1 /* 2 * drivers/video/imsttfb.c -- frame buffer device for IMS TwinTurbo 3 * 4 * This file is derived from the powermac console "imstt" driver: 5 * Copyright (C) 1997 Sigurdur Asgeirsson 6 * With additional hacking by Jeffrey Kuskin (jsk@mojave.stanford.edu) 7 * Modified by Danilo Beuche 1998 8 * Some register values added by Damien Doligez, INRIA Rocquencourt 9 * Various cleanups by Paul Mundt (lethal@chaoticdreams.org) 10 * 11 * This file was written by Ryan Nielsen (ran@krazynet.com) 12 * Most of the frame buffer device stuff was copied from atyfb.c 13 * 14 * This file is subject to the terms and conditions of the GNU General Public 15 * License. See the file COPYING in the main directory of this archive for 16 * more details. 17 */ 18 19 #include <linux/module.h> 20 #include <linux/kernel.h> 21 #include <linux/errno.h> 22 #include <linux/string.h> 23 #include <linux/mm.h> 24 #include <linux/vmalloc.h> 25 #include <linux/delay.h> 26 #include <linux/interrupt.h> 27 #include <linux/fb.h> 28 #include <linux/init.h> 29 #include <linux/pci.h> 30 #include <asm/io.h> 31 #include <linux/uaccess.h> 32 33 #if defined(CONFIG_PPC_PMAC) 34 #include <linux/nvram.h> 35 #include "macmodes.h" 36 #endif 37 38 #ifndef __powerpc__ 39 #define eieio() /* Enforce In-order Execution of I/O */ 40 #endif 41 42 /* TwinTurbo (Cosmo) registers */ 43 enum { 44 S1SA = 0, /* 0x00 */ 45 S2SA = 1, /* 0x04 */ 46 SP = 2, /* 0x08 */ 47 DSA = 3, /* 0x0C */ 48 CNT = 4, /* 0x10 */ 49 DP_OCTL = 5, /* 0x14 */ 50 CLR = 6, /* 0x18 */ 51 BI = 8, /* 0x20 */ 52 MBC = 9, /* 0x24 */ 53 BLTCTL = 10, /* 0x28 */ 54 55 /* Scan Timing Generator Registers */ 56 HES = 12, /* 0x30 */ 57 HEB = 13, /* 0x34 */ 58 HSB = 14, /* 0x38 */ 59 HT = 15, /* 0x3C */ 60 VES = 16, /* 0x40 */ 61 VEB = 17, /* 0x44 */ 62 VSB = 18, /* 0x48 */ 63 VT = 19, /* 0x4C */ 64 HCIV = 20, /* 0x50 */ 65 VCIV = 21, /* 0x54 */ 66 TCDR = 22, /* 0x58 */ 67 VIL = 23, /* 0x5C */ 68 STGCTL = 24, /* 0x60 */ 69 70 /* Screen Refresh Generator Registers */ 71 SSR = 25, /* 0x64 */ 72 HRIR = 26, /* 0x68 */ 73 SPR = 27, /* 0x6C */ 74 CMR = 28, /* 0x70 */ 75 SRGCTL = 29, /* 0x74 */ 76 77 /* RAM Refresh Generator Registers */ 78 RRCIV = 30, /* 0x78 */ 79 RRSC = 31, /* 0x7C */ 80 RRCR = 34, /* 0x88 */ 81 82 /* System Registers */ 83 GIOE = 32, /* 0x80 */ 84 GIO = 33, /* 0x84 */ 85 SCR = 35, /* 0x8C */ 86 SSTATUS = 36, /* 0x90 */ 87 PRC = 37, /* 0x94 */ 88 89 #if 0 90 /* PCI Registers */ 91 DVID = 0x00000000L, 92 SC = 0x00000004L, 93 CCR = 0x00000008L, 94 OG = 0x0000000CL, 95 BARM = 0x00000010L, 96 BARER = 0x00000030L, 97 #endif 98 }; 99 100 /* IBM 624 RAMDAC Direct Registers */ 101 enum { 102 PADDRW = 0x00, 103 PDATA = 0x04, 104 PPMASK = 0x08, 105 PADDRR = 0x0c, 106 PIDXLO = 0x10, 107 PIDXHI = 0x14, 108 PIDXDATA= 0x18, 109 PIDXCTL = 0x1c 110 }; 111 112 /* IBM 624 RAMDAC Indirect Registers */ 113 enum { 114 CLKCTL = 0x02, /* (0x01) Miscellaneous Clock Control */ 115 SYNCCTL = 0x03, /* (0x00) Sync Control */ 116 HSYNCPOS = 0x04, /* (0x00) Horizontal Sync Position */ 117 PWRMNGMT = 0x05, /* (0x00) Power Management */ 118 DACOP = 0x06, /* (0x02) DAC Operation */ 119 PALETCTL = 0x07, /* (0x00) Palette Control */ 120 SYSCLKCTL = 0x08, /* (0x01) System Clock Control */ 121 PIXFMT = 0x0a, /* () Pixel Format [bpp >> 3 + 2] */ 122 BPP8 = 0x0b, /* () 8 Bits/Pixel Control */ 123 BPP16 = 0x0c, /* () 16 Bits/Pixel Control [bit 1=1 for 565] */ 124 BPP24 = 0x0d, /* () 24 Bits/Pixel Control */ 125 BPP32 = 0x0e, /* () 32 Bits/Pixel Control */ 126 PIXCTL1 = 0x10, /* (0x05) Pixel PLL Control 1 */ 127 PIXCTL2 = 0x11, /* (0x00) Pixel PLL Control 2 */ 128 SYSCLKN = 0x15, /* () System Clock N (System PLL Reference Divider) */ 129 SYSCLKM = 0x16, /* () System Clock M (System PLL VCO Divider) */ 130 SYSCLKP = 0x17, /* () System Clock P */ 131 SYSCLKC = 0x18, /* () System Clock C */ 132 /* 133 * Dot clock rate is 20MHz * (m + 1) / ((n + 1) * (p ? 2 * p : 1) 134 * c is charge pump bias which depends on the VCO frequency 135 */ 136 PIXM0 = 0x20, /* () Pixel M 0 */ 137 PIXN0 = 0x21, /* () Pixel N 0 */ 138 PIXP0 = 0x22, /* () Pixel P 0 */ 139 PIXC0 = 0x23, /* () Pixel C 0 */ 140 CURSCTL = 0x30, /* (0x00) Cursor Control */ 141 CURSXLO = 0x31, /* () Cursor X position, low 8 bits */ 142 CURSXHI = 0x32, /* () Cursor X position, high 8 bits */ 143 CURSYLO = 0x33, /* () Cursor Y position, low 8 bits */ 144 CURSYHI = 0x34, /* () Cursor Y position, high 8 bits */ 145 CURSHOTX = 0x35, /* () Cursor Hot Spot X */ 146 CURSHOTY = 0x36, /* () Cursor Hot Spot Y */ 147 CURSACCTL = 0x37, /* () Advanced Cursor Control Enable */ 148 CURSACATTR = 0x38, /* () Advanced Cursor Attribute */ 149 CURS1R = 0x40, /* () Cursor 1 Red */ 150 CURS1G = 0x41, /* () Cursor 1 Green */ 151 CURS1B = 0x42, /* () Cursor 1 Blue */ 152 CURS2R = 0x43, /* () Cursor 2 Red */ 153 CURS2G = 0x44, /* () Cursor 2 Green */ 154 CURS2B = 0x45, /* () Cursor 2 Blue */ 155 CURS3R = 0x46, /* () Cursor 3 Red */ 156 CURS3G = 0x47, /* () Cursor 3 Green */ 157 CURS3B = 0x48, /* () Cursor 3 Blue */ 158 BORDR = 0x60, /* () Border Color Red */ 159 BORDG = 0x61, /* () Border Color Green */ 160 BORDB = 0x62, /* () Border Color Blue */ 161 MISCTL1 = 0x70, /* (0x00) Miscellaneous Control 1 */ 162 MISCTL2 = 0x71, /* (0x00) Miscellaneous Control 2 */ 163 MISCTL3 = 0x72, /* (0x00) Miscellaneous Control 3 */ 164 KEYCTL = 0x78 /* (0x00) Key Control/DB Operation */ 165 }; 166 167 /* TI TVP 3030 RAMDAC Direct Registers */ 168 enum { 169 TVPADDRW = 0x00, /* 0 Palette/Cursor RAM Write Address/Index */ 170 TVPPDATA = 0x04, /* 1 Palette Data RAM Data */ 171 TVPPMASK = 0x08, /* 2 Pixel Read-Mask */ 172 TVPPADRR = 0x0c, /* 3 Palette/Cursor RAM Read Address */ 173 TVPCADRW = 0x10, /* 4 Cursor/Overscan Color Write Address */ 174 TVPCDATA = 0x14, /* 5 Cursor/Overscan Color Data */ 175 /* 6 reserved */ 176 TVPCADRR = 0x1c, /* 7 Cursor/Overscan Color Read Address */ 177 /* 8 reserved */ 178 TVPDCCTL = 0x24, /* 9 Direct Cursor Control */ 179 TVPIDATA = 0x28, /* 10 Index Data */ 180 TVPCRDAT = 0x2c, /* 11 Cursor RAM Data */ 181 TVPCXPOL = 0x30, /* 12 Cursor-Position X LSB */ 182 TVPCXPOH = 0x34, /* 13 Cursor-Position X MSB */ 183 TVPCYPOL = 0x38, /* 14 Cursor-Position Y LSB */ 184 TVPCYPOH = 0x3c, /* 15 Cursor-Position Y MSB */ 185 }; 186 187 /* TI TVP 3030 RAMDAC Indirect Registers */ 188 enum { 189 TVPIRREV = 0x01, /* Silicon Revision [RO] */ 190 TVPIRICC = 0x06, /* Indirect Cursor Control (0x00) */ 191 TVPIRBRC = 0x07, /* Byte Router Control (0xe4) */ 192 TVPIRLAC = 0x0f, /* Latch Control (0x06) */ 193 TVPIRTCC = 0x18, /* True Color Control (0x80) */ 194 TVPIRMXC = 0x19, /* Multiplex Control (0x98) */ 195 TVPIRCLS = 0x1a, /* Clock Selection (0x07) */ 196 TVPIRPPG = 0x1c, /* Palette Page (0x00) */ 197 TVPIRGEC = 0x1d, /* General Control (0x00) */ 198 TVPIRMIC = 0x1e, /* Miscellaneous Control (0x00) */ 199 TVPIRPLA = 0x2c, /* PLL Address */ 200 TVPIRPPD = 0x2d, /* Pixel Clock PLL Data */ 201 TVPIRMPD = 0x2e, /* Memory Clock PLL Data */ 202 TVPIRLPD = 0x2f, /* Loop Clock PLL Data */ 203 TVPIRCKL = 0x30, /* Color-Key Overlay Low */ 204 TVPIRCKH = 0x31, /* Color-Key Overlay High */ 205 TVPIRCRL = 0x32, /* Color-Key Red Low */ 206 TVPIRCRH = 0x33, /* Color-Key Red High */ 207 TVPIRCGL = 0x34, /* Color-Key Green Low */ 208 TVPIRCGH = 0x35, /* Color-Key Green High */ 209 TVPIRCBL = 0x36, /* Color-Key Blue Low */ 210 TVPIRCBH = 0x37, /* Color-Key Blue High */ 211 TVPIRCKC = 0x38, /* Color-Key Control (0x00) */ 212 TVPIRMLC = 0x39, /* MCLK/Loop Clock Control (0x18) */ 213 TVPIRSEN = 0x3a, /* Sense Test (0x00) */ 214 TVPIRTMD = 0x3b, /* Test Mode Data */ 215 TVPIRRML = 0x3c, /* CRC Remainder LSB [RO] */ 216 TVPIRRMM = 0x3d, /* CRC Remainder MSB [RO] */ 217 TVPIRRMS = 0x3e, /* CRC Bit Select [WO] */ 218 TVPIRDID = 0x3f, /* Device ID [RO] (0x30) */ 219 TVPIRRES = 0xff /* Software Reset [WO] */ 220 }; 221 222 struct initvalues { 223 __u8 addr, value; 224 }; 225 226 static struct initvalues ibm_initregs[] = { 227 { CLKCTL, 0x21 }, 228 { SYNCCTL, 0x00 }, 229 { HSYNCPOS, 0x00 }, 230 { PWRMNGMT, 0x00 }, 231 { DACOP, 0x02 }, 232 { PALETCTL, 0x00 }, 233 { SYSCLKCTL, 0x01 }, 234 235 /* 236 * Note that colors in X are correct only if all video data is 237 * passed through the palette in the DAC. That is, "indirect 238 * color" must be configured. This is the case for the IBM DAC 239 * used in the 2MB and 4MB cards, at least. 240 */ 241 { BPP8, 0x00 }, 242 { BPP16, 0x01 }, 243 { BPP24, 0x00 }, 244 { BPP32, 0x00 }, 245 246 { PIXCTL1, 0x05 }, 247 { PIXCTL2, 0x00 }, 248 { SYSCLKN, 0x08 }, 249 { SYSCLKM, 0x4f }, 250 { SYSCLKP, 0x00 }, 251 { SYSCLKC, 0x00 }, 252 { CURSCTL, 0x00 }, 253 { CURSACCTL, 0x01 }, 254 { CURSACATTR, 0xa8 }, 255 { CURS1R, 0xff }, 256 { CURS1G, 0xff }, 257 { CURS1B, 0xff }, 258 { CURS2R, 0xff }, 259 { CURS2G, 0xff }, 260 { CURS2B, 0xff }, 261 { CURS3R, 0xff }, 262 { CURS3G, 0xff }, 263 { CURS3B, 0xff }, 264 { BORDR, 0xff }, 265 { BORDG, 0xff }, 266 { BORDB, 0xff }, 267 { MISCTL1, 0x01 }, 268 { MISCTL2, 0x45 }, 269 { MISCTL3, 0x00 }, 270 { KEYCTL, 0x00 } 271 }; 272 273 static struct initvalues tvp_initregs[] = { 274 { TVPIRICC, 0x00 }, 275 { TVPIRBRC, 0xe4 }, 276 { TVPIRLAC, 0x06 }, 277 { TVPIRTCC, 0x80 }, 278 { TVPIRMXC, 0x4d }, 279 { TVPIRCLS, 0x05 }, 280 { TVPIRPPG, 0x00 }, 281 { TVPIRGEC, 0x00 }, 282 { TVPIRMIC, 0x08 }, 283 { TVPIRCKL, 0xff }, 284 { TVPIRCKH, 0xff }, 285 { TVPIRCRL, 0xff }, 286 { TVPIRCRH, 0xff }, 287 { TVPIRCGL, 0xff }, 288 { TVPIRCGH, 0xff }, 289 { TVPIRCBL, 0xff }, 290 { TVPIRCBH, 0xff }, 291 { TVPIRCKC, 0x00 }, 292 { TVPIRPLA, 0x00 }, 293 { TVPIRPPD, 0xc0 }, 294 { TVPIRPPD, 0xd5 }, 295 { TVPIRPPD, 0xea }, 296 { TVPIRPLA, 0x00 }, 297 { TVPIRMPD, 0xb9 }, 298 { TVPIRMPD, 0x3a }, 299 { TVPIRMPD, 0xb1 }, 300 { TVPIRPLA, 0x00 }, 301 { TVPIRLPD, 0xc1 }, 302 { TVPIRLPD, 0x3d }, 303 { TVPIRLPD, 0xf3 }, 304 }; 305 306 struct imstt_regvals { 307 __u32 pitch; 308 __u16 hes, heb, hsb, ht, ves, veb, vsb, vt, vil; 309 __u8 pclk_m, pclk_n, pclk_p; 310 /* Values of the tvp which change depending on colormode x resolution */ 311 __u8 mlc[3]; /* Memory Loop Config 0x39 */ 312 __u8 lckl_p[3]; /* P value of LCKL PLL */ 313 }; 314 315 struct imstt_par { 316 struct imstt_regvals init; 317 __u32 __iomem *dc_regs; 318 unsigned long cmap_regs_phys; 319 __u8 *cmap_regs; 320 __u32 ramdac; 321 __u32 palette[16]; 322 }; 323 324 enum { 325 IBM = 0, 326 TVP = 1 327 }; 328 329 #define INIT_BPP 8 330 #define INIT_XRES 640 331 #define INIT_YRES 480 332 333 static int inverse = 0; 334 static char fontname[40] __initdata = { 0 }; 335 #if defined(CONFIG_PPC_PMAC) 336 static signed char init_vmode = -1, init_cmode = -1; 337 #endif 338 339 static struct imstt_regvals tvp_reg_init_2 = { 340 512, 341 0x0002, 0x0006, 0x0026, 0x0028, 0x0003, 0x0016, 0x0196, 0x0197, 0x0196, 342 0xec, 0x2a, 0xf3, 343 { 0x3c, 0x3b, 0x39 }, { 0xf3, 0xf3, 0xf3 } 344 }; 345 346 static struct imstt_regvals tvp_reg_init_6 = { 347 640, 348 0x0004, 0x0009, 0x0031, 0x0036, 0x0003, 0x002a, 0x020a, 0x020d, 0x020a, 349 0xef, 0x2e, 0xb2, 350 { 0x39, 0x39, 0x38 }, { 0xf3, 0xf3, 0xf3 } 351 }; 352 353 static struct imstt_regvals tvp_reg_init_12 = { 354 800, 355 0x0005, 0x000e, 0x0040, 0x0042, 0x0003, 0x018, 0x270, 0x271, 0x270, 356 0xf6, 0x2e, 0xf2, 357 { 0x3a, 0x39, 0x38 }, { 0xf3, 0xf3, 0xf3 } 358 }; 359 360 static struct imstt_regvals tvp_reg_init_13 = { 361 832, 362 0x0004, 0x0011, 0x0045, 0x0048, 0x0003, 0x002a, 0x029a, 0x029b, 0x0000, 363 0xfe, 0x3e, 0xf1, 364 { 0x39, 0x38, 0x38 }, { 0xf3, 0xf3, 0xf2 } 365 }; 366 367 static struct imstt_regvals tvp_reg_init_17 = { 368 1024, 369 0x0006, 0x0210, 0x0250, 0x0053, 0x1003, 0x0021, 0x0321, 0x0324, 0x0000, 370 0xfc, 0x3a, 0xf1, 371 { 0x39, 0x38, 0x38 }, { 0xf3, 0xf3, 0xf2 } 372 }; 373 374 static struct imstt_regvals tvp_reg_init_18 = { 375 1152, 376 0x0009, 0x0011, 0x059, 0x5b, 0x0003, 0x0031, 0x0397, 0x039a, 0x0000, 377 0xfd, 0x3a, 0xf1, 378 { 0x39, 0x38, 0x38 }, { 0xf3, 0xf3, 0xf2 } 379 }; 380 381 static struct imstt_regvals tvp_reg_init_19 = { 382 1280, 383 0x0009, 0x0016, 0x0066, 0x0069, 0x0003, 0x0027, 0x03e7, 0x03e8, 0x03e7, 384 0xf7, 0x36, 0xf0, 385 { 0x38, 0x38, 0x38 }, { 0xf3, 0xf2, 0xf1 } 386 }; 387 388 static struct imstt_regvals tvp_reg_init_20 = { 389 1280, 390 0x0009, 0x0018, 0x0068, 0x006a, 0x0003, 0x0029, 0x0429, 0x042a, 0x0000, 391 0xf0, 0x2d, 0xf0, 392 { 0x38, 0x38, 0x38 }, { 0xf3, 0xf2, 0xf1 } 393 }; 394 395 /* 396 * PCI driver prototypes 397 */ 398 static int imsttfb_probe(struct pci_dev *pdev, const struct pci_device_id *ent); 399 static void imsttfb_remove(struct pci_dev *pdev); 400 401 /* 402 * Register access 403 */ 404 static inline u32 read_reg_le32(volatile u32 __iomem *base, int regindex) 405 { 406 #ifdef __powerpc__ 407 return in_le32(base + regindex); 408 #else 409 return readl(base + regindex); 410 #endif 411 } 412 413 static inline void write_reg_le32(volatile u32 __iomem *base, int regindex, u32 val) 414 { 415 #ifdef __powerpc__ 416 out_le32(base + regindex, val); 417 #else 418 writel(val, base + regindex); 419 #endif 420 } 421 422 static __u32 423 getclkMHz(struct imstt_par *par) 424 { 425 __u32 clk_m, clk_n, clk_p; 426 427 clk_m = par->init.pclk_m; 428 clk_n = par->init.pclk_n; 429 clk_p = par->init.pclk_p; 430 431 return 20 * (clk_m + 1) / ((clk_n + 1) * (clk_p ? 2 * clk_p : 1)); 432 } 433 434 static void 435 setclkMHz(struct imstt_par *par, __u32 MHz) 436 { 437 __u32 clk_m, clk_n, x, stage, spilled; 438 439 clk_m = clk_n = 0; 440 stage = spilled = 0; 441 for (;;) { 442 switch (stage) { 443 case 0: 444 clk_m++; 445 break; 446 case 1: 447 clk_n++; 448 break; 449 } 450 x = 20 * (clk_m + 1) / (clk_n + 1); 451 if (x == MHz) 452 break; 453 if (x > MHz) { 454 spilled = 1; 455 stage = 1; 456 } else if (spilled && x < MHz) { 457 stage = 0; 458 } 459 } 460 461 par->init.pclk_m = clk_m; 462 par->init.pclk_n = clk_n; 463 par->init.pclk_p = 0; 464 } 465 466 static struct imstt_regvals * 467 compute_imstt_regvals_ibm(struct imstt_par *par, int xres, int yres) 468 { 469 struct imstt_regvals *init = &par->init; 470 __u32 MHz, hes, heb, veb, htp, vtp; 471 472 switch (xres) { 473 case 640: 474 hes = 0x0008; heb = 0x0012; veb = 0x002a; htp = 10; vtp = 2; 475 MHz = 30 /* .25 */ ; 476 break; 477 case 832: 478 hes = 0x0005; heb = 0x0020; veb = 0x0028; htp = 8; vtp = 3; 479 MHz = 57 /* .27_ */ ; 480 break; 481 case 1024: 482 hes = 0x000a; heb = 0x001c; veb = 0x0020; htp = 8; vtp = 3; 483 MHz = 80; 484 break; 485 case 1152: 486 hes = 0x0012; heb = 0x0022; veb = 0x0031; htp = 4; vtp = 3; 487 MHz = 101 /* .6_ */ ; 488 break; 489 case 1280: 490 hes = 0x0012; heb = 0x002f; veb = 0x0029; htp = 4; vtp = 1; 491 MHz = yres == 960 ? 126 : 135; 492 break; 493 case 1600: 494 hes = 0x0018; heb = 0x0040; veb = 0x002a; htp = 4; vtp = 3; 495 MHz = 200; 496 break; 497 default: 498 return NULL; 499 } 500 501 setclkMHz(par, MHz); 502 503 init->hes = hes; 504 init->heb = heb; 505 init->hsb = init->heb + (xres >> 3); 506 init->ht = init->hsb + htp; 507 init->ves = 0x0003; 508 init->veb = veb; 509 init->vsb = init->veb + yres; 510 init->vt = init->vsb + vtp; 511 init->vil = init->vsb; 512 513 init->pitch = xres; 514 return init; 515 } 516 517 static struct imstt_regvals * 518 compute_imstt_regvals_tvp(struct imstt_par *par, int xres, int yres) 519 { 520 struct imstt_regvals *init; 521 522 switch (xres) { 523 case 512: 524 init = &tvp_reg_init_2; 525 break; 526 case 640: 527 init = &tvp_reg_init_6; 528 break; 529 case 800: 530 init = &tvp_reg_init_12; 531 break; 532 case 832: 533 init = &tvp_reg_init_13; 534 break; 535 case 1024: 536 init = &tvp_reg_init_17; 537 break; 538 case 1152: 539 init = &tvp_reg_init_18; 540 break; 541 case 1280: 542 init = yres == 960 ? &tvp_reg_init_19 : &tvp_reg_init_20; 543 break; 544 default: 545 return NULL; 546 } 547 par->init = *init; 548 return init; 549 } 550 551 static struct imstt_regvals * 552 compute_imstt_regvals (struct imstt_par *par, u_int xres, u_int yres) 553 { 554 if (par->ramdac == IBM) 555 return compute_imstt_regvals_ibm(par, xres, yres); 556 else 557 return compute_imstt_regvals_tvp(par, xres, yres); 558 } 559 560 static void 561 set_imstt_regvals_ibm (struct imstt_par *par, u_int bpp) 562 { 563 struct imstt_regvals *init = &par->init; 564 __u8 pformat = (bpp >> 3) + 2; 565 566 par->cmap_regs[PIDXHI] = 0; eieio(); 567 par->cmap_regs[PIDXLO] = PIXM0; eieio(); 568 par->cmap_regs[PIDXDATA] = init->pclk_m;eieio(); 569 par->cmap_regs[PIDXLO] = PIXN0; eieio(); 570 par->cmap_regs[PIDXDATA] = init->pclk_n;eieio(); 571 par->cmap_regs[PIDXLO] = PIXP0; eieio(); 572 par->cmap_regs[PIDXDATA] = init->pclk_p;eieio(); 573 par->cmap_regs[PIDXLO] = PIXC0; eieio(); 574 par->cmap_regs[PIDXDATA] = 0x02; eieio(); 575 576 par->cmap_regs[PIDXLO] = PIXFMT; eieio(); 577 par->cmap_regs[PIDXDATA] = pformat; eieio(); 578 } 579 580 static void 581 set_imstt_regvals_tvp (struct imstt_par *par, u_int bpp) 582 { 583 struct imstt_regvals *init = &par->init; 584 __u8 tcc, mxc, lckl_n, mic; 585 __u8 mlc, lckl_p; 586 587 switch (bpp) { 588 default: 589 case 8: 590 tcc = 0x80; 591 mxc = 0x4d; 592 lckl_n = 0xc1; 593 mlc = init->mlc[0]; 594 lckl_p = init->lckl_p[0]; 595 break; 596 case 16: 597 tcc = 0x44; 598 mxc = 0x55; 599 lckl_n = 0xe1; 600 mlc = init->mlc[1]; 601 lckl_p = init->lckl_p[1]; 602 break; 603 case 24: 604 tcc = 0x5e; 605 mxc = 0x5d; 606 lckl_n = 0xf1; 607 mlc = init->mlc[2]; 608 lckl_p = init->lckl_p[2]; 609 break; 610 case 32: 611 tcc = 0x46; 612 mxc = 0x5d; 613 lckl_n = 0xf1; 614 mlc = init->mlc[2]; 615 lckl_p = init->lckl_p[2]; 616 break; 617 } 618 mic = 0x08; 619 620 par->cmap_regs[TVPADDRW] = TVPIRPLA; eieio(); 621 par->cmap_regs[TVPIDATA] = 0x00; eieio(); 622 par->cmap_regs[TVPADDRW] = TVPIRPPD; eieio(); 623 par->cmap_regs[TVPIDATA] = init->pclk_m; eieio(); 624 par->cmap_regs[TVPADDRW] = TVPIRPPD; eieio(); 625 par->cmap_regs[TVPIDATA] = init->pclk_n; eieio(); 626 par->cmap_regs[TVPADDRW] = TVPIRPPD; eieio(); 627 par->cmap_regs[TVPIDATA] = init->pclk_p; eieio(); 628 629 par->cmap_regs[TVPADDRW] = TVPIRTCC; eieio(); 630 par->cmap_regs[TVPIDATA] = tcc; eieio(); 631 par->cmap_regs[TVPADDRW] = TVPIRMXC; eieio(); 632 par->cmap_regs[TVPIDATA] = mxc; eieio(); 633 par->cmap_regs[TVPADDRW] = TVPIRMIC; eieio(); 634 par->cmap_regs[TVPIDATA] = mic; eieio(); 635 636 par->cmap_regs[TVPADDRW] = TVPIRPLA; eieio(); 637 par->cmap_regs[TVPIDATA] = 0x00; eieio(); 638 par->cmap_regs[TVPADDRW] = TVPIRLPD; eieio(); 639 par->cmap_regs[TVPIDATA] = lckl_n; eieio(); 640 641 par->cmap_regs[TVPADDRW] = TVPIRPLA; eieio(); 642 par->cmap_regs[TVPIDATA] = 0x15; eieio(); 643 par->cmap_regs[TVPADDRW] = TVPIRMLC; eieio(); 644 par->cmap_regs[TVPIDATA] = mlc; eieio(); 645 646 par->cmap_regs[TVPADDRW] = TVPIRPLA; eieio(); 647 par->cmap_regs[TVPIDATA] = 0x2a; eieio(); 648 par->cmap_regs[TVPADDRW] = TVPIRLPD; eieio(); 649 par->cmap_regs[TVPIDATA] = lckl_p; eieio(); 650 } 651 652 static void 653 set_imstt_regvals (struct fb_info *info, u_int bpp) 654 { 655 struct imstt_par *par = info->par; 656 struct imstt_regvals *init = &par->init; 657 __u32 ctl, pitch, byteswap, scr; 658 659 if (par->ramdac == IBM) 660 set_imstt_regvals_ibm(par, bpp); 661 else 662 set_imstt_regvals_tvp(par, bpp); 663 664 /* 665 * From what I (jsk) can gather poking around with MacsBug, 666 * bits 8 and 9 in the SCR register control endianness 667 * correction (byte swapping). These bits must be set according 668 * to the color depth as follows: 669 * Color depth Bit 9 Bit 8 670 * ========== ===== ===== 671 * 8bpp 0 0 672 * 16bpp 0 1 673 * 32bpp 1 1 674 */ 675 switch (bpp) { 676 default: 677 case 8: 678 ctl = 0x17b1; 679 pitch = init->pitch >> 2; 680 byteswap = 0x000; 681 break; 682 case 16: 683 ctl = 0x17b3; 684 pitch = init->pitch >> 1; 685 byteswap = 0x100; 686 break; 687 case 24: 688 ctl = 0x17b9; 689 pitch = init->pitch - (init->pitch >> 2); 690 byteswap = 0x200; 691 break; 692 case 32: 693 ctl = 0x17b5; 694 pitch = init->pitch; 695 byteswap = 0x300; 696 break; 697 } 698 if (par->ramdac == TVP) 699 ctl -= 0x30; 700 701 write_reg_le32(par->dc_regs, HES, init->hes); 702 write_reg_le32(par->dc_regs, HEB, init->heb); 703 write_reg_le32(par->dc_regs, HSB, init->hsb); 704 write_reg_le32(par->dc_regs, HT, init->ht); 705 write_reg_le32(par->dc_regs, VES, init->ves); 706 write_reg_le32(par->dc_regs, VEB, init->veb); 707 write_reg_le32(par->dc_regs, VSB, init->vsb); 708 write_reg_le32(par->dc_regs, VT, init->vt); 709 write_reg_le32(par->dc_regs, VIL, init->vil); 710 write_reg_le32(par->dc_regs, HCIV, 1); 711 write_reg_le32(par->dc_regs, VCIV, 1); 712 write_reg_le32(par->dc_regs, TCDR, 4); 713 write_reg_le32(par->dc_regs, RRCIV, 1); 714 write_reg_le32(par->dc_regs, RRSC, 0x980); 715 write_reg_le32(par->dc_regs, RRCR, 0x11); 716 717 if (par->ramdac == IBM) { 718 write_reg_le32(par->dc_regs, HRIR, 0x0100); 719 write_reg_le32(par->dc_regs, CMR, 0x00ff); 720 write_reg_le32(par->dc_regs, SRGCTL, 0x0073); 721 } else { 722 write_reg_le32(par->dc_regs, HRIR, 0x0200); 723 write_reg_le32(par->dc_regs, CMR, 0x01ff); 724 write_reg_le32(par->dc_regs, SRGCTL, 0x0003); 725 } 726 727 switch (info->fix.smem_len) { 728 case 0x200000: 729 scr = 0x059d | byteswap; 730 break; 731 /* case 0x400000: 732 case 0x800000: */ 733 default: 734 pitch >>= 1; 735 scr = 0x150dd | byteswap; 736 break; 737 } 738 739 write_reg_le32(par->dc_regs, SCR, scr); 740 write_reg_le32(par->dc_regs, SPR, pitch); 741 write_reg_le32(par->dc_regs, STGCTL, ctl); 742 } 743 744 static inline void 745 set_offset (struct fb_var_screeninfo *var, struct fb_info *info) 746 { 747 struct imstt_par *par = info->par; 748 __u32 off = var->yoffset * (info->fix.line_length >> 3) 749 + ((var->xoffset * (info->var.bits_per_pixel >> 3)) >> 3); 750 write_reg_le32(par->dc_regs, SSR, off); 751 } 752 753 static inline void 754 set_555 (struct imstt_par *par) 755 { 756 if (par->ramdac == IBM) { 757 par->cmap_regs[PIDXHI] = 0; eieio(); 758 par->cmap_regs[PIDXLO] = BPP16; eieio(); 759 par->cmap_regs[PIDXDATA] = 0x01; eieio(); 760 } else { 761 par->cmap_regs[TVPADDRW] = TVPIRTCC; eieio(); 762 par->cmap_regs[TVPIDATA] = 0x44; eieio(); 763 } 764 } 765 766 static inline void 767 set_565 (struct imstt_par *par) 768 { 769 if (par->ramdac == IBM) { 770 par->cmap_regs[PIDXHI] = 0; eieio(); 771 par->cmap_regs[PIDXLO] = BPP16; eieio(); 772 par->cmap_regs[PIDXDATA] = 0x03; eieio(); 773 } else { 774 par->cmap_regs[TVPADDRW] = TVPIRTCC; eieio(); 775 par->cmap_regs[TVPIDATA] = 0x45; eieio(); 776 } 777 } 778 779 static int 780 imsttfb_check_var(struct fb_var_screeninfo *var, struct fb_info *info) 781 { 782 if ((var->bits_per_pixel != 8 && var->bits_per_pixel != 16 783 && var->bits_per_pixel != 24 && var->bits_per_pixel != 32) 784 || var->xres_virtual < var->xres || var->yres_virtual < var->yres 785 || var->nonstd 786 || (var->vmode & FB_VMODE_MASK) != FB_VMODE_NONINTERLACED) 787 return -EINVAL; 788 789 if ((var->xres * var->yres) * (var->bits_per_pixel >> 3) > info->fix.smem_len 790 || (var->xres_virtual * var->yres_virtual) * (var->bits_per_pixel >> 3) > info->fix.smem_len) 791 return -EINVAL; 792 793 switch (var->bits_per_pixel) { 794 case 8: 795 var->red.offset = 0; 796 var->red.length = 8; 797 var->green.offset = 0; 798 var->green.length = 8; 799 var->blue.offset = 0; 800 var->blue.length = 8; 801 var->transp.offset = 0; 802 var->transp.length = 0; 803 break; 804 case 16: /* RGB 555 or 565 */ 805 if (var->green.length != 6) 806 var->red.offset = 10; 807 var->red.length = 5; 808 var->green.offset = 5; 809 if (var->green.length != 6) 810 var->green.length = 5; 811 var->blue.offset = 0; 812 var->blue.length = 5; 813 var->transp.offset = 0; 814 var->transp.length = 0; 815 break; 816 case 24: /* RGB 888 */ 817 var->red.offset = 16; 818 var->red.length = 8; 819 var->green.offset = 8; 820 var->green.length = 8; 821 var->blue.offset = 0; 822 var->blue.length = 8; 823 var->transp.offset = 0; 824 var->transp.length = 0; 825 break; 826 case 32: /* RGBA 8888 */ 827 var->red.offset = 16; 828 var->red.length = 8; 829 var->green.offset = 8; 830 var->green.length = 8; 831 var->blue.offset = 0; 832 var->blue.length = 8; 833 var->transp.offset = 24; 834 var->transp.length = 8; 835 break; 836 } 837 838 if (var->yres == var->yres_virtual) { 839 __u32 vram = (info->fix.smem_len - (PAGE_SIZE << 2)); 840 var->yres_virtual = ((vram << 3) / var->bits_per_pixel) / var->xres_virtual; 841 if (var->yres_virtual < var->yres) 842 var->yres_virtual = var->yres; 843 } 844 845 var->red.msb_right = 0; 846 var->green.msb_right = 0; 847 var->blue.msb_right = 0; 848 var->transp.msb_right = 0; 849 var->height = -1; 850 var->width = -1; 851 var->vmode = FB_VMODE_NONINTERLACED; 852 var->left_margin = var->right_margin = 16; 853 var->upper_margin = var->lower_margin = 16; 854 var->hsync_len = var->vsync_len = 8; 855 return 0; 856 } 857 858 static int 859 imsttfb_set_par(struct fb_info *info) 860 { 861 struct imstt_par *par = info->par; 862 863 if (!compute_imstt_regvals(par, info->var.xres, info->var.yres)) 864 return -EINVAL; 865 866 if (info->var.green.length == 6) 867 set_565(par); 868 else 869 set_555(par); 870 set_imstt_regvals(info, info->var.bits_per_pixel); 871 info->var.pixclock = 1000000 / getclkMHz(par); 872 return 0; 873 } 874 875 static int 876 imsttfb_setcolreg (u_int regno, u_int red, u_int green, u_int blue, 877 u_int transp, struct fb_info *info) 878 { 879 struct imstt_par *par = info->par; 880 u_int bpp = info->var.bits_per_pixel; 881 882 if (regno > 255) 883 return 1; 884 885 red >>= 8; 886 green >>= 8; 887 blue >>= 8; 888 889 /* PADDRW/PDATA are the same as TVPPADDRW/TVPPDATA */ 890 if (0 && bpp == 16) /* screws up X */ 891 par->cmap_regs[PADDRW] = regno << 3; 892 else 893 par->cmap_regs[PADDRW] = regno; 894 eieio(); 895 896 par->cmap_regs[PDATA] = red; eieio(); 897 par->cmap_regs[PDATA] = green; eieio(); 898 par->cmap_regs[PDATA] = blue; eieio(); 899 900 if (regno < 16) 901 switch (bpp) { 902 case 16: 903 par->palette[regno] = 904 (regno << (info->var.green.length == 905 5 ? 10 : 11)) | (regno << 5) | regno; 906 break; 907 case 24: 908 par->palette[regno] = 909 (regno << 16) | (regno << 8) | regno; 910 break; 911 case 32: { 912 int i = (regno << 8) | regno; 913 par->palette[regno] = (i << 16) |i; 914 break; 915 } 916 } 917 return 0; 918 } 919 920 static int 921 imsttfb_pan_display(struct fb_var_screeninfo *var, struct fb_info *info) 922 { 923 if (var->xoffset + info->var.xres > info->var.xres_virtual 924 || var->yoffset + info->var.yres > info->var.yres_virtual) 925 return -EINVAL; 926 927 info->var.xoffset = var->xoffset; 928 info->var.yoffset = var->yoffset; 929 set_offset(var, info); 930 return 0; 931 } 932 933 static int 934 imsttfb_blank(int blank, struct fb_info *info) 935 { 936 struct imstt_par *par = info->par; 937 __u32 ctrl; 938 939 ctrl = read_reg_le32(par->dc_regs, STGCTL); 940 if (blank > 0) { 941 switch (blank) { 942 case FB_BLANK_NORMAL: 943 case FB_BLANK_POWERDOWN: 944 ctrl &= ~0x00000380; 945 if (par->ramdac == IBM) { 946 par->cmap_regs[PIDXHI] = 0; eieio(); 947 par->cmap_regs[PIDXLO] = MISCTL2; eieio(); 948 par->cmap_regs[PIDXDATA] = 0x55; eieio(); 949 par->cmap_regs[PIDXLO] = MISCTL1; eieio(); 950 par->cmap_regs[PIDXDATA] = 0x11; eieio(); 951 par->cmap_regs[PIDXLO] = SYNCCTL; eieio(); 952 par->cmap_regs[PIDXDATA] = 0x0f; eieio(); 953 par->cmap_regs[PIDXLO] = PWRMNGMT; eieio(); 954 par->cmap_regs[PIDXDATA] = 0x1f; eieio(); 955 par->cmap_regs[PIDXLO] = CLKCTL; eieio(); 956 par->cmap_regs[PIDXDATA] = 0xc0; 957 } 958 break; 959 case FB_BLANK_VSYNC_SUSPEND: 960 ctrl &= ~0x00000020; 961 break; 962 case FB_BLANK_HSYNC_SUSPEND: 963 ctrl &= ~0x00000010; 964 break; 965 } 966 } else { 967 if (par->ramdac == IBM) { 968 ctrl |= 0x000017b0; 969 par->cmap_regs[PIDXHI] = 0; eieio(); 970 par->cmap_regs[PIDXLO] = CLKCTL; eieio(); 971 par->cmap_regs[PIDXDATA] = 0x01; eieio(); 972 par->cmap_regs[PIDXLO] = PWRMNGMT; eieio(); 973 par->cmap_regs[PIDXDATA] = 0x00; eieio(); 974 par->cmap_regs[PIDXLO] = SYNCCTL; eieio(); 975 par->cmap_regs[PIDXDATA] = 0x00; eieio(); 976 par->cmap_regs[PIDXLO] = MISCTL1; eieio(); 977 par->cmap_regs[PIDXDATA] = 0x01; eieio(); 978 par->cmap_regs[PIDXLO] = MISCTL2; eieio(); 979 par->cmap_regs[PIDXDATA] = 0x45; eieio(); 980 } else 981 ctrl |= 0x00001780; 982 } 983 write_reg_le32(par->dc_regs, STGCTL, ctrl); 984 return 0; 985 } 986 987 static void 988 imsttfb_fillrect(struct fb_info *info, const struct fb_fillrect *rect) 989 { 990 struct imstt_par *par = info->par; 991 __u32 Bpp, line_pitch, bgc, dx, dy, width, height; 992 993 bgc = rect->color; 994 bgc |= (bgc << 8); 995 bgc |= (bgc << 16); 996 997 Bpp = info->var.bits_per_pixel >> 3, 998 line_pitch = info->fix.line_length; 999 1000 dy = rect->dy * line_pitch; 1001 dx = rect->dx * Bpp; 1002 height = rect->height; 1003 height--; 1004 width = rect->width * Bpp; 1005 width--; 1006 1007 if (rect->rop == ROP_COPY) { 1008 while(read_reg_le32(par->dc_regs, SSTATUS) & 0x80); 1009 write_reg_le32(par->dc_regs, DSA, dy + dx); 1010 write_reg_le32(par->dc_regs, CNT, (height << 16) | width); 1011 write_reg_le32(par->dc_regs, DP_OCTL, line_pitch); 1012 write_reg_le32(par->dc_regs, BI, 0xffffffff); 1013 write_reg_le32(par->dc_regs, MBC, 0xffffffff); 1014 write_reg_le32(par->dc_regs, CLR, bgc); 1015 write_reg_le32(par->dc_regs, BLTCTL, 0x840); /* 0x200000 */ 1016 while(read_reg_le32(par->dc_regs, SSTATUS) & 0x80); 1017 while(read_reg_le32(par->dc_regs, SSTATUS) & 0x40); 1018 } else { 1019 while(read_reg_le32(par->dc_regs, SSTATUS) & 0x80); 1020 write_reg_le32(par->dc_regs, DSA, dy + dx); 1021 write_reg_le32(par->dc_regs, S1SA, dy + dx); 1022 write_reg_le32(par->dc_regs, CNT, (height << 16) | width); 1023 write_reg_le32(par->dc_regs, DP_OCTL, line_pitch); 1024 write_reg_le32(par->dc_regs, SP, line_pitch); 1025 write_reg_le32(par->dc_regs, BLTCTL, 0x40005); 1026 while(read_reg_le32(par->dc_regs, SSTATUS) & 0x80); 1027 while(read_reg_le32(par->dc_regs, SSTATUS) & 0x40); 1028 } 1029 } 1030 1031 static void 1032 imsttfb_copyarea(struct fb_info *info, const struct fb_copyarea *area) 1033 { 1034 struct imstt_par *par = info->par; 1035 __u32 Bpp, line_pitch, fb_offset_old, fb_offset_new, sp, dp_octl; 1036 __u32 cnt, bltctl, sx, sy, dx, dy, height, width; 1037 1038 Bpp = info->var.bits_per_pixel >> 3, 1039 1040 sx = area->sx * Bpp; 1041 sy = area->sy; 1042 dx = area->dx * Bpp; 1043 dy = area->dy; 1044 height = area->height; 1045 height--; 1046 width = area->width * Bpp; 1047 width--; 1048 1049 line_pitch = info->fix.line_length; 1050 bltctl = 0x05; 1051 sp = line_pitch << 16; 1052 cnt = height << 16; 1053 1054 if (sy < dy) { 1055 sy += height; 1056 dy += height; 1057 sp |= -(line_pitch) & 0xffff; 1058 dp_octl = -(line_pitch) & 0xffff; 1059 } else { 1060 sp |= line_pitch; 1061 dp_octl = line_pitch; 1062 } 1063 if (sx < dx) { 1064 sx += width; 1065 dx += width; 1066 bltctl |= 0x80; 1067 cnt |= -(width) & 0xffff; 1068 } else { 1069 cnt |= width; 1070 } 1071 fb_offset_old = sy * line_pitch + sx; 1072 fb_offset_new = dy * line_pitch + dx; 1073 1074 while(read_reg_le32(par->dc_regs, SSTATUS) & 0x80); 1075 write_reg_le32(par->dc_regs, S1SA, fb_offset_old); 1076 write_reg_le32(par->dc_regs, SP, sp); 1077 write_reg_le32(par->dc_regs, DSA, fb_offset_new); 1078 write_reg_le32(par->dc_regs, CNT, cnt); 1079 write_reg_le32(par->dc_regs, DP_OCTL, dp_octl); 1080 write_reg_le32(par->dc_regs, BLTCTL, bltctl); 1081 while(read_reg_le32(par->dc_regs, SSTATUS) & 0x80); 1082 while(read_reg_le32(par->dc_regs, SSTATUS) & 0x40); 1083 } 1084 1085 #if 0 1086 static int 1087 imsttfb_load_cursor_image(struct imstt_par *par, int width, int height, __u8 fgc) 1088 { 1089 u_int x, y; 1090 1091 if (width > 32 || height > 32) 1092 return -EINVAL; 1093 1094 if (par->ramdac == IBM) { 1095 par->cmap_regs[PIDXHI] = 1; eieio(); 1096 for (x = 0; x < 0x100; x++) { 1097 par->cmap_regs[PIDXLO] = x; eieio(); 1098 par->cmap_regs[PIDXDATA] = 0x00; eieio(); 1099 } 1100 par->cmap_regs[PIDXHI] = 1; eieio(); 1101 for (y = 0; y < height; y++) 1102 for (x = 0; x < width >> 2; x++) { 1103 par->cmap_regs[PIDXLO] = x + y * 8; eieio(); 1104 par->cmap_regs[PIDXDATA] = 0xff; eieio(); 1105 } 1106 par->cmap_regs[PIDXHI] = 0; eieio(); 1107 par->cmap_regs[PIDXLO] = CURS1R; eieio(); 1108 par->cmap_regs[PIDXDATA] = fgc; eieio(); 1109 par->cmap_regs[PIDXLO] = CURS1G; eieio(); 1110 par->cmap_regs[PIDXDATA] = fgc; eieio(); 1111 par->cmap_regs[PIDXLO] = CURS1B; eieio(); 1112 par->cmap_regs[PIDXDATA] = fgc; eieio(); 1113 par->cmap_regs[PIDXLO] = CURS2R; eieio(); 1114 par->cmap_regs[PIDXDATA] = fgc; eieio(); 1115 par->cmap_regs[PIDXLO] = CURS2G; eieio(); 1116 par->cmap_regs[PIDXDATA] = fgc; eieio(); 1117 par->cmap_regs[PIDXLO] = CURS2B; eieio(); 1118 par->cmap_regs[PIDXDATA] = fgc; eieio(); 1119 par->cmap_regs[PIDXLO] = CURS3R; eieio(); 1120 par->cmap_regs[PIDXDATA] = fgc; eieio(); 1121 par->cmap_regs[PIDXLO] = CURS3G; eieio(); 1122 par->cmap_regs[PIDXDATA] = fgc; eieio(); 1123 par->cmap_regs[PIDXLO] = CURS3B; eieio(); 1124 par->cmap_regs[PIDXDATA] = fgc; eieio(); 1125 } else { 1126 par->cmap_regs[TVPADDRW] = TVPIRICC; eieio(); 1127 par->cmap_regs[TVPIDATA] &= 0x03; eieio(); 1128 par->cmap_regs[TVPADDRW] = 0; eieio(); 1129 for (x = 0; x < 0x200; x++) { 1130 par->cmap_regs[TVPCRDAT] = 0x00; eieio(); 1131 } 1132 for (x = 0; x < 0x200; x++) { 1133 par->cmap_regs[TVPCRDAT] = 0xff; eieio(); 1134 } 1135 par->cmap_regs[TVPADDRW] = TVPIRICC; eieio(); 1136 par->cmap_regs[TVPIDATA] &= 0x03; eieio(); 1137 for (y = 0; y < height; y++) 1138 for (x = 0; x < width >> 3; x++) { 1139 par->cmap_regs[TVPADDRW] = x + y * 8; eieio(); 1140 par->cmap_regs[TVPCRDAT] = 0xff; eieio(); 1141 } 1142 par->cmap_regs[TVPADDRW] = TVPIRICC; eieio(); 1143 par->cmap_regs[TVPIDATA] |= 0x08; eieio(); 1144 for (y = 0; y < height; y++) 1145 for (x = 0; x < width >> 3; x++) { 1146 par->cmap_regs[TVPADDRW] = x + y * 8; eieio(); 1147 par->cmap_regs[TVPCRDAT] = 0xff; eieio(); 1148 } 1149 par->cmap_regs[TVPCADRW] = 0x00; eieio(); 1150 for (x = 0; x < 12; x++) { 1151 par->cmap_regs[TVPCDATA] = fgc; 1152 eieio(); 1153 } 1154 } 1155 return 1; 1156 } 1157 1158 static void 1159 imstt_set_cursor(struct imstt_par *par, struct fb_image *d, int on) 1160 { 1161 if (par->ramdac == IBM) { 1162 par->cmap_regs[PIDXHI] = 0; eieio(); 1163 if (!on) { 1164 par->cmap_regs[PIDXLO] = CURSCTL; eieio(); 1165 par->cmap_regs[PIDXDATA] = 0x00; eieio(); 1166 } else { 1167 par->cmap_regs[PIDXLO] = CURSXHI; eieio(); 1168 par->cmap_regs[PIDXDATA] = d->dx >> 8; eieio(); 1169 par->cmap_regs[PIDXLO] = CURSXLO; eieio(); 1170 par->cmap_regs[PIDXDATA] = d->dx & 0xff;eieio(); 1171 par->cmap_regs[PIDXLO] = CURSYHI; eieio(); 1172 par->cmap_regs[PIDXDATA] = d->dy >> 8; eieio(); 1173 par->cmap_regs[PIDXLO] = CURSYLO; eieio(); 1174 par->cmap_regs[PIDXDATA] = d->dy & 0xff;eieio(); 1175 par->cmap_regs[PIDXLO] = CURSCTL; eieio(); 1176 par->cmap_regs[PIDXDATA] = 0x02; eieio(); 1177 } 1178 } else { 1179 if (!on) { 1180 par->cmap_regs[TVPADDRW] = TVPIRICC; eieio(); 1181 par->cmap_regs[TVPIDATA] = 0x00; eieio(); 1182 } else { 1183 __u16 x = d->dx + 0x40, y = d->dy + 0x40; 1184 1185 par->cmap_regs[TVPCXPOH] = x >> 8; eieio(); 1186 par->cmap_regs[TVPCXPOL] = x & 0xff; eieio(); 1187 par->cmap_regs[TVPCYPOH] = y >> 8; eieio(); 1188 par->cmap_regs[TVPCYPOL] = y & 0xff; eieio(); 1189 par->cmap_regs[TVPADDRW] = TVPIRICC; eieio(); 1190 par->cmap_regs[TVPIDATA] = 0x02; eieio(); 1191 } 1192 } 1193 } 1194 1195 static int 1196 imsttfb_cursor(struct fb_info *info, struct fb_cursor *cursor) 1197 { 1198 struct imstt_par *par = info->par; 1199 u32 flags = cursor->set, fg, bg, xx, yy; 1200 1201 if (cursor->dest == NULL && cursor->rop == ROP_XOR) 1202 return 1; 1203 1204 imstt_set_cursor(info, cursor, 0); 1205 1206 if (flags & FB_CUR_SETPOS) { 1207 xx = cursor->image.dx - info->var.xoffset; 1208 yy = cursor->image.dy - info->var.yoffset; 1209 } 1210 1211 if (flags & FB_CUR_SETSIZE) { 1212 } 1213 1214 if (flags & (FB_CUR_SETSHAPE | FB_CUR_SETCMAP)) { 1215 int fg_idx = cursor->image.fg_color; 1216 int width = (cursor->image.width+7)/8; 1217 u8 *dat = (u8 *) cursor->image.data; 1218 u8 *dst = (u8 *) cursor->dest; 1219 u8 *msk = (u8 *) cursor->mask; 1220 1221 switch (cursor->rop) { 1222 case ROP_XOR: 1223 for (i = 0; i < cursor->image.height; i++) { 1224 for (j = 0; j < width; j++) { 1225 d_idx = i * MAX_CURS/8 + j; 1226 data[d_idx] = byte_rev[dat[s_idx] ^ 1227 dst[s_idx]]; 1228 mask[d_idx] = byte_rev[msk[s_idx]]; 1229 s_idx++; 1230 } 1231 } 1232 break; 1233 case ROP_COPY: 1234 default: 1235 for (i = 0; i < cursor->image.height; i++) { 1236 for (j = 0; j < width; j++) { 1237 d_idx = i * MAX_CURS/8 + j; 1238 data[d_idx] = byte_rev[dat[s_idx]]; 1239 mask[d_idx] = byte_rev[msk[s_idx]]; 1240 s_idx++; 1241 } 1242 } 1243 break; 1244 } 1245 1246 fg = ((info->cmap.red[fg_idx] & 0xf8) << 7) | 1247 ((info->cmap.green[fg_idx] & 0xf8) << 2) | 1248 ((info->cmap.blue[fg_idx] & 0xf8) >> 3) | 1 << 15; 1249 1250 imsttfb_load_cursor_image(par, xx, yy, fgc); 1251 } 1252 if (cursor->enable) 1253 imstt_set_cursor(info, cursor, 1); 1254 return 0; 1255 } 1256 #endif 1257 1258 #define FBIMSTT_SETREG 0x545401 1259 #define FBIMSTT_GETREG 0x545402 1260 #define FBIMSTT_SETCMAPREG 0x545403 1261 #define FBIMSTT_GETCMAPREG 0x545404 1262 #define FBIMSTT_SETIDXREG 0x545405 1263 #define FBIMSTT_GETIDXREG 0x545406 1264 1265 static int 1266 imsttfb_ioctl(struct fb_info *info, u_int cmd, u_long arg) 1267 { 1268 struct imstt_par *par = info->par; 1269 void __user *argp = (void __user *)arg; 1270 __u32 reg[2]; 1271 __u8 idx[2]; 1272 1273 switch (cmd) { 1274 case FBIMSTT_SETREG: 1275 if (copy_from_user(reg, argp, 8) || reg[0] > (0x1000 - sizeof(reg[0])) / sizeof(reg[0])) 1276 return -EFAULT; 1277 write_reg_le32(par->dc_regs, reg[0], reg[1]); 1278 return 0; 1279 case FBIMSTT_GETREG: 1280 if (copy_from_user(reg, argp, 4) || reg[0] > (0x1000 - sizeof(reg[0])) / sizeof(reg[0])) 1281 return -EFAULT; 1282 reg[1] = read_reg_le32(par->dc_regs, reg[0]); 1283 if (copy_to_user((void __user *)(arg + 4), ®[1], 4)) 1284 return -EFAULT; 1285 return 0; 1286 case FBIMSTT_SETCMAPREG: 1287 if (copy_from_user(reg, argp, 8) || reg[0] > (0x1000 - sizeof(reg[0])) / sizeof(reg[0])) 1288 return -EFAULT; 1289 write_reg_le32(((u_int __iomem *)par->cmap_regs), reg[0], reg[1]); 1290 return 0; 1291 case FBIMSTT_GETCMAPREG: 1292 if (copy_from_user(reg, argp, 4) || reg[0] > (0x1000 - sizeof(reg[0])) / sizeof(reg[0])) 1293 return -EFAULT; 1294 reg[1] = read_reg_le32(((u_int __iomem *)par->cmap_regs), reg[0]); 1295 if (copy_to_user((void __user *)(arg + 4), ®[1], 4)) 1296 return -EFAULT; 1297 return 0; 1298 case FBIMSTT_SETIDXREG: 1299 if (copy_from_user(idx, argp, 2)) 1300 return -EFAULT; 1301 par->cmap_regs[PIDXHI] = 0; eieio(); 1302 par->cmap_regs[PIDXLO] = idx[0]; eieio(); 1303 par->cmap_regs[PIDXDATA] = idx[1]; eieio(); 1304 return 0; 1305 case FBIMSTT_GETIDXREG: 1306 if (copy_from_user(idx, argp, 1)) 1307 return -EFAULT; 1308 par->cmap_regs[PIDXHI] = 0; eieio(); 1309 par->cmap_regs[PIDXLO] = idx[0]; eieio(); 1310 idx[1] = par->cmap_regs[PIDXDATA]; 1311 if (copy_to_user((void __user *)(arg + 1), &idx[1], 1)) 1312 return -EFAULT; 1313 return 0; 1314 default: 1315 return -ENOIOCTLCMD; 1316 } 1317 } 1318 1319 static const struct pci_device_id imsttfb_pci_tbl[] = { 1320 { PCI_VENDOR_ID_IMS, PCI_DEVICE_ID_IMS_TT128, 1321 PCI_ANY_ID, PCI_ANY_ID, 0, 0, IBM }, 1322 { PCI_VENDOR_ID_IMS, PCI_DEVICE_ID_IMS_TT3D, 1323 PCI_ANY_ID, PCI_ANY_ID, 0, 0, TVP }, 1324 { 0, } 1325 }; 1326 1327 MODULE_DEVICE_TABLE(pci, imsttfb_pci_tbl); 1328 1329 static struct pci_driver imsttfb_pci_driver = { 1330 .name = "imsttfb", 1331 .id_table = imsttfb_pci_tbl, 1332 .probe = imsttfb_probe, 1333 .remove = imsttfb_remove, 1334 }; 1335 1336 static struct fb_ops imsttfb_ops = { 1337 .owner = THIS_MODULE, 1338 .fb_check_var = imsttfb_check_var, 1339 .fb_set_par = imsttfb_set_par, 1340 .fb_setcolreg = imsttfb_setcolreg, 1341 .fb_pan_display = imsttfb_pan_display, 1342 .fb_blank = imsttfb_blank, 1343 .fb_fillrect = imsttfb_fillrect, 1344 .fb_copyarea = imsttfb_copyarea, 1345 .fb_imageblit = cfb_imageblit, 1346 .fb_ioctl = imsttfb_ioctl, 1347 }; 1348 1349 static void init_imstt(struct fb_info *info) 1350 { 1351 struct imstt_par *par = info->par; 1352 __u32 i, tmp, *ip, *end; 1353 1354 tmp = read_reg_le32(par->dc_regs, PRC); 1355 if (par->ramdac == IBM) 1356 info->fix.smem_len = (tmp & 0x0004) ? 0x400000 : 0x200000; 1357 else 1358 info->fix.smem_len = 0x800000; 1359 1360 ip = (__u32 *)info->screen_base; 1361 end = (__u32 *)(info->screen_base + info->fix.smem_len); 1362 while (ip < end) 1363 *ip++ = 0; 1364 1365 /* initialize the card */ 1366 tmp = read_reg_le32(par->dc_regs, STGCTL); 1367 write_reg_le32(par->dc_regs, STGCTL, tmp & ~0x1); 1368 write_reg_le32(par->dc_regs, SSR, 0); 1369 1370 /* set default values for DAC registers */ 1371 if (par->ramdac == IBM) { 1372 par->cmap_regs[PPMASK] = 0xff; 1373 eieio(); 1374 par->cmap_regs[PIDXHI] = 0; 1375 eieio(); 1376 for (i = 0; i < ARRAY_SIZE(ibm_initregs); i++) { 1377 par->cmap_regs[PIDXLO] = ibm_initregs[i].addr; 1378 eieio(); 1379 par->cmap_regs[PIDXDATA] = ibm_initregs[i].value; 1380 eieio(); 1381 } 1382 } else { 1383 for (i = 0; i < ARRAY_SIZE(tvp_initregs); i++) { 1384 par->cmap_regs[TVPADDRW] = tvp_initregs[i].addr; 1385 eieio(); 1386 par->cmap_regs[TVPIDATA] = tvp_initregs[i].value; 1387 eieio(); 1388 } 1389 } 1390 1391 #if defined(CONFIG_PPC_PMAC) && defined(CONFIG_PPC32) 1392 if (IS_REACHABLE(CONFIG_NVRAM) && machine_is(powermac)) { 1393 int vmode = init_vmode, cmode = init_cmode; 1394 1395 if (vmode == -1) { 1396 vmode = nvram_read_byte(NV_VMODE); 1397 if (vmode <= 0 || vmode > VMODE_MAX) 1398 vmode = VMODE_640_480_67; 1399 } 1400 if (cmode == -1) { 1401 cmode = nvram_read_byte(NV_CMODE); 1402 if (cmode < CMODE_8 || cmode > CMODE_32) 1403 cmode = CMODE_8; 1404 } 1405 if (mac_vmode_to_var(vmode, cmode, &info->var)) { 1406 info->var.xres = info->var.xres_virtual = INIT_XRES; 1407 info->var.yres = info->var.yres_virtual = INIT_YRES; 1408 info->var.bits_per_pixel = INIT_BPP; 1409 } 1410 } else 1411 #endif 1412 { 1413 info->var.xres = info->var.xres_virtual = INIT_XRES; 1414 info->var.yres = info->var.yres_virtual = INIT_YRES; 1415 info->var.bits_per_pixel = INIT_BPP; 1416 } 1417 1418 if ((info->var.xres * info->var.yres) * (info->var.bits_per_pixel >> 3) > info->fix.smem_len 1419 || !(compute_imstt_regvals(par, info->var.xres, info->var.yres))) { 1420 printk("imsttfb: %ux%ux%u not supported\n", info->var.xres, info->var.yres, info->var.bits_per_pixel); 1421 framebuffer_release(info); 1422 return; 1423 } 1424 1425 sprintf(info->fix.id, "IMS TT (%s)", par->ramdac == IBM ? "IBM" : "TVP"); 1426 info->fix.mmio_len = 0x1000; 1427 info->fix.accel = FB_ACCEL_IMS_TWINTURBO; 1428 info->fix.type = FB_TYPE_PACKED_PIXELS; 1429 info->fix.visual = info->var.bits_per_pixel == 8 ? FB_VISUAL_PSEUDOCOLOR 1430 : FB_VISUAL_DIRECTCOLOR; 1431 info->fix.line_length = info->var.xres * (info->var.bits_per_pixel >> 3); 1432 info->fix.xpanstep = 8; 1433 info->fix.ypanstep = 1; 1434 info->fix.ywrapstep = 0; 1435 1436 info->var.accel_flags = FB_ACCELF_TEXT; 1437 1438 // if (par->ramdac == IBM) 1439 // imstt_cursor_init(info); 1440 if (info->var.green.length == 6) 1441 set_565(par); 1442 else 1443 set_555(par); 1444 set_imstt_regvals(info, info->var.bits_per_pixel); 1445 1446 info->var.pixclock = 1000000 / getclkMHz(par); 1447 1448 info->fbops = &imsttfb_ops; 1449 info->flags = FBINFO_DEFAULT | 1450 FBINFO_HWACCEL_COPYAREA | 1451 FBINFO_HWACCEL_FILLRECT | 1452 FBINFO_HWACCEL_YPAN; 1453 1454 fb_alloc_cmap(&info->cmap, 0, 0); 1455 1456 if (register_framebuffer(info) < 0) { 1457 framebuffer_release(info); 1458 return; 1459 } 1460 1461 tmp = (read_reg_le32(par->dc_regs, SSTATUS) & 0x0f00) >> 8; 1462 fb_info(info, "%s frame buffer; %uMB vram; chip version %u\n", 1463 info->fix.id, info->fix.smem_len >> 20, tmp); 1464 } 1465 1466 static int imsttfb_probe(struct pci_dev *pdev, const struct pci_device_id *ent) 1467 { 1468 unsigned long addr, size; 1469 struct imstt_par *par; 1470 struct fb_info *info; 1471 struct device_node *dp; 1472 1473 dp = pci_device_to_OF_node(pdev); 1474 if(dp) 1475 printk(KERN_INFO "%s: OF name %pOFn\n",__func__, dp); 1476 else if (IS_ENABLED(CONFIG_OF)) 1477 printk(KERN_ERR "imsttfb: no OF node for pci device\n"); 1478 1479 info = framebuffer_alloc(sizeof(struct imstt_par), &pdev->dev); 1480 1481 if (!info) { 1482 printk(KERN_ERR "imsttfb: Can't allocate memory\n"); 1483 return -ENOMEM; 1484 } 1485 1486 par = info->par; 1487 1488 addr = pci_resource_start (pdev, 0); 1489 size = pci_resource_len (pdev, 0); 1490 1491 if (!request_mem_region(addr, size, "imsttfb")) { 1492 printk(KERN_ERR "imsttfb: Can't reserve memory region\n"); 1493 framebuffer_release(info); 1494 return -ENODEV; 1495 } 1496 1497 switch (pdev->device) { 1498 case PCI_DEVICE_ID_IMS_TT128: /* IMS,tt128mbA */ 1499 par->ramdac = IBM; 1500 if (of_node_name_eq(dp, "IMS,tt128mb8") || 1501 of_node_name_eq(dp, "IMS,tt128mb8A")) 1502 par->ramdac = TVP; 1503 break; 1504 case PCI_DEVICE_ID_IMS_TT3D: /* IMS,tt3d */ 1505 par->ramdac = TVP; 1506 break; 1507 default: 1508 printk(KERN_INFO "imsttfb: Device 0x%x unknown, " 1509 "contact maintainer.\n", pdev->device); 1510 release_mem_region(addr, size); 1511 framebuffer_release(info); 1512 return -ENODEV; 1513 } 1514 1515 info->fix.smem_start = addr; 1516 info->screen_base = (__u8 *)ioremap(addr, par->ramdac == IBM ? 1517 0x400000 : 0x800000); 1518 if (!info->screen_base) { 1519 release_mem_region(addr, size); 1520 framebuffer_release(info); 1521 return -ENOMEM; 1522 } 1523 info->fix.mmio_start = addr + 0x800000; 1524 par->dc_regs = ioremap(addr + 0x800000, 0x1000); 1525 par->cmap_regs_phys = addr + 0x840000; 1526 par->cmap_regs = (__u8 *)ioremap(addr + 0x840000, 0x1000); 1527 info->pseudo_palette = par->palette; 1528 init_imstt(info); 1529 1530 pci_set_drvdata(pdev, info); 1531 return 0; 1532 } 1533 1534 static void imsttfb_remove(struct pci_dev *pdev) 1535 { 1536 struct fb_info *info = pci_get_drvdata(pdev); 1537 struct imstt_par *par = info->par; 1538 int size = pci_resource_len(pdev, 0); 1539 1540 unregister_framebuffer(info); 1541 iounmap(par->cmap_regs); 1542 iounmap(par->dc_regs); 1543 iounmap(info->screen_base); 1544 release_mem_region(info->fix.smem_start, size); 1545 framebuffer_release(info); 1546 } 1547 1548 #ifndef MODULE 1549 static int __init 1550 imsttfb_setup(char *options) 1551 { 1552 char *this_opt; 1553 1554 if (!options || !*options) 1555 return 0; 1556 1557 while ((this_opt = strsep(&options, ",")) != NULL) { 1558 if (!strncmp(this_opt, "font:", 5)) { 1559 char *p; 1560 int i; 1561 1562 p = this_opt + 5; 1563 for (i = 0; i < sizeof(fontname) - 1; i++) 1564 if (!*p || *p == ' ' || *p == ',') 1565 break; 1566 memcpy(fontname, this_opt + 5, i); 1567 fontname[i] = 0; 1568 } else if (!strncmp(this_opt, "inverse", 7)) { 1569 inverse = 1; 1570 fb_invert_cmaps(); 1571 } 1572 #if defined(CONFIG_PPC_PMAC) 1573 else if (!strncmp(this_opt, "vmode:", 6)) { 1574 int vmode = simple_strtoul(this_opt+6, NULL, 0); 1575 if (vmode > 0 && vmode <= VMODE_MAX) 1576 init_vmode = vmode; 1577 } else if (!strncmp(this_opt, "cmode:", 6)) { 1578 int cmode = simple_strtoul(this_opt+6, NULL, 0); 1579 switch (cmode) { 1580 case CMODE_8: 1581 case 8: 1582 init_cmode = CMODE_8; 1583 break; 1584 case CMODE_16: 1585 case 15: 1586 case 16: 1587 init_cmode = CMODE_16; 1588 break; 1589 case CMODE_32: 1590 case 24: 1591 case 32: 1592 init_cmode = CMODE_32; 1593 break; 1594 } 1595 } 1596 #endif 1597 } 1598 return 0; 1599 } 1600 1601 #endif /* MODULE */ 1602 1603 static int __init imsttfb_init(void) 1604 { 1605 #ifndef MODULE 1606 char *option = NULL; 1607 1608 if (fb_get_options("imsttfb", &option)) 1609 return -ENODEV; 1610 1611 imsttfb_setup(option); 1612 #endif 1613 return pci_register_driver(&imsttfb_pci_driver); 1614 } 1615 1616 static void __exit imsttfb_exit(void) 1617 { 1618 pci_unregister_driver(&imsttfb_pci_driver); 1619 } 1620 1621 MODULE_LICENSE("GPL"); 1622 1623 module_init(imsttfb_init); 1624 module_exit(imsttfb_exit); 1625 1626