xref: /openbmc/linux/drivers/video/fbdev/imsttfb.c (revision 3ae7c96d)
1 /*
2  *  drivers/video/imsttfb.c -- frame buffer device for IMS TwinTurbo
3  *
4  *  This file is derived from the powermac console "imstt" driver:
5  *  Copyright (C) 1997 Sigurdur Asgeirsson
6  *  With additional hacking by Jeffrey Kuskin (jsk@mojave.stanford.edu)
7  *  Modified by Danilo Beuche 1998
8  *  Some register values added by Damien Doligez, INRIA Rocquencourt
9  *  Various cleanups by Paul Mundt (lethal@chaoticdreams.org)
10  *
11  *  This file was written by Ryan Nielsen (ran@krazynet.com)
12  *  Most of the frame buffer device stuff was copied from atyfb.c
13  *
14  *  This file is subject to the terms and conditions of the GNU General Public
15  *  License. See the file COPYING in the main directory of this archive for
16  *  more details.
17  */
18 
19 #include <linux/aperture.h>
20 #include <linux/module.h>
21 #include <linux/kernel.h>
22 #include <linux/errno.h>
23 #include <linux/string.h>
24 #include <linux/mm.h>
25 #include <linux/vmalloc.h>
26 #include <linux/delay.h>
27 #include <linux/interrupt.h>
28 #include <linux/fb.h>
29 #include <linux/init.h>
30 #include <linux/pci.h>
31 #include <asm/io.h>
32 #include <linux/uaccess.h>
33 
34 #if defined(CONFIG_PPC_PMAC)
35 #include <linux/nvram.h>
36 #include "macmodes.h"
37 #endif
38 
39 #ifndef __powerpc__
40 #define eieio()		/* Enforce In-order Execution of I/O */
41 #endif
42 
43 /* TwinTurbo (Cosmo) registers */
44 enum {
45 	S1SA	=  0, /* 0x00 */
46 	S2SA	=  1, /* 0x04 */
47 	SP	=  2, /* 0x08 */
48 	DSA	=  3, /* 0x0C */
49 	CNT	=  4, /* 0x10 */
50 	DP_OCTL	=  5, /* 0x14 */
51 	CLR	=  6, /* 0x18 */
52 	BI	=  8, /* 0x20 */
53 	MBC	=  9, /* 0x24 */
54 	BLTCTL	= 10, /* 0x28 */
55 
56 	/* Scan Timing Generator Registers */
57 	HES	= 12, /* 0x30 */
58 	HEB	= 13, /* 0x34 */
59 	HSB	= 14, /* 0x38 */
60 	HT	= 15, /* 0x3C */
61 	VES	= 16, /* 0x40 */
62 	VEB	= 17, /* 0x44 */
63 	VSB	= 18, /* 0x48 */
64 	VT	= 19, /* 0x4C */
65 	HCIV	= 20, /* 0x50 */
66 	VCIV	= 21, /* 0x54 */
67 	TCDR	= 22, /* 0x58 */
68 	VIL	= 23, /* 0x5C */
69 	STGCTL	= 24, /* 0x60 */
70 
71 	/* Screen Refresh Generator Registers */
72 	SSR	= 25, /* 0x64 */
73 	HRIR	= 26, /* 0x68 */
74 	SPR	= 27, /* 0x6C */
75 	CMR	= 28, /* 0x70 */
76 	SRGCTL	= 29, /* 0x74 */
77 
78 	/* RAM Refresh Generator Registers */
79 	RRCIV	= 30, /* 0x78 */
80 	RRSC	= 31, /* 0x7C */
81 	RRCR	= 34, /* 0x88 */
82 
83 	/* System Registers */
84 	GIOE	= 32, /* 0x80 */
85 	GIO	= 33, /* 0x84 */
86 	SCR	= 35, /* 0x8C */
87 	SSTATUS	= 36, /* 0x90 */
88 	PRC	= 37, /* 0x94 */
89 
90 #if 0
91 	/* PCI Registers */
92 	DVID	= 0x00000000L,
93 	SC	= 0x00000004L,
94 	CCR	= 0x00000008L,
95 	OG	= 0x0000000CL,
96 	BARM	= 0x00000010L,
97 	BARER	= 0x00000030L,
98 #endif
99 };
100 
101 /* IBM 624 RAMDAC Direct Registers */
102 enum {
103 	PADDRW	= 0x00,
104 	PDATA	= 0x04,
105 	PPMASK	= 0x08,
106 	PADDRR	= 0x0c,
107 	PIDXLO	= 0x10,
108 	PIDXHI	= 0x14,
109 	PIDXDATA= 0x18,
110 	PIDXCTL	= 0x1c
111 };
112 
113 /* IBM 624 RAMDAC Indirect Registers */
114 enum {
115 	CLKCTL		= 0x02,	/* (0x01) Miscellaneous Clock Control */
116 	SYNCCTL		= 0x03,	/* (0x00) Sync Control */
117 	HSYNCPOS	= 0x04,	/* (0x00) Horizontal Sync Position */
118 	PWRMNGMT	= 0x05,	/* (0x00) Power Management */
119 	DACOP		= 0x06,	/* (0x02) DAC Operation */
120 	PALETCTL	= 0x07,	/* (0x00) Palette Control */
121 	SYSCLKCTL	= 0x08,	/* (0x01) System Clock Control */
122 	PIXFMT		= 0x0a,	/* () Pixel Format  [bpp >> 3 + 2] */
123 	BPP8		= 0x0b,	/* () 8 Bits/Pixel Control */
124 	BPP16		= 0x0c, /* () 16 Bits/Pixel Control  [bit 1=1 for 565] */
125 	BPP24		= 0x0d,	/* () 24 Bits/Pixel Control */
126 	BPP32		= 0x0e,	/* () 32 Bits/Pixel Control */
127 	PIXCTL1		= 0x10, /* (0x05) Pixel PLL Control 1 */
128 	PIXCTL2		= 0x11,	/* (0x00) Pixel PLL Control 2 */
129 	SYSCLKN		= 0x15,	/* () System Clock N (System PLL Reference Divider) */
130 	SYSCLKM		= 0x16,	/* () System Clock M (System PLL VCO Divider) */
131 	SYSCLKP		= 0x17,	/* () System Clock P */
132 	SYSCLKC		= 0x18,	/* () System Clock C */
133 	/*
134 	 * Dot clock rate is 20MHz * (m + 1) / ((n + 1) * (p ? 2 * p : 1)
135 	 * c is charge pump bias which depends on the VCO frequency
136 	 */
137 	PIXM0		= 0x20,	/* () Pixel M 0 */
138 	PIXN0		= 0x21,	/* () Pixel N 0 */
139 	PIXP0		= 0x22,	/* () Pixel P 0 */
140 	PIXC0		= 0x23,	/* () Pixel C 0 */
141 	CURSCTL		= 0x30,	/* (0x00) Cursor Control */
142 	CURSXLO		= 0x31,	/* () Cursor X position, low 8 bits */
143 	CURSXHI		= 0x32,	/* () Cursor X position, high 8 bits */
144 	CURSYLO		= 0x33,	/* () Cursor Y position, low 8 bits */
145 	CURSYHI		= 0x34,	/* () Cursor Y position, high 8 bits */
146 	CURSHOTX	= 0x35,	/* () Cursor Hot Spot X */
147 	CURSHOTY	= 0x36,	/* () Cursor Hot Spot Y */
148 	CURSACCTL	= 0x37,	/* () Advanced Cursor Control Enable */
149 	CURSACATTR	= 0x38,	/* () Advanced Cursor Attribute */
150 	CURS1R		= 0x40,	/* () Cursor 1 Red */
151 	CURS1G		= 0x41,	/* () Cursor 1 Green */
152 	CURS1B		= 0x42,	/* () Cursor 1 Blue */
153 	CURS2R		= 0x43,	/* () Cursor 2 Red */
154 	CURS2G		= 0x44,	/* () Cursor 2 Green */
155 	CURS2B		= 0x45,	/* () Cursor 2 Blue */
156 	CURS3R		= 0x46,	/* () Cursor 3 Red */
157 	CURS3G		= 0x47,	/* () Cursor 3 Green */
158 	CURS3B		= 0x48,	/* () Cursor 3 Blue */
159 	BORDR		= 0x60,	/* () Border Color Red */
160 	BORDG		= 0x61,	/* () Border Color Green */
161 	BORDB		= 0x62,	/* () Border Color Blue */
162 	MISCTL1		= 0x70,	/* (0x00) Miscellaneous Control 1 */
163 	MISCTL2		= 0x71,	/* (0x00) Miscellaneous Control 2 */
164 	MISCTL3		= 0x72,	/* (0x00) Miscellaneous Control 3 */
165 	KEYCTL		= 0x78	/* (0x00) Key Control/DB Operation */
166 };
167 
168 /* TI TVP 3030 RAMDAC Direct Registers */
169 enum {
170 	TVPADDRW = 0x00,	/* 0  Palette/Cursor RAM Write Address/Index */
171 	TVPPDATA = 0x04,	/* 1  Palette Data RAM Data */
172 	TVPPMASK = 0x08,	/* 2  Pixel Read-Mask */
173 	TVPPADRR = 0x0c,	/* 3  Palette/Cursor RAM Read Address */
174 	TVPCADRW = 0x10,	/* 4  Cursor/Overscan Color Write Address */
175 	TVPCDATA = 0x14,	/* 5  Cursor/Overscan Color Data */
176 				/* 6  reserved */
177 	TVPCADRR = 0x1c,	/* 7  Cursor/Overscan Color Read Address */
178 				/* 8  reserved */
179 	TVPDCCTL = 0x24,	/* 9  Direct Cursor Control */
180 	TVPIDATA = 0x28,	/* 10 Index Data */
181 	TVPCRDAT = 0x2c,	/* 11 Cursor RAM Data */
182 	TVPCXPOL = 0x30,	/* 12 Cursor-Position X LSB */
183 	TVPCXPOH = 0x34,	/* 13 Cursor-Position X MSB */
184 	TVPCYPOL = 0x38,	/* 14 Cursor-Position Y LSB */
185 	TVPCYPOH = 0x3c,	/* 15 Cursor-Position Y MSB */
186 };
187 
188 /* TI TVP 3030 RAMDAC Indirect Registers */
189 enum {
190 	TVPIRREV = 0x01,	/* Silicon Revision [RO] */
191 	TVPIRICC = 0x06,	/* Indirect Cursor Control 	(0x00) */
192 	TVPIRBRC = 0x07,	/* Byte Router Control 	(0xe4) */
193 	TVPIRLAC = 0x0f,	/* Latch Control 		(0x06) */
194 	TVPIRTCC = 0x18,	/* True Color Control  	(0x80) */
195 	TVPIRMXC = 0x19,	/* Multiplex Control		(0x98) */
196 	TVPIRCLS = 0x1a,	/* Clock Selection		(0x07) */
197 	TVPIRPPG = 0x1c,	/* Palette Page		(0x00) */
198 	TVPIRGEC = 0x1d,	/* General Control 		(0x00) */
199 	TVPIRMIC = 0x1e,	/* Miscellaneous Control	(0x00) */
200 	TVPIRPLA = 0x2c,	/* PLL Address */
201 	TVPIRPPD = 0x2d,	/* Pixel Clock PLL Data */
202 	TVPIRMPD = 0x2e,	/* Memory Clock PLL Data */
203 	TVPIRLPD = 0x2f,	/* Loop Clock PLL Data */
204 	TVPIRCKL = 0x30,	/* Color-Key Overlay Low */
205 	TVPIRCKH = 0x31,	/* Color-Key Overlay High */
206 	TVPIRCRL = 0x32,	/* Color-Key Red Low */
207 	TVPIRCRH = 0x33,	/* Color-Key Red High */
208 	TVPIRCGL = 0x34,	/* Color-Key Green Low */
209 	TVPIRCGH = 0x35,	/* Color-Key Green High */
210 	TVPIRCBL = 0x36,	/* Color-Key Blue Low */
211 	TVPIRCBH = 0x37,	/* Color-Key Blue High */
212 	TVPIRCKC = 0x38,	/* Color-Key Control 		(0x00) */
213 	TVPIRMLC = 0x39,	/* MCLK/Loop Clock Control	(0x18) */
214 	TVPIRSEN = 0x3a,	/* Sense Test			(0x00) */
215 	TVPIRTMD = 0x3b,	/* Test Mode Data */
216 	TVPIRRML = 0x3c,	/* CRC Remainder LSB [RO] */
217 	TVPIRRMM = 0x3d,	/* CRC Remainder MSB [RO] */
218 	TVPIRRMS = 0x3e,	/* CRC  Bit Select [WO] */
219 	TVPIRDID = 0x3f,	/* Device ID [RO] 		(0x30) */
220 	TVPIRRES = 0xff		/* Software Reset [WO] */
221 };
222 
223 struct initvalues {
224 	__u8 addr, value;
225 };
226 
227 static struct initvalues ibm_initregs[] = {
228 	{ CLKCTL,	0x21 },
229 	{ SYNCCTL,	0x00 },
230 	{ HSYNCPOS,	0x00 },
231 	{ PWRMNGMT,	0x00 },
232 	{ DACOP,	0x02 },
233 	{ PALETCTL,	0x00 },
234 	{ SYSCLKCTL,	0x01 },
235 
236 	/*
237 	 * Note that colors in X are correct only if all video data is
238 	 * passed through the palette in the DAC.  That is, "indirect
239 	 * color" must be configured.  This is the case for the IBM DAC
240 	 * used in the 2MB and 4MB cards, at least.
241 	 */
242 	{ BPP8,		0x00 },
243 	{ BPP16,	0x01 },
244 	{ BPP24,	0x00 },
245 	{ BPP32,	0x00 },
246 
247 	{ PIXCTL1,	0x05 },
248 	{ PIXCTL2,	0x00 },
249 	{ SYSCLKN,	0x08 },
250 	{ SYSCLKM,	0x4f },
251 	{ SYSCLKP,	0x00 },
252 	{ SYSCLKC,	0x00 },
253 	{ CURSCTL,	0x00 },
254 	{ CURSACCTL,	0x01 },
255 	{ CURSACATTR,	0xa8 },
256 	{ CURS1R,	0xff },
257 	{ CURS1G,	0xff },
258 	{ CURS1B,	0xff },
259 	{ CURS2R,	0xff },
260 	{ CURS2G,	0xff },
261 	{ CURS2B,	0xff },
262 	{ CURS3R,	0xff },
263 	{ CURS3G,	0xff },
264 	{ CURS3B,	0xff },
265 	{ BORDR,	0xff },
266 	{ BORDG,	0xff },
267 	{ BORDB,	0xff },
268 	{ MISCTL1,	0x01 },
269 	{ MISCTL2,	0x45 },
270 	{ MISCTL3,	0x00 },
271 	{ KEYCTL,	0x00 }
272 };
273 
274 static struct initvalues tvp_initregs[] = {
275 	{ TVPIRICC,	0x00 },
276 	{ TVPIRBRC,	0xe4 },
277 	{ TVPIRLAC,	0x06 },
278 	{ TVPIRTCC,	0x80 },
279 	{ TVPIRMXC,	0x4d },
280 	{ TVPIRCLS,	0x05 },
281 	{ TVPIRPPG,	0x00 },
282 	{ TVPIRGEC,	0x00 },
283 	{ TVPIRMIC,	0x08 },
284 	{ TVPIRCKL,	0xff },
285 	{ TVPIRCKH,	0xff },
286 	{ TVPIRCRL,	0xff },
287 	{ TVPIRCRH,	0xff },
288 	{ TVPIRCGL,	0xff },
289 	{ TVPIRCGH,	0xff },
290 	{ TVPIRCBL,	0xff },
291 	{ TVPIRCBH,	0xff },
292 	{ TVPIRCKC,	0x00 },
293 	{ TVPIRPLA,	0x00 },
294 	{ TVPIRPPD,	0xc0 },
295 	{ TVPIRPPD,	0xd5 },
296 	{ TVPIRPPD,	0xea },
297 	{ TVPIRPLA,	0x00 },
298 	{ TVPIRMPD,	0xb9 },
299 	{ TVPIRMPD,	0x3a },
300 	{ TVPIRMPD,	0xb1 },
301 	{ TVPIRPLA,	0x00 },
302 	{ TVPIRLPD,	0xc1 },
303 	{ TVPIRLPD,	0x3d },
304 	{ TVPIRLPD,	0xf3 },
305 };
306 
307 struct imstt_regvals {
308 	__u32 pitch;
309 	__u16 hes, heb, hsb, ht, ves, veb, vsb, vt, vil;
310 	__u8 pclk_m, pclk_n, pclk_p;
311 	/* Values of the tvp which change depending on colormode x resolution */
312 	__u8 mlc[3];	/* Memory Loop Config 0x39 */
313 	__u8 lckl_p[3];	/* P value of LCKL PLL */
314 };
315 
316 struct imstt_par {
317 	struct imstt_regvals init;
318 	__u32 __iomem *dc_regs;
319 	unsigned long cmap_regs_phys;
320 	__u8 *cmap_regs;
321 	__u32 ramdac;
322 	__u32 palette[16];
323 };
324 
325 enum {
326 	IBM = 0,
327 	TVP = 1
328 };
329 
330 #define INIT_BPP		8
331 #define INIT_XRES		640
332 #define INIT_YRES		480
333 
334 static int inverse = 0;
335 static char fontname[40] __initdata = { 0 };
336 #if defined(CONFIG_PPC_PMAC)
337 static signed char init_vmode = -1, init_cmode = -1;
338 #endif
339 
340 static struct imstt_regvals tvp_reg_init_2 = {
341 	512,
342 	0x0002, 0x0006, 0x0026, 0x0028, 0x0003, 0x0016, 0x0196, 0x0197, 0x0196,
343 	0xec, 0x2a, 0xf3,
344 	{ 0x3c, 0x3b, 0x39 }, { 0xf3, 0xf3, 0xf3 }
345 };
346 
347 static struct imstt_regvals tvp_reg_init_6 = {
348 	640,
349 	0x0004, 0x0009, 0x0031, 0x0036, 0x0003, 0x002a, 0x020a, 0x020d, 0x020a,
350 	0xef, 0x2e, 0xb2,
351 	{ 0x39, 0x39, 0x38 }, { 0xf3, 0xf3, 0xf3 }
352 };
353 
354 static struct imstt_regvals tvp_reg_init_12 = {
355 	800,
356 	0x0005, 0x000e, 0x0040, 0x0042, 0x0003, 0x018, 0x270, 0x271, 0x270,
357 	0xf6, 0x2e, 0xf2,
358 	{ 0x3a, 0x39, 0x38 }, { 0xf3, 0xf3, 0xf3 }
359 };
360 
361 static struct imstt_regvals tvp_reg_init_13 = {
362 	832,
363 	0x0004, 0x0011, 0x0045, 0x0048, 0x0003, 0x002a, 0x029a, 0x029b, 0x0000,
364 	0xfe, 0x3e, 0xf1,
365 	{ 0x39, 0x38, 0x38 }, { 0xf3, 0xf3, 0xf2 }
366 };
367 
368 static struct imstt_regvals tvp_reg_init_17 = {
369 	1024,
370 	0x0006, 0x0210, 0x0250, 0x0053, 0x1003, 0x0021, 0x0321, 0x0324, 0x0000,
371 	0xfc, 0x3a, 0xf1,
372 	{ 0x39, 0x38, 0x38 }, { 0xf3, 0xf3, 0xf2 }
373 };
374 
375 static struct imstt_regvals tvp_reg_init_18 = {
376 	1152,
377   	0x0009, 0x0011, 0x059, 0x5b, 0x0003, 0x0031, 0x0397, 0x039a, 0x0000,
378 	0xfd, 0x3a, 0xf1,
379 	{ 0x39, 0x38, 0x38 }, { 0xf3, 0xf3, 0xf2 }
380 };
381 
382 static struct imstt_regvals tvp_reg_init_19 = {
383 	1280,
384 	0x0009, 0x0016, 0x0066, 0x0069, 0x0003, 0x0027, 0x03e7, 0x03e8, 0x03e7,
385 	0xf7, 0x36, 0xf0,
386 	{ 0x38, 0x38, 0x38 }, { 0xf3, 0xf2, 0xf1 }
387 };
388 
389 static struct imstt_regvals tvp_reg_init_20 = {
390 	1280,
391 	0x0009, 0x0018, 0x0068, 0x006a, 0x0003, 0x0029, 0x0429, 0x042a, 0x0000,
392 	0xf0, 0x2d, 0xf0,
393 	{ 0x38, 0x38, 0x38 }, { 0xf3, 0xf2, 0xf1 }
394 };
395 
396 /*
397  * PCI driver prototypes
398  */
399 static int imsttfb_probe(struct pci_dev *pdev, const struct pci_device_id *ent);
400 static void imsttfb_remove(struct pci_dev *pdev);
401 
402 /*
403  * Register access
404  */
405 static inline u32 read_reg_le32(volatile u32 __iomem *base, int regindex)
406 {
407 #ifdef __powerpc__
408 	return in_le32(base + regindex);
409 #else
410 	return readl(base + regindex);
411 #endif
412 }
413 
414 static inline void write_reg_le32(volatile u32 __iomem *base, int regindex, u32 val)
415 {
416 #ifdef __powerpc__
417 	out_le32(base + regindex, val);
418 #else
419 	writel(val, base + regindex);
420 #endif
421 }
422 
423 static __u32
424 getclkMHz(struct imstt_par *par)
425 {
426 	__u32 clk_m, clk_n, clk_p;
427 
428 	clk_m = par->init.pclk_m;
429 	clk_n = par->init.pclk_n;
430 	clk_p = par->init.pclk_p;
431 
432 	return 20 * (clk_m + 1) / ((clk_n + 1) * (clk_p ? 2 * clk_p : 1));
433 }
434 
435 static void
436 setclkMHz(struct imstt_par *par, __u32 MHz)
437 {
438 	__u32 clk_m, clk_n, x, stage, spilled;
439 
440 	clk_m = clk_n = 0;
441 	stage = spilled = 0;
442 	for (;;) {
443 		switch (stage) {
444 			case 0:
445 				clk_m++;
446 				break;
447 			case 1:
448 				clk_n++;
449 				break;
450 		}
451 		x = 20 * (clk_m + 1) / (clk_n + 1);
452 		if (x == MHz)
453 			break;
454 		if (x > MHz) {
455 			spilled = 1;
456 			stage = 1;
457 		} else if (spilled && x < MHz) {
458 			stage = 0;
459 		}
460 	}
461 
462 	par->init.pclk_m = clk_m;
463 	par->init.pclk_n = clk_n;
464 	par->init.pclk_p = 0;
465 }
466 
467 static struct imstt_regvals *
468 compute_imstt_regvals_ibm(struct imstt_par *par, int xres, int yres)
469 {
470 	struct imstt_regvals *init = &par->init;
471 	__u32 MHz, hes, heb, veb, htp, vtp;
472 
473 	switch (xres) {
474 		case 640:
475 			hes = 0x0008; heb = 0x0012; veb = 0x002a; htp = 10; vtp = 2;
476 			MHz = 30 /* .25 */ ;
477 			break;
478 		case 832:
479 			hes = 0x0005; heb = 0x0020; veb = 0x0028; htp = 8; vtp = 3;
480 			MHz = 57 /* .27_ */ ;
481 			break;
482 		case 1024:
483 			hes = 0x000a; heb = 0x001c; veb = 0x0020; htp = 8; vtp = 3;
484 			MHz = 80;
485 			break;
486 		case 1152:
487 			hes = 0x0012; heb = 0x0022; veb = 0x0031; htp = 4; vtp = 3;
488 			MHz = 101 /* .6_ */ ;
489 			break;
490 		case 1280:
491 			hes = 0x0012; heb = 0x002f; veb = 0x0029; htp = 4; vtp = 1;
492 			MHz = yres == 960 ? 126 : 135;
493 			break;
494 		case 1600:
495 			hes = 0x0018; heb = 0x0040; veb = 0x002a; htp = 4; vtp = 3;
496 			MHz = 200;
497 			break;
498 		default:
499 			return NULL;
500 	}
501 
502 	setclkMHz(par, MHz);
503 
504 	init->hes = hes;
505 	init->heb = heb;
506 	init->hsb = init->heb + (xres >> 3);
507 	init->ht = init->hsb + htp;
508 	init->ves = 0x0003;
509 	init->veb = veb;
510 	init->vsb = init->veb + yres;
511 	init->vt = init->vsb + vtp;
512 	init->vil = init->vsb;
513 
514 	init->pitch = xres;
515 	return init;
516 }
517 
518 static struct imstt_regvals *
519 compute_imstt_regvals_tvp(struct imstt_par *par, int xres, int yres)
520 {
521 	struct imstt_regvals *init;
522 
523 	switch (xres) {
524 		case 512:
525 			init = &tvp_reg_init_2;
526 			break;
527 		case 640:
528 			init = &tvp_reg_init_6;
529 			break;
530 		case 800:
531 			init = &tvp_reg_init_12;
532 			break;
533 		case 832:
534 			init = &tvp_reg_init_13;
535 			break;
536 		case 1024:
537 			init = &tvp_reg_init_17;
538 			break;
539 		case 1152:
540 			init = &tvp_reg_init_18;
541 			break;
542 		case 1280:
543 			init = yres == 960 ? &tvp_reg_init_19 : &tvp_reg_init_20;
544 			break;
545 		default:
546 			return NULL;
547 	}
548 	par->init = *init;
549 	return init;
550 }
551 
552 static struct imstt_regvals *
553 compute_imstt_regvals (struct imstt_par *par, u_int xres, u_int yres)
554 {
555 	if (par->ramdac == IBM)
556 		return compute_imstt_regvals_ibm(par, xres, yres);
557 	else
558 		return compute_imstt_regvals_tvp(par, xres, yres);
559 }
560 
561 static void
562 set_imstt_regvals_ibm (struct imstt_par *par, u_int bpp)
563 {
564 	struct imstt_regvals *init = &par->init;
565 	__u8 pformat = (bpp >> 3) + 2;
566 
567 	par->cmap_regs[PIDXHI] = 0;		eieio();
568 	par->cmap_regs[PIDXLO] = PIXM0;		eieio();
569 	par->cmap_regs[PIDXDATA] = init->pclk_m;eieio();
570 	par->cmap_regs[PIDXLO] = PIXN0;		eieio();
571 	par->cmap_regs[PIDXDATA] = init->pclk_n;eieio();
572 	par->cmap_regs[PIDXLO] = PIXP0;		eieio();
573 	par->cmap_regs[PIDXDATA] = init->pclk_p;eieio();
574 	par->cmap_regs[PIDXLO] = PIXC0;		eieio();
575 	par->cmap_regs[PIDXDATA] = 0x02;	eieio();
576 
577 	par->cmap_regs[PIDXLO] = PIXFMT;	eieio();
578 	par->cmap_regs[PIDXDATA] = pformat;	eieio();
579 }
580 
581 static void
582 set_imstt_regvals_tvp (struct imstt_par *par, u_int bpp)
583 {
584 	struct imstt_regvals *init = &par->init;
585 	__u8 tcc, mxc, lckl_n, mic;
586 	__u8 mlc, lckl_p;
587 
588 	switch (bpp) {
589 		default:
590 		case 8:
591 			tcc = 0x80;
592 			mxc = 0x4d;
593 			lckl_n = 0xc1;
594 			mlc = init->mlc[0];
595 			lckl_p = init->lckl_p[0];
596 			break;
597 		case 16:
598 			tcc = 0x44;
599 			mxc = 0x55;
600 			lckl_n = 0xe1;
601 			mlc = init->mlc[1];
602 			lckl_p = init->lckl_p[1];
603 			break;
604 		case 24:
605 			tcc = 0x5e;
606 			mxc = 0x5d;
607 			lckl_n = 0xf1;
608 			mlc = init->mlc[2];
609 			lckl_p = init->lckl_p[2];
610 			break;
611 		case 32:
612 			tcc = 0x46;
613 			mxc = 0x5d;
614 			lckl_n = 0xf1;
615 			mlc = init->mlc[2];
616 			lckl_p = init->lckl_p[2];
617 			break;
618 	}
619 	mic = 0x08;
620 
621 	par->cmap_regs[TVPADDRW] = TVPIRPLA;		eieio();
622 	par->cmap_regs[TVPIDATA] = 0x00;		eieio();
623 	par->cmap_regs[TVPADDRW] = TVPIRPPD;		eieio();
624 	par->cmap_regs[TVPIDATA] = init->pclk_m;	eieio();
625 	par->cmap_regs[TVPADDRW] = TVPIRPPD;		eieio();
626 	par->cmap_regs[TVPIDATA] = init->pclk_n;	eieio();
627 	par->cmap_regs[TVPADDRW] = TVPIRPPD;		eieio();
628 	par->cmap_regs[TVPIDATA] = init->pclk_p;	eieio();
629 
630 	par->cmap_regs[TVPADDRW] = TVPIRTCC;		eieio();
631 	par->cmap_regs[TVPIDATA] = tcc;			eieio();
632 	par->cmap_regs[TVPADDRW] = TVPIRMXC;		eieio();
633 	par->cmap_regs[TVPIDATA] = mxc;			eieio();
634 	par->cmap_regs[TVPADDRW] = TVPIRMIC;		eieio();
635 	par->cmap_regs[TVPIDATA] = mic;			eieio();
636 
637 	par->cmap_regs[TVPADDRW] = TVPIRPLA;		eieio();
638 	par->cmap_regs[TVPIDATA] = 0x00;		eieio();
639 	par->cmap_regs[TVPADDRW] = TVPIRLPD;		eieio();
640 	par->cmap_regs[TVPIDATA] = lckl_n;		eieio();
641 
642 	par->cmap_regs[TVPADDRW] = TVPIRPLA;		eieio();
643 	par->cmap_regs[TVPIDATA] = 0x15;		eieio();
644 	par->cmap_regs[TVPADDRW] = TVPIRMLC;		eieio();
645 	par->cmap_regs[TVPIDATA] = mlc;			eieio();
646 
647 	par->cmap_regs[TVPADDRW] = TVPIRPLA;		eieio();
648 	par->cmap_regs[TVPIDATA] = 0x2a;		eieio();
649 	par->cmap_regs[TVPADDRW] = TVPIRLPD;		eieio();
650 	par->cmap_regs[TVPIDATA] = lckl_p;		eieio();
651 }
652 
653 static void
654 set_imstt_regvals (struct fb_info *info, u_int bpp)
655 {
656 	struct imstt_par *par = info->par;
657 	struct imstt_regvals *init = &par->init;
658 	__u32 ctl, pitch, byteswap, scr;
659 
660 	if (par->ramdac == IBM)
661 		set_imstt_regvals_ibm(par, bpp);
662 	else
663 		set_imstt_regvals_tvp(par, bpp);
664 
665   /*
666    * From what I (jsk) can gather poking around with MacsBug,
667    * bits 8 and 9 in the SCR register control endianness
668    * correction (byte swapping).  These bits must be set according
669    * to the color depth as follows:
670    *     Color depth    Bit 9   Bit 8
671    *     ==========     =====   =====
672    *        8bpp          0       0
673    *       16bpp          0       1
674    *       32bpp          1       1
675    */
676 	switch (bpp) {
677 		default:
678 		case 8:
679 			ctl = 0x17b1;
680 			pitch = init->pitch >> 2;
681 			byteswap = 0x000;
682 			break;
683 		case 16:
684 			ctl = 0x17b3;
685 			pitch = init->pitch >> 1;
686 			byteswap = 0x100;
687 			break;
688 		case 24:
689 			ctl = 0x17b9;
690 			pitch = init->pitch - (init->pitch >> 2);
691 			byteswap = 0x200;
692 			break;
693 		case 32:
694 			ctl = 0x17b5;
695 			pitch = init->pitch;
696 			byteswap = 0x300;
697 			break;
698 	}
699 	if (par->ramdac == TVP)
700 		ctl -= 0x30;
701 
702 	write_reg_le32(par->dc_regs, HES, init->hes);
703 	write_reg_le32(par->dc_regs, HEB, init->heb);
704 	write_reg_le32(par->dc_regs, HSB, init->hsb);
705 	write_reg_le32(par->dc_regs, HT, init->ht);
706 	write_reg_le32(par->dc_regs, VES, init->ves);
707 	write_reg_le32(par->dc_regs, VEB, init->veb);
708 	write_reg_le32(par->dc_regs, VSB, init->vsb);
709 	write_reg_le32(par->dc_regs, VT, init->vt);
710 	write_reg_le32(par->dc_regs, VIL, init->vil);
711 	write_reg_le32(par->dc_regs, HCIV, 1);
712 	write_reg_le32(par->dc_regs, VCIV, 1);
713 	write_reg_le32(par->dc_regs, TCDR, 4);
714 	write_reg_le32(par->dc_regs, RRCIV, 1);
715 	write_reg_le32(par->dc_regs, RRSC, 0x980);
716 	write_reg_le32(par->dc_regs, RRCR, 0x11);
717 
718 	if (par->ramdac == IBM) {
719 		write_reg_le32(par->dc_regs, HRIR, 0x0100);
720 		write_reg_le32(par->dc_regs, CMR, 0x00ff);
721 		write_reg_le32(par->dc_regs, SRGCTL, 0x0073);
722 	} else {
723 		write_reg_le32(par->dc_regs, HRIR, 0x0200);
724 		write_reg_le32(par->dc_regs, CMR, 0x01ff);
725 		write_reg_le32(par->dc_regs, SRGCTL, 0x0003);
726 	}
727 
728 	switch (info->fix.smem_len) {
729 		case 0x200000:
730 			scr = 0x059d | byteswap;
731 			break;
732 		/* case 0x400000:
733 		   case 0x800000: */
734 		default:
735 			pitch >>= 1;
736 			scr = 0x150dd | byteswap;
737 			break;
738 	}
739 
740 	write_reg_le32(par->dc_regs, SCR, scr);
741 	write_reg_le32(par->dc_regs, SPR, pitch);
742 	write_reg_le32(par->dc_regs, STGCTL, ctl);
743 }
744 
745 static inline void
746 set_offset (struct fb_var_screeninfo *var, struct fb_info *info)
747 {
748 	struct imstt_par *par = info->par;
749 	__u32 off = var->yoffset * (info->fix.line_length >> 3)
750 		    + ((var->xoffset * (info->var.bits_per_pixel >> 3)) >> 3);
751 	write_reg_le32(par->dc_regs, SSR, off);
752 }
753 
754 static inline void
755 set_555 (struct imstt_par *par)
756 {
757 	if (par->ramdac == IBM) {
758 		par->cmap_regs[PIDXHI] = 0;		eieio();
759 		par->cmap_regs[PIDXLO] = BPP16;		eieio();
760 		par->cmap_regs[PIDXDATA] = 0x01;	eieio();
761 	} else {
762 		par->cmap_regs[TVPADDRW] = TVPIRTCC;	eieio();
763 		par->cmap_regs[TVPIDATA] = 0x44;	eieio();
764 	}
765 }
766 
767 static inline void
768 set_565 (struct imstt_par *par)
769 {
770 	if (par->ramdac == IBM) {
771 		par->cmap_regs[PIDXHI] = 0;		eieio();
772 		par->cmap_regs[PIDXLO] = BPP16;		eieio();
773 		par->cmap_regs[PIDXDATA] = 0x03;	eieio();
774 	} else {
775 		par->cmap_regs[TVPADDRW] = TVPIRTCC;	eieio();
776 		par->cmap_regs[TVPIDATA] = 0x45;	eieio();
777 	}
778 }
779 
780 static int
781 imsttfb_check_var(struct fb_var_screeninfo *var, struct fb_info *info)
782 {
783 	if ((var->bits_per_pixel != 8 && var->bits_per_pixel != 16
784 	    && var->bits_per_pixel != 24 && var->bits_per_pixel != 32)
785 	    || var->xres_virtual < var->xres || var->yres_virtual < var->yres
786 	    || var->nonstd
787 	    || (var->vmode & FB_VMODE_MASK) != FB_VMODE_NONINTERLACED)
788 		return -EINVAL;
789 
790 	if ((var->xres * var->yres) * (var->bits_per_pixel >> 3) > info->fix.smem_len
791 	    || (var->xres_virtual * var->yres_virtual) * (var->bits_per_pixel >> 3) > info->fix.smem_len)
792 		return -EINVAL;
793 
794 	switch (var->bits_per_pixel) {
795 		case 8:
796 			var->red.offset = 0;
797 			var->red.length = 8;
798 			var->green.offset = 0;
799 			var->green.length = 8;
800 			var->blue.offset = 0;
801 			var->blue.length = 8;
802 			var->transp.offset = 0;
803 			var->transp.length = 0;
804 			break;
805 		case 16:	/* RGB 555 or 565 */
806 			if (var->green.length != 6)
807 				var->red.offset = 10;
808 			var->red.length = 5;
809 			var->green.offset = 5;
810 			if (var->green.length != 6)
811 				var->green.length = 5;
812 			var->blue.offset = 0;
813 			var->blue.length = 5;
814 			var->transp.offset = 0;
815 			var->transp.length = 0;
816 			break;
817 		case 24:	/* RGB 888 */
818 			var->red.offset = 16;
819 			var->red.length = 8;
820 			var->green.offset = 8;
821 			var->green.length = 8;
822 			var->blue.offset = 0;
823 			var->blue.length = 8;
824 			var->transp.offset = 0;
825 			var->transp.length = 0;
826 			break;
827 		case 32:	/* RGBA 8888 */
828 			var->red.offset = 16;
829 			var->red.length = 8;
830 			var->green.offset = 8;
831 			var->green.length = 8;
832 			var->blue.offset = 0;
833 			var->blue.length = 8;
834 			var->transp.offset = 24;
835 			var->transp.length = 8;
836 			break;
837 	}
838 
839 	if (var->yres == var->yres_virtual) {
840 		__u32 vram = (info->fix.smem_len - (PAGE_SIZE << 2));
841 		var->yres_virtual = ((vram << 3) / var->bits_per_pixel) / var->xres_virtual;
842 		if (var->yres_virtual < var->yres)
843 			var->yres_virtual = var->yres;
844 	}
845 
846 	var->red.msb_right = 0;
847 	var->green.msb_right = 0;
848 	var->blue.msb_right = 0;
849 	var->transp.msb_right = 0;
850 	var->height = -1;
851 	var->width = -1;
852 	var->vmode = FB_VMODE_NONINTERLACED;
853 	var->left_margin = var->right_margin = 16;
854 	var->upper_margin = var->lower_margin = 16;
855 	var->hsync_len = var->vsync_len = 8;
856 	return 0;
857 }
858 
859 static int
860 imsttfb_set_par(struct fb_info *info)
861 {
862 	struct imstt_par *par = info->par;
863 
864 	if (!compute_imstt_regvals(par, info->var.xres, info->var.yres))
865 		return -EINVAL;
866 
867 	if (info->var.green.length == 6)
868 		set_565(par);
869 	else
870 		set_555(par);
871 	set_imstt_regvals(info, info->var.bits_per_pixel);
872 	info->var.pixclock = 1000000 / getclkMHz(par);
873 	return 0;
874 }
875 
876 static int
877 imsttfb_setcolreg (u_int regno, u_int red, u_int green, u_int blue,
878 		   u_int transp, struct fb_info *info)
879 {
880 	struct imstt_par *par = info->par;
881 	u_int bpp = info->var.bits_per_pixel;
882 
883 	if (regno > 255)
884 		return 1;
885 
886 	red >>= 8;
887 	green >>= 8;
888 	blue >>= 8;
889 
890 	/* PADDRW/PDATA are the same as TVPPADDRW/TVPPDATA */
891 	if (0 && bpp == 16)	/* screws up X */
892 		par->cmap_regs[PADDRW] = regno << 3;
893 	else
894 		par->cmap_regs[PADDRW] = regno;
895 	eieio();
896 
897 	par->cmap_regs[PDATA] = red;	eieio();
898 	par->cmap_regs[PDATA] = green;	eieio();
899 	par->cmap_regs[PDATA] = blue;	eieio();
900 
901 	if (regno < 16)
902 		switch (bpp) {
903 			case 16:
904 				par->palette[regno] =
905 					(regno << (info->var.green.length ==
906 					5 ? 10 : 11)) | (regno << 5) | regno;
907 				break;
908 			case 24:
909 				par->palette[regno] =
910 					(regno << 16) | (regno << 8) | regno;
911 				break;
912 			case 32: {
913 				int i = (regno << 8) | regno;
914 				par->palette[regno] = (i << 16) |i;
915 				break;
916 			}
917 		}
918 	return 0;
919 }
920 
921 static int
922 imsttfb_pan_display(struct fb_var_screeninfo *var, struct fb_info *info)
923 {
924 	if (var->xoffset + info->var.xres > info->var.xres_virtual
925 	    || var->yoffset + info->var.yres > info->var.yres_virtual)
926 		return -EINVAL;
927 
928 	info->var.xoffset = var->xoffset;
929 	info->var.yoffset = var->yoffset;
930 	set_offset(var, info);
931 	return 0;
932 }
933 
934 static int
935 imsttfb_blank(int blank, struct fb_info *info)
936 {
937 	struct imstt_par *par = info->par;
938 	__u32 ctrl;
939 
940 	ctrl = read_reg_le32(par->dc_regs, STGCTL);
941 	if (blank > 0) {
942 		switch (blank) {
943 		case FB_BLANK_NORMAL:
944 		case FB_BLANK_POWERDOWN:
945 			ctrl &= ~0x00000380;
946 			if (par->ramdac == IBM) {
947 				par->cmap_regs[PIDXHI] = 0;		eieio();
948 				par->cmap_regs[PIDXLO] = MISCTL2;	eieio();
949 				par->cmap_regs[PIDXDATA] = 0x55;	eieio();
950 				par->cmap_regs[PIDXLO] = MISCTL1;	eieio();
951 				par->cmap_regs[PIDXDATA] = 0x11;	eieio();
952 				par->cmap_regs[PIDXLO] = SYNCCTL;	eieio();
953 				par->cmap_regs[PIDXDATA] = 0x0f;	eieio();
954 				par->cmap_regs[PIDXLO] = PWRMNGMT;	eieio();
955 				par->cmap_regs[PIDXDATA] = 0x1f;	eieio();
956 				par->cmap_regs[PIDXLO] = CLKCTL;	eieio();
957 				par->cmap_regs[PIDXDATA] = 0xc0;
958 			}
959 			break;
960 		case FB_BLANK_VSYNC_SUSPEND:
961 			ctrl &= ~0x00000020;
962 			break;
963 		case FB_BLANK_HSYNC_SUSPEND:
964 			ctrl &= ~0x00000010;
965 			break;
966 		}
967 	} else {
968 		if (par->ramdac == IBM) {
969 			ctrl |= 0x000017b0;
970 			par->cmap_regs[PIDXHI] = 0;		eieio();
971 			par->cmap_regs[PIDXLO] = CLKCTL;	eieio();
972 			par->cmap_regs[PIDXDATA] = 0x01;	eieio();
973 			par->cmap_regs[PIDXLO] = PWRMNGMT;	eieio();
974 			par->cmap_regs[PIDXDATA] = 0x00;	eieio();
975 			par->cmap_regs[PIDXLO] = SYNCCTL;	eieio();
976 			par->cmap_regs[PIDXDATA] = 0x00;	eieio();
977 			par->cmap_regs[PIDXLO] = MISCTL1;	eieio();
978 			par->cmap_regs[PIDXDATA] = 0x01;	eieio();
979 			par->cmap_regs[PIDXLO] = MISCTL2;	eieio();
980 			par->cmap_regs[PIDXDATA] = 0x45;	eieio();
981 		} else
982 			ctrl |= 0x00001780;
983 	}
984 	write_reg_le32(par->dc_regs, STGCTL, ctrl);
985 	return 0;
986 }
987 
988 static void
989 imsttfb_fillrect(struct fb_info *info, const struct fb_fillrect *rect)
990 {
991 	struct imstt_par *par = info->par;
992 	__u32 Bpp, line_pitch, bgc, dx, dy, width, height;
993 
994 	bgc = rect->color;
995 	bgc |= (bgc << 8);
996 	bgc |= (bgc << 16);
997 
998 	Bpp = info->var.bits_per_pixel >> 3,
999 	line_pitch = info->fix.line_length;
1000 
1001 	dy = rect->dy * line_pitch;
1002 	dx = rect->dx * Bpp;
1003 	height = rect->height;
1004 	height--;
1005 	width = rect->width * Bpp;
1006 	width--;
1007 
1008 	if (rect->rop == ROP_COPY) {
1009 		while(read_reg_le32(par->dc_regs, SSTATUS) & 0x80);
1010 		write_reg_le32(par->dc_regs, DSA, dy + dx);
1011 		write_reg_le32(par->dc_regs, CNT, (height << 16) | width);
1012 		write_reg_le32(par->dc_regs, DP_OCTL, line_pitch);
1013 		write_reg_le32(par->dc_regs, BI, 0xffffffff);
1014 		write_reg_le32(par->dc_regs, MBC, 0xffffffff);
1015 		write_reg_le32(par->dc_regs, CLR, bgc);
1016 		write_reg_le32(par->dc_regs, BLTCTL, 0x840); /* 0x200000 */
1017 		while(read_reg_le32(par->dc_regs, SSTATUS) & 0x80);
1018 		while(read_reg_le32(par->dc_regs, SSTATUS) & 0x40);
1019 	} else {
1020 		while(read_reg_le32(par->dc_regs, SSTATUS) & 0x80);
1021 		write_reg_le32(par->dc_regs, DSA, dy + dx);
1022 		write_reg_le32(par->dc_regs, S1SA, dy + dx);
1023 		write_reg_le32(par->dc_regs, CNT, (height << 16) | width);
1024 		write_reg_le32(par->dc_regs, DP_OCTL, line_pitch);
1025 		write_reg_le32(par->dc_regs, SP, line_pitch);
1026 		write_reg_le32(par->dc_regs, BLTCTL, 0x40005);
1027 		while(read_reg_le32(par->dc_regs, SSTATUS) & 0x80);
1028 		while(read_reg_le32(par->dc_regs, SSTATUS) & 0x40);
1029 	}
1030 }
1031 
1032 static void
1033 imsttfb_copyarea(struct fb_info *info, const struct fb_copyarea *area)
1034 {
1035 	struct imstt_par *par = info->par;
1036 	__u32 Bpp, line_pitch, fb_offset_old, fb_offset_new, sp, dp_octl;
1037  	__u32 cnt, bltctl, sx, sy, dx, dy, height, width;
1038 
1039 	Bpp = info->var.bits_per_pixel >> 3,
1040 
1041 	sx = area->sx * Bpp;
1042 	sy = area->sy;
1043 	dx = area->dx * Bpp;
1044 	dy = area->dy;
1045 	height = area->height;
1046 	height--;
1047 	width = area->width * Bpp;
1048 	width--;
1049 
1050 	line_pitch = info->fix.line_length;
1051 	bltctl = 0x05;
1052 	sp = line_pitch << 16;
1053 	cnt = height << 16;
1054 
1055 	if (sy < dy) {
1056 		sy += height;
1057 		dy += height;
1058 		sp |= -(line_pitch) & 0xffff;
1059 		dp_octl = -(line_pitch) & 0xffff;
1060 	} else {
1061 		sp |= line_pitch;
1062 		dp_octl = line_pitch;
1063 	}
1064 	if (sx < dx) {
1065 		sx += width;
1066 		dx += width;
1067 		bltctl |= 0x80;
1068 		cnt |= -(width) & 0xffff;
1069 	} else {
1070 		cnt |= width;
1071 	}
1072 	fb_offset_old = sy * line_pitch + sx;
1073 	fb_offset_new = dy * line_pitch + dx;
1074 
1075 	while(read_reg_le32(par->dc_regs, SSTATUS) & 0x80);
1076 	write_reg_le32(par->dc_regs, S1SA, fb_offset_old);
1077 	write_reg_le32(par->dc_regs, SP, sp);
1078 	write_reg_le32(par->dc_regs, DSA, fb_offset_new);
1079 	write_reg_le32(par->dc_regs, CNT, cnt);
1080 	write_reg_le32(par->dc_regs, DP_OCTL, dp_octl);
1081 	write_reg_le32(par->dc_regs, BLTCTL, bltctl);
1082 	while(read_reg_le32(par->dc_regs, SSTATUS) & 0x80);
1083 	while(read_reg_le32(par->dc_regs, SSTATUS) & 0x40);
1084 }
1085 
1086 #if 0
1087 static int
1088 imsttfb_load_cursor_image(struct imstt_par *par, int width, int height, __u8 fgc)
1089 {
1090 	u_int x, y;
1091 
1092 	if (width > 32 || height > 32)
1093 		return -EINVAL;
1094 
1095 	if (par->ramdac == IBM) {
1096 		par->cmap_regs[PIDXHI] = 1;	eieio();
1097 		for (x = 0; x < 0x100; x++) {
1098 			par->cmap_regs[PIDXLO] = x;		eieio();
1099 			par->cmap_regs[PIDXDATA] = 0x00;	eieio();
1100 		}
1101 		par->cmap_regs[PIDXHI] = 1;	eieio();
1102 		for (y = 0; y < height; y++)
1103 			for (x = 0; x < width >> 2; x++) {
1104 				par->cmap_regs[PIDXLO] = x + y * 8;	eieio();
1105 				par->cmap_regs[PIDXDATA] = 0xff;	eieio();
1106 			}
1107 		par->cmap_regs[PIDXHI] = 0;		eieio();
1108 		par->cmap_regs[PIDXLO] = CURS1R;	eieio();
1109 		par->cmap_regs[PIDXDATA] = fgc;		eieio();
1110 		par->cmap_regs[PIDXLO] = CURS1G;	eieio();
1111 		par->cmap_regs[PIDXDATA] = fgc;		eieio();
1112 		par->cmap_regs[PIDXLO] = CURS1B;	eieio();
1113 		par->cmap_regs[PIDXDATA] = fgc;		eieio();
1114 		par->cmap_regs[PIDXLO] = CURS2R;	eieio();
1115 		par->cmap_regs[PIDXDATA] = fgc;		eieio();
1116 		par->cmap_regs[PIDXLO] = CURS2G;	eieio();
1117 		par->cmap_regs[PIDXDATA] = fgc;		eieio();
1118 		par->cmap_regs[PIDXLO] = CURS2B;	eieio();
1119 		par->cmap_regs[PIDXDATA] = fgc;		eieio();
1120 		par->cmap_regs[PIDXLO] = CURS3R;	eieio();
1121 		par->cmap_regs[PIDXDATA] = fgc;		eieio();
1122 		par->cmap_regs[PIDXLO] = CURS3G;	eieio();
1123 		par->cmap_regs[PIDXDATA] = fgc;		eieio();
1124 		par->cmap_regs[PIDXLO] = CURS3B;	eieio();
1125 		par->cmap_regs[PIDXDATA] = fgc;		eieio();
1126 	} else {
1127 		par->cmap_regs[TVPADDRW] = TVPIRICC;	eieio();
1128 		par->cmap_regs[TVPIDATA] &= 0x03;	eieio();
1129 		par->cmap_regs[TVPADDRW] = 0;		eieio();
1130 		for (x = 0; x < 0x200; x++) {
1131 			par->cmap_regs[TVPCRDAT] = 0x00;	eieio();
1132 		}
1133 		for (x = 0; x < 0x200; x++) {
1134 			par->cmap_regs[TVPCRDAT] = 0xff;	eieio();
1135 		}
1136 		par->cmap_regs[TVPADDRW] = TVPIRICC;	eieio();
1137 		par->cmap_regs[TVPIDATA] &= 0x03;	eieio();
1138 		for (y = 0; y < height; y++)
1139 			for (x = 0; x < width >> 3; x++) {
1140 				par->cmap_regs[TVPADDRW] = x + y * 8;	eieio();
1141 				par->cmap_regs[TVPCRDAT] = 0xff;		eieio();
1142 			}
1143 		par->cmap_regs[TVPADDRW] = TVPIRICC;	eieio();
1144 		par->cmap_regs[TVPIDATA] |= 0x08;	eieio();
1145 		for (y = 0; y < height; y++)
1146 			for (x = 0; x < width >> 3; x++) {
1147 				par->cmap_regs[TVPADDRW] = x + y * 8;	eieio();
1148 				par->cmap_regs[TVPCRDAT] = 0xff;		eieio();
1149 			}
1150 		par->cmap_regs[TVPCADRW] = 0x00;	eieio();
1151 		for (x = 0; x < 12; x++) {
1152 			par->cmap_regs[TVPCDATA] = fgc;
1153 			eieio();
1154 		}
1155 	}
1156 	return 1;
1157 }
1158 
1159 static void
1160 imstt_set_cursor(struct imstt_par *par, struct fb_image *d, int on)
1161 {
1162 	if (par->ramdac == IBM) {
1163 		par->cmap_regs[PIDXHI] = 0;	eieio();
1164 		if (!on) {
1165 			par->cmap_regs[PIDXLO] = CURSCTL;	eieio();
1166 			par->cmap_regs[PIDXDATA] = 0x00;	eieio();
1167 		} else {
1168 			par->cmap_regs[PIDXLO] = CURSXHI;	eieio();
1169 			par->cmap_regs[PIDXDATA] = d->dx >> 8;	eieio();
1170 			par->cmap_regs[PIDXLO] = CURSXLO;	eieio();
1171 			par->cmap_regs[PIDXDATA] = d->dx & 0xff;eieio();
1172 			par->cmap_regs[PIDXLO] = CURSYHI;	eieio();
1173 			par->cmap_regs[PIDXDATA] = d->dy >> 8;	eieio();
1174 			par->cmap_regs[PIDXLO] = CURSYLO;	eieio();
1175 			par->cmap_regs[PIDXDATA] = d->dy & 0xff;eieio();
1176 			par->cmap_regs[PIDXLO] = CURSCTL;	eieio();
1177 			par->cmap_regs[PIDXDATA] = 0x02;	eieio();
1178 		}
1179 	} else {
1180 		if (!on) {
1181 			par->cmap_regs[TVPADDRW] = TVPIRICC;	eieio();
1182 			par->cmap_regs[TVPIDATA] = 0x00;	eieio();
1183 		} else {
1184 			__u16 x = d->dx + 0x40, y = d->dy + 0x40;
1185 
1186 			par->cmap_regs[TVPCXPOH] = x >> 8;	eieio();
1187 			par->cmap_regs[TVPCXPOL] = x & 0xff;	eieio();
1188 			par->cmap_regs[TVPCYPOH] = y >> 8;	eieio();
1189 			par->cmap_regs[TVPCYPOL] = y & 0xff;	eieio();
1190 			par->cmap_regs[TVPADDRW] = TVPIRICC;	eieio();
1191 			par->cmap_regs[TVPIDATA] = 0x02;	eieio();
1192 		}
1193 	}
1194 }
1195 
1196 static int
1197 imsttfb_cursor(struct fb_info *info, struct fb_cursor *cursor)
1198 {
1199 	struct imstt_par *par = info->par;
1200         u32 flags = cursor->set, fg, bg, xx, yy;
1201 
1202 	if (cursor->dest == NULL && cursor->rop == ROP_XOR)
1203 		return 1;
1204 
1205 	imstt_set_cursor(info, cursor, 0);
1206 
1207 	if (flags & FB_CUR_SETPOS) {
1208 		xx = cursor->image.dx - info->var.xoffset;
1209 		yy = cursor->image.dy - info->var.yoffset;
1210 	}
1211 
1212 	if (flags & FB_CUR_SETSIZE) {
1213         }
1214 
1215         if (flags & (FB_CUR_SETSHAPE | FB_CUR_SETCMAP)) {
1216                 int fg_idx = cursor->image.fg_color;
1217                 int width = (cursor->image.width+7)/8;
1218                 u8 *dat = (u8 *) cursor->image.data;
1219                 u8 *dst = (u8 *) cursor->dest;
1220                 u8 *msk = (u8 *) cursor->mask;
1221 
1222                 switch (cursor->rop) {
1223                 case ROP_XOR:
1224                         for (i = 0; i < cursor->image.height; i++) {
1225                                 for (j = 0; j < width; j++) {
1226                                         d_idx = i * MAX_CURS/8  + j;
1227                                         data[d_idx] =  byte_rev[dat[s_idx] ^
1228                                                                 dst[s_idx]];
1229                                         mask[d_idx] = byte_rev[msk[s_idx]];
1230                                         s_idx++;
1231                                 }
1232                         }
1233                         break;
1234                 case ROP_COPY:
1235                 default:
1236                         for (i = 0; i < cursor->image.height; i++) {
1237                                 for (j = 0; j < width; j++) {
1238                                         d_idx = i * MAX_CURS/8 + j;
1239                                         data[d_idx] = byte_rev[dat[s_idx]];
1240                                         mask[d_idx] = byte_rev[msk[s_idx]];
1241                                         s_idx++;
1242                                 }
1243 			}
1244 			break;
1245 		}
1246 
1247 		fg = ((info->cmap.red[fg_idx] & 0xf8) << 7) |
1248                      ((info->cmap.green[fg_idx] & 0xf8) << 2) |
1249                      ((info->cmap.blue[fg_idx] & 0xf8) >> 3) | 1 << 15;
1250 
1251 		imsttfb_load_cursor_image(par, xx, yy, fgc);
1252 	}
1253 	if (cursor->enable)
1254 		imstt_set_cursor(info, cursor, 1);
1255 	return 0;
1256 }
1257 #endif
1258 
1259 #define FBIMSTT_SETREG		0x545401
1260 #define FBIMSTT_GETREG		0x545402
1261 #define FBIMSTT_SETCMAPREG	0x545403
1262 #define FBIMSTT_GETCMAPREG	0x545404
1263 #define FBIMSTT_SETIDXREG	0x545405
1264 #define FBIMSTT_GETIDXREG	0x545406
1265 
1266 static int
1267 imsttfb_ioctl(struct fb_info *info, u_int cmd, u_long arg)
1268 {
1269 	struct imstt_par *par = info->par;
1270 	void __user *argp = (void __user *)arg;
1271 	__u32 reg[2];
1272 	__u8 idx[2];
1273 
1274 	switch (cmd) {
1275 		case FBIMSTT_SETREG:
1276 			if (copy_from_user(reg, argp, 8) || reg[0] > (0x1000 - sizeof(reg[0])) / sizeof(reg[0]))
1277 				return -EFAULT;
1278 			write_reg_le32(par->dc_regs, reg[0], reg[1]);
1279 			return 0;
1280 		case FBIMSTT_GETREG:
1281 			if (copy_from_user(reg, argp, 4) || reg[0] > (0x1000 - sizeof(reg[0])) / sizeof(reg[0]))
1282 				return -EFAULT;
1283 			reg[1] = read_reg_le32(par->dc_regs, reg[0]);
1284 			if (copy_to_user((void __user *)(arg + 4), &reg[1], 4))
1285 				return -EFAULT;
1286 			return 0;
1287 		case FBIMSTT_SETCMAPREG:
1288 			if (copy_from_user(reg, argp, 8) || reg[0] > (0x1000 - sizeof(reg[0])) / sizeof(reg[0]))
1289 				return -EFAULT;
1290 			write_reg_le32(((u_int __iomem *)par->cmap_regs), reg[0], reg[1]);
1291 			return 0;
1292 		case FBIMSTT_GETCMAPREG:
1293 			if (copy_from_user(reg, argp, 4) || reg[0] > (0x1000 - sizeof(reg[0])) / sizeof(reg[0]))
1294 				return -EFAULT;
1295 			reg[1] = read_reg_le32(((u_int __iomem *)par->cmap_regs), reg[0]);
1296 			if (copy_to_user((void __user *)(arg + 4), &reg[1], 4))
1297 				return -EFAULT;
1298 			return 0;
1299 		case FBIMSTT_SETIDXREG:
1300 			if (copy_from_user(idx, argp, 2))
1301 				return -EFAULT;
1302 			par->cmap_regs[PIDXHI] = 0;		eieio();
1303 			par->cmap_regs[PIDXLO] = idx[0];	eieio();
1304 			par->cmap_regs[PIDXDATA] = idx[1];	eieio();
1305 			return 0;
1306 		case FBIMSTT_GETIDXREG:
1307 			if (copy_from_user(idx, argp, 1))
1308 				return -EFAULT;
1309 			par->cmap_regs[PIDXHI] = 0;		eieio();
1310 			par->cmap_regs[PIDXLO] = idx[0];	eieio();
1311 			idx[1] = par->cmap_regs[PIDXDATA];
1312 			if (copy_to_user((void __user *)(arg + 1), &idx[1], 1))
1313 				return -EFAULT;
1314 			return 0;
1315 		default:
1316 			return -ENOIOCTLCMD;
1317 	}
1318 }
1319 
1320 static const struct pci_device_id imsttfb_pci_tbl[] = {
1321 	{ PCI_VENDOR_ID_IMS, PCI_DEVICE_ID_IMS_TT128,
1322 	  PCI_ANY_ID, PCI_ANY_ID, 0, 0, IBM },
1323 	{ PCI_VENDOR_ID_IMS, PCI_DEVICE_ID_IMS_TT3D,
1324 	  PCI_ANY_ID, PCI_ANY_ID, 0, 0, TVP },
1325 	{ 0, }
1326 };
1327 
1328 MODULE_DEVICE_TABLE(pci, imsttfb_pci_tbl);
1329 
1330 static struct pci_driver imsttfb_pci_driver = {
1331 	.name =		"imsttfb",
1332 	.id_table =	imsttfb_pci_tbl,
1333 	.probe =	imsttfb_probe,
1334 	.remove =	imsttfb_remove,
1335 };
1336 
1337 static const struct fb_ops imsttfb_ops = {
1338 	.owner 		= THIS_MODULE,
1339 	.fb_check_var	= imsttfb_check_var,
1340 	.fb_set_par 	= imsttfb_set_par,
1341 	.fb_setcolreg 	= imsttfb_setcolreg,
1342 	.fb_pan_display = imsttfb_pan_display,
1343 	.fb_blank 	= imsttfb_blank,
1344 	.fb_fillrect	= imsttfb_fillrect,
1345 	.fb_copyarea	= imsttfb_copyarea,
1346 	.fb_imageblit	= cfb_imageblit,
1347 	.fb_ioctl 	= imsttfb_ioctl,
1348 };
1349 
1350 static void init_imstt(struct fb_info *info)
1351 {
1352 	struct imstt_par *par = info->par;
1353 	__u32 i, tmp, *ip, *end;
1354 
1355 	tmp = read_reg_le32(par->dc_regs, PRC);
1356 	if (par->ramdac == IBM)
1357 		info->fix.smem_len = (tmp & 0x0004) ? 0x400000 : 0x200000;
1358 	else
1359 		info->fix.smem_len = 0x800000;
1360 
1361 	ip = (__u32 *)info->screen_base;
1362 	end = (__u32 *)(info->screen_base + info->fix.smem_len);
1363 	while (ip < end)
1364 		*ip++ = 0;
1365 
1366 	/* initialize the card */
1367 	tmp = read_reg_le32(par->dc_regs, STGCTL);
1368 	write_reg_le32(par->dc_regs, STGCTL, tmp & ~0x1);
1369 	write_reg_le32(par->dc_regs, SSR, 0);
1370 
1371 	/* set default values for DAC registers */
1372 	if (par->ramdac == IBM) {
1373 		par->cmap_regs[PPMASK] = 0xff;
1374 		eieio();
1375 		par->cmap_regs[PIDXHI] = 0;
1376 		eieio();
1377 		for (i = 0; i < ARRAY_SIZE(ibm_initregs); i++) {
1378 			par->cmap_regs[PIDXLO] = ibm_initregs[i].addr;
1379 			eieio();
1380 			par->cmap_regs[PIDXDATA] = ibm_initregs[i].value;
1381 			eieio();
1382 		}
1383 	} else {
1384 		for (i = 0; i < ARRAY_SIZE(tvp_initregs); i++) {
1385 			par->cmap_regs[TVPADDRW] = tvp_initregs[i].addr;
1386 			eieio();
1387 			par->cmap_regs[TVPIDATA] = tvp_initregs[i].value;
1388 			eieio();
1389 		}
1390 	}
1391 
1392 #if defined(CONFIG_PPC_PMAC) && defined(CONFIG_PPC32)
1393 	if (IS_REACHABLE(CONFIG_NVRAM) && machine_is(powermac)) {
1394 		int vmode = init_vmode, cmode = init_cmode;
1395 
1396 		if (vmode == -1) {
1397 			vmode = nvram_read_byte(NV_VMODE);
1398 			if (vmode <= 0 || vmode > VMODE_MAX)
1399 				vmode = VMODE_640_480_67;
1400 		}
1401 		if (cmode == -1) {
1402 			cmode = nvram_read_byte(NV_CMODE);
1403 			if (cmode < CMODE_8 || cmode > CMODE_32)
1404 				cmode = CMODE_8;
1405 		}
1406 		if (mac_vmode_to_var(vmode, cmode, &info->var)) {
1407 			info->var.xres = info->var.xres_virtual = INIT_XRES;
1408 			info->var.yres = info->var.yres_virtual = INIT_YRES;
1409 			info->var.bits_per_pixel = INIT_BPP;
1410 		}
1411 	} else
1412 #endif
1413 	{
1414 		info->var.xres = info->var.xres_virtual = INIT_XRES;
1415 		info->var.yres = info->var.yres_virtual = INIT_YRES;
1416 		info->var.bits_per_pixel = INIT_BPP;
1417 	}
1418 
1419 	if ((info->var.xres * info->var.yres) * (info->var.bits_per_pixel >> 3) > info->fix.smem_len
1420 	    || !(compute_imstt_regvals(par, info->var.xres, info->var.yres))) {
1421 		printk("imsttfb: %ux%ux%u not supported\n", info->var.xres, info->var.yres, info->var.bits_per_pixel);
1422 		framebuffer_release(info);
1423 		return;
1424 	}
1425 
1426 	sprintf(info->fix.id, "IMS TT (%s)", par->ramdac == IBM ? "IBM" : "TVP");
1427 	info->fix.mmio_len = 0x1000;
1428 	info->fix.accel = FB_ACCEL_IMS_TWINTURBO;
1429 	info->fix.type = FB_TYPE_PACKED_PIXELS;
1430 	info->fix.visual = info->var.bits_per_pixel == 8 ? FB_VISUAL_PSEUDOCOLOR
1431 							: FB_VISUAL_DIRECTCOLOR;
1432 	info->fix.line_length = info->var.xres * (info->var.bits_per_pixel >> 3);
1433 	info->fix.xpanstep = 8;
1434 	info->fix.ypanstep = 1;
1435 	info->fix.ywrapstep = 0;
1436 
1437 	info->var.accel_flags = FB_ACCELF_TEXT;
1438 
1439 //	if (par->ramdac == IBM)
1440 //		imstt_cursor_init(info);
1441 	if (info->var.green.length == 6)
1442 		set_565(par);
1443 	else
1444 		set_555(par);
1445 	set_imstt_regvals(info, info->var.bits_per_pixel);
1446 
1447 	info->var.pixclock = 1000000 / getclkMHz(par);
1448 
1449 	info->fbops = &imsttfb_ops;
1450 	info->flags = FBINFO_DEFAULT |
1451                       FBINFO_HWACCEL_COPYAREA |
1452 	              FBINFO_HWACCEL_FILLRECT |
1453 	              FBINFO_HWACCEL_YPAN;
1454 
1455 	fb_alloc_cmap(&info->cmap, 0, 0);
1456 
1457 	if (register_framebuffer(info) < 0) {
1458 		framebuffer_release(info);
1459 		return;
1460 	}
1461 
1462 	tmp = (read_reg_le32(par->dc_regs, SSTATUS) & 0x0f00) >> 8;
1463 	fb_info(info, "%s frame buffer; %uMB vram; chip version %u\n",
1464 		info->fix.id, info->fix.smem_len >> 20, tmp);
1465 }
1466 
1467 static int imsttfb_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
1468 {
1469 	unsigned long addr, size;
1470 	struct imstt_par *par;
1471 	struct fb_info *info;
1472 	struct device_node *dp;
1473 	int ret;
1474 
1475 	ret = aperture_remove_conflicting_pci_devices(pdev, "imsttfb");
1476 	if (ret)
1477 		return ret;
1478 	ret = -ENOMEM;
1479 
1480 	dp = pci_device_to_OF_node(pdev);
1481 	if(dp)
1482 		printk(KERN_INFO "%s: OF name %pOFn\n",__func__, dp);
1483 	else if (IS_ENABLED(CONFIG_OF))
1484 		printk(KERN_ERR "imsttfb: no OF node for pci device\n");
1485 
1486 	info = framebuffer_alloc(sizeof(struct imstt_par), &pdev->dev);
1487 	if (!info)
1488 		return -ENOMEM;
1489 
1490 	par = info->par;
1491 
1492 	addr = pci_resource_start (pdev, 0);
1493 	size = pci_resource_len (pdev, 0);
1494 
1495 	if (!request_mem_region(addr, size, "imsttfb")) {
1496 		printk(KERN_ERR "imsttfb: Can't reserve memory region\n");
1497 		framebuffer_release(info);
1498 		return -ENODEV;
1499 	}
1500 
1501 	switch (pdev->device) {
1502 		case PCI_DEVICE_ID_IMS_TT128: /* IMS,tt128mbA */
1503 			par->ramdac = IBM;
1504 			if (of_node_name_eq(dp, "IMS,tt128mb8") ||
1505 			    of_node_name_eq(dp, "IMS,tt128mb8A"))
1506 				par->ramdac = TVP;
1507 			break;
1508 		case PCI_DEVICE_ID_IMS_TT3D:  /* IMS,tt3d */
1509 			par->ramdac = TVP;
1510 			break;
1511 		default:
1512 			printk(KERN_INFO "imsttfb: Device 0x%x unknown, "
1513 					 "contact maintainer.\n", pdev->device);
1514 			ret = -ENODEV;
1515 			goto error;
1516 	}
1517 
1518 	info->fix.smem_start = addr;
1519 	info->screen_base = (__u8 *)ioremap(addr, par->ramdac == IBM ?
1520 					    0x400000 : 0x800000);
1521 	if (!info->screen_base)
1522 		goto error;
1523 	info->fix.mmio_start = addr + 0x800000;
1524 	par->dc_regs = ioremap(addr + 0x800000, 0x1000);
1525 	if (!par->dc_regs)
1526 		goto error;
1527 	par->cmap_regs_phys = addr + 0x840000;
1528 	par->cmap_regs = (__u8 *)ioremap(addr + 0x840000, 0x1000);
1529 	if (!par->cmap_regs)
1530 		goto error;
1531 	info->pseudo_palette = par->palette;
1532 	init_imstt(info);
1533 
1534 	pci_set_drvdata(pdev, info);
1535 	return 0;
1536 
1537 error:
1538 	if (par->dc_regs)
1539 		iounmap(par->dc_regs);
1540 	if (info->screen_base)
1541 		iounmap(info->screen_base);
1542 	release_mem_region(addr, size);
1543 	framebuffer_release(info);
1544 	return ret;
1545 }
1546 
1547 static void imsttfb_remove(struct pci_dev *pdev)
1548 {
1549 	struct fb_info *info = pci_get_drvdata(pdev);
1550 	struct imstt_par *par = info->par;
1551 	int size = pci_resource_len(pdev, 0);
1552 
1553 	unregister_framebuffer(info);
1554 	iounmap(par->cmap_regs);
1555 	iounmap(par->dc_regs);
1556 	iounmap(info->screen_base);
1557 	release_mem_region(info->fix.smem_start, size);
1558 	framebuffer_release(info);
1559 }
1560 
1561 #ifndef MODULE
1562 static int __init
1563 imsttfb_setup(char *options)
1564 {
1565 	char *this_opt;
1566 
1567 	if (!options || !*options)
1568 		return 0;
1569 
1570 	while ((this_opt = strsep(&options, ",")) != NULL) {
1571 		if (!strncmp(this_opt, "font:", 5)) {
1572 			char *p;
1573 			int i;
1574 
1575 			p = this_opt + 5;
1576 			for (i = 0; i < sizeof(fontname) - 1; i++)
1577 				if (!*p || *p == ' ' || *p == ',')
1578 					break;
1579 			memcpy(fontname, this_opt + 5, i);
1580 			fontname[i] = 0;
1581 		} else if (!strncmp(this_opt, "inverse", 7)) {
1582 			inverse = 1;
1583 			fb_invert_cmaps();
1584 		}
1585 #if defined(CONFIG_PPC_PMAC)
1586 		else if (!strncmp(this_opt, "vmode:", 6)) {
1587 			int vmode = simple_strtoul(this_opt+6, NULL, 0);
1588 			if (vmode > 0 && vmode <= VMODE_MAX)
1589 				init_vmode = vmode;
1590 		} else if (!strncmp(this_opt, "cmode:", 6)) {
1591 			int cmode = simple_strtoul(this_opt+6, NULL, 0);
1592 			switch (cmode) {
1593 				case CMODE_8:
1594 				case 8:
1595 					init_cmode = CMODE_8;
1596 					break;
1597 				case CMODE_16:
1598 				case 15:
1599 				case 16:
1600 					init_cmode = CMODE_16;
1601 					break;
1602 				case CMODE_32:
1603 				case 24:
1604 				case 32:
1605 					init_cmode = CMODE_32;
1606 					break;
1607 			}
1608 		}
1609 #endif
1610 	}
1611 	return 0;
1612 }
1613 
1614 #endif /* MODULE */
1615 
1616 static int __init imsttfb_init(void)
1617 {
1618 #ifndef MODULE
1619 	char *option = NULL;
1620 
1621 	if (fb_get_options("imsttfb", &option))
1622 		return -ENODEV;
1623 
1624 	imsttfb_setup(option);
1625 #endif
1626 	return pci_register_driver(&imsttfb_pci_driver);
1627 }
1628 
1629 static void __exit imsttfb_exit(void)
1630 {
1631 	pci_unregister_driver(&imsttfb_pci_driver);
1632 }
1633 
1634 MODULE_LICENSE("GPL");
1635 
1636 module_init(imsttfb_init);
1637 module_exit(imsttfb_exit);
1638 
1639