return flag; 584 585 hw->pipe_a_conf = INREG(PIPEACONF); 586 hw->pipe_b_conf = INREG(PIPEBCONF); 587 hw->disp_arb = INREG(DISPARB); 588 589 if (flag == 5) 590 return flag; 591 592 hw->cursor_a_control = INREG(CURSOR_A_CONTROL); 593 hw->cursor_b_control = INREG(CURSOR_B_CONTROL); 594 hw->cursor_a_base = INREG(CURSOR_A_BASEADDR); 595 hw->cursor_b_base = INREG(CURSOR_B_BASEADDR); 596 597 if (flag == 6) 598 return flag; 599 600 for (i = 0; i < 4; i++) { 601 hw->cursor_a_palette[i] = INREG(CURSOR_A_PALETTE0 + (i << 2)); 602 hw->cursor_b_palette[i] = INREG(CURSOR_B_PALETTE0 + (i << 2)); 603 } 604 605 if (flag == 7) 606 return flag; 607 608 hw->cursor_size = INREG(CURSOR_SIZE); 609 610 if (flag == 8) 611 return flag; 612 613 hw->disp_a_ctrl = INREG(DSPACNTR); 614 hw->disp_b_ctrl = INREG(DSPBCNTR); 615 hw->disp_a_base = INREG(DSPABASE); 616 hw->disp_b_base = INREG(DSPBBASE); 617 hw->disp_a_stride = INREG(DSPASTRIDE); 618 hw->disp_b_stride = INREG(DSPBSTRIDE); 619 620 if (flag == 9) 621 return flag; 622 623 hw->vgacntrl = INREG(VGACNTRL); 624 625 if (flag == 10) 626 return flag; 627 628 hw->add_id = INREG(ADD_ID); 629 630 if (flag == 11) 631 return flag; 632 633 for (i = 0; i < 7; i++) { 634 hw->swf0x[i] = INREG(SWF00 + (i << 2)); 635 hw->swf1x[i] = INREG(SWF10 + (i << 2)); 636 if (i < 3) 637 hw->swf3x[i] = INREG(SWF30 + (i << 2)); 638 } 639 640 for (i = 0; i < 8; i++) 641 hw->fence[i] = INREG(FENCE + (i << 2)); 642 643 hw->instpm = INREG(INSTPM); 644 hw->mem_mode = INREG(MEM_MODE); 645 hw->fw_blc_0 = INREG(FW_BLC_0); 646 hw->fw_blc_1 = INREG(FW_BLC_1); 647 648 hw->hwstam = INREG16(HWSTAM); 649 hw->ier = INREG16(IER); 650 hw->iir = INREG16(IIR); 651 hw->imr = INREG16(IMR); 652 653 return 0; 654 } 655 656 657 static int calc_vclock3(int index, int m, int n, int p) 658 { 659 if (p == 0 || n == 0) 660 return 0; 661 return plls[index].ref_clk * m / n / p; 662 } 663 664 static int calc_vclock(int index, int m1, int m2, int n, int p1, int p2, 665 int lvds) 666 { 667 struct pll_min_max *pll = &plls[index]; 668 u32 m, vco, p; 669 670 m = (5 * (m1 + 2)) + (m2 + 2); 671 n += 2; 672 vco = pll->ref_clk * m / n; 673 674 if (index == PLLS_I8xx) 675 p = ((p1 + 2) * (1 << (p2 + 1))); 676 else 677 p = ((p1) * (p2 ? 5 : 10)); 678 return vco / p; 679 } 680 681 #if REGDUMP 682 static void intelfbhw_get_p1p2(struct intelfb_info *dinfo, int dpll, 683 int *o_p1, int *o_p2) 684 { 685 int p1, p2; 686 687 if (IS_I9XX(dinfo)) { 688 if (dpll & DPLL_P1_FORCE_DIV2) 689 p1 = 1; 690 else 691 p1 = (dpll >> DPLL_P1_SHIFT) & 0xff; 692 693 p1 = ffs(p1); 694 695 p2 = (dpll >> DPLL_I9XX_P2_SHIFT) & DPLL_P2_MASK; 696 } else { 697 if (dpll & DPLL_P1_FORCE_DIV2) 698 p1 = 0; 699 else 700 p1 = (dpll >> DPLL_P1_SHIFT) & DPLL_P1_MASK; 701 p2 = (dpll >> DPLL_P2_SHIFT) & DPLL_P2_MASK; 702 } 703 704 *o_p1 = p1; 705 *o_p2 = p2; 706 } 707 #endif 708 709 710 void intelfbhw_print_hw_state(struct intelfb_info *dinfo, 711 struct intelfb_hwstate *hw) 712 { 713 #if REGDUMP 714 int i, m1, m2, n, p1, p2; 715 int index = dinfo->pll_index; 716 DBG_MSG("intelfbhw_print_hw_state\n"); 717 718 if (!hw) 719 return; 720 /* Read in as much of the HW state as possible. */ 721 printk("hw state dump start\n"); 722 printk(" VGA0_DIVISOR: 0x%08x\n", hw->vga0_divisor); 723 printk(" VGA1_DIVISOR: 0x%08x\n", hw->vga1_divisor); 724 printk(" VGAPD: 0x%08x\n", hw->vga_pd); 725 n = (hw->vga0_divisor >> FP_N_DIVISOR_SHIFT) & FP_DIVISOR_MASK; 726 m1 = (hw->vga0_divisor >> FP_M1_DIVISOR_SHIFT) & FP_DIVISOR_MASK; 727 m2 = (hw->vga0_divisor >> FP_M2_DIVISOR_SHIFT) & FP_DIVISOR_MASK; 728 729 intelfbhw_get_p1p2(dinfo, hw->vga_pd, &p1, &p2); 730 731 printk(" VGA0: (m1, m2, n, p1, p2) = (%d, %d, %d, %d, %d)\n", 732 m1, m2, n, p1, p2); 733 printk(" VGA0: clock is %d\n", 734 calc_vclock(index, m1, m2, n, p1, p2, 0)); 735 736 n = (hw->vga1_divisor >> FP_N_DIVISOR_SHIFT) & FP_DIVISOR_MASK; 737 m1 = (hw->vga1_divisor >> FP_M1_DIVISOR_SHIFT) & FP_DIVISOR_MASK; 738 m2 = (hw->vga1_divisor >> FP_M2_DIVISOR_SHIFT) & FP_DIVISOR_MASK; 739 740 intelfbhw_get_p1p2(dinfo, hw->vga_pd, &p1, &p2); 741 printk(" VGA1: (m1, m2, n, p1, p2) = (%d, %d, %d, %d, %d)\n", 742 m1, m2, n, p1, p2); 743 printk(" VGA1: clock is %d\n", 744 calc_vclock(index, m1, m2, n, p1, p2, 0)); 745 746 printk(" DPLL_A: 0x%08x\n", hw->dpll_a); 747 printk(" DPLL_B: 0x%08x\n", hw->dpll_b); 748 printk(" FPA0: 0x%08x\n", hw->fpa0); 749 printk(" FPA1: 0x%08x\n", hw->fpa1); 750 printk(" FPB0: 0x%08x\n", hw->fpb0); 751 printk(" FPB1: 0x%08x\n", hw->fpb1); 752 753 n = (hw->fpa0 >> FP_N_DIVISOR_SHIFT) & FP_DIVISOR_MASK; 754 m1 = (hw->fpa0 >> FP_M1_DIVISOR_SHIFT) & FP_DIVISOR_MASK; 755 m2 = (hw->fpa0 >> FP_M2_DIVISOR_SHIFT) & FP_DIVISOR_MASK; 756 757 intelfbhw_get_p1p2(dinfo, hw->dpll_a, &p1, &p2); 758 759 printk(" PLLA0: (m1, m2, n, p1, p2) = (%d, %d, %d, %d, %d)\n", 760 m1, m2, n, p1, p2); 761 printk(" PLLA0: clock is %d\n", 762 calc_vclock(index, m1, m2, n, p1, p2, 0)); 763 764 n = (hw->fpa1 >> FP_N_DIVISOR_SHIFT) & FP_DIVISOR_MASK; 765 m1 = (hw->fpa1 >> FP_M1_DIVISOR_SHIFT) & FP_DIVISOR_MASK; 766 m2 = (hw->fpa1 >> FP_M2_DIVISOR_SHIFT) & FP_DIVISOR_MASK; 767 768 intelfbhw_get_p1p2(dinfo, hw->dpll_a, &p1, &p2); 769 770 printk(" PLLA1: (m1, m2, n, p1, p2) = (%d, %d, %d, %d, %d)\n", 771 m1, m2, n, p1, p2); 772 printk(" PLLA1: clock is %d\n", 773 calc_vclock(index, m1, m2, n, p1, p2, 0)); 774 775 #if 0 776 printk(" PALETTE_A:\n"); 777 for (i = 0; i < PALETTE_8_ENTRIES) 778 printk(" %3d: 0x%08x\n", i, hw->palette_a[i]); 779 printk(" PALETTE_B:\n"); 780 for (i = 0; i < PALETTE_8_ENTRIES) 781 printk(" %3d: 0x%08x\n", i, hw->palette_b[i]); 782 #endif 783 784 printk(" HTOTAL_A: 0x%08x\n", hw->htotal_a); 785 printk(" HBLANK_A: 0x%08x\n", hw->hblank_a); 786 printk(" HSYNC_A: 0x%08x\n", hw->hsync_a); 787 printk(" VTOTAL_A: 0x%08x\n", hw->vtotal_a); 788 printk(" VBLANK_A: 0x%08x\n", hw->vblank_a); 789 printk(" VSYNC_A: 0x%08x\n", hw->vsync_a); 790 printk(" SRC_SIZE_A: 0x%08x\n", hw->src_size_a); 791 printk(" BCLRPAT_A: 0x%08x\n", hw->bclrpat_a); 792 printk(" HTOTAL_B: 0x%08x\n", hw->htotal_b); 793 printk(" HBLANK_B: 0x%08x\n", hw->hblank_b); 794 printk(" HSYNC_B: 0x%08x\n", hw->hsync_b); 795 printk(" VTOTAL_B: 0x%08x\n", hw->vtotal_b); 796 printk(" VBLANK_B: 0x%08x\n", hw->vblank_b); 797 printk(" VSYNC_B: 0x%08x\n", hw->vsync_b); 798 printk(" SRC_SIZE_B: 0x%08x\n", hw->src_size_b); 799 printk(" BCLRPAT_B: 0x%08x\n", hw->bclrpat_b); 800 801 printk(" ADPA: 0x%08x\n", hw->adpa); 802 printk(" DVOA: 0x%08x\n", hw->dvoa); 803 printk(" DVOB: 0x%08x\n", hw->dvob); 804 printk(" DVOC: 0x%08x\n", hw->dvoc); 805 printk(" DVOA_SRCDIM: 0x%08x\n", hw->dvoa_srcdim); 806 printk(" DVOB_SRCDIM: 0x%08x\n", hw->dvob_srcdim); 807 printk(" DVOC_SRCDIM: 0x%08x\n", hw->dvoc_srcdim); 808 printk(" LVDS: 0x%08x\n", hw->lvds); 809 810 printk(" PIPEACONF: 0x%08x\n", hw->pipe_a_conf); 811 printk(" PIPEBCONF: 0x%08x\n", hw->pipe_b_conf); 812 printk(" DISPARB: 0x%08x\n", hw->disp_arb); 813 814 printk(" CURSOR_A_CONTROL: 0x%08x\n", hw->cursor_a_control); 815 printk(" CURSOR_B_CONTROL: 0x%08x\n", hw->cursor_b_control); 816 printk(" CURSOR_A_BASEADDR: 0x%08x\n", hw->cursor_a_base); 817 printk(" CURSOR_B_BASEADDR: 0x%08x\n", hw->cursor_b_base); 818 819 printk(" CURSOR_A_PALETTE: "); 820 for (i = 0; i < 4; i++) { 821 printk("0x%08x", hw->cursor_a_palette[i]); 822 if (i < 3) 823 printk(", "); 824 } 825 printk("\n"); 826 printk(" CURSOR_B_PALETTE: "); 827 for (i = 0; i < 4; i++) { 828 printk("0x%08x", hw->cursor_b_palette[i]); 829 if (i < 3) 830 printk(", "); 831 } 832 printk("\n"); 833 834 printk(" CURSOR_SIZE: 0x%08x\n", hw->cursor_size); 835 836 printk(" DSPACNTR: 0x%08x\n", hw->disp_a_ctrl); 837 printk(" DSPBCNTR: 0x%08x\n", hw->disp_b_ctrl); 838 printk(" DSPABASE: 0x%08x\n", hw->disp_a_base); 839 printk(" DSPBBASE: 0x%08x\n", hw->disp_b_base); 840 printk(" DSPASTRIDE: 0x%08x\n", hw->disp_a_stride); 841 printk(" DSPBSTRIDE: 0x%08x\n", hw->disp_b_stride); 842 843 printk(" VGACNTRL: 0x%08x\n", hw->vgacntrl); 844 printk(" ADD_ID: 0x%08x\n", hw->add_id); 845 846 for (i = 0; i < 7; i++) { 847 printk(" SWF0%d 0x%08x\n", i, 848 hw->swf0x[i]); 849 } 850 for (i = 0; i < 7; i++) { 851 printk(" SWF1%d 0x%08x\n", i, 852 hw->swf1x[i]); 853 } 854 for (i = 0; i < 3; i++) { 855 printk(" SWF3%d 0x%08x\n", i, 856 hw->swf3x[i]); 857 } 858 for (i = 0; i < 8; i++) 859 printk(" FENCE%d 0x%08x\n", i, 860 hw->fence[i]); 861 862 printk(" INSTPM 0x%08x\n", hw->instpm); 863 printk(" MEM_MODE 0x%08x\n", hw->mem_mode); 864 printk(" FW_BLC_0 0x%08x\n", hw->fw_blc_0); 865 printk(" FW_BLC_1 0x%08x\n", hw->fw_blc_1); 866 867 printk(" HWSTAM 0x%04x\n", hw->hwstam); 868 printk(" IER 0x%04x\n", hw->ier); 869 printk(" IIR 0x%04x\n", hw->iir); 870 printk(" IMR 0x%04x\n", hw->imr); 871 printk("hw state dump end\n"); 872 #endif 873 } 874 875 876 877 /* Split the M parameter into M1 and M2. */ 878 static int splitm(int index, unsigned int m, unsigned int *retm1, 879 unsigned int *retm2) 880 { 881 int m1, m2; 882 int testm; 883 struct pll_min_max *pll = &plls[index]; 884 885 /* no point optimising too much - brute force m */ 886 for (m1 = pll->min_m1; m1 < pll->max_m1 + 1; m1++) { 887 for (m2 = pll->min_m2; m2 < pll->max_m2 + 1; m2++) { 888 testm = (5 * (m1 + 2)) + (m2 + 2); 889 if (testm == m) { 890 *retm1 = (unsigned int)m1; 891 *retm2 = (unsigned int)m2; 892 return 0; 893 } 894 } 895 } 896 return 1; 897 } 898 899 /* Split the P parameter into P1 and P2. */ 900 static int splitp(int index, unsigned int p, unsigned int *retp1, 901 unsigned int *retp2) 902 { 903 int p1, p2; 904 struct pll_min_max *pll = &plls[index]; 905 906 if (index == PLLS_I9xx) { 907 p2 = (p % 10) ? 1 : 0; 908 909 p1 = p / (p2 ? 5 : 10); 910 911 *retp1 = (unsigned int)p1; 912 *retp2 = (unsigned int)p2; 913 return 0; 914 } 915 916 if (p % 4 == 0) 917 p2 = 1; 918 else 919 p2 = 0; 920 p1 = (p / (1 << (p2 + 1))) - 2; 921 if (p % 4 == 0 && p1 < pll->min_p1) { 922 p2 = 0; 923 p1 = (p / (1 << (p2 + 1))) - 2; 924 } 925 if (p1 < pll->min_p1 || p1 > pll->max_p1 || 926 (p1 + 2) * (1 << (p2 + 1)) != p) { 927 return 1; 928 } else { 929 *retp1 = (unsigned int)p1; 930 *retp2 = (unsigned int)p2; 931 return 0; 932 } 933 } 934 935 static int calc_pll_params(int index, int clock, u32 *retm1, u32 *retm2, 936 u32 *retn, u32 *retp1, u32 *retp2, u32 *retclock) 937 { 938 u32 m1, m2, n, p1, p2, n1, testm; 939 u32 f_vco, p, p_best = 0, m, f_out = 0; 940 u32 err_max, err_target, err_best = 10000000; 941 u32 n_best = 0, m_best = 0, f_best, f_err; 942 u32 p_min, p_max, p_inc, div_max; 943 struct pll_min_max *pll = &plls[index]; 944 945 /* Accept 0.5% difference, but aim for 0.1% */ 946 err_max = 5 * clock / 1000; 947 err_target = clock / 1000; 948 949 DBG_MSG("Clock is %d\n", clock); 950 951 div_max = pll->max_vco / clock; 952 953 p_inc = (clock <= pll->p_transition_clk) ? pll->p_inc_lo : pll->p_inc_hi; 954 p_min = p_inc; 955 p_max = ROUND_DOWN_TO(div_max, p_inc); 956 if (p_min < pll->min_p) 957 p_min = pll->min_p; 958 if (p_max > pll->max_p) 959 p_max = pll->max_p; 960 961 DBG_MSG("p range is %d-%d (%d)\n", p_min, p_max, p_inc); 962 963 p = p_min; 964 do { 965 if (splitp(index, p, &p1, &p2)) { 966 WRN_MSG("cannot split p = %d\n", p); 967 p += p_inc; 968 continue; 969 } 970 n = pll->min_n; 971 f_vco = clock * p; 972 973 do { 974 m = ROUND_UP_TO(f_vco * n, pll->ref_clk) / pll->ref_clk; 975 if (m < pll->min_m) 976 m = pll->min_m + 1; 977 if (m > pll->max_m) 978 m = pll->max_m - 1; 979 for (testm = m - 1; testm <= m; testm++) { 980 f_out = calc_vclock3(index, testm, n, p); 981 if (splitm(index, testm, &m1, &m2)) { 982 WRN_MSG("cannot split m = %d\n", 983 testm); 984 continue; 985 } 986 if (clock > f_out) 987 f_err = clock - f_out; 988 else/* slightly bias the error for bigger clocks */ 989 f_err = f_out - clock + 1; 990 991 if (f_err < err_best) { 992 m_best = testm; 993 n_best = n; 994 p_best = p; 995 f_best = f_out; 996 err_best = f_err; 997 } 998 } 999 n++; 1000 } while ((n <= pll->max_n) && (f_out >= clock)); 1001 p += p_inc; 1002 } while ((p <= p_max)); 1003 1004 if (!m_best) { 1005 WRN_MSG("cannot find parameters for clock %d\n", clock); 1006 return 1; 1007 } 1008 m = m_best; 1009 n = n_best; 1010 p = p_best; 1011 splitm(index, m, &m1, &m2); 1012 splitp(index, p, &p1, &p2); 1013 n1 = n - 2; 1014 1015 DBG_MSG("m, n, p: %d (%d,%d), %d (%d), %d (%d,%d), " 1016 "f: %d (%d), VCO: %d\n", 1017 m, m1, m2, n, n1, p, p1, p2, 1018 calc_vclock3(index, m, n, p), 1019 calc_vclock(index, m1, m2, n1, p1, p2, 0), 1020 calc_vclock3(index, m, n, p) * p); 1021 *retm1 = m1; 1022 *retm2 = m2; 1023 *retn = n1; 1024 *retp1 = p1; 1025 *retp2 = p2; 1026 *retclock = calc_vclock(index, m1, m2, n1, p1, p2, 0); 1027 1028 return 0; 1029 } 1030 1031 static __inline__ int check_overflow(u32 value, u32 limit, 1032 const char *description) 1033 { 1034 if (value > limit) { 1035 WRN_MSG("%s value %d exceeds limit %d\n", 1036 description, value, limit); 1037 return 1; 1038 } 1039 return 0; 1040 } 1041 1042 /* It is assumed that hw is filled in with the initial state information. */ 1043 int intelfbhw_mode_to_hw(struct intelfb_info *dinfo, 1044 struct intelfb_hwstate *hw, 1045 struct fb_var_screeninfo *var) 1046 { 1047 int pipe = intelfbhw_active_pipe(hw); 1048 u32 *dpll, *fp0, *fp1; 1049 u32 m1, m2, n, p1, p2, clock_target, clock; 1050 u32 hsync_start, hsync_end, hblank_start, hblank_end, htotal, hactive; 1051 u32 vsync_start, vsync_end, vblank_start, vblank_end, vtotal, vactive; 1052 u32 vsync_pol, hsync_pol; 1053 u32 *vs, *vb, *vt, *hs, *hb, *ht, *ss, *pipe_conf; 1054 u32 stride_alignment; 1055 1056 DBG_MSG("intelfbhw_mode_to_hw\n"); 1057 1058 /* Disable VGA */ 1059 hw->vgacntrl |= VGA_DISABLE; 1060 1061 /* Set which pipe's registers will be set. */ 1062 if (pipe == PIPE_B) { 1063 dpll = &hw->dpll_b; 1064 fp0 = &hw->fpb0; 1065 fp1 = &hw->fpb1; 1066 hs = &hw->hsync_b; 1067 hb = &hw->hblank_b; 1068 ht = &hw->htotal_b; 1069 vs = &hw->vsync_b; 1070 vb = &hw->vblank_b; 1071 vt = &hw->vtotal_b; 1072 ss = &hw->src_size_b; 1073 pipe_conf = &hw->pipe_b_conf; 1074 } else { 1075 dpll = &hw->dpll_a; 1076 fp0 = &hw->fpa0; 1077 fp1 = &hw->fpa1; 1078 hs = &hw->hsync_a; 1079 hb = &hw->hblank_a; 1080 ht = &hw->htotal_a; 1081 vs = &hw->vsync_a; 1082 vb = &hw->vblank_a; 1083 vt = &hw->vtotal_a; 1084 ss = &hw->src_size_a; 1085 pipe_conf = &hw->pipe_a_conf; 1086 } 1087 1088 /* Use ADPA register for sync control. */ 1089 hw->adpa &= ~ADPA_USE_VGA_HVPOLARITY; 1090 1091 /* sync polarity */ 1092 hsync_pol = (var->sync & FB_SYNC_HOR_HIGH_ACT) ? 1093 ADPA_SYNC_ACTIVE_HIGH : ADPA_SYNC_ACTIVE_LOW; 1094 vsync_pol = (var->sync & FB_SYNC_VERT_HIGH_ACT) ? 1095 ADPA_SYNC_ACTIVE_HIGH : ADPA_SYNC_ACTIVE_LOW; 1096 hw->adpa &= ~((ADPA_SYNC_ACTIVE_MASK << ADPA_VSYNC_ACTIVE_SHIFT) | 1097 (ADPA_SYNC_ACTIVE_MASK << ADPA_HSYNC_ACTIVE_SHIFT)); 1098 hw->adpa |= (hsync_pol << ADPA_HSYNC_ACTIVE_SHIFT) | 1099 (vsync_pol << ADPA_VSYNC_ACTIVE_SHIFT); 1100 1101 /* Connect correct pipe to the analog port DAC */ 1102 hw->adpa &= ~(PIPE_MASK << ADPA_PIPE_SELECT_SHIFT); 1103 hw->adpa |= (pipe << ADPA_PIPE_SELECT_SHIFT); 1104 1105 /* Set DPMS state to D0 (on) */ 1106 hw->adpa &= ~ADPA_DPMS_CONTROL_MASK; 1107 hw->adpa |= ADPA_DPMS_D0; 1108 1109 hw->adpa |= ADPA_DAC_ENABLE; 1110 1111 *dpll |= (DPLL_VCO_ENABLE | DPLL_VGA_MODE_DISABLE); 1112 *dpll &= ~(DPLL_RATE_SELECT_MASK | DPLL_REFERENCE_SELECT_MASK); 1113 *dpll |= (DPLL_REFERENCE_DEFAULT | DPLL_RATE_SELECT_FP0); 1114 1115 /* Desired clock in kHz */ 1116 clock_target = 1000000000 / var->pixclock; 1117 1118 if (calc_pll_params(dinfo->pll_index, clock_target, &m1, &m2, 1119 &n, &p1, &p2, &clock)) { 1120 WRN_MSG("calc_pll_params failed\n"); 1121 return 1; 1122 } 1123 1124 /* Check for overflow. */ 1125 if (check_overflow(p1, DPLL_P1_MASK, "PLL P1 parameter")) 1126 return 1; 1127 if (check_overflow(p2, DPLL_P2_MASK, "PLL P2 parameter")) 1128 return 1; 1129 if (check_overflow(m1, FP_DIVISOR_MASK, "PLL M1 parameter")) 1130 return 1; 1131 if (check_overflow(m2, FP_DIVISOR_MASK, "PLL M2 parameter")) 1132 return 1; 1133 if (check_overflow(n, FP_DIVISOR_MASK, "PLL N parameter")) 1134 return 1; 1135 1136 *dpll &= ~DPLL_P1_FORCE_DIV2; 1137 *dpll &= ~((DPLL_P2_MASK << DPLL_P2_SHIFT) | 1138 (DPLL_P1_MASK << DPLL_P1_SHIFT)); 1139 1140 if (IS_I9XX(dinfo)) { 1141 *dpll |= (p2 << DPLL_I9XX_P2_SHIFT); 1142 *dpll |= (1 << (p1 - 1)) << DPLL_P1_SHIFT; 1143 } else 1144 *dpll |= (p2 << DPLL_P2_SHIFT) | (p1 << DPLL_P1_SHIFT); 1145 1146 *fp0 = (n << FP_N_DIVISOR_SHIFT) | 1147 (m1 << FP_M1_DIVISOR_SHIFT) | 1148 (m2 << FP_M2_DIVISOR_SHIFT); 1149 *fp1 = *fp0; 1150 1151 hw->dvob &= ~PORT_ENABLE; 1152 hw->dvoc &= ~PORT_ENABLE; 1153 1154 /* Use display plane A. */ 1155 hw->disp_a_ctrl |= DISPPLANE_PLANE_ENABLE; 1156 hw->disp_a_ctrl &= ~DISPPLANE_GAMMA_ENABLE; 1157 hw->disp_a_ctrl &= ~DISPPLANE_PIXFORMAT_MASK; 1158 switch (intelfb_var_to_depth(var)) { 1159 case 8: 1160 hw->disp_a_ctrl |= DISPPLANE_8BPP | DISPPLANE_GAMMA_ENABLE; 1161 break; 1162 case 15: 1163 hw->disp_a_ctrl |= DISPPLANE_15_16BPP; 1164 break; 1165 case 16: 1166 hw->disp_a_ctrl |= DISPPLANE_16BPP; 1167 break; 1168 case 24: 1169 hw->disp_a_ctrl |= DISPPLANE_32BPP_NO_ALPHA; 1170 break; 1171 } 1172 hw->disp_a_ctrl &= ~(PIPE_MASK << DISPPLANE_SEL_PIPE_SHIFT); 1173 hw->disp_a_ctrl |= (pipe << DISPPLANE_SEL_PIPE_SHIFT); 1174 1175 /* Set CRTC registers. */ 1176 hactive = var->xres; 1177 hsync_start = hactive + var->right_margin; 1178 hsync_end = hsync_start + var->hsync_len; 1179 htotal = hsync_end + var->left_margin; 1180 hblank_start = hactive; 1181 hblank_end = htotal; 1182 1183 DBG_MSG("H: act %d, ss %d, se %d, tot %d bs %d, be %d\n", 1184 hactive, hsync_start, hsync_end, htotal, hblank_start, 1185 hblank_end); 1186 1187 vactive = var->yres; 1188 if (var->vmode & FB_VMODE_INTERLACED) 1189 vactive--; /* the chip adds 2 halflines automatically */ 1190 vsync_start = vactive + var->lower_margin; 1191 vsync_end = vsync_start + var->vsync_len; 1192 vtotal = vsync_end + var->upper_margin; 1193 vblank_start = vactive; 1194 vblank_end = vtotal; 1195 vblank_end = vsync_end + 1; 1196 1197 DBG_MSG("V: act %d, ss %d, se %d, tot %d bs %d, be %d\n", 1198 vactive, vsync_start, vsync_end, vtotal, vblank_start, 1199 vblank_end); 1200 1201 /* Adjust for register values, and check for overflow. */ 1202 hactive--; 1203 if (check_overflow(hactive, HACTIVE_MASK, "CRTC hactive")) 1204 return 1; 1205 hsync_start--; 1206 if (check_overflow(hsync_start, HSYNCSTART_MASK, "CRTC hsync_start")) 1207 return 1; 1208 hsync_end--; 1209 if (check_overflow(hsync_end, HSYNCEND_MASK, "CRTC hsync_end")) 1210 return 1; 1211 htotal--; 1212 if (check_overflow(htotal, HTOTAL_MASK, "CRTC htotal")) 1213 return 1; 1214 hblank_start--; 1215 if (check_overflow(hblank_start, HBLANKSTART_MASK, "CRTC hblank_start")) 1216 return 1; 1217 hblank_end--; 1218 if (check_overflow(hblank_end, HBLANKEND_MASK, "CRTC hblank_end")) 1219 return 1; 1220 1221 vactive--; 1222 if (check_overflow(vactive, VACTIVE_MASK, "CRTC vactive")) 1223 return 1; 1224 vsync_start--; 1225 if (check_overflow(vsync_start, VSYNCSTART_MASK, "CRTC vsync_start")) 1226 return 1; 1227 vsync_end--; 1228 if (check_overflow(vsync_end, VSYNCEND_MASK, "CRTC vsync_end")) 1229 return 1; 1230 vtotal--; 1231 if (check_overflow(vtotal, VTOTAL_MASK, "CRTC vtotal")) 1232 return 1; 1233 vblank_start--; 1234 if (check_overflow(vblank_start, VBLANKSTART_MASK, "CRTC vblank_start")) 1235 return 1; 1236 vblank_end--; 1237 if (check_overflow(vblank_end, VBLANKEND_MASK, "CRTC vblank_end")) 1238 return 1; 1239 1240 *ht = (htotal << HTOTAL_SHIFT) | (hactive << HACTIVE_SHIFT); 1241 *hb = (hblank_start << HBLANKSTART_SHIFT) | 1242 (hblank_end << HSYNCEND_SHIFT); 1243 *hs = (hsync_start << HSYNCSTART_SHIFT) | (hsync_end << HSYNCEND_SHIFT); 1244 1245 *vt = (vtotal << VTOTAL_SHIFT) | (vactive << VACTIVE_SHIFT); 1246 *vb = (vblank_start << VBLANKSTART_SHIFT) | 1247 (vblank_end << VSYNCEND_SHIFT); 1248 *vs = (vsync_start << VSYNCSTART_SHIFT) | (vsync_end << VSYNCEND_SHIFT); 1249 *ss = (hactive << SRC_SIZE_HORIZ_SHIFT) | 1250 (vactive << SRC_SIZE_VERT_SHIFT); 1251 1252 hw->disp_a_stride = dinfo->pitch; 1253 DBG_MSG("pitch is %d\n", hw->disp_a_stride); 1254 1255 hw->disp_a_base = hw->disp_a_stride * var->yoffset + 1256 var->xoffset * var->bits_per_pixel / 8; 1257 1258 hw->disp_a_base += dinfo->fb.offset << 12; 1259 1260 /* Check stride alignment. */ 1261 stride_alignment = IS_I9XX(dinfo) ? STRIDE_ALIGNMENT_I9XX : 1262 STRIDE_ALIGNMENT; 1263 if (hw->disp_a_stride % stride_alignment != 0) { 1264 WRN_MSG("display stride %d has bad alignment %d\n", 1265 hw->disp_a_stride, stride_alignment); 1266 return 1; 1267 } 1268 1269 /* Set the palette to 8-bit mode. */ 1270 *pipe_conf &= ~PIPECONF_GAMMA; 1271 1272 if (var->vmode & FB_VMODE_INTERLACED) 1273 *pipe_conf |= PIPECONF_INTERLACE_W_FIELD_INDICATION; 1274 else 1275 *pipe_conf &= ~PIPECONF_INTERLACE_MASK; 1276 1277 return 0; 1278 } 1279 1280 /* Program a (non-VGA) video mode. */ 1281 int intelfbhw_program_mode(struct intelfb_info *dinfo, 1282 const struct intelfb_hwstate *hw, int blank) 1283 { 1284 u32 tmp; 1285 const u32 *dpll, *fp0, *fp1, *pipe_conf; 1286 const u32 *hs, *ht, *hb, *vs, *vt, *vb, *ss; 1287 u32 dpll_reg, fp0_reg, fp1_reg, pipe_conf_reg, pipe_stat_reg; 1288 u32 hsync_reg, htotal_reg, hblank_reg; 1289 u32 vsync_reg, vtotal_reg, vblank_reg; 1290 u32 src_size_reg; 1291 u32 count, tmp_val[3]; 1292 1293 /* Assume single pipe */ 1294 1295 #if VERBOSE > 0 1296 DBG_MSG("intelfbhw_program_mode\n"); 1297 #endif 1298 1299 /* Disable VGA */ 1300 tmp = INREG(VGACNTRL); 1301 tmp |= VGA_DISABLE; 1302 OUTREG(VGACNTRL, tmp); 1303 1304 dinfo->pipe = intelfbhw_active_pipe(hw); 1305 1306 if (dinfo->pipe == PIPE_B) { 1307 dpll = &hw->dpll_b; 1308 fp0 = &hw->fpb0; 1309 fp1 = &hw->fpb1; 1310 pipe_conf = &hw->pipe_b_conf; 1311 hs = &hw->hsync_b; 1312 hb = &hw->hblank_b; 1313 ht = &hw->htotal_b; 1314 vs = &hw->vsync_b; 1315 vb = &hw->vblank_b; 1316 vt = &hw->vtotal_b; 1317 ss = &hw->src_size_b; 1318 dpll_reg = DPLL_B; 1319 fp0_reg = FPB0; 1320 fp1_reg = FPB1; 1321 pipe_conf_reg = PIPEBCONF; 1322 pipe_stat_reg = PIPEBSTAT; 1323 hsync_reg = HSYNC_B; 1324 htotal_reg = HTOTAL_B; 1325 hblank_reg = HBLANK_B; 1326 vsync_reg = VSYNC_B; 1327 vtotal_reg = VTOTAL_B; 1328 vblank_reg = VBLANK_B; 1329 src_size_reg = SRC_SIZE_B; 1330 } else { 1331 dpll = &hw->dpll_a; 1332 fp0 = &hw->fpa0; 1333 fp1 = &hw->fpa1; 1334 pipe_conf = &hw->pipe_a_conf; 1335 hs = &hw->hsync_a; 1336 hb = &hw->hblank_a; 1337 ht = &hw->htotal_a; 1338 vs = &hw->vsync_a; 1339 vb = &hw->vblank_a; 1340 vt = &hw->vtotal_a; 1341 ss = &hw->src_size_a; 1342 dpll_reg = DPLL_A; 1343 fp0_reg = FPA0; 1344 fp1_reg = FPA1; 1345 pipe_conf_reg = PIPEACONF; 1346 pipe_stat_reg = PIPEASTAT; 1347 hsync_reg = HSYNC_A; 1348 htotal_reg = HTOTAL_A; 1349 hblank_reg = HBLANK_A; 1350 vsync_reg = VSYNC_A; 1351 vtotal_reg = VTOTAL_A; 1352 vblank_reg = VBLANK_A; 1353 src_size_reg = SRC_SIZE_A; 1354 } 1355 1356 /* turn off pipe */ 1357 tmp = INREG(pipe_conf_reg); 1358 tmp &= ~PIPECONF_ENABLE; 1359 OUTREG(pipe_conf_reg, tmp); 1360 1361 count = 0; 1362 do { 1363 tmp_val[count % 3] = INREG(PIPEA_DSL); 1364 if ((tmp_val[0] == tmp_val[1]) && (tmp_val[1] == tmp_val[2])) 1365 break; 1366 count++; 1367 udelay(1); 1368 if (count % 200 == 0) { 1369 tmp = INREG(pipe_conf_reg); 1370 tmp &= ~PIPECONF_ENABLE; 1371 OUTREG(pipe_conf_reg, tmp); 1372 } 1373 } while (count < 2000); 1374 1375 OUTREG(ADPA, INREG(ADPA) & ~ADPA_DAC_ENABLE); 1376 1377 /* Disable planes A and B. */ 1378 tmp = INREG(DSPACNTR); 1379 tmp &= ~DISPPLANE_PLANE_ENABLE; 1380 OUTREG(DSPACNTR, tmp); 1381 tmp = INREG(DSPBCNTR); 1382 tmp &= ~DISPPLANE_PLANE_ENABLE; 1383 OUTREG(DSPBCNTR, tmp); 1384 1385 /* Wait for vblank. For now, just wait for a 50Hz cycle (20ms)) */ 1386 mdelay(20); 1387 1388 OUTREG(DVOB, INREG(DVOB) & ~PORT_ENABLE); 1389 OUTREG(DVOC, INREG(DVOC) & ~PORT_ENABLE); 1390 OUTREG(ADPA, INREG(ADPA) & ~ADPA_DAC_ENABLE); 1391 1392 /* Disable Sync */ 1393 tmp = INREG(ADPA); 1394 tmp &= ~ADPA_DPMS_CONTROL_MASK; 1395 tmp |= ADPA_DPMS_D3; 1396 OUTREG(ADPA, tmp); 1397 1398 /* do some funky magic - xyzzy */ 1399 OUTREG(0x61204, 0xabcd0000); 1400 1401 /* turn off PLL */ 1402 tmp = INREG(dpll_reg); 1403 tmp &= ~DPLL_VCO_ENABLE; 1404 OUTREG(dpll_reg, tmp); 1405 1406 /* Set PLL parameters */ 1407 OUTREG(fp0_reg, *fp0); 1408 OUTREG(fp1_reg, *fp1); 1409 1410 /* Enable PLL */ 1411 OUTREG(dpll_reg, *dpll); 1412 1413 /* Set DVOs B/C */ 1414 OUTREG(DVOB, hw->dvob); 1415 OUTREG(DVOC, hw->dvoc); 1416 1417 /* undo funky magic */ 1418 OUTREG(0x61204, 0x00000000); 1419 1420 /* Set ADPA */ 1421 OUTREG(ADPA, INREG(ADPA) | ADPA_DAC_ENABLE); 1422 OUTREG(ADPA, (hw->adpa & ~(ADPA_DPMS_CONTROL_MASK)) | ADPA_DPMS_D3); 1423 1424 /* Set pipe parameters */ 1425 OUTREG(hsync_reg, *hs); 1426 OUTREG(hblank_reg, *hb); 1427 OUTREG(htotal_reg, *ht); 1428 OUTREG(vsync_reg, *vs); 1429 OUTREG(vblank_reg, *vb); 1430 OUTREG(vtotal_reg, *vt); 1431 OUTREG(src_size_reg, *ss); 1432 1433 switch (dinfo->info->var.vmode & (FB_VMODE_INTERLACED | 1434 FB_VMODE_ODD_FLD_FIRST)) { 1435 case FB_VMODE_INTERLACED | FB_VMODE_ODD_FLD_FIRST: 1436 OUTREG(pipe_stat_reg, 0xFFFF | PIPESTAT_FLD_EVT_ODD_EN); 1437 break; 1438 case FB_VMODE_INTERLACED: /* even lines first */ 1439 OUTREG(pipe_stat_reg, 0xFFFF | PIPESTAT_FLD_EVT_EVEN_EN); 1440 break; 1441 default: /* non-interlaced */ 1442 OUTREG(pipe_stat_reg, 0xFFFF); /* clear all status bits only */ 1443 } 1444 /* Enable pipe */ 1445 OUTREG(pipe_conf_reg, *pipe_conf | PIPECONF_ENABLE); 1446 1447 /* Enable sync */ 1448 tmp = INREG(ADPA); 1449 tmp &= ~ADPA_DPMS_CONTROL_MASK; 1450 tmp |= ADPA_DPMS_D0; 1451 OUTREG(ADPA, tmp); 1452 1453 /* setup display plane */ 1454 if (dinfo->pdev->device == PCI_DEVICE_ID_INTEL_830M) { 1455 /* 1456 * i830M errata: the display plane must be enabled 1457 * to allow writes to the other bits in the plane 1458 * control register. 1459 */ 1460 tmp = INREG(DSPACNTR); 1461 if ((tmp & DISPPLANE_PLANE_ENABLE) != DISPPLANE_PLANE_ENABLE) { 1462 tmp |= DISPPLANE_PLANE_ENABLE; 1463 OUTREG(DSPACNTR, tmp); 1464 OUTREG(DSPACNTR, 1465 hw->disp_a_ctrl|DISPPLANE_PLANE_ENABLE); 1466 mdelay(1); 1467 } 1468 } 1469 1470 OUTREG(DSPACNTR, hw->disp_a_ctrl & ~DISPPLANE_PLANE_ENABLE); 1471 OUTREG(DSPASTRIDE, hw->disp_a_stride); 1472 OUTREG(DSPABASE, hw->disp_a_base); 1473 1474 /* Enable plane */ 1475 if (!blank) { 1476 tmp = INREG(DSPACNTR); 1477 tmp |= DISPPLANE_PLANE_ENABLE; 1478 OUTREG(DSPACNTR, tmp); 1479 OUTREG(DSPABASE, hw->disp_a_base); 1480 } 1481 1482 return 0; 1483 } 1484 1485 /* forward declarations */ 1486 static void refresh_ring(struct intelfb_info *dinfo); 1487 static void reset_state(struct intelfb_info *dinfo); 1488 static void do_flush(struct intelfb_info *dinfo); 1489 1490 static u32 get_ring_space(struct intelfb_info *dinfo) 1491 { 1492 u32 ring_space; 1493 1494 if (dinfo->ring_tail >= dinfo->ring_head) 1495 ring_space = dinfo->ring.size - 1496 (dinfo->ring_tail - dinfo->ring_head); 1497 else 1498 ring_space = dinfo->ring_head - dinfo->ring_tail; 1499 1500 if (ring_space > RING_MIN_FREE) 1501 ring_space -= RING_MIN_FREE; 1502 else 1503 ring_space = 0; 1504 1505 return ring_space; 1506 } 1507 1508 static int wait_ring(struct intelfb_info *dinfo, int n) 1509 { 1510 int i = 0; 1511 unsigned long end; 1512 u32 last_head = INREG(PRI_RING_HEAD) & RING_HEAD_MASK; 1513 1514 #if VERBOSE > 0 1515 DBG_MSG("wait_ring: %d\n", n); 1516 #endif 1517 1518 end = jiffies + (HZ * 3); 1519 while (dinfo->ring_space < n) { 1520 dinfo->ring_head = INREG(PRI_RING_HEAD) & RING_HEAD_MASK; 1521 dinfo->ring_space = get_ring_space(dinfo); 1522 1523 if (dinfo->ring_head != last_head) { 1524 end = jiffies + (HZ * 3); 1525 last_head = dinfo->ring_head; 1526 } 1527 i++; 1528 if (time_before(end, jiffies)) { 1529 if (!i) { 1530 /* Try again */ 1531 reset_state(dinfo); 1532 refresh_ring(dinfo); 1533 do_flush(dinfo); 1534 end = jiffies + (HZ * 3); 1535 i = 1; 1536 } else { 1537 WRN_MSG("ring buffer : space: %d wanted %d\n", 1538 dinfo->ring_space, n); 1539 WRN_MSG("lockup - turning off hardware " 1540 "acceleration\n"); 1541 dinfo->ring_lockup = 1; 1542 break; 1543 } 1544 } 1545 udelay(1); 1546 } 1547 return i; 1548 } 1549 1550 static void do_flush(struct intelfb_info *dinfo) 1551 { 1552 START_RING(2); 1553 OUT_RING(MI_FLUSH | MI_WRITE_DIRTY_STATE | MI_INVALIDATE_MAP_CACHE); 1554 OUT_RING(MI_NOOP); 1555 ADVANCE_RING(); 1556 } 1557 1558 void intelfbhw_do_sync(struct intelfb_info *dinfo) 1559 { 1560 #if VERBOSE > 0 1561 DBG_MSG("intelfbhw_do_sync\n"); 1562 #endif 1563 1564 if (!dinfo->accel) 1565 return; 1566 1567 /* 1568 * Send a flush, then wait until the ring is empty. This is what 1569 * the XFree86 driver does, and actually it doesn't seem a lot worse 1570 * than the recommended method (both have problems). 1571 */ 1572 do_flush(dinfo); 1573 wait_ring(dinfo, dinfo->ring.size - RING_MIN_FREE); 1574 dinfo->ring_space = dinfo->ring.size - RING_MIN_FREE; 1575 } 1576 1577 static void refresh_ring(struct intelfb_info *dinfo) 1578 { 1579 #if VERBOSE > 0 1580 DBG_MSG("refresh_ring\n"); 1581 #endif 1582 1583 dinfo->ring_head = INREG(PRI_RING_HEAD) & RING_HEAD_MASK; 1584 dinfo->ring_tail = INREG(PRI_RING_TAIL) & RING_TAIL_MASK; 1585 dinfo->ring_space = get_ring_space(dinfo); 1586 } 1587 1588 static void reset_state(struct intelfb_info *dinfo) 1589 { 1590 int i; 1591 u32 tmp; 1592 1593 #if VERBOSE > 0 1594 DBG_MSG("reset_state\n"); 1595 #endif 1596 1597 for (i = 0; i < FENCE_NUM; i++) 1598 OUTREG(FENCE + (i << 2), 0); 1599 1600 /* Flush the ring buffer if it's enabled. */ 1601 tmp = INREG(PRI_RING_LENGTH); 1602 if (tmp & RING_ENABLE) { 1603 #if VERBOSE > 0 1604 DBG_MSG("reset_state: ring was enabled\n"); 1605 #endif 1606 refresh_ring(dinfo); 1607 intelfbhw_do_sync(dinfo); 1608 DO_RING_IDLE(); 1609 } 1610 1611 OUTREG(PRI_RING_LENGTH, 0); 1612 OUTREG(PRI_RING_HEAD, 0); 1613 OUTREG(PRI_RING_TAIL, 0); 1614 OUTREG(PRI_RING_START, 0); 1615 } 1616 1617 /* Stop the 2D engine, and turn off the ring buffer. */ 1618 void intelfbhw_2d_stop(struct intelfb_info *dinfo) 1619 { 1620 #if VERBOSE > 0 1621 DBG_MSG("intelfbhw_2d_stop: accel: %d, ring_active: %d\n", 1622 dinfo->accel, dinfo->ring_active); 1623 #endif 1624 1625 if (!dinfo->accel) 1626 return; 1627 1628 dinfo->ring_active = 0; 1629 reset_state(dinfo); 1630 } 1631 1632 /* 1633 * Enable the ring buffer, and initialise the 2D engine. 1634 * It is assumed that the graphics engine has been stopped by previously 1635 * calling intelfb_2d_stop(). 1636 */ 1637 void intelfbhw_2d_start(struct intelfb_info *dinfo) 1638 { 1639 #if VERBOSE > 0 1640 DBG_MSG("intelfbhw_2d_start: accel: %d, ring_active: %d\n", 1641 dinfo->accel, dinfo->ring_active); 1642 #endif 1643 1644 if (!dinfo->accel) 1645 return; 1646 1647 /* Initialise the primary ring buffer. */ 1648 OUTREG(PRI_RING_LENGTH, 0); 1649 OUTREG(PRI_RING_TAIL, 0); 1650 OUTREG(PRI_RING_HEAD, 0); 1651 1652 OUTREG(PRI_RING_START, dinfo->ring.physical & RING_START_MASK); 1653 OUTREG(PRI_RING_LENGTH, 1654 ((dinfo->ring.size - GTT_PAGE_SIZE) & RING_LENGTH_MASK) | 1655 RING_NO_REPORT | RING_ENABLE); 1656 refresh_ring(dinfo); 1657 dinfo->ring_active = 1; 1658 } 1659 1660 /* 2D fillrect (solid fill or invert) */ 1661 void intelfbhw_do_fillrect(struct intelfb_info *dinfo, u32 x, u32 y, u32 w, 1662 u32 h, u32 color, u32 pitch, u32 bpp, u32 rop) 1663 { 1664 u32 br00, br09, br13, br14, br16; 1665 1666 #if VERBOSE > 0 1667 DBG_MSG("intelfbhw_do_fillrect: (%d,%d) %dx%d, c 0x%06x, p %d bpp %d, " 1668 "rop 0x%02x\n", x, y, w, h, color, pitch, bpp, rop); 1669 #endif 1670 1671 br00 = COLOR_BLT_CMD; 1672 br09 = dinfo->fb_start + (y * pitch + x * (bpp / 8)); 1673 br13 = (rop << ROP_SHIFT) | pitch; 1674 br14 = (h << HEIGHT_SHIFT) | ((w * (bpp / 8)) << WIDTH_SHIFT); 1675 br16 = color; 1676 1677 switch (bpp) { 1678 case 8: 1679 br13 |= COLOR_DEPTH_8; 1680 break; 1681 case 16: 1682 br13 |= COLOR_DEPTH_16; 1683 break; 1684 case 32: 1685 br13 |= COLOR_DEPTH_32; 1686 br00 |= WRITE_ALPHA | WRITE_RGB; 1687 break; 1688 } 1689 1690 START_RING(6); 1691 OUT_RING(br00); 1692 OUT_RING(br13); 1693 OUT_RING(br14); 1694 OUT_RING(br09); 1695 OUT_RING(br16); 1696 OUT_RING(MI_NOOP); 1697 ADVANCE_RING(); 1698 1699 #if VERBOSE > 0 1700 DBG_MSG("ring = 0x%08x, 0x%08x (%d)\n", dinfo->ring_head, 1701 dinfo->ring_tail, dinfo->ring_space); 1702 #endif 1703 } 1704 1705 void 1706 intelfbhw_do_bitblt(struct intelfb_info *dinfo, u32 curx, u32 cury, 1707 u32 dstx, u32 dsty, u32 w, u32 h, u32 pitch, u32 bpp) 1708 { 1709 u32 br00, br09, br11, br12, br13, br22, br23, br26; 1710 1711 #if VERBOSE > 0 1712 DBG_MSG("intelfbhw_do_bitblt: (%d,%d)->(%d,%d) %dx%d, p %d bpp %d\n", 1713 curx, cury, dstx, dsty, w, h, pitch, bpp); 1714 #endif 1715 1716 br00 = XY_SRC_COPY_BLT_CMD; 1717 br09 = dinfo->fb_start; 1718 br11 = (pitch << PITCH_SHIFT); 1719 br12 = dinfo->fb_start; 1720 br13 = (SRC_ROP_GXCOPY << ROP_SHIFT) | (pitch << PITCH_SHIFT); 1721 br22 = (dstx << WIDTH_SHIFT) | (dsty << HEIGHT_SHIFT); 1722 br23 = ((dstx + w) << WIDTH_SHIFT) | 1723 ((dsty + h) << HEIGHT_SHIFT); 1724 br26 = (curx << WIDTH_SHIFT) | (cury << HEIGHT_SHIFT); 1725 1726 switch (bpp) { 1727 case 8: 1728 br13 |= COLOR_DEPTH_8; 1729 break; 1730 case 16: 1731 br13 |= COLOR_DEPTH_16; 1732 break; 1733 case 32: 1734 br13 |= COLOR_DEPTH_32; 1735 br00 |= WRITE_ALPHA | WRITE_RGB; 1736 break; 1737 } 1738 1739 START_RING(8); 1740 OUT_RING(br00); 1741 OUT_RING(br13); 1742 OUT_RING(br22); 1743 OUT_RING(br23); 1744 OUT_RING(br09); 1745 OUT_RING(br26); 1746 OUT_RING(br11); 1747 OUT_RING(br12); 1748 ADVANCE_RING(); 1749 } 1750 1751 int intelfbhw_do_drawglyph(struct intelfb_info *dinfo, u32 fg, u32 bg, u32 w, 1752 u32 h, const u8* cdat, u32 x, u32 y, u32 pitch, 1753 u32 bpp) 1754 { 1755 int nbytes, ndwords, pad, tmp; 1756 u32 br00, br09, br13, br18, br19, br22, br23; 1757 int dat, ix, iy, iw; 1758 int i, j; 1759 1760 #if VERBOSE > 0 1761 DBG_MSG("intelfbhw_do_drawglyph: (%d,%d) %dx%d\n", x, y, w, h); 1762 #endif 1763 1764 /* size in bytes of a padded scanline */ 1765 nbytes = ROUND_UP_TO(w, 16) / 8; 1766 1767 /* Total bytes of padded scanline data to write out. */ 1768 nbytes = nbytes * h; 1769 1770 /* 1771 * Check if the glyph data exceeds the immediate mode limit. 1772 * It would take a large font (1K pixels) to hit this limit. 1773 */ 1774 if (nbytes > MAX_MONO_IMM_SIZE) 1775 return 0; 1776 1777 /* Src data is packaged a dword (32-bit) at a time. */ 1778 ndwords = ROUND_UP_TO(nbytes, 4) / 4; 1779 1780 /* 1781 * Ring has to be padded to a quad word. But because the command starts 1782 with 7 bytes, pad only if there is an even number of ndwords 1783 */ 1784 pad = !(ndwords % 2); 1785 1786 tmp = (XY_MONO_SRC_IMM_BLT_CMD & DW_LENGTH_MASK) + ndwords; 1787 br00 = (XY_MONO_SRC_IMM_BLT_CMD & ~DW_LENGTH_MASK) | tmp; 1788 br09 = dinfo->fb_start; 1789 br13 = (SRC_ROP_GXCOPY << ROP_SHIFT) | (pitch << PITCH_SHIFT); 1790 br18 = bg; 1791 br19 = fg; 1792 br22 = (x << WIDTH_SHIFT) | (y << HEIGHT_SHIFT); 1793 br23 = ((x + w) << WIDTH_SHIFT) | ((y + h) << HEIGHT_SHIFT); 1794 1795 switch (bpp) { 1796 case 8: 1797 br13 |= COLOR_DEPTH_8; 1798 break; 1799 case 16: 1800 br13 |= COLOR_DEPTH_16; 1801 break; 1802 case 32: 1803 br13 |= COLOR_DEPTH_32; 1804 br00 |= WRITE_ALPHA | WRITE_RGB; 1805 break; 1806 } 1807 1808 START_RING(8 + ndwords); 1809 OUT_RING(br00); 1810 OUT_RING(br13); 1811 OUT_RING(br22); 1812 OUT_RING(br23); 1813 OUT_RING(br09); 1814 OUT_RING(br18); 1815 OUT_RING(br19); 1816 ix = iy = 0; 1817 iw = ROUND_UP_TO(w, 8) / 8; 1818 while (ndwords--) { 1819 dat = 0; 1820 for (j = 0; j < 2; ++j) { 1821 for (i = 0; i < 2; ++i) { 1822 if (ix != iw || i == 0) 1823 dat |= cdat[iy*iw + ix++] << (i+j*2)*8; 1824 } 1825 if (ix == iw && iy != (h-1)) { 1826 ix = 0; 1827 ++iy; 1828 } 1829 } 1830 OUT_RING(dat); 1831 } 1832 if (pad) 1833 OUT_RING(MI_NOOP); 1834 ADVANCE_RING(); 1835 1836 return 1; 1837 } 1838 1839 /* HW cursor functions. */ 1840 void intelfbhw_cursor_init(struct intelfb_info *dinfo) 1841 { 1842 u32 tmp; 1843 1844 #if VERBOSE > 0 1845 DBG_MSG("intelfbhw_cursor_init\n"); 1846 #endif 1847 1848 if (dinfo->mobile || IS_I9XX(dinfo)) { 1849 if (!dinfo->cursor.physical) 1850 return; 1851 tmp = INREG(CURSOR_A_CONTROL); 1852 tmp &= ~(CURSOR_MODE_MASK | CURSOR_MOBILE_GAMMA_ENABLE | 1853 CURSOR_MEM_TYPE_LOCAL | 1854 (1 << CURSOR_PIPE_SELECT_SHIFT)); 1855 tmp |= CURSOR_MODE_DISABLE; 1856 OUTREG(CURSOR_A_CONTROL, tmp); 1857 OUTREG(CURSOR_A_BASEADDR, dinfo->cursor.physical); 1858 } else { 1859 tmp = INREG(CURSOR_CONTROL); 1860 tmp &= ~(CURSOR_FORMAT_MASK | CURSOR_GAMMA_ENABLE | 1861 CURSOR_ENABLE | CURSOR_STRIDE_MASK); 1862 tmp = CURSOR_FORMAT_3C; 1863 OUTREG(CURSOR_CONTROL, tmp); 1864 OUTREG(CURSOR_A_BASEADDR, dinfo->cursor.offset << 12); 1865 tmp = (64 << CURSOR_SIZE_H_SHIFT) | 1866 (64 << CURSOR_SIZE_V_SHIFT); 1867 OUTREG(CURSOR_SIZE, tmp); 1868 } 1869 } 1870 1871 void intelfbhw_cursor_hide(struct intelfb_info *dinfo) 1872 { 1873 u32 tmp; 1874 1875 #if VERBOSE > 0 1876 DBG_MSG("intelfbhw_cursor_hide\n"); 1877 #endif 1878 1879 dinfo->cursor_on = 0; 1880 if (dinfo->mobile || IS_I9XX(dinfo)) { 1881 if (!dinfo->cursor.physical) 1882 return; 1883 tmp = INREG(CURSOR_A_CONTROL); 1884 tmp &= ~CURSOR_MODE_MASK; 1885 tmp |= CURSOR_MODE_DISABLE; 1886 OUTREG(CURSOR_A_CONTROL, tmp); 1887 /* Flush changes */ 1888 OUTREG(CURSOR_A_BASEADDR, dinfo->cursor.physical); 1889 } else { 1890 tmp = INREG(CURSOR_CONTROL); 1891 tmp &= ~CURSOR_ENABLE; 1892 OUTREG(CURSOR_CONTROL, tmp); 1893 } 1894 } 1895 1896 void intelfbhw_cursor_show(struct intelfb_info *dinfo) 1897 { 1898 u32 tmp; 1899 1900 #if VERBOSE > 0 1901 DBG_MSG("intelfbhw_cursor_show\n"); 1902 #endif 1903 1904 dinfo->cursor_on = 1; 1905 1906 if (dinfo->cursor_blanked) 1907 return; 1908 1909 if (dinfo->mobile || IS_I9XX(dinfo)) { 1910 if (!dinfo->cursor.physical) 1911 return; 1912 tmp = INREG(CURSOR_A_CONTROL); 1913 tmp &= ~CURSOR_MODE_MASK; 1914 tmp |= CURSOR_MODE_64_4C_AX; 1915 OUTREG(CURSOR_A_CONTROL, tmp); 1916 /* Flush changes */ 1917 OUTREG(CURSOR_A_BASEADDR, dinfo->cursor.physical); 1918 } else { 1919 tmp = INREG(CURSOR_CONTROL); 1920 tmp |= CURSOR_ENABLE; 1921 OUTREG(CURSOR_CONTROL, tmp); 1922 } 1923 } 1924 1925 void intelfbhw_cursor_setpos(struct intelfb_info *dinfo, int x, int y) 1926 { 1927 u32 tmp; 1928 1929 #if VERBOSE > 0 1930 DBG_MSG("intelfbhw_cursor_setpos: (%d, %d)\n", x, y); 1931 #endif 1932 1933 /* 1934 * Sets the position. The coordinates are assumed to already 1935 * have any offset adjusted. Assume that the cursor is never 1936 * completely off-screen, and that x, y are always >= 0. 1937 */ 1938 1939 tmp = ((x & CURSOR_POS_MASK) << CURSOR_X_SHIFT) | 1940 ((y & CURSOR_POS_MASK) << CURSOR_Y_SHIFT); 1941 OUTREG(CURSOR_A_POSITION, tmp); 1942 1943 if (IS_I9XX(dinfo)) 1944 OUTREG(CURSOR_A_BASEADDR, dinfo->cursor.physical); 1945 } 1946 1947 void intelfbhw_cursor_setcolor(struct intelfb_info *dinfo, u32 bg, u32 fg) 1948 { 1949 #if VERBOSE > 0 1950 DBG_MSG("intelfbhw_cursor_setcolor\n"); 1951 #endif 1952 1953 OUTREG(CURSOR_A_PALETTE0, bg & CURSOR_PALETTE_MASK); 1954 OUTREG(CURSOR_A_PALETTE1, fg & CURSOR_PALETTE_MASK); 1955 OUTREG(CURSOR_A_PALETTE2, fg & CURSOR_PALETTE_MASK); 1956 OUTREG(CURSOR_A_PALETTE3, bg & CURSOR_PALETTE_MASK); 1957 } 1958 1959 void intelfbhw_cursor_load(struct intelfb_info *dinfo, int width, int height, 1960 u8 *data) 1961 { 1962 u8 __iomem *addr = (u8 __iomem *)dinfo->cursor.virtual; 1963 int i, j, w = width / 8; 1964 int mod = width % 8, t_mask, d_mask; 1965 1966 #if VERBOSE > 0 1967 DBG_MSG("intelfbhw_cursor_load\n"); 1968 #endif 1969 1970 if (!dinfo->cursor.virtual) 1971 return; 1972 1973 t_mask = 0xff >> mod; 1974 d_mask = ~(0xff >> mod); 1975 for (i = height; i--; ) { 1976 for (j = 0; j < w; j++) { 1977 writeb(0x00, addr + j); 1978 writeb(*(data++), addr + j+8); 1979 } 1980 if (mod) { 1981 writeb(t_mask, addr + j); 1982 writeb(*(data++) & d_mask, addr + j+8); 1983 } 1984 addr += 16; 1985 } 1986 } 1987 1988 void intelfbhw_cursor_reset(struct intelfb_info *dinfo) 1989 { 1990 u8 __iomem *addr = (u8 __iomem *)dinfo->cursor.virtual; 1991 int i, j; 1992 1993 #if VERBOSE > 0 1994 DBG_MSG("intelfbhw_cursor_reset\n"); 1995 #endif 1996 1997 if (!dinfo->cursor.virtual) 1998 return; 1999 2000 for (i = 64; i--; ) { 2001 for (j = 0; j < 8; j++) { 2002 writeb(0xff, addr + j+0); 2003 writeb(0x00, addr + j+8); 2004 } 2005 addr += 16; 2006 } 2007 } 2008 2009 static irqreturn_t intelfbhw_irq(int irq, void *dev_id) 2010 { 2011 u16 tmp; 2012 struct intelfb_info *dinfo = dev_id; 2013 2014 spin_lock(&dinfo->int_lock); 2015 2016 tmp = INREG16(IIR); 2017 if (dinfo->info->var.vmode & FB_VMODE_INTERLACED) 2018 tmp &= PIPE_A_EVENT_INTERRUPT; 2019 else 2020 tmp &= VSYNC_PIPE_A_INTERRUPT; /* non-interlaced */ 2021 2022 if (tmp == 0) { 2023 spin_unlock(&dinfo->int_lock); 2024 return IRQ_RETVAL(0); /* not us */ 2025 } 2026 2027 /* clear status bits 0-15 ASAP and don't touch bits 16-31 */ 2028 OUTREG(PIPEASTAT, INREG(PIPEASTAT)); 2029 2030 OUTREG16(IIR, tmp); 2031 if (dinfo->vsync.pan_display) { 2032 dinfo->vsync.pan_display = 0; 2033 OUTREG(DSPABASE, dinfo->vsync.pan_offset); 2034 } 2035 2036 dinfo->vsync.count++; 2037 wake_up_interruptible(&dinfo->vsync.wait); 2038 2039 spin_unlock(&dinfo->int_lock); 2040 2041 return IRQ_RETVAL(1); 2042 } 2043 2044 int intelfbhw_enable_irq(struct intelfb_info *dinfo) 2045 { 2046 u16 tmp; 2047 if (!test_and_set_bit(0, &dinfo->irq_flags)) { 2048 if (request_irq(dinfo->pdev->irq, intelfbhw_irq, IRQF_SHARED, 2049 "intelfb", dinfo)) { 2050 clear_bit(0, &dinfo->irq_flags); 2051 return -EINVAL; 2052 } 2053 2054 spin_lock_irq(&dinfo->int_lock); 2055 OUTREG16(HWSTAM, 0xfffe); /* i830 DRM uses ffff */ 2056 OUTREG16(IMR, 0); 2057 } else 2058 spin_lock_irq(&dinfo->int_lock); 2059 2060 if (dinfo->info->var.vmode & FB_VMODE_INTERLACED) 2061 tmp = PIPE_A_EVENT_INTERRUPT; 2062 else 2063 tmp = VSYNC_PIPE_A_INTERRUPT; /* non-interlaced */ 2064 if (tmp != INREG16(IER)) { 2065 DBG_MSG("changing IER to 0x%X\n", tmp); 2066 OUTREG16(IER, tmp); 2067 } 2068 2069 spin_unlock_irq(&dinfo->int_lock); 2070 return 0; 2071 } 2072 2073 void intelfbhw_disable_irq(struct intelfb_info *dinfo) 2074 { 2075 if (test_and_clear_bit(0, &dinfo->irq_flags)) { 2076 if (dinfo->vsync.pan_display) { 2077 dinfo->vsync.pan_display = 0; 2078 OUTREG(DSPABASE, dinfo->vsync.pan_offset); 2079 } 2080 spin_lock_irq(&dinfo->int_lock); 2081 OUTREG16(HWSTAM, 0xffff); 2082 OUTREG16(IMR, 0xffff); 2083 OUTREG16(IER, 0x0); 2084 2085 OUTREG16(IIR, INREG16(IIR)); /* clear IRQ requests */ 2086 spin_unlock_irq(&dinfo->int_lock); 2087 2088 free_irq(dinfo->pdev->irq, dinfo); 2089 } 2090 } 2091 2092 int intelfbhw_wait_for_vsync(struct intelfb_info *dinfo, u32 pipe) 2093 { 2094 struct intelfb_vsync *vsync; 2095 unsigned int count; 2096 int ret; 2097 2098 switch (pipe) { 2099 case 0: 2100 vsync = &dinfo->vsync; 2101 break; 2102 default: 2103 return -ENODEV; 2104 } 2105 2106 ret = intelfbhw_enable_irq(dinfo); 2107 if (ret) 2108 return ret; 2109 2110 count = vsync->count; 2111 ret = wait_event_interruptible_timeout(vsync->wait, 2112 count != vsync->count, HZ / 10); 2113 if (ret < 0) 2114 return ret; 2115 if (ret == 0) { 2116 DBG_MSG("wait_for_vsync timed out!\n"); 2117 return -ETIMEDOUT; 2118 } 2119 2120 return 0; 2121 } 2122