1 /* 2 * intelfb 3 * 4 * Linux framebuffer driver for Intel(R) 865G integrated graphics chips. 5 * 6 * Copyright © 2002, 2003 David Dawes <dawes@xfree86.org> 7 * 2004 Sylvain Meyer 8 * 9 * This driver consists of two parts. The first part (intelfbdrv.c) provides 10 * the basic fbdev interfaces, is derived in part from the radeonfb and 11 * vesafb drivers, and is covered by the GPL. The second part (intelfbhw.c) 12 * provides the code to program the hardware. Most of it is derived from 13 * the i810/i830 XFree86 driver. The HW-specific code is covered here 14 * under a dual license (GPL and MIT/XFree86 license). 15 * 16 * Author: David Dawes 17 * 18 */ 19 20 /* $DHD: intelfb/intelfbhw.c,v 1.9 2003/06/27 15:06:25 dawes Exp $ */ 21 22 #include <linux/module.h> 23 #include <linux/kernel.h> 24 #include <linux/errno.h> 25 #include <linux/string.h> 26 #include <linux/mm.h> 27 #include <linux/delay.h> 28 #include <linux/fb.h> 29 #include <linux/ioport.h> 30 #include <linux/init.h> 31 #include <linux/pci.h> 32 #include <linux/vmalloc.h> 33 #include <linux/pagemap.h> 34 #include <linux/interrupt.h> 35 36 #include <asm/io.h> 37 38 #include "intelfb.h" 39 #include "intelfbhw.h" 40 41 struct pll_min_max { 42 int min_m, max_m, min_m1, max_m1; 43 int min_m2, max_m2, min_n, max_n; 44 int min_p, max_p, min_p1, max_p1; 45 int min_vco, max_vco, p_transition_clk, ref_clk; 46 int p_inc_lo, p_inc_hi; 47 }; 48 49 #define PLLS_I8xx 0 50 #define PLLS_I9xx 1 51 #define PLLS_MAX 2 52 53 static struct pll_min_max plls[PLLS_MAX] = { 54 { 108, 140, 18, 26, 55 6, 16, 3, 16, 56 4, 128, 0, 31, 57 930000, 1400000, 165000, 48000, 58 4, 2 }, /* I8xx */ 59 60 { 75, 120, 10, 20, 61 5, 9, 4, 7, 62 5, 80, 1, 8, 63 1400000, 2800000, 200000, 96000, 64 10, 5 } /* I9xx */ 65 }; 66 67 int intelfbhw_get_chipset(struct pci_dev *pdev, struct intelfb_info *dinfo) 68 { 69 u32 tmp; 70 if (!pdev || !dinfo) 71 return 1; 72 73 switch (pdev->device) { 74 case PCI_DEVICE_ID_INTEL_830M: 75 dinfo->name = "Intel(R) 830M"; 76 dinfo->chipset = INTEL_830M; 77 dinfo->mobile = 1; 78 dinfo->pll_index = PLLS_I8xx; 79 return 0; 80 case PCI_DEVICE_ID_INTEL_845G: 81 dinfo->name = "Intel(R) 845G"; 82 dinfo->chipset = INTEL_845G; 83 dinfo->mobile = 0; 84 dinfo->pll_index = PLLS_I8xx; 85 return 0; 86 case PCI_DEVICE_ID_INTEL_854: 87 dinfo->mobile = 1; 88 dinfo->name = "Intel(R) 854"; 89 dinfo->chipset = INTEL_854; 90 return 0; 91 case PCI_DEVICE_ID_INTEL_85XGM: 92 tmp = 0; 93 dinfo->mobile = 1; 94 dinfo->pll_index = PLLS_I8xx; 95 pci_read_config_dword(pdev, INTEL_85X_CAPID, &tmp); 96 switch ((tmp >> INTEL_85X_VARIANT_SHIFT) & 97 INTEL_85X_VARIANT_MASK) { 98 case INTEL_VAR_855GME: 99 dinfo->name = "Intel(R) 855GME"; 100 dinfo->chipset = INTEL_855GME; 101 return 0; 102 case INTEL_VAR_855GM: 103 dinfo->name = "Intel(R) 855GM"; 104 dinfo->chipset = INTEL_855GM; 105 return 0; 106 case INTEL_VAR_852GME: 107 dinfo->name = "Intel(R) 852GME"; 108 dinfo->chipset = INTEL_852GME; 109 return 0; 110 case INTEL_VAR_852GM: 111 dinfo->name = "Intel(R) 852GM"; 112 dinfo->chipset = INTEL_852GM; 113 return 0; 114 default: 115 dinfo->name = "Intel(R) 852GM/855GM"; 116 dinfo->chipset = INTEL_85XGM; 117 return 0; 118 } 119 break; 120 case PCI_DEVICE_ID_INTEL_865G: 121 dinfo->name = "Intel(R) 865G"; 122 dinfo->chipset = INTEL_865G; 123 dinfo->mobile = 0; 124 dinfo->pll_index = PLLS_I8xx; 125 return 0; 126 case PCI_DEVICE_ID_INTEL_915G: 127 dinfo->name = "Intel(R) 915G"; 128 dinfo->chipset = INTEL_915G; 129 dinfo->mobile = 0; 130 dinfo->pll_index = PLLS_I9xx; 131 return 0; 132 case PCI_DEVICE_ID_INTEL_915GM: 133 dinfo->name = "Intel(R) 915GM"; 134 dinfo->chipset = INTEL_915GM; 135 dinfo->mobile = 1; 136 dinfo->pll_index = PLLS_I9xx; 137 return 0; 138 case PCI_DEVICE_ID_INTEL_945G: 139 dinfo->name = "Intel(R) 945G"; 140 dinfo->chipset = INTEL_945G; 141 dinfo->mobile = 0; 142 dinfo->pll_index = PLLS_I9xx; 143 return 0; 144 case PCI_DEVICE_ID_INTEL_945GM: 145 dinfo->name = "Intel(R) 945GM"; 146 dinfo->chipset = INTEL_945GM; 147 dinfo->mobile = 1; 148 dinfo->pll_index = PLLS_I9xx; 149 return 0; 150 case PCI_DEVICE_ID_INTEL_945GME: 151 dinfo->name = "Intel(R) 945GME"; 152 dinfo->chipset = INTEL_945GME; 153 dinfo->mobile = 1; 154 dinfo->pll_index = PLLS_I9xx; 155 return 0; 156 case PCI_DEVICE_ID_INTEL_965G: 157 dinfo->name = "Intel(R) 965G"; 158 dinfo->chipset = INTEL_965G; 159 dinfo->mobile = 0; 160 dinfo->pll_index = PLLS_I9xx; 161 return 0; 162 case PCI_DEVICE_ID_INTEL_965GM: 163 dinfo->name = "Intel(R) 965GM"; 164 dinfo->chipset = INTEL_965GM; 165 dinfo->mobile = 1; 166 dinfo->pll_index = PLLS_I9xx; 167 return 0; 168 default: 169 return 1; 170 } 171 } 172 173 int intelfbhw_get_memory(struct pci_dev *pdev, int *aperture_size, 174 int *stolen_size) 175 { 176 struct pci_dev *bridge_dev; 177 u16 tmp; 178 int stolen_overhead; 179 180 if (!pdev || !aperture_size || !stolen_size) 181 return 1; 182 183 /* Find the bridge device. It is always 0:0.0 */ 184 bridge_dev = pci_get_domain_bus_and_slot(pci_domain_nr(pdev->bus), 0, 185 PCI_DEVFN(0, 0)); 186 if (!bridge_dev) { 187 ERR_MSG("cannot find bridge device\n"); 188 return 1; 189 } 190 191 /* Get the fb aperture size and "stolen" memory amount. */ 192 tmp = 0; 193 pci_read_config_word(bridge_dev, INTEL_GMCH_CTRL, &tmp); 194 pci_dev_put(bridge_dev); 195 196 switch (pdev->device) { 197 case PCI_DEVICE_ID_INTEL_915G: 198 case PCI_DEVICE_ID_INTEL_915GM: 199 case PCI_DEVICE_ID_INTEL_945G: 200 case PCI_DEVICE_ID_INTEL_945GM: 201 case PCI_DEVICE_ID_INTEL_945GME: 202 case PCI_DEVICE_ID_INTEL_965G: 203 case PCI_DEVICE_ID_INTEL_965GM: 204 /* 205 * 915, 945 and 965 chipsets support 64MB, 128MB or 256MB 206 * aperture. Determine size from PCI resource length. 207 */ 208 *aperture_size = pci_resource_len(pdev, 2); 209 break; 210 default: 211 if ((tmp & INTEL_GMCH_MEM_MASK) == INTEL_GMCH_MEM_64M) 212 *aperture_size = MB(64); 213 else 214 *aperture_size = MB(128); 215 break; 216 } 217 218 /* Stolen memory size is reduced by the GTT and the popup. 219 GTT is 1K per MB of aperture size, and popup is 4K. */ 220 stolen_overhead = (*aperture_size / MB(1)) + 4; 221 switch(pdev->device) { 222 case PCI_DEVICE_ID_INTEL_830M: 223 case PCI_DEVICE_ID_INTEL_845G: 224 switch (tmp & INTEL_830_GMCH_GMS_MASK) { 225 case INTEL_830_GMCH_GMS_STOLEN_512: 226 *stolen_size = KB(512) - KB(stolen_overhead); 227 return 0; 228 case INTEL_830_GMCH_GMS_STOLEN_1024: 229 *stolen_size = MB(1) - KB(stolen_overhead); 230 return 0; 231 case INTEL_830_GMCH_GMS_STOLEN_8192: 232 *stolen_size = MB(8) - KB(stolen_overhead); 233 return 0; 234 case INTEL_830_GMCH_GMS_LOCAL: 235 ERR_MSG("only local memory found\n"); 236 return 1; 237 case INTEL_830_GMCH_GMS_DISABLED: 238 ERR_MSG("video memory is disabled\n"); 239 return 1; 240 default: 241 ERR_MSG("unexpected GMCH_GMS value: 0x%02x\n", 242 tmp & INTEL_830_GMCH_GMS_MASK); 243 return 1; 244 } 245 break; 246 default: 247 switch (tmp & INTEL_855_GMCH_GMS_MASK) { 248 case INTEL_855_GMCH_GMS_STOLEN_1M: 249 *stolen_size = MB(1) - KB(stolen_overhead); 250 return 0; 251 case INTEL_855_GMCH_GMS_STOLEN_4M: 252 *stolen_size = MB(4) - KB(stolen_overhead); 253 return 0; 254 case INTEL_855_GMCH_GMS_STOLEN_8M: 255 *stolen_size = MB(8) - KB(stolen_overhead); 256 return 0; 257 case INTEL_855_GMCH_GMS_STOLEN_16M: 258 *stolen_size = MB(16) - KB(stolen_overhead); 259 return 0; 260 case INTEL_855_GMCH_GMS_STOLEN_32M: 261 *stolen_size = MB(32) - KB(stolen_overhead); 262 return 0; 263 case INTEL_915G_GMCH_GMS_STOLEN_48M: 264 *stolen_size = MB(48) - KB(stolen_overhead); 265 return 0; 266 case INTEL_915G_GMCH_GMS_STOLEN_64M: 267 *stolen_size = MB(64) - KB(stolen_overhead); 268 return 0; 269 case INTEL_855_GMCH_GMS_DISABLED: 270 ERR_MSG("video memory is disabled\n"); 271 return 0; 272 default: 273 ERR_MSG("unexpected GMCH_GMS value: 0x%02x\n", 274 tmp & INTEL_855_GMCH_GMS_MASK); 275 return 1; 276 } 277 } 278 } 279 280 int intelfbhw_check_non_crt(struct intelfb_info *dinfo) 281 { 282 int dvo = 0; 283 284 if (INREG(LVDS) & PORT_ENABLE) 285 dvo |= LVDS_PORT; 286 if (INREG(DVOA) & PORT_ENABLE) 287 dvo |= DVOA_PORT; 288 if (INREG(DVOB) & PORT_ENABLE) 289 dvo |= DVOB_PORT; 290 if (INREG(DVOC) & PORT_ENABLE) 291 dvo |= DVOC_PORT; 292 293 return dvo; 294 } 295 296 const char * intelfbhw_dvo_to_string(int dvo) 297 { 298 if (dvo & DVOA_PORT) 299 return "DVO port A"; 300 else if (dvo & DVOB_PORT) 301 return "DVO port B"; 302 else if (dvo & DVOC_PORT) 303 return "DVO port C"; 304 else if (dvo & LVDS_PORT) 305 return "LVDS port"; 306 else 307 return NULL; 308 } 309 310 311 int intelfbhw_validate_mode(struct intelfb_info *dinfo, 312 struct fb_var_screeninfo *var) 313 { 314 int bytes_per_pixel; 315 int tmp; 316 317 #if VERBOSE > 0 318 DBG_MSG("intelfbhw_validate_mode\n"); 319 #endif 320 321 bytes_per_pixel = var->bits_per_pixel / 8; 322 if (bytes_per_pixel == 3) 323 bytes_per_pixel = 4; 324 325 /* Check if enough video memory. */ 326 tmp = var->yres_virtual * var->xres_virtual * bytes_per_pixel; 327 if (tmp > dinfo->fb.size) { 328 WRN_MSG("Not enough video ram for mode " 329 "(%d KByte vs %d KByte).\n", 330 BtoKB(tmp), BtoKB(dinfo->fb.size)); 331 return 1; 332 } 333 334 /* Check if x/y limits are OK. */ 335 if (var->xres - 1 > HACTIVE_MASK) { 336 WRN_MSG("X resolution too large (%d vs %d).\n", 337 var->xres, HACTIVE_MASK + 1); 338 return 1; 339 } 340 if (var->yres - 1 > VACTIVE_MASK) { 341 WRN_MSG("Y resolution too large (%d vs %d).\n", 342 var->yres, VACTIVE_MASK + 1); 343 return 1; 344 } 345 if (var->xres < 4) { 346 WRN_MSG("X resolution too small (%d vs 4).\n", var->xres); 347 return 1; 348 } 349 if (var->yres < 4) { 350 WRN_MSG("Y resolution too small (%d vs 4).\n", var->yres); 351 return 1; 352 } 353 354 /* Check for doublescan modes. */ 355 if (var->vmode & FB_VMODE_DOUBLE) { 356 WRN_MSG("Mode is double-scan.\n"); 357 return 1; 358 } 359 360 if ((var->vmode & FB_VMODE_INTERLACED) && (var->yres & 1)) { 361 WRN_MSG("Odd number of lines in interlaced mode\n"); 362 return 1; 363 } 364 365 /* Check if clock is OK. */ 366 tmp = 1000000000 / var->pixclock; 367 if (tmp < MIN_CLOCK) { 368 WRN_MSG("Pixel clock is too low (%d MHz vs %d MHz).\n", 369 (tmp + 500) / 1000, MIN_CLOCK / 1000); 370 return 1; 371 } 372 if (tmp > MAX_CLOCK) { 373 WRN_MSG("Pixel clock is too high (%d MHz vs %d MHz).\n", 374 (tmp + 500) / 1000, MAX_CLOCK / 1000); 375 return 1; 376 } 377 378 return 0; 379 } 380 381 int intelfbhw_pan_display(struct fb_var_screeninfo *var, struct fb_info *info) 382 { 383 struct intelfb_info *dinfo = GET_DINFO(info); 384 u32 offset, xoffset, yoffset; 385 386 #if VERBOSE > 0 387 DBG_MSG("intelfbhw_pan_display\n"); 388 #endif 389 390 xoffset = ROUND_DOWN_TO(var->xoffset, 8); 391 yoffset = var->yoffset; 392 393 if ((xoffset + info->var.xres > info->var.xres_virtual) || 394 (yoffset + info->var.yres > info->var.yres_virtual)) 395 return -EINVAL; 396 397 offset = (yoffset * dinfo->pitch) + 398 (xoffset * info->var.bits_per_pixel) / 8; 399 400 offset += dinfo->fb.offset << 12; 401 402 dinfo->vsync.pan_offset = offset; 403 if ((var->activate & FB_ACTIVATE_VBL) && 404 !intelfbhw_enable_irq(dinfo)) 405 dinfo->vsync.pan_display = 1; 406 else { 407 dinfo->vsync.pan_display = 0; 408 OUTREG(DSPABASE, offset); 409 } 410 411 return 0; 412 } 413 414 /* Blank the screen. */ 415 void intelfbhw_do_blank(int blank, struct fb_info *info) 416 { 417 struct intelfb_info *dinfo = GET_DINFO(info); 418 u32 tmp; 419 420 #if VERBOSE > 0 421 DBG_MSG("intelfbhw_do_blank: blank is %d\n", blank); 422 #endif 423 424 /* Turn plane A on or off */ 425 tmp = INREG(DSPACNTR); 426 if (blank) 427 tmp &= ~DISPPLANE_PLANE_ENABLE; 428 else 429 tmp |= DISPPLANE_PLANE_ENABLE; 430 OUTREG(DSPACNTR, tmp); 431 /* Flush */ 432 tmp = INREG(DSPABASE); 433 OUTREG(DSPABASE, tmp); 434 435 /* Turn off/on the HW cursor */ 436 #if VERBOSE > 0 437 DBG_MSG("cursor_on is %d\n", dinfo->cursor_on); 438 #endif 439 if (dinfo->cursor_on) { 440 if (blank) 441 intelfbhw_cursor_hide(dinfo); 442 else 443 intelfbhw_cursor_show(dinfo); 444 dinfo->cursor_on = 1; 445 } 446 dinfo->cursor_blanked = blank; 447 448 /* Set DPMS level */ 449 tmp = INREG(ADPA) & ~ADPA_DPMS_CONTROL_MASK; 450 switch (blank) { 451 case FB_BLANK_UNBLANK: 452 case FB_BLANK_NORMAL: 453 tmp |= ADPA_DPMS_D0; 454 break; 455 case FB_BLANK_VSYNC_SUSPEND: 456 tmp |= ADPA_DPMS_D1; 457 break; 458 case FB_BLANK_HSYNC_SUSPEND: 459 tmp |= ADPA_DPMS_D2; 460 break; 461 case FB_BLANK_POWERDOWN: 462 tmp |= ADPA_DPMS_D3; 463 break; 464 } 465 OUTREG(ADPA, tmp); 466 467 return; 468 } 469 470 471 /* Check which pipe is connected to an active display plane. */ 472 int intelfbhw_active_pipe(const struct intelfb_hwstate *hw) 473 { 474 int pipe = -1; 475 476 /* keep old default behaviour - prefer PIPE_A */ 477 if (hw->disp_b_ctrl & DISPPLANE_PLANE_ENABLE) { 478 pipe = (hw->disp_b_ctrl >> DISPPLANE_SEL_PIPE_SHIFT); 479 pipe &= PIPE_MASK; 480 if (unlikely(pipe == PIPE_A)) 481 return PIPE_A; 482 } 483 if (hw->disp_a_ctrl & DISPPLANE_PLANE_ENABLE) { 484 pipe = (hw->disp_a_ctrl >> DISPPLANE_SEL_PIPE_SHIFT); 485 pipe &= PIPE_MASK; 486 if (likely(pipe == PIPE_A)) 487 return PIPE_A; 488 } 489 /* Impossible that no pipe is selected - return PIPE_A */ 490 WARN_ON(pipe == -1); 491 if (unlikely(pipe == -1)) 492 pipe = PIPE_A; 493 494 return pipe; 495 } 496 497 void intelfbhw_setcolreg(struct intelfb_info *dinfo, unsigned regno, 498 unsigned red, unsigned green, unsigned blue, 499 unsigned transp) 500 { 501 u32 palette_reg = (dinfo->pipe == PIPE_A) ? 502 PALETTE_A : PALETTE_B; 503 504 #if VERBOSE > 0 505 DBG_MSG("intelfbhw_setcolreg: %d: (%d, %d, %d)\n", 506 regno, red, green, blue); 507 #endif 508 509 OUTREG(palette_reg + (regno << 2), 510 (red << PALETTE_8_RED_SHIFT) | 511 (green << PALETTE_8_GREEN_SHIFT) | 512 (blue << PALETTE_8_BLUE_SHIFT)); 513 } 514 515 516 int intelfbhw_read_hw_state(struct intelfb_info *dinfo, 517 struct intelfb_hwstate *hw, int flag) 518 { 519 int i; 520 521 #if VERBOSE > 0 522 DBG_MSG("intelfbhw_read_hw_state\n"); 523 #endif 524 525 if (!hw || !dinfo) 526 return -1; 527 528 /* Read in as much of the HW state as possible. */ 529 hw->vga0_divisor = INREG(VGA0_DIVISOR); 530 hw->vga1_divisor = INREG(VGA1_DIVISOR); 531 hw->vga_pd = INREG(VGAPD); 532 hw->dpll_a = INREG(DPLL_A); 533 hw->dpll_b = INREG(DPLL_B); 534 hw->fpa0 = INREG(FPA0); 535 hw->fpa1 = INREG(FPA1); 536 hw->fpb0 = INREG(FPB0); 537 hw->fpb1 = INREG(FPB1); 538 539 if (flag == 1) 540 return flag; 541 542 #if 0 543 /* This seems to be a problem with the 852GM/855GM */ 544 for (i = 0; i < PALETTE_8_ENTRIES; i++) { 545 hw->palette_a[i] = INREG(PALETTE_A + (i << 2)); 546 hw->palette_b[i] = INREG(PALETTE_B + (i << 2)); 547 } 548 #endif 549 550 if (flag == 2) 551 return flag; 552 553 hw->htotal_a = INREG(HTOTAL_A); 554 hw->hblank_a = INREG(HBLANK_A); 555 hw->hsync_a = INREG(HSYNC_A); 556 hw->vtotal_a = INREG(VTOTAL_A); 557 hw->vblank_a = INREG(VBLANK_A); 558 hw->vsync_a = INREG(VSYNC_A); 559 hw->src_size_a = INREG(SRC_SIZE_A); 560 hw->bclrpat_a = INREG(BCLRPAT_A); 561 hw->htotal_b = INREG(HTOTAL_B); 562 hw->hblank_b = INREG(HBLANK_B); 563 hw->hsync_b = INREG(HSYNC_B); 564 hw->vtotal_b = INREG(VTOTAL_B); 565 hw->vblank_b = INREG(VBLANK_B); 566 hw->vsync_b = INREG(VSYNC_B); 567 hw->src_size_b = INREG(SRC_SIZE_B); 568 hw->bclrpat_b = INREG(BCLRPAT_B); 569 570 if (flag == 3) 571 return flag; 572 573 hw->adpa = INREG(ADPA); 574 hw->dvoa = INREG(DVOA); 575 hw->dvob = INREG(DVOB); 576 hw->dvoc = INREG(DVOC); 577 hw->dvoa_srcdim = INREG(DVOA_SRCDIM); 578 hw->dvob_srcdim = INREG(DVOB_SRCDIM); 579 hw->dvoc_srcdim = INREG(DVOC_SRCDIM); 580 hw->lvds = INREG(LVDS); 581 582 if (flag == 4) 583 return flag; 584 585 hw->pipe_a_conf = INREG(PIPEACONF); 586 hw->pipe_b_conf = INREG(PIPEBCONF); 587 hw->disp_arb = INREG(DISPARB); 588 589 if (flag == 5) 590 return flag; 591 592 hw->cursor_a_control = INREG(CURSOR_A_CONTROL); 593 hw->cursor_b_control = INREG(CURSOR_B_CONTROL); 594 hw->cursor_a_base = INREG(CURSOR_A_BASEADDR); 595 hw->cursor_b_base = INREG(CURSOR_B_BASEADDR); 596 597 if (flag == 6) 598 return flag; 599 600 for (i = 0; i < 4; i++) { 601 hw->cursor_a_palette[i] = INREG(CURSOR_A_PALETTE0 + (i << 2)); 602 hw->cursor_b_palette[i] = INREG(CURSOR_B_PALETTE0 + (i << 2)); 603 } 604 605 if (flag == 7) 606 return flag; 607 608 hw->cursor_size = INREG(CURSOR_SIZE); 609 610 if (flag == 8) 611 return flag; 612 613 hw->disp_a_ctrl = INREG(DSPACNTR); 614 hw->disp_b_ctrl = INREG(DSPBCNTR); 615 hw->disp_a_base = INREG(DSPABASE); 616 hw->disp_b_base = INREG(DSPBBASE); 617 hw->disp_a_stride = INREG(DSPASTRIDE); 618 hw->disp_b_stride = INREG(DSPBSTRIDE); 619 620 if (flag == 9) 621 return flag; 622 623 hw->vgacntrl = INREG(VGACNTRL); 624 625 if (flag == 10) 626 return flag; 627 628 hw->add_id = INREG(ADD_ID); 629 630 if (flag == 11) 631 return flag; 632 633 for (i = 0; i < 7; i++) { 634 hw->swf0x[i] = INREG(SWF00 + (i << 2)); 635 hw->swf1x[i] = INREG(SWF10 + (i << 2)); 636 if (i < 3) 637 hw->swf3x[i] = INREG(SWF30 + (i << 2)); 638 } 639 640 for (i = 0; i < 8; i++) 641 hw->fence[i] = INREG(FENCE + (i << 2)); 642 643 hw->instpm = INREG(INSTPM); 644 hw->mem_mode = INREG(MEM_MODE); 645 hw->fw_blc_0 = INREG(FW_BLC_0); 646 hw->fw_blc_1 = INREG(FW_BLC_1); 647 648 hw->hwstam = INREG16(HWSTAM); 649 hw->ier = INREG16(IER); 650 hw->iir = INREG16(IIR); 651 hw->imr = INREG16(IMR); 652 653 return 0; 654 } 655 656 657 static int calc_vclock3(int index, int m, int n, int p) 658 { 659 if (p == 0 || n == 0) 660 return 0; 661 return plls[index].ref_clk * m / n / p; 662 } 663 664 static int calc_vclock(int index, int m1, int m2, int n, int p1, int p2, 665 int lvds) 666 { 667 struct pll_min_max *pll = &plls[index]; 668 u32 m, vco, p; 669 670 m = (5 * (m1 + 2)) + (m2 + 2); 671 n += 2; 672 vco = pll->ref_clk * m / n; 673 674 if (index == PLLS_I8xx) 675 p = ((p1 + 2) * (1 << (p2 + 1))); 676 else 677 p = ((p1) * (p2 ? 5 : 10)); 678 return vco / p; 679 } 680 681 #if REGDUMP 682 static void intelfbhw_get_p1p2(struct intelfb_info *dinfo, int dpll, 683 int *o_p1, int *o_p2) 684 { 685 int p1, p2; 686 687 if (IS_I9XX(dinfo)) { 688 if (dpll & DPLL_P1_FORCE_DIV2) 689 p1 = 1; 690 else 691 p1 = (dpll >> DPLL_P1_SHIFT) & 0xff; 692 693 p1 = ffs(p1); 694 695 p2 = (dpll >> DPLL_I9XX_P2_SHIFT) & DPLL_P2_MASK; 696 } else { 697 if (dpll & DPLL_P1_FORCE_DIV2) 698 p1 = 0; 699 else 700 p1 = (dpll >> DPLL_P1_SHIFT) & DPLL_P1_MASK; 701 p2 = (dpll >> DPLL_P2_SHIFT) & DPLL_P2_MASK; 702 } 703 704 *o_p1 = p1; 705 *o_p2 = p2; 706 } 707 #endif 708 709 710 void intelfbhw_print_hw_state(struct intelfb_info *dinfo, 711 struct intelfb_hwstate *hw) 712 { 713 #if REGDUMP 714 int i, m1, m2, n, p1, p2; 715 int index = dinfo->pll_index; 716 DBG_MSG("intelfbhw_print_hw_state\n"); 717 718 if (!hw) 719 return; 720 /* Read in as much of the HW state as possible. */ 721 printk("hw state dump start\n"); 722 printk(" VGA0_DIVISOR: 0x%08x\n", hw->vga0_divisor); 723 printk(" VGA1_DIVISOR: 0x%08x\n", hw->vga1_divisor); 724 printk(" VGAPD: 0x%08x\n", hw->vga_pd); 725 n = (hw->vga0_divisor >> FP_N_DIVISOR_SHIFT) & FP_DIVISOR_MASK; 726 m1 = (hw->vga0_divisor >> FP_M1_DIVISOR_SHIFT) & FP_DIVISOR_MASK; 727 m2 = (hw->vga0_divisor >> FP_M2_DIVISOR_SHIFT) & FP_DIVISOR_MASK; 728 729 intelfbhw_get_p1p2(dinfo, hw->vga_pd, &p1, &p2); 730 731 printk(" VGA0: (m1, m2, n, p1, p2) = (%d, %d, %d, %d, %d)\n", 732 m1, m2, n, p1, p2); 733 printk(" VGA0: clock is %d\n", 734 calc_vclock(index, m1, m2, n, p1, p2, 0)); 735 736 n = (hw->vga1_divisor >> FP_N_DIVISOR_SHIFT) & FP_DIVISOR_MASK; 737 m1 = (hw->vga1_divisor >> FP_M1_DIVISOR_SHIFT) & FP_DIVISOR_MASK; 738 m2 = (hw->vga1_divisor >> FP_M2_DIVISOR_SHIFT) & FP_DIVISOR_MASK; 739 740 intelfbhw_get_p1p2(dinfo, hw->vga_pd, &p1, &p2); 741 printk(" VGA1: (m1, m2, n, p1, p2) = (%d, %d, %d, %d, %d)\n", 742 m1, m2, n, p1, p2); 743 printk(" VGA1: clock is %d\n", 744 calc_vclock(index, m1, m2, n, p1, p2, 0)); 745 746 printk(" DPLL_A: 0x%08x\n", hw->dpll_a); 747 printk(" DPLL_B: 0x%08x\n", hw->dpll_b); 748 printk(" FPA0: 0x%08x\n", hw->fpa0); 749 printk(" FPA1: 0x%08x\n", hw->fpa1); 750 printk(" FPB0: 0x%08x\n", hw->fpb0); 751 printk(" FPB1: 0x%08x\n", hw->fpb1); 752 753 n = (hw->fpa0 >> FP_N_DIVISOR_SHIFT) & FP_DIVISOR_MASK; 754 m1 = (hw->fpa0 >> FP_M1_DIVISOR_SHIFT) & FP_DIVISOR_MASK; 755 m2 = (hw->fpa0 >> FP_M2_DIVISOR_SHIFT) & FP_DIVISOR_MASK; 756 757 intelfbhw_get_p1p2(dinfo, hw->dpll_a, &p1, &p2); 758 759 printk(" PLLA0: (m1, m2, n, p1, p2) = (%d, %d, %d, %d, %d)\n", 760 m1, m2, n, p1, p2); 761 printk(" PLLA0: clock is %d\n", 762 calc_vclock(index, m1, m2, n, p1, p2, 0)); 763 764 n = (hw->fpa1 >> FP_N_DIVISOR_SHIFT) & FP_DIVISOR_MASK; 765 m1 = (hw->fpa1 >> FP_M1_DIVISOR_SHIFT) & FP_DIVISOR_MASK; 766 m2 = (hw->fpa1 >> FP_M2_DIVISOR_SHIFT) & FP_DIVISOR_MASK; 767 768 intelfbhw_get_p1p2(dinfo, hw->dpll_a, &p1, &p2); 769 770 printk(" PLLA1: (m1, m2, n, p1, p2) = (%d, %d, %d, %d, %d)\n", 771 m1, m2, n, p1, p2); 772 printk(" PLLA1: clock is %d\n", 773 calc_vclock(index, m1, m2, n, p1, p2, 0)); 774 775 #if 0 776 printk(" PALETTE_A:\n"); 777 for (i = 0; i < PALETTE_8_ENTRIES) 778 printk(" %3d: 0x%08x\n", i, hw->palette_a[i]); 779 printk(" PALETTE_B:\n"); 780 for (i = 0; i < PALETTE_8_ENTRIES) 781 printk(" %3d: 0x%08x\n", i, hw->palette_b[i]); 782 #endif 783 784 printk(" HTOTAL_A: 0x%08x\n", hw->htotal_a); 785 printk(" HBLANK_A: 0x%08x\n", hw->hblank_a); 786 printk(" HSYNC_A: 0x%08x\n", hw->hsync_a); 787 printk(" VTOTAL_A: 0x%08x\n", hw->vtotal_a); 788 printk(" VBLANK_A: 0x%08x\n", hw->vblank_a); 789 printk(" VSYNC_A: 0x%08x\n", hw->vsync_a); 790 printk(" SRC_SIZE_A: 0x%08x\n", hw->src_size_a); 791 printk(" BCLRPAT_A: 0x%08x\n", hw->bclrpat_a); 792 printk(" HTOTAL_B: 0x%08x\n", hw->htotal_b); 793 printk(" HBLANK_B: 0x%08x\n", hw->hblank_b); 794 printk(" HSYNC_B: 0x%08x\n", hw->hsync_b); 795 printk(" VTOTAL_B: 0x%08x\n", hw->vtotal_b); 796 printk(" VBLANK_B: 0x%08x\n", hw->vblank_b); 797 printk(" VSYNC_B: 0x%08x\n", hw->vsync_b); 798 printk(" SRC_SIZE_B: 0x%08x\n", hw->src_size_b); 799 printk(" BCLRPAT_B: 0x%08x\n", hw->bclrpat_b); 800 801 printk(" ADPA: 0x%08x\n", hw->adpa); 802 printk(" DVOA: 0x%08x\n", hw->dvoa); 803 printk(" DVOB: 0x%08x\n", hw->dvob); 804 printk(" DVOC: 0x%08x\n", hw->dvoc); 805 printk(" DVOA_SRCDIM: 0x%08x\n", hw->dvoa_srcdim); 806 printk(" DVOB_SRCDIM: 0x%08x\n", hw->dvob_srcdim); 807 printk(" DVOC_SRCDIM: 0x%08x\n", hw->dvoc_srcdim); 808 printk(" LVDS: 0x%08x\n", hw->lvds); 809 810 printk(" PIPEACONF: 0x%08x\n", hw->pipe_a_conf); 811 printk(" PIPEBCONF: 0x%08x\n", hw->pipe_b_conf); 812 printk(" DISPARB: 0x%08x\n", hw->disp_arb); 813 814 printk(" CURSOR_A_CONTROL: 0x%08x\n", hw->cursor_a_control); 815 printk(" CURSOR_B_CONTROL: 0x%08x\n", hw->cursor_b_control); 816 printk(" CURSOR_A_BASEADDR: 0x%08x\n", hw->cursor_a_base); 817 printk(" CURSOR_B_BASEADDR: 0x%08x\n", hw->cursor_b_base); 818 819 printk(" CURSOR_A_PALETTE: "); 820 for (i = 0; i < 4; i++) { 821 printk("0x%08x", hw->cursor_a_palette[i]); 822 if (i < 3) 823 printk(", "); 824 } 825 printk("\n"); 826 printk(" CURSOR_B_PALETTE: "); 827 for (i = 0; i < 4; i++) { 828 printk("0x%08x", hw->cursor_b_palette[i]); 829 if (i < 3) 830 printk(", "); 831 } 832 printk("\n"); 833 834 printk(" CURSOR_SIZE: 0x%08x\n", hw->cursor_size); 835 836 printk(" DSPACNTR: 0x%08x\n", hw->disp_a_ctrl); 837 printk(" DSPBCNTR: 0x%08x\n", hw->disp_b_ctrl); 838 printk(" DSPABASE: 0x%08x\n", hw->disp_a_base); 839 printk(" DSPBBASE: 0x%08x\n", hw->disp_b_base); 840 printk(" DSPASTRIDE: 0x%08x\n", hw->disp_a_stride); 841 printk(" DSPBSTRIDE: 0x%08x\n", hw->disp_b_stride); 842 843 printk(" VGACNTRL: 0x%08x\n", hw->vgacntrl); 844 printk(" ADD_ID: 0x%08x\n", hw->add_id); 845 846 for (i = 0; i < 7; i++) { 847 printk(" SWF0%d 0x%08x\n", i, 848 hw->swf0x[i]); 849 } 850 for (i = 0; i < 7; i++) { 851 printk(" SWF1%d 0x%08x\n", i, 852 hw->swf1x[i]); 853 } 854 for (i = 0; i < 3; i++) { 855 printk(" SWF3%d 0x%08x\n", i, 856 hw->swf3x[i]); 857 } 858 for (i = 0; i < 8; i++) 859 printk(" FENCE%d 0x%08x\n", i, 860 hw->fence[i]); 861 862 printk(" INSTPM 0x%08x\n", hw->instpm); 863 printk(" MEM_MODE 0x%08x\n", hw->mem_mode); 864 printk(" FW_BLC_0 0x%08x\n", hw->fw_blc_0); 865 printk(" FW_BLC_1 0x%08x\n", hw->fw_blc_1); 866 867 printk(" HWSTAM 0x%04x\n", hw->hwstam); 868 printk(" IER 0x%04x\n", hw->ier); 869 printk(" IIR 0x%04x\n", hw->iir); 870 printk(" IMR 0x%04x\n", hw->imr); 871 printk("hw state dump end\n"); 872 #endif 873 } 874 875 876 877 /* Split the M parameter into M1 and M2. */ 878 static int splitm(int index, unsigned int m, unsigned int *retm1, 879 unsigned int *retm2) 880 { 881 int m1, m2; 882 int testm; 883 struct pll_min_max *pll = &plls[index]; 884 885 /* no point optimising too much - brute force m */ 886 for (m1 = pll->min_m1; m1 < pll->max_m1 + 1; m1++) { 887 for (m2 = pll->min_m2; m2 < pll->max_m2 + 1; m2++) { 888 testm = (5 * (m1 + 2)) + (m2 + 2); 889 if (testm == m) { 890 *retm1 = (unsigned int)m1; 891 *retm2 = (unsigned int)m2; 892 return 0; 893 } 894 } 895 } 896 return 1; 897 } 898 899 /* Split the P parameter into P1 and P2. */ 900 static int splitp(int index, unsigned int p, unsigned int *retp1, 901 unsigned int *retp2) 902 { 903 int p1, p2; 904 struct pll_min_max *pll = &plls[index]; 905 906 if (index == PLLS_I9xx) { 907 p2 = (p % 10) ? 1 : 0; 908 909 p1 = p / (p2 ? 5 : 10); 910 911 *retp1 = (unsigned int)p1; 912 *retp2 = (unsigned int)p2; 913 return 0; 914 } 915 916 if (p % 4 == 0) 917 p2 = 1; 918 else 919 p2 = 0; 920 p1 = (p / (1 << (p2 + 1))) - 2; 921 if (p % 4 == 0 && p1 < pll->min_p1) { 922 p2 = 0; 923 p1 = (p / (1 << (p2 + 1))) - 2; 924 } 925 if (p1 < pll->min_p1 || p1 > pll->max_p1 || 926 (p1 + 2) * (1 << (p2 + 1)) != p) { 927 return 1; 928 } else { 929 *retp1 = (unsigned int)p1; 930 *retp2 = (unsigned int)p2; 931 return 0; 932 } 933 } 934 935 static int calc_pll_params(int index, int clock, u32 *retm1, u32 *retm2, 936 u32 *retn, u32 *retp1, u32 *retp2, u32 *retclock) 937 { 938 u32 m1, m2, n, p1, p2, n1, testm; 939 u32 f_vco, p, p_best = 0, m, f_out = 0; 940 u32 err_best = 10000000; 941 u32 n_best = 0, m_best = 0, f_err; 942 u32 p_min, p_max, p_inc, div_max; 943 struct pll_min_max *pll = &plls[index]; 944 945 DBG_MSG("Clock is %d\n", clock); 946 947 div_max = pll->max_vco / clock; 948 949 p_inc = (clock <= pll->p_transition_clk) ? pll->p_inc_lo : pll->p_inc_hi; 950 p_min = p_inc; 951 p_max = ROUND_DOWN_TO(div_max, p_inc); 952 if (p_min < pll->min_p) 953 p_min = pll->min_p; 954 if (p_max > pll->max_p) 955 p_max = pll->max_p; 956 957 DBG_MSG("p range is %d-%d (%d)\n", p_min, p_max, p_inc); 958 959 p = p_min; 960 do { 961 if (splitp(index, p, &p1, &p2)) { 962 WRN_MSG("cannot split p = %d\n", p); 963 p += p_inc; 964 continue; 965 } 966 n = pll->min_n; 967 f_vco = clock * p; 968 969 do { 970 m = ROUND_UP_TO(f_vco * n, pll->ref_clk) / pll->ref_clk; 971 if (m < pll->min_m) 972 m = pll->min_m + 1; 973 if (m > pll->max_m) 974 m = pll->max_m - 1; 975 for (testm = m - 1; testm <= m; testm++) { 976 f_out = calc_vclock3(index, testm, n, p); 977 if (splitm(index, testm, &m1, &m2)) { 978 WRN_MSG("cannot split m = %d\n", 979 testm); 980 continue; 981 } 982 if (clock > f_out) 983 f_err = clock - f_out; 984 else/* slightly bias the error for bigger clocks */ 985 f_err = f_out - clock + 1; 986 987 if (f_err < err_best) { 988 m_best = testm; 989 n_best = n; 990 p_best = p; 991 err_best = f_err; 992 } 993 } 994 n++; 995 } while ((n <= pll->max_n) && (f_out >= clock)); 996 p += p_inc; 997 } while ((p <= p_max)); 998 999 if (!m_best) { 1000 WRN_MSG("cannot find parameters for clock %d\n", clock); 1001 return 1; 1002 } 1003 m = m_best; 1004 n = n_best; 1005 p = p_best; 1006 splitm(index, m, &m1, &m2); 1007 splitp(index, p, &p1, &p2); 1008 n1 = n - 2; 1009 1010 DBG_MSG("m, n, p: %d (%d,%d), %d (%d), %d (%d,%d), " 1011 "f: %d (%d), VCO: %d\n", 1012 m, m1, m2, n, n1, p, p1, p2, 1013 calc_vclock3(index, m, n, p), 1014 calc_vclock(index, m1, m2, n1, p1, p2, 0), 1015 calc_vclock3(index, m, n, p) * p); 1016 *retm1 = m1; 1017 *retm2 = m2; 1018 *retn = n1; 1019 *retp1 = p1; 1020 *retp2 = p2; 1021 *retclock = calc_vclock(index, m1, m2, n1, p1, p2, 0); 1022 1023 return 0; 1024 } 1025 1026 static __inline__ int check_overflow(u32 value, u32 limit, 1027 const char *description) 1028 { 1029 if (value > limit) { 1030 WRN_MSG("%s value %d exceeds limit %d\n", 1031 description, value, limit); 1032 return 1; 1033 } 1034 return 0; 1035 } 1036 1037 /* It is assumed that hw is filled in with the initial state information. */ 1038 int intelfbhw_mode_to_hw(struct intelfb_info *dinfo, 1039 struct intelfb_hwstate *hw, 1040 struct fb_var_screeninfo *var) 1041 { 1042 int pipe = intelfbhw_active_pipe(hw); 1043 u32 *dpll, *fp0, *fp1; 1044 u32 m1, m2, n, p1, p2, clock_target, clock; 1045 u32 hsync_start, hsync_end, hblank_start, hblank_end, htotal, hactive; 1046 u32 vsync_start, vsync_end, vblank_start, vblank_end, vtotal, vactive; 1047 u32 vsync_pol, hsync_pol; 1048 u32 *vs, *vb, *vt, *hs, *hb, *ht, *ss, *pipe_conf; 1049 u32 stride_alignment; 1050 1051 DBG_MSG("intelfbhw_mode_to_hw\n"); 1052 1053 /* Disable VGA */ 1054 hw->vgacntrl |= VGA_DISABLE; 1055 1056 /* Set which pipe's registers will be set. */ 1057 if (pipe == PIPE_B) { 1058 dpll = &hw->dpll_b; 1059 fp0 = &hw->fpb0; 1060 fp1 = &hw->fpb1; 1061 hs = &hw->hsync_b; 1062 hb = &hw->hblank_b; 1063 ht = &hw->htotal_b; 1064 vs = &hw->vsync_b; 1065 vb = &hw->vblank_b; 1066 vt = &hw->vtotal_b; 1067 ss = &hw->src_size_b; 1068 pipe_conf = &hw->pipe_b_conf; 1069 } else { 1070 dpll = &hw->dpll_a; 1071 fp0 = &hw->fpa0; 1072 fp1 = &hw->fpa1; 1073 hs = &hw->hsync_a; 1074 hb = &hw->hblank_a; 1075 ht = &hw->htotal_a; 1076 vs = &hw->vsync_a; 1077 vb = &hw->vblank_a; 1078 vt = &hw->vtotal_a; 1079 ss = &hw->src_size_a; 1080 pipe_conf = &hw->pipe_a_conf; 1081 } 1082 1083 /* Use ADPA register for sync control. */ 1084 hw->adpa &= ~ADPA_USE_VGA_HVPOLARITY; 1085 1086 /* sync polarity */ 1087 hsync_pol = (var->sync & FB_SYNC_HOR_HIGH_ACT) ? 1088 ADPA_SYNC_ACTIVE_HIGH : ADPA_SYNC_ACTIVE_LOW; 1089 vsync_pol = (var->sync & FB_SYNC_VERT_HIGH_ACT) ? 1090 ADPA_SYNC_ACTIVE_HIGH : ADPA_SYNC_ACTIVE_LOW; 1091 hw->adpa &= ~((ADPA_SYNC_ACTIVE_MASK << ADPA_VSYNC_ACTIVE_SHIFT) | 1092 (ADPA_SYNC_ACTIVE_MASK << ADPA_HSYNC_ACTIVE_SHIFT)); 1093 hw->adpa |= (hsync_pol << ADPA_HSYNC_ACTIVE_SHIFT) | 1094 (vsync_pol << ADPA_VSYNC_ACTIVE_SHIFT); 1095 1096 /* Connect correct pipe to the analog port DAC */ 1097 hw->adpa &= ~(PIPE_MASK << ADPA_PIPE_SELECT_SHIFT); 1098 hw->adpa |= (pipe << ADPA_PIPE_SELECT_SHIFT); 1099 1100 /* Set DPMS state to D0 (on) */ 1101 hw->adpa &= ~ADPA_DPMS_CONTROL_MASK; 1102 hw->adpa |= ADPA_DPMS_D0; 1103 1104 hw->adpa |= ADPA_DAC_ENABLE; 1105 1106 *dpll |= (DPLL_VCO_ENABLE | DPLL_VGA_MODE_DISABLE); 1107 *dpll &= ~(DPLL_RATE_SELECT_MASK | DPLL_REFERENCE_SELECT_MASK); 1108 *dpll |= (DPLL_REFERENCE_DEFAULT | DPLL_RATE_SELECT_FP0); 1109 1110 /* Desired clock in kHz */ 1111 clock_target = 1000000000 / var->pixclock; 1112 1113 if (calc_pll_params(dinfo->pll_index, clock_target, &m1, &m2, 1114 &n, &p1, &p2, &clock)) { 1115 WRN_MSG("calc_pll_params failed\n"); 1116 return 1; 1117 } 1118 1119 /* Check for overflow. */ 1120 if (check_overflow(p1, DPLL_P1_MASK, "PLL P1 parameter")) 1121 return 1; 1122 if (check_overflow(p2, DPLL_P2_MASK, "PLL P2 parameter")) 1123 return 1; 1124 if (check_overflow(m1, FP_DIVISOR_MASK, "PLL M1 parameter")) 1125 return 1; 1126 if (check_overflow(m2, FP_DIVISOR_MASK, "PLL M2 parameter")) 1127 return 1; 1128 if (check_overflow(n, FP_DIVISOR_MASK, "PLL N parameter")) 1129 return 1; 1130 1131 *dpll &= ~DPLL_P1_FORCE_DIV2; 1132 *dpll &= ~((DPLL_P2_MASK << DPLL_P2_SHIFT) | 1133 (DPLL_P1_MASK << DPLL_P1_SHIFT)); 1134 1135 if (IS_I9XX(dinfo)) { 1136 *dpll |= (p2 << DPLL_I9XX_P2_SHIFT); 1137 *dpll |= (1 << (p1 - 1)) << DPLL_P1_SHIFT; 1138 } else 1139 *dpll |= (p2 << DPLL_P2_SHIFT) | (p1 << DPLL_P1_SHIFT); 1140 1141 *fp0 = (n << FP_N_DIVISOR_SHIFT) | 1142 (m1 << FP_M1_DIVISOR_SHIFT) | 1143 (m2 << FP_M2_DIVISOR_SHIFT); 1144 *fp1 = *fp0; 1145 1146 hw->dvob &= ~PORT_ENABLE; 1147 hw->dvoc &= ~PORT_ENABLE; 1148 1149 /* Use display plane A. */ 1150 hw->disp_a_ctrl |= DISPPLANE_PLANE_ENABLE; 1151 hw->disp_a_ctrl &= ~DISPPLANE_GAMMA_ENABLE; 1152 hw->disp_a_ctrl &= ~DISPPLANE_PIXFORMAT_MASK; 1153 switch (intelfb_var_to_depth(var)) { 1154 case 8: 1155 hw->disp_a_ctrl |= DISPPLANE_8BPP | DISPPLANE_GAMMA_ENABLE; 1156 break; 1157 case 15: 1158 hw->disp_a_ctrl |= DISPPLANE_15_16BPP; 1159 break; 1160 case 16: 1161 hw->disp_a_ctrl |= DISPPLANE_16BPP; 1162 break; 1163 case 24: 1164 hw->disp_a_ctrl |= DISPPLANE_32BPP_NO_ALPHA; 1165 break; 1166 } 1167 hw->disp_a_ctrl &= ~(PIPE_MASK << DISPPLANE_SEL_PIPE_SHIFT); 1168 hw->disp_a_ctrl |= (pipe << DISPPLANE_SEL_PIPE_SHIFT); 1169 1170 /* Set CRTC registers. */ 1171 hactive = var->xres; 1172 hsync_start = hactive + var->right_margin; 1173 hsync_end = hsync_start + var->hsync_len; 1174 htotal = hsync_end + var->left_margin; 1175 hblank_start = hactive; 1176 hblank_end = htotal; 1177 1178 DBG_MSG("H: act %d, ss %d, se %d, tot %d bs %d, be %d\n", 1179 hactive, hsync_start, hsync_end, htotal, hblank_start, 1180 hblank_end); 1181 1182 vactive = var->yres; 1183 if (var->vmode & FB_VMODE_INTERLACED) 1184 vactive--; /* the chip adds 2 halflines automatically */ 1185 vsync_start = vactive + var->lower_margin; 1186 vsync_end = vsync_start + var->vsync_len; 1187 vtotal = vsync_end + var->upper_margin; 1188 vblank_start = vactive; 1189 vblank_end = vsync_end + 1; 1190 1191 DBG_MSG("V: act %d, ss %d, se %d, tot %d bs %d, be %d\n", 1192 vactive, vsync_start, vsync_end, vtotal, vblank_start, 1193 vblank_end); 1194 1195 /* Adjust for register values, and check for overflow. */ 1196 hactive--; 1197 if (check_overflow(hactive, HACTIVE_MASK, "CRTC hactive")) 1198 return 1; 1199 hsync_start--; 1200 if (check_overflow(hsync_start, HSYNCSTART_MASK, "CRTC hsync_start")) 1201 return 1; 1202 hsync_end--; 1203 if (check_overflow(hsync_end, HSYNCEND_MASK, "CRTC hsync_end")) 1204 return 1; 1205 htotal--; 1206 if (check_overflow(htotal, HTOTAL_MASK, "CRTC htotal")) 1207 return 1; 1208 hblank_start--; 1209 if (check_overflow(hblank_start, HBLANKSTART_MASK, "CRTC hblank_start")) 1210 return 1; 1211 hblank_end--; 1212 if (check_overflow(hblank_end, HBLANKEND_MASK, "CRTC hblank_end")) 1213 return 1; 1214 1215 vactive--; 1216 if (check_overflow(vactive, VACTIVE_MASK, "CRTC vactive")) 1217 return 1; 1218 vsync_start--; 1219 if (check_overflow(vsync_start, VSYNCSTART_MASK, "CRTC vsync_start")) 1220 return 1; 1221 vsync_end--; 1222 if (check_overflow(vsync_end, VSYNCEND_MASK, "CRTC vsync_end")) 1223 return 1; 1224 vtotal--; 1225 if (check_overflow(vtotal, VTOTAL_MASK, "CRTC vtotal")) 1226 return 1; 1227 vblank_start--; 1228 if (check_overflow(vblank_start, VBLANKSTART_MASK, "CRTC vblank_start")) 1229 return 1; 1230 vblank_end--; 1231 if (check_overflow(vblank_end, VBLANKEND_MASK, "CRTC vblank_end")) 1232 return 1; 1233 1234 *ht = (htotal << HTOTAL_SHIFT) | (hactive << HACTIVE_SHIFT); 1235 *hb = (hblank_start << HBLANKSTART_SHIFT) | 1236 (hblank_end << HSYNCEND_SHIFT); 1237 *hs = (hsync_start << HSYNCSTART_SHIFT) | (hsync_end << HSYNCEND_SHIFT); 1238 1239 *vt = (vtotal << VTOTAL_SHIFT) | (vactive << VACTIVE_SHIFT); 1240 *vb = (vblank_start << VBLANKSTART_SHIFT) | 1241 (vblank_end << VSYNCEND_SHIFT); 1242 *vs = (vsync_start << VSYNCSTART_SHIFT) | (vsync_end << VSYNCEND_SHIFT); 1243 *ss = (hactive << SRC_SIZE_HORIZ_SHIFT) | 1244 (vactive << SRC_SIZE_VERT_SHIFT); 1245 1246 hw->disp_a_stride = dinfo->pitch; 1247 DBG_MSG("pitch is %d\n", hw->disp_a_stride); 1248 1249 hw->disp_a_base = hw->disp_a_stride * var->yoffset + 1250 var->xoffset * var->bits_per_pixel / 8; 1251 1252 hw->disp_a_base += dinfo->fb.offset << 12; 1253 1254 /* Check stride alignment. */ 1255 stride_alignment = IS_I9XX(dinfo) ? STRIDE_ALIGNMENT_I9XX : 1256 STRIDE_ALIGNMENT; 1257 if (hw->disp_a_stride % stride_alignment != 0) { 1258 WRN_MSG("display stride %d has bad alignment %d\n", 1259 hw->disp_a_stride, stride_alignment); 1260 return 1; 1261 } 1262 1263 /* Set the palette to 8-bit mode. */ 1264 *pipe_conf &= ~PIPECONF_GAMMA; 1265 1266 if (var->vmode & FB_VMODE_INTERLACED) 1267 *pipe_conf |= PIPECONF_INTERLACE_W_FIELD_INDICATION; 1268 else 1269 *pipe_conf &= ~PIPECONF_INTERLACE_MASK; 1270 1271 return 0; 1272 } 1273 1274 /* Program a (non-VGA) video mode. */ 1275 int intelfbhw_program_mode(struct intelfb_info *dinfo, 1276 const struct intelfb_hwstate *hw, int blank) 1277 { 1278 u32 tmp; 1279 const u32 *dpll, *fp0, *fp1, *pipe_conf; 1280 const u32 *hs, *ht, *hb, *vs, *vt, *vb, *ss; 1281 u32 dpll_reg, fp0_reg, fp1_reg, pipe_conf_reg, pipe_stat_reg; 1282 u32 hsync_reg, htotal_reg, hblank_reg; 1283 u32 vsync_reg, vtotal_reg, vblank_reg; 1284 u32 src_size_reg; 1285 u32 count, tmp_val[3]; 1286 1287 /* Assume single pipe */ 1288 1289 #if VERBOSE > 0 1290 DBG_MSG("intelfbhw_program_mode\n"); 1291 #endif 1292 1293 /* Disable VGA */ 1294 tmp = INREG(VGACNTRL); 1295 tmp |= VGA_DISABLE; 1296 OUTREG(VGACNTRL, tmp); 1297 1298 dinfo->pipe = intelfbhw_active_pipe(hw); 1299 1300 if (dinfo->pipe == PIPE_B) { 1301 dpll = &hw->dpll_b; 1302 fp0 = &hw->fpb0; 1303 fp1 = &hw->fpb1; 1304 pipe_conf = &hw->pipe_b_conf; 1305 hs = &hw->hsync_b; 1306 hb = &hw->hblank_b; 1307 ht = &hw->htotal_b; 1308 vs = &hw->vsync_b; 1309 vb = &hw->vblank_b; 1310 vt = &hw->vtotal_b; 1311 ss = &hw->src_size_b; 1312 dpll_reg = DPLL_B; 1313 fp0_reg = FPB0; 1314 fp1_reg = FPB1; 1315 pipe_conf_reg = PIPEBCONF; 1316 pipe_stat_reg = PIPEBSTAT; 1317 hsync_reg = HSYNC_B; 1318 htotal_reg = HTOTAL_B; 1319 hblank_reg = HBLANK_B; 1320 vsync_reg = VSYNC_B; 1321 vtotal_reg = VTOTAL_B; 1322 vblank_reg = VBLANK_B; 1323 src_size_reg = SRC_SIZE_B; 1324 } else { 1325 dpll = &hw->dpll_a; 1326 fp0 = &hw->fpa0; 1327 fp1 = &hw->fpa1; 1328 pipe_conf = &hw->pipe_a_conf; 1329 hs = &hw->hsync_a; 1330 hb = &hw->hblank_a; 1331 ht = &hw->htotal_a; 1332 vs = &hw->vsync_a; 1333 vb = &hw->vblank_a; 1334 vt = &hw->vtotal_a; 1335 ss = &hw->src_size_a; 1336 dpll_reg = DPLL_A; 1337 fp0_reg = FPA0; 1338 fp1_reg = FPA1; 1339 pipe_conf_reg = PIPEACONF; 1340 pipe_stat_reg = PIPEASTAT; 1341 hsync_reg = HSYNC_A; 1342 htotal_reg = HTOTAL_A; 1343 hblank_reg = HBLANK_A; 1344 vsync_reg = VSYNC_A; 1345 vtotal_reg = VTOTAL_A; 1346 vblank_reg = VBLANK_A; 1347 src_size_reg = SRC_SIZE_A; 1348 } 1349 1350 /* turn off pipe */ 1351 tmp = INREG(pipe_conf_reg); 1352 tmp &= ~PIPECONF_ENABLE; 1353 OUTREG(pipe_conf_reg, tmp); 1354 1355 count = 0; 1356 do { 1357 tmp_val[count % 3] = INREG(PIPEA_DSL); 1358 if ((tmp_val[0] == tmp_val[1]) && (tmp_val[1] == tmp_val[2])) 1359 break; 1360 count++; 1361 udelay(1); 1362 if (count % 200 == 0) { 1363 tmp = INREG(pipe_conf_reg); 1364 tmp &= ~PIPECONF_ENABLE; 1365 OUTREG(pipe_conf_reg, tmp); 1366 } 1367 } while (count < 2000); 1368 1369 OUTREG(ADPA, INREG(ADPA) & ~ADPA_DAC_ENABLE); 1370 1371 /* Disable planes A and B. */ 1372 tmp = INREG(DSPACNTR); 1373 tmp &= ~DISPPLANE_PLANE_ENABLE; 1374 OUTREG(DSPACNTR, tmp); 1375 tmp = INREG(DSPBCNTR); 1376 tmp &= ~DISPPLANE_PLANE_ENABLE; 1377 OUTREG(DSPBCNTR, tmp); 1378 1379 /* Wait for vblank. For now, just wait for a 50Hz cycle (20ms)) */ 1380 mdelay(20); 1381 1382 OUTREG(DVOB, INREG(DVOB) & ~PORT_ENABLE); 1383 OUTREG(DVOC, INREG(DVOC) & ~PORT_ENABLE); 1384 OUTREG(ADPA, INREG(ADPA) & ~ADPA_DAC_ENABLE); 1385 1386 /* Disable Sync */ 1387 tmp = INREG(ADPA); 1388 tmp &= ~ADPA_DPMS_CONTROL_MASK; 1389 tmp |= ADPA_DPMS_D3; 1390 OUTREG(ADPA, tmp); 1391 1392 /* do some funky magic - xyzzy */ 1393 OUTREG(0x61204, 0xabcd0000); 1394 1395 /* turn off PLL */ 1396 tmp = INREG(dpll_reg); 1397 tmp &= ~DPLL_VCO_ENABLE; 1398 OUTREG(dpll_reg, tmp); 1399 1400 /* Set PLL parameters */ 1401 OUTREG(fp0_reg, *fp0); 1402 OUTREG(fp1_reg, *fp1); 1403 1404 /* Enable PLL */ 1405 OUTREG(dpll_reg, *dpll); 1406 1407 /* Set DVOs B/C */ 1408 OUTREG(DVOB, hw->dvob); 1409 OUTREG(DVOC, hw->dvoc); 1410 1411 /* undo funky magic */ 1412 OUTREG(0x61204, 0x00000000); 1413 1414 /* Set ADPA */ 1415 OUTREG(ADPA, INREG(ADPA) | ADPA_DAC_ENABLE); 1416 OUTREG(ADPA, (hw->adpa & ~(ADPA_DPMS_CONTROL_MASK)) | ADPA_DPMS_D3); 1417 1418 /* Set pipe parameters */ 1419 OUTREG(hsync_reg, *hs); 1420 OUTREG(hblank_reg, *hb); 1421 OUTREG(htotal_reg, *ht); 1422 OUTREG(vsync_reg, *vs); 1423 OUTREG(vblank_reg, *vb); 1424 OUTREG(vtotal_reg, *vt); 1425 OUTREG(src_size_reg, *ss); 1426 1427 switch (dinfo->info->var.vmode & (FB_VMODE_INTERLACED | 1428 FB_VMODE_ODD_FLD_FIRST)) { 1429 case FB_VMODE_INTERLACED | FB_VMODE_ODD_FLD_FIRST: 1430 OUTREG(pipe_stat_reg, 0xFFFF | PIPESTAT_FLD_EVT_ODD_EN); 1431 break; 1432 case FB_VMODE_INTERLACED: /* even lines first */ 1433 OUTREG(pipe_stat_reg, 0xFFFF | PIPESTAT_FLD_EVT_EVEN_EN); 1434 break; 1435 default: /* non-interlaced */ 1436 OUTREG(pipe_stat_reg, 0xFFFF); /* clear all status bits only */ 1437 } 1438 /* Enable pipe */ 1439 OUTREG(pipe_conf_reg, *pipe_conf | PIPECONF_ENABLE); 1440 1441 /* Enable sync */ 1442 tmp = INREG(ADPA); 1443 tmp &= ~ADPA_DPMS_CONTROL_MASK; 1444 tmp |= ADPA_DPMS_D0; 1445 OUTREG(ADPA, tmp); 1446 1447 /* setup display plane */ 1448 if (dinfo->pdev->device == PCI_DEVICE_ID_INTEL_830M) { 1449 /* 1450 * i830M errata: the display plane must be enabled 1451 * to allow writes to the other bits in the plane 1452 * control register. 1453 */ 1454 tmp = INREG(DSPACNTR); 1455 if ((tmp & DISPPLANE_PLANE_ENABLE) != DISPPLANE_PLANE_ENABLE) { 1456 tmp |= DISPPLANE_PLANE_ENABLE; 1457 OUTREG(DSPACNTR, tmp); 1458 OUTREG(DSPACNTR, 1459 hw->disp_a_ctrl|DISPPLANE_PLANE_ENABLE); 1460 mdelay(1); 1461 } 1462 } 1463 1464 OUTREG(DSPACNTR, hw->disp_a_ctrl & ~DISPPLANE_PLANE_ENABLE); 1465 OUTREG(DSPASTRIDE, hw->disp_a_stride); 1466 OUTREG(DSPABASE, hw->disp_a_base); 1467 1468 /* Enable plane */ 1469 if (!blank) { 1470 tmp = INREG(DSPACNTR); 1471 tmp |= DISPPLANE_PLANE_ENABLE; 1472 OUTREG(DSPACNTR, tmp); 1473 OUTREG(DSPABASE, hw->disp_a_base); 1474 } 1475 1476 return 0; 1477 } 1478 1479 /* forward declarations */ 1480 static void refresh_ring(struct intelfb_info *dinfo); 1481 static void reset_state(struct intelfb_info *dinfo); 1482 static void do_flush(struct intelfb_info *dinfo); 1483 1484 static u32 get_ring_space(struct intelfb_info *dinfo) 1485 { 1486 u32 ring_space; 1487 1488 if (dinfo->ring_tail >= dinfo->ring_head) 1489 ring_space = dinfo->ring.size - 1490 (dinfo->ring_tail - dinfo->ring_head); 1491 else 1492 ring_space = dinfo->ring_head - dinfo->ring_tail; 1493 1494 if (ring_space > RING_MIN_FREE) 1495 ring_space -= RING_MIN_FREE; 1496 else 1497 ring_space = 0; 1498 1499 return ring_space; 1500 } 1501 1502 static int wait_ring(struct intelfb_info *dinfo, int n) 1503 { 1504 int i = 0; 1505 unsigned long end; 1506 u32 last_head = INREG(PRI_RING_HEAD) & RING_HEAD_MASK; 1507 1508 #if VERBOSE > 0 1509 DBG_MSG("wait_ring: %d\n", n); 1510 #endif 1511 1512 end = jiffies + (HZ * 3); 1513 while (dinfo->ring_space < n) { 1514 dinfo->ring_head = INREG(PRI_RING_HEAD) & RING_HEAD_MASK; 1515 dinfo->ring_space = get_ring_space(dinfo); 1516 1517 if (dinfo->ring_head != last_head) { 1518 end = jiffies + (HZ * 3); 1519 last_head = dinfo->ring_head; 1520 } 1521 i++; 1522 if (time_before(end, jiffies)) { 1523 if (!i) { 1524 /* Try again */ 1525 reset_state(dinfo); 1526 refresh_ring(dinfo); 1527 do_flush(dinfo); 1528 end = jiffies + (HZ * 3); 1529 i = 1; 1530 } else { 1531 WRN_MSG("ring buffer : space: %d wanted %d\n", 1532 dinfo->ring_space, n); 1533 WRN_MSG("lockup - turning off hardware " 1534 "acceleration\n"); 1535 dinfo->ring_lockup = 1; 1536 break; 1537 } 1538 } 1539 udelay(1); 1540 } 1541 return i; 1542 } 1543 1544 static void do_flush(struct intelfb_info *dinfo) 1545 { 1546 START_RING(2); 1547 OUT_RING(MI_FLUSH | MI_WRITE_DIRTY_STATE | MI_INVALIDATE_MAP_CACHE); 1548 OUT_RING(MI_NOOP); 1549 ADVANCE_RING(); 1550 } 1551 1552 void intelfbhw_do_sync(struct intelfb_info *dinfo) 1553 { 1554 #if VERBOSE > 0 1555 DBG_MSG("intelfbhw_do_sync\n"); 1556 #endif 1557 1558 if (!dinfo->accel) 1559 return; 1560 1561 /* 1562 * Send a flush, then wait until the ring is empty. This is what 1563 * the XFree86 driver does, and actually it doesn't seem a lot worse 1564 * than the recommended method (both have problems). 1565 */ 1566 do_flush(dinfo); 1567 wait_ring(dinfo, dinfo->ring.size - RING_MIN_FREE); 1568 dinfo->ring_space = dinfo->ring.size - RING_MIN_FREE; 1569 } 1570 1571 static void refresh_ring(struct intelfb_info *dinfo) 1572 { 1573 #if VERBOSE > 0 1574 DBG_MSG("refresh_ring\n"); 1575 #endif 1576 1577 dinfo->ring_head = INREG(PRI_RING_HEAD) & RING_HEAD_MASK; 1578 dinfo->ring_tail = INREG(PRI_RING_TAIL) & RING_TAIL_MASK; 1579 dinfo->ring_space = get_ring_space(dinfo); 1580 } 1581 1582 static void reset_state(struct intelfb_info *dinfo) 1583 { 1584 int i; 1585 u32 tmp; 1586 1587 #if VERBOSE > 0 1588 DBG_MSG("reset_state\n"); 1589 #endif 1590 1591 for (i = 0; i < FENCE_NUM; i++) 1592 OUTREG(FENCE + (i << 2), 0); 1593 1594 /* Flush the ring buffer if it's enabled. */ 1595 tmp = INREG(PRI_RING_LENGTH); 1596 if (tmp & RING_ENABLE) { 1597 #if VERBOSE > 0 1598 DBG_MSG("reset_state: ring was enabled\n"); 1599 #endif 1600 refresh_ring(dinfo); 1601 intelfbhw_do_sync(dinfo); 1602 DO_RING_IDLE(); 1603 } 1604 1605 OUTREG(PRI_RING_LENGTH, 0); 1606 OUTREG(PRI_RING_HEAD, 0); 1607 OUTREG(PRI_RING_TAIL, 0); 1608 OUTREG(PRI_RING_START, 0); 1609 } 1610 1611 /* Stop the 2D engine, and turn off the ring buffer. */ 1612 void intelfbhw_2d_stop(struct intelfb_info *dinfo) 1613 { 1614 #if VERBOSE > 0 1615 DBG_MSG("intelfbhw_2d_stop: accel: %d, ring_active: %d\n", 1616 dinfo->accel, dinfo->ring_active); 1617 #endif 1618 1619 if (!dinfo->accel) 1620 return; 1621 1622 dinfo->ring_active = 0; 1623 reset_state(dinfo); 1624 } 1625 1626 /* 1627 * Enable the ring buffer, and initialise the 2D engine. 1628 * It is assumed that the graphics engine has been stopped by previously 1629 * calling intelfb_2d_stop(). 1630 */ 1631 void intelfbhw_2d_start(struct intelfb_info *dinfo) 1632 { 1633 #if VERBOSE > 0 1634 DBG_MSG("intelfbhw_2d_start: accel: %d, ring_active: %d\n", 1635 dinfo->accel, dinfo->ring_active); 1636 #endif 1637 1638 if (!dinfo->accel) 1639 return; 1640 1641 /* Initialise the primary ring buffer. */ 1642 OUTREG(PRI_RING_LENGTH, 0); 1643 OUTREG(PRI_RING_TAIL, 0); 1644 OUTREG(PRI_RING_HEAD, 0); 1645 1646 OUTREG(PRI_RING_START, dinfo->ring.physical & RING_START_MASK); 1647 OUTREG(PRI_RING_LENGTH, 1648 ((dinfo->ring.size - GTT_PAGE_SIZE) & RING_LENGTH_MASK) | 1649 RING_NO_REPORT | RING_ENABLE); 1650 refresh_ring(dinfo); 1651 dinfo->ring_active = 1; 1652 } 1653 1654 /* 2D fillrect (solid fill or invert) */ 1655 void intelfbhw_do_fillrect(struct intelfb_info *dinfo, u32 x, u32 y, u32 w, 1656 u32 h, u32 color, u32 pitch, u32 bpp, u32 rop) 1657 { 1658 u32 br00, br09, br13, br14, br16; 1659 1660 #if VERBOSE > 0 1661 DBG_MSG("intelfbhw_do_fillrect: (%d,%d) %dx%d, c 0x%06x, p %d bpp %d, " 1662 "rop 0x%02x\n", x, y, w, h, color, pitch, bpp, rop); 1663 #endif 1664 1665 br00 = COLOR_BLT_CMD; 1666 br09 = dinfo->fb_start + (y * pitch + x * (bpp / 8)); 1667 br13 = (rop << ROP_SHIFT) | pitch; 1668 br14 = (h << HEIGHT_SHIFT) | ((w * (bpp / 8)) << WIDTH_SHIFT); 1669 br16 = color; 1670 1671 switch (bpp) { 1672 case 8: 1673 br13 |= COLOR_DEPTH_8; 1674 break; 1675 case 16: 1676 br13 |= COLOR_DEPTH_16; 1677 break; 1678 case 32: 1679 br13 |= COLOR_DEPTH_32; 1680 br00 |= WRITE_ALPHA | WRITE_RGB; 1681 break; 1682 } 1683 1684 START_RING(6); 1685 OUT_RING(br00); 1686 OUT_RING(br13); 1687 OUT_RING(br14); 1688 OUT_RING(br09); 1689 OUT_RING(br16); 1690 OUT_RING(MI_NOOP); 1691 ADVANCE_RING(); 1692 1693 #if VERBOSE > 0 1694 DBG_MSG("ring = 0x%08x, 0x%08x (%d)\n", dinfo->ring_head, 1695 dinfo->ring_tail, dinfo->ring_space); 1696 #endif 1697 } 1698 1699 void 1700 intelfbhw_do_bitblt(struct intelfb_info *dinfo, u32 curx, u32 cury, 1701 u32 dstx, u32 dsty, u32 w, u32 h, u32 pitch, u32 bpp) 1702 { 1703 u32 br00, br09, br11, br12, br13, br22, br23, br26; 1704 1705 #if VERBOSE > 0 1706 DBG_MSG("intelfbhw_do_bitblt: (%d,%d)->(%d,%d) %dx%d, p %d bpp %d\n", 1707 curx, cury, dstx, dsty, w, h, pitch, bpp); 1708 #endif 1709 1710 br00 = XY_SRC_COPY_BLT_CMD; 1711 br09 = dinfo->fb_start; 1712 br11 = (pitch << PITCH_SHIFT); 1713 br12 = dinfo->fb_start; 1714 br13 = (SRC_ROP_GXCOPY << ROP_SHIFT) | (pitch << PITCH_SHIFT); 1715 br22 = (dstx << WIDTH_SHIFT) | (dsty << HEIGHT_SHIFT); 1716 br23 = ((dstx + w) << WIDTH_SHIFT) | 1717 ((dsty + h) << HEIGHT_SHIFT); 1718 br26 = (curx << WIDTH_SHIFT) | (cury << HEIGHT_SHIFT); 1719 1720 switch (bpp) { 1721 case 8: 1722 br13 |= COLOR_DEPTH_8; 1723 break; 1724 case 16: 1725 br13 |= COLOR_DEPTH_16; 1726 break; 1727 case 32: 1728 br13 |= COLOR_DEPTH_32; 1729 br00 |= WRITE_ALPHA | WRITE_RGB; 1730 break; 1731 } 1732 1733 START_RING(8); 1734 OUT_RING(br00); 1735 OUT_RING(br13); 1736 OUT_RING(br22); 1737 OUT_RING(br23); 1738 OUT_RING(br09); 1739 OUT_RING(br26); 1740 OUT_RING(br11); 1741 OUT_RING(br12); 1742 ADVANCE_RING(); 1743 } 1744 1745 int intelfbhw_do_drawglyph(struct intelfb_info *dinfo, u32 fg, u32 bg, u32 w, 1746 u32 h, const u8* cdat, u32 x, u32 y, u32 pitch, 1747 u32 bpp) 1748 { 1749 int nbytes, ndwords, pad, tmp; 1750 u32 br00, br09, br13, br18, br19, br22, br23; 1751 int dat, ix, iy, iw; 1752 int i, j; 1753 1754 #if VERBOSE > 0 1755 DBG_MSG("intelfbhw_do_drawglyph: (%d,%d) %dx%d\n", x, y, w, h); 1756 #endif 1757 1758 /* size in bytes of a padded scanline */ 1759 nbytes = ROUND_UP_TO(w, 16) / 8; 1760 1761 /* Total bytes of padded scanline data to write out. */ 1762 nbytes = nbytes * h; 1763 1764 /* 1765 * Check if the glyph data exceeds the immediate mode limit. 1766 * It would take a large font (1K pixels) to hit this limit. 1767 */ 1768 if (nbytes > MAX_MONO_IMM_SIZE) 1769 return 0; 1770 1771 /* Src data is packaged a dword (32-bit) at a time. */ 1772 ndwords = ROUND_UP_TO(nbytes, 4) / 4; 1773 1774 /* 1775 * Ring has to be padded to a quad word. But because the command starts 1776 with 7 bytes, pad only if there is an even number of ndwords 1777 */ 1778 pad = !(ndwords % 2); 1779 1780 tmp = (XY_MONO_SRC_IMM_BLT_CMD & DW_LENGTH_MASK) + ndwords; 1781 br00 = (XY_MONO_SRC_IMM_BLT_CMD & ~DW_LENGTH_MASK) | tmp; 1782 br09 = dinfo->fb_start; 1783 br13 = (SRC_ROP_GXCOPY << ROP_SHIFT) | (pitch << PITCH_SHIFT); 1784 br18 = bg; 1785 br19 = fg; 1786 br22 = (x << WIDTH_SHIFT) | (y << HEIGHT_SHIFT); 1787 br23 = ((x + w) << WIDTH_SHIFT) | ((y + h) << HEIGHT_SHIFT); 1788 1789 switch (bpp) { 1790 case 8: 1791 br13 |= COLOR_DEPTH_8; 1792 break; 1793 case 16: 1794 br13 |= COLOR_DEPTH_16; 1795 break; 1796 case 32: 1797 br13 |= COLOR_DEPTH_32; 1798 br00 |= WRITE_ALPHA | WRITE_RGB; 1799 break; 1800 } 1801 1802 START_RING(8 + ndwords); 1803 OUT_RING(br00); 1804 OUT_RING(br13); 1805 OUT_RING(br22); 1806 OUT_RING(br23); 1807 OUT_RING(br09); 1808 OUT_RING(br18); 1809 OUT_RING(br19); 1810 ix = iy = 0; 1811 iw = ROUND_UP_TO(w, 8) / 8; 1812 while (ndwords--) { 1813 dat = 0; 1814 for (j = 0; j < 2; ++j) { 1815 for (i = 0; i < 2; ++i) { 1816 if (ix != iw || i == 0) 1817 dat |= cdat[iy*iw + ix++] << (i+j*2)*8; 1818 } 1819 if (ix == iw && iy != (h-1)) { 1820 ix = 0; 1821 ++iy; 1822 } 1823 } 1824 OUT_RING(dat); 1825 } 1826 if (pad) 1827 OUT_RING(MI_NOOP); 1828 ADVANCE_RING(); 1829 1830 return 1; 1831 } 1832 1833 /* HW cursor functions. */ 1834 void intelfbhw_cursor_init(struct intelfb_info *dinfo) 1835 { 1836 u32 tmp; 1837 1838 #if VERBOSE > 0 1839 DBG_MSG("intelfbhw_cursor_init\n"); 1840 #endif 1841 1842 if (dinfo->mobile || IS_I9XX(dinfo)) { 1843 if (!dinfo->cursor.physical) 1844 return; 1845 tmp = INREG(CURSOR_A_CONTROL); 1846 tmp &= ~(CURSOR_MODE_MASK | CURSOR_MOBILE_GAMMA_ENABLE | 1847 CURSOR_MEM_TYPE_LOCAL | 1848 (1 << CURSOR_PIPE_SELECT_SHIFT)); 1849 tmp |= CURSOR_MODE_DISABLE; 1850 OUTREG(CURSOR_A_CONTROL, tmp); 1851 OUTREG(CURSOR_A_BASEADDR, dinfo->cursor.physical); 1852 } else { 1853 tmp = INREG(CURSOR_CONTROL); 1854 tmp &= ~(CURSOR_FORMAT_MASK | CURSOR_GAMMA_ENABLE | 1855 CURSOR_ENABLE | CURSOR_STRIDE_MASK); 1856 tmp |= CURSOR_FORMAT_3C; 1857 OUTREG(CURSOR_CONTROL, tmp); 1858 OUTREG(CURSOR_A_BASEADDR, dinfo->cursor.offset << 12); 1859 tmp = (64 << CURSOR_SIZE_H_SHIFT) | 1860 (64 << CURSOR_SIZE_V_SHIFT); 1861 OUTREG(CURSOR_SIZE, tmp); 1862 } 1863 } 1864 1865 void intelfbhw_cursor_hide(struct intelfb_info *dinfo) 1866 { 1867 u32 tmp; 1868 1869 #if VERBOSE > 0 1870 DBG_MSG("intelfbhw_cursor_hide\n"); 1871 #endif 1872 1873 dinfo->cursor_on = 0; 1874 if (dinfo->mobile || IS_I9XX(dinfo)) { 1875 if (!dinfo->cursor.physical) 1876 return; 1877 tmp = INREG(CURSOR_A_CONTROL); 1878 tmp &= ~CURSOR_MODE_MASK; 1879 tmp |= CURSOR_MODE_DISABLE; 1880 OUTREG(CURSOR_A_CONTROL, tmp); 1881 /* Flush changes */ 1882 OUTREG(CURSOR_A_BASEADDR, dinfo->cursor.physical); 1883 } else { 1884 tmp = INREG(CURSOR_CONTROL); 1885 tmp &= ~CURSOR_ENABLE; 1886 OUTREG(CURSOR_CONTROL, tmp); 1887 } 1888 } 1889 1890 void intelfbhw_cursor_show(struct intelfb_info *dinfo) 1891 { 1892 u32 tmp; 1893 1894 #if VERBOSE > 0 1895 DBG_MSG("intelfbhw_cursor_show\n"); 1896 #endif 1897 1898 dinfo->cursor_on = 1; 1899 1900 if (dinfo->cursor_blanked) 1901 return; 1902 1903 if (dinfo->mobile || IS_I9XX(dinfo)) { 1904 if (!dinfo->cursor.physical) 1905 return; 1906 tmp = INREG(CURSOR_A_CONTROL); 1907 tmp &= ~CURSOR_MODE_MASK; 1908 tmp |= CURSOR_MODE_64_4C_AX; 1909 OUTREG(CURSOR_A_CONTROL, tmp); 1910 /* Flush changes */ 1911 OUTREG(CURSOR_A_BASEADDR, dinfo->cursor.physical); 1912 } else { 1913 tmp = INREG(CURSOR_CONTROL); 1914 tmp |= CURSOR_ENABLE; 1915 OUTREG(CURSOR_CONTROL, tmp); 1916 } 1917 } 1918 1919 void intelfbhw_cursor_setpos(struct intelfb_info *dinfo, int x, int y) 1920 { 1921 u32 tmp; 1922 1923 #if VERBOSE > 0 1924 DBG_MSG("intelfbhw_cursor_setpos: (%d, %d)\n", x, y); 1925 #endif 1926 1927 /* 1928 * Sets the position. The coordinates are assumed to already 1929 * have any offset adjusted. Assume that the cursor is never 1930 * completely off-screen, and that x, y are always >= 0. 1931 */ 1932 1933 tmp = ((x & CURSOR_POS_MASK) << CURSOR_X_SHIFT) | 1934 ((y & CURSOR_POS_MASK) << CURSOR_Y_SHIFT); 1935 OUTREG(CURSOR_A_POSITION, tmp); 1936 1937 if (IS_I9XX(dinfo)) 1938 OUTREG(CURSOR_A_BASEADDR, dinfo->cursor.physical); 1939 } 1940 1941 void intelfbhw_cursor_setcolor(struct intelfb_info *dinfo, u32 bg, u32 fg) 1942 { 1943 #if VERBOSE > 0 1944 DBG_MSG("intelfbhw_cursor_setcolor\n"); 1945 #endif 1946 1947 OUTREG(CURSOR_A_PALETTE0, bg & CURSOR_PALETTE_MASK); 1948 OUTREG(CURSOR_A_PALETTE1, fg & CURSOR_PALETTE_MASK); 1949 OUTREG(CURSOR_A_PALETTE2, fg & CURSOR_PALETTE_MASK); 1950 OUTREG(CURSOR_A_PALETTE3, bg & CURSOR_PALETTE_MASK); 1951 } 1952 1953 void intelfbhw_cursor_load(struct intelfb_info *dinfo, int width, int height, 1954 u8 *data) 1955 { 1956 u8 __iomem *addr = (u8 __iomem *)dinfo->cursor.virtual; 1957 int i, j, w = width / 8; 1958 int mod = width % 8, t_mask, d_mask; 1959 1960 #if VERBOSE > 0 1961 DBG_MSG("intelfbhw_cursor_load\n"); 1962 #endif 1963 1964 if (!dinfo->cursor.virtual) 1965 return; 1966 1967 t_mask = 0xff >> mod; 1968 d_mask = ~(0xff >> mod); 1969 for (i = height; i--; ) { 1970 for (j = 0; j < w; j++) { 1971 writeb(0x00, addr + j); 1972 writeb(*(data++), addr + j+8); 1973 } 1974 if (mod) { 1975 writeb(t_mask, addr + j); 1976 writeb(*(data++) & d_mask, addr + j+8); 1977 } 1978 addr += 16; 1979 } 1980 } 1981 1982 void intelfbhw_cursor_reset(struct intelfb_info *dinfo) 1983 { 1984 u8 __iomem *addr = (u8 __iomem *)dinfo->cursor.virtual; 1985 int i, j; 1986 1987 #if VERBOSE > 0 1988 DBG_MSG("intelfbhw_cursor_reset\n"); 1989 #endif 1990 1991 if (!dinfo->cursor.virtual) 1992 return; 1993 1994 for (i = 64; i--; ) { 1995 for (j = 0; j < 8; j++) { 1996 writeb(0xff, addr + j+0); 1997 writeb(0x00, addr + j+8); 1998 } 1999 addr += 16; 2000 } 2001 } 2002 2003 static irqreturn_t intelfbhw_irq(int irq, void *dev_id) 2004 { 2005 u16 tmp; 2006 struct intelfb_info *dinfo = dev_id; 2007 2008 spin_lock(&dinfo->int_lock); 2009 2010 tmp = INREG16(IIR); 2011 if (dinfo->info->var.vmode & FB_VMODE_INTERLACED) 2012 tmp &= PIPE_A_EVENT_INTERRUPT; 2013 else 2014 tmp &= VSYNC_PIPE_A_INTERRUPT; /* non-interlaced */ 2015 2016 if (tmp == 0) { 2017 spin_unlock(&dinfo->int_lock); 2018 return IRQ_RETVAL(0); /* not us */ 2019 } 2020 2021 /* clear status bits 0-15 ASAP and don't touch bits 16-31 */ 2022 OUTREG(PIPEASTAT, INREG(PIPEASTAT)); 2023 2024 OUTREG16(IIR, tmp); 2025 if (dinfo->vsync.pan_display) { 2026 dinfo->vsync.pan_display = 0; 2027 OUTREG(DSPABASE, dinfo->vsync.pan_offset); 2028 } 2029 2030 dinfo->vsync.count++; 2031 wake_up_interruptible(&dinfo->vsync.wait); 2032 2033 spin_unlock(&dinfo->int_lock); 2034 2035 return IRQ_RETVAL(1); 2036 } 2037 2038 int intelfbhw_enable_irq(struct intelfb_info *dinfo) 2039 { 2040 u16 tmp; 2041 if (!test_and_set_bit(0, &dinfo->irq_flags)) { 2042 if (request_irq(dinfo->pdev->irq, intelfbhw_irq, IRQF_SHARED, 2043 "intelfb", dinfo)) { 2044 clear_bit(0, &dinfo->irq_flags); 2045 return -EINVAL; 2046 } 2047 2048 spin_lock_irq(&dinfo->int_lock); 2049 OUTREG16(HWSTAM, 0xfffe); /* i830 DRM uses ffff */ 2050 OUTREG16(IMR, 0); 2051 } else 2052 spin_lock_irq(&dinfo->int_lock); 2053 2054 if (dinfo->info->var.vmode & FB_VMODE_INTERLACED) 2055 tmp = PIPE_A_EVENT_INTERRUPT; 2056 else 2057 tmp = VSYNC_PIPE_A_INTERRUPT; /* non-interlaced */ 2058 if (tmp != INREG16(IER)) { 2059 DBG_MSG("changing IER to 0x%X\n", tmp); 2060 OUTREG16(IER, tmp); 2061 } 2062 2063 spin_unlock_irq(&dinfo->int_lock); 2064 return 0; 2065 } 2066 2067 void intelfbhw_disable_irq(struct intelfb_info *dinfo) 2068 { 2069 if (test_and_clear_bit(0, &dinfo->irq_flags)) { 2070 if (dinfo->vsync.pan_display) { 2071 dinfo->vsync.pan_display = 0; 2072 OUTREG(DSPABASE, dinfo->vsync.pan_offset); 2073 } 2074 spin_lock_irq(&dinfo->int_lock); 2075 OUTREG16(HWSTAM, 0xffff); 2076 OUTREG16(IMR, 0xffff); 2077 OUTREG16(IER, 0x0); 2078 2079 OUTREG16(IIR, INREG16(IIR)); /* clear IRQ requests */ 2080 spin_unlock_irq(&dinfo->int_lock); 2081 2082 free_irq(dinfo->pdev->irq, dinfo); 2083 } 2084 } 2085 2086 int intelfbhw_wait_for_vsync(struct intelfb_info *dinfo, u32 pipe) 2087 { 2088 struct intelfb_vsync *vsync; 2089 unsigned int count; 2090 int ret; 2091 2092 switch (pipe) { 2093 case 0: 2094 vsync = &dinfo->vsync; 2095 break; 2096 default: 2097 return -ENODEV; 2098 } 2099 2100 ret = intelfbhw_enable_irq(dinfo); 2101 if (ret) 2102 return ret; 2103 2104 count = vsync->count; 2105 ret = wait_event_interruptible_timeout(vsync->wait, 2106 count != vsync->count, HZ / 10); 2107 if (ret < 0) 2108 return ret; 2109 if (ret == 0) { 2110 DBG_MSG("wait_for_vsync timed out!\n"); 2111 return -ETIMEDOUT; 2112 } 2113 2114 return 0; 2115 } 2116