1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/drivers/video/cyber2000fb.c 4 * 5 * Copyright (C) 1998-2002 Russell King 6 * 7 * MIPS and 50xx clock support 8 * Copyright (C) 2001 Bradley D. LaRonde <brad@ltc.com> 9 * 10 * 32 bit support, text color and panning fixes for modes != 8 bit 11 * Copyright (C) 2002 Denis Oliver Kropp <dok@directfb.org> 12 * 13 * Integraphics CyberPro 2000, 2010 and 5000 frame buffer device 14 * 15 * Based on cyberfb.c. 16 * 17 * Note that we now use the new fbcon fix, var and cmap scheme. We do 18 * still have to check which console is the currently displayed one 19 * however, especially for the colourmap stuff. 20 * 21 * We also use the new hotplug PCI subsystem. I'm not sure if there 22 * are any such cards, but I'm erring on the side of caution. We don't 23 * want to go pop just because someone does have one. 24 * 25 * Note that this doesn't work fully in the case of multiple CyberPro 26 * cards with grabbers. We currently can only attach to the first 27 * CyberPro card found. 28 * 29 * When we're in truecolour mode, we power down the LUT RAM as a power 30 * saving feature. Also, when we enter any of the powersaving modes 31 * (except soft blanking) we power down the RAMDACs. This saves about 32 * 1W, which is roughly 8% of the power consumption of a NetWinder 33 * (which, incidentally, is about the same saving as a 2.5in hard disk 34 * entering standby mode.) 35 */ 36 #include <linux/aperture.h> 37 #include <linux/module.h> 38 #include <linux/kernel.h> 39 #include <linux/errno.h> 40 #include <linux/string.h> 41 #include <linux/mm.h> 42 #include <linux/slab.h> 43 #include <linux/delay.h> 44 #include <linux/fb.h> 45 #include <linux/pci.h> 46 #include <linux/init.h> 47 #include <linux/io.h> 48 #include <linux/i2c.h> 49 #include <linux/i2c-algo-bit.h> 50 51 52 #ifdef __arm__ 53 #include <asm/mach-types.h> 54 #endif 55 56 #include "cyber2000fb.h" 57 58 struct cfb_info { 59 struct fb_info fb; 60 struct display_switch *dispsw; 61 unsigned char __iomem *region; 62 unsigned char __iomem *regs; 63 u_int id; 64 u_int irq; 65 int func_use_count; 66 u_long ref_ps; 67 68 /* 69 * Clock divisors 70 */ 71 u_int divisors[4]; 72 73 struct { 74 u8 red, green, blue; 75 } palette[NR_PALETTE]; 76 77 u_char mem_ctl1; 78 u_char mem_ctl2; 79 u_char mclk_mult; 80 u_char mclk_div; 81 /* 82 * RAMDAC control register is both of these or'ed together 83 */ 84 u_char ramdac_ctrl; 85 u_char ramdac_powerdown; 86 87 u32 pseudo_palette[16]; 88 89 spinlock_t reg_b0_lock; 90 91 #ifdef CONFIG_FB_CYBER2000_DDC 92 bool ddc_registered; 93 struct i2c_adapter ddc_adapter; 94 struct i2c_algo_bit_data ddc_algo; 95 #endif 96 97 #ifdef CONFIG_FB_CYBER2000_I2C 98 struct i2c_adapter i2c_adapter; 99 struct i2c_algo_bit_data i2c_algo; 100 #endif 101 }; 102 103 static char *default_font = "Acorn8x8"; 104 module_param(default_font, charp, 0); 105 MODULE_PARM_DESC(default_font, "Default font name"); 106 107 /* 108 * Our access methods. 109 */ 110 #define cyber2000fb_writel(val, reg, cfb) writel(val, (cfb)->regs + (reg)) 111 #define cyber2000fb_writew(val, reg, cfb) writew(val, (cfb)->regs + (reg)) 112 #define cyber2000fb_writeb(val, reg, cfb) writeb(val, (cfb)->regs + (reg)) 113 114 #define cyber2000fb_readb(reg, cfb) readb((cfb)->regs + (reg)) 115 116 static inline void 117 cyber2000_crtcw(unsigned int reg, unsigned int val, struct cfb_info *cfb) 118 { 119 cyber2000fb_writew((reg & 255) | val << 8, 0x3d4, cfb); 120 } 121 122 static inline void 123 cyber2000_grphw(unsigned int reg, unsigned int val, struct cfb_info *cfb) 124 { 125 cyber2000fb_writew((reg & 255) | val << 8, 0x3ce, cfb); 126 } 127 128 static inline unsigned int 129 cyber2000_grphr(unsigned int reg, struct cfb_info *cfb) 130 { 131 cyber2000fb_writeb(reg, 0x3ce, cfb); 132 return cyber2000fb_readb(0x3cf, cfb); 133 } 134 135 static inline void 136 cyber2000_attrw(unsigned int reg, unsigned int val, struct cfb_info *cfb) 137 { 138 cyber2000fb_readb(0x3da, cfb); 139 cyber2000fb_writeb(reg, 0x3c0, cfb); 140 cyber2000fb_readb(0x3c1, cfb); 141 cyber2000fb_writeb(val, 0x3c0, cfb); 142 } 143 144 static inline void 145 cyber2000_seqw(unsigned int reg, unsigned int val, struct cfb_info *cfb) 146 { 147 cyber2000fb_writew((reg & 255) | val << 8, 0x3c4, cfb); 148 } 149 150 /* -------------------- Hardware specific routines ------------------------- */ 151 152 /* 153 * Hardware Cyber2000 Acceleration 154 */ 155 static void 156 cyber2000fb_fillrect(struct fb_info *info, const struct fb_fillrect *rect) 157 { 158 struct cfb_info *cfb = container_of(info, struct cfb_info, fb); 159 unsigned long dst, col; 160 161 if (!(cfb->fb.var.accel_flags & FB_ACCELF_TEXT)) { 162 cfb_fillrect(info, rect); 163 return; 164 } 165 166 cyber2000fb_writeb(0, CO_REG_CONTROL, cfb); 167 cyber2000fb_writew(rect->width - 1, CO_REG_PIXWIDTH, cfb); 168 cyber2000fb_writew(rect->height - 1, CO_REG_PIXHEIGHT, cfb); 169 170 col = rect->color; 171 if (cfb->fb.var.bits_per_pixel > 8) 172 col = ((u32 *)cfb->fb.pseudo_palette)[col]; 173 cyber2000fb_writel(col, CO_REG_FGCOLOUR, cfb); 174 175 dst = rect->dx + rect->dy * cfb->fb.var.xres_virtual; 176 if (cfb->fb.var.bits_per_pixel == 24) { 177 cyber2000fb_writeb(dst, CO_REG_X_PHASE, cfb); 178 dst *= 3; 179 } 180 181 cyber2000fb_writel(dst, CO_REG_DEST_PTR, cfb); 182 cyber2000fb_writeb(CO_FG_MIX_SRC, CO_REG_FGMIX, cfb); 183 cyber2000fb_writew(CO_CMD_L_PATTERN_FGCOL, CO_REG_CMD_L, cfb); 184 cyber2000fb_writew(CO_CMD_H_BLITTER, CO_REG_CMD_H, cfb); 185 } 186 187 static void 188 cyber2000fb_copyarea(struct fb_info *info, const struct fb_copyarea *region) 189 { 190 struct cfb_info *cfb = container_of(info, struct cfb_info, fb); 191 unsigned int cmd = CO_CMD_L_PATTERN_FGCOL; 192 unsigned long src, dst; 193 194 if (!(cfb->fb.var.accel_flags & FB_ACCELF_TEXT)) { 195 cfb_copyarea(info, region); 196 return; 197 } 198 199 cyber2000fb_writeb(0, CO_REG_CONTROL, cfb); 200 cyber2000fb_writew(region->width - 1, CO_REG_PIXWIDTH, cfb); 201 cyber2000fb_writew(region->height - 1, CO_REG_PIXHEIGHT, cfb); 202 203 src = region->sx + region->sy * cfb->fb.var.xres_virtual; 204 dst = region->dx + region->dy * cfb->fb.var.xres_virtual; 205 206 if (region->sx < region->dx) { 207 src += region->width - 1; 208 dst += region->width - 1; 209 cmd |= CO_CMD_L_INC_LEFT; 210 } 211 212 if (region->sy < region->dy) { 213 src += (region->height - 1) * cfb->fb.var.xres_virtual; 214 dst += (region->height - 1) * cfb->fb.var.xres_virtual; 215 cmd |= CO_CMD_L_INC_UP; 216 } 217 218 if (cfb->fb.var.bits_per_pixel == 24) { 219 cyber2000fb_writeb(dst, CO_REG_X_PHASE, cfb); 220 src *= 3; 221 dst *= 3; 222 } 223 cyber2000fb_writel(src, CO_REG_SRC1_PTR, cfb); 224 cyber2000fb_writel(dst, CO_REG_DEST_PTR, cfb); 225 cyber2000fb_writew(CO_FG_MIX_SRC, CO_REG_FGMIX, cfb); 226 cyber2000fb_writew(cmd, CO_REG_CMD_L, cfb); 227 cyber2000fb_writew(CO_CMD_H_FGSRCMAP | CO_CMD_H_BLITTER, 228 CO_REG_CMD_H, cfb); 229 } 230 231 static void 232 cyber2000fb_imageblit(struct fb_info *info, const struct fb_image *image) 233 { 234 cfb_imageblit(info, image); 235 return; 236 } 237 238 static int cyber2000fb_sync(struct fb_info *info) 239 { 240 struct cfb_info *cfb = container_of(info, struct cfb_info, fb); 241 int count = 100000; 242 243 if (!(cfb->fb.var.accel_flags & FB_ACCELF_TEXT)) 244 return 0; 245 246 while (cyber2000fb_readb(CO_REG_CONTROL, cfb) & CO_CTRL_BUSY) { 247 if (!count--) { 248 debug_printf("accel_wait timed out\n"); 249 cyber2000fb_writeb(0, CO_REG_CONTROL, cfb); 250 break; 251 } 252 udelay(1); 253 } 254 return 0; 255 } 256 257 /* 258 * =========================================================================== 259 */ 260 261 static inline u32 convert_bitfield(u_int val, struct fb_bitfield *bf) 262 { 263 u_int mask = (1 << bf->length) - 1; 264 265 return (val >> (16 - bf->length) & mask) << bf->offset; 266 } 267 268 /* 269 * Set a single color register. Return != 0 for invalid regno. 270 */ 271 static int 272 cyber2000fb_setcolreg(u_int regno, u_int red, u_int green, u_int blue, 273 u_int transp, struct fb_info *info) 274 { 275 struct cfb_info *cfb = container_of(info, struct cfb_info, fb); 276 struct fb_var_screeninfo *var = &cfb->fb.var; 277 u32 pseudo_val; 278 int ret = 1; 279 280 switch (cfb->fb.fix.visual) { 281 default: 282 return 1; 283 284 /* 285 * Pseudocolour: 286 * 8 8 287 * pixel --/--+--/--> red lut --> red dac 288 * | 8 289 * +--/--> green lut --> green dac 290 * | 8 291 * +--/--> blue lut --> blue dac 292 */ 293 case FB_VISUAL_PSEUDOCOLOR: 294 if (regno >= NR_PALETTE) 295 return 1; 296 297 red >>= 8; 298 green >>= 8; 299 blue >>= 8; 300 301 cfb->palette[regno].red = red; 302 cfb->palette[regno].green = green; 303 cfb->palette[regno].blue = blue; 304 305 cyber2000fb_writeb(regno, 0x3c8, cfb); 306 cyber2000fb_writeb(red, 0x3c9, cfb); 307 cyber2000fb_writeb(green, 0x3c9, cfb); 308 cyber2000fb_writeb(blue, 0x3c9, cfb); 309 return 0; 310 311 /* 312 * Direct colour: 313 * n rl 314 * pixel --/--+--/--> red lut --> red dac 315 * | gl 316 * +--/--> green lut --> green dac 317 * | bl 318 * +--/--> blue lut --> blue dac 319 * n = bpp, rl = red length, gl = green length, bl = blue length 320 */ 321 case FB_VISUAL_DIRECTCOLOR: 322 red >>= 8; 323 green >>= 8; 324 blue >>= 8; 325 326 if (var->green.length == 6 && regno < 64) { 327 cfb->palette[regno << 2].green = green; 328 329 /* 330 * The 6 bits of the green component are applied 331 * to the high 6 bits of the LUT. 332 */ 333 cyber2000fb_writeb(regno << 2, 0x3c8, cfb); 334 cyber2000fb_writeb(cfb->palette[regno >> 1].red, 335 0x3c9, cfb); 336 cyber2000fb_writeb(green, 0x3c9, cfb); 337 cyber2000fb_writeb(cfb->palette[regno >> 1].blue, 338 0x3c9, cfb); 339 340 green = cfb->palette[regno << 3].green; 341 342 ret = 0; 343 } 344 345 if (var->green.length >= 5 && regno < 32) { 346 cfb->palette[regno << 3].red = red; 347 cfb->palette[regno << 3].green = green; 348 cfb->palette[regno << 3].blue = blue; 349 350 /* 351 * The 5 bits of each colour component are 352 * applied to the high 5 bits of the LUT. 353 */ 354 cyber2000fb_writeb(regno << 3, 0x3c8, cfb); 355 cyber2000fb_writeb(red, 0x3c9, cfb); 356 cyber2000fb_writeb(green, 0x3c9, cfb); 357 cyber2000fb_writeb(blue, 0x3c9, cfb); 358 ret = 0; 359 } 360 361 if (var->green.length == 4 && regno < 16) { 362 cfb->palette[regno << 4].red = red; 363 cfb->palette[regno << 4].green = green; 364 cfb->palette[regno << 4].blue = blue; 365 366 /* 367 * The 5 bits of each colour component are 368 * applied to the high 5 bits of the LUT. 369 */ 370 cyber2000fb_writeb(regno << 4, 0x3c8, cfb); 371 cyber2000fb_writeb(red, 0x3c9, cfb); 372 cyber2000fb_writeb(green, 0x3c9, cfb); 373 cyber2000fb_writeb(blue, 0x3c9, cfb); 374 ret = 0; 375 } 376 377 /* 378 * Since this is only used for the first 16 colours, we 379 * don't have to care about overflowing for regno >= 32 380 */ 381 pseudo_val = regno << var->red.offset | 382 regno << var->green.offset | 383 regno << var->blue.offset; 384 break; 385 386 /* 387 * True colour: 388 * n rl 389 * pixel --/--+--/--> red dac 390 * | gl 391 * +--/--> green dac 392 * | bl 393 * +--/--> blue dac 394 * n = bpp, rl = red length, gl = green length, bl = blue length 395 */ 396 case FB_VISUAL_TRUECOLOR: 397 pseudo_val = convert_bitfield(transp ^ 0xffff, &var->transp); 398 pseudo_val |= convert_bitfield(red, &var->red); 399 pseudo_val |= convert_bitfield(green, &var->green); 400 pseudo_val |= convert_bitfield(blue, &var->blue); 401 ret = 0; 402 break; 403 } 404 405 /* 406 * Now set our pseudo palette for the CFB16/24/32 drivers. 407 */ 408 if (regno < 16) 409 ((u32 *)cfb->fb.pseudo_palette)[regno] = pseudo_val; 410 411 return ret; 412 } 413 414 struct par_info { 415 /* 416 * Hardware 417 */ 418 u_char clock_mult; 419 u_char clock_div; 420 u_char extseqmisc; 421 u_char co_pixfmt; 422 u_char crtc_ofl; 423 u_char crtc[19]; 424 u_int width; 425 u_int pitch; 426 u_int fetch; 427 428 /* 429 * Other 430 */ 431 u_char ramdac; 432 }; 433 434 static const u_char crtc_idx[] = { 435 0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 436 0x08, 0x09, 437 0x10, 0x11, 0x12, 0x13, 0x14, 0x15, 0x16, 0x17, 0x18 438 }; 439 440 static void cyber2000fb_write_ramdac_ctrl(struct cfb_info *cfb) 441 { 442 unsigned int i; 443 unsigned int val = cfb->ramdac_ctrl | cfb->ramdac_powerdown; 444 445 cyber2000fb_writeb(0x56, 0x3ce, cfb); 446 i = cyber2000fb_readb(0x3cf, cfb); 447 cyber2000fb_writeb(i | 4, 0x3cf, cfb); 448 cyber2000fb_writeb(val, 0x3c6, cfb); 449 cyber2000fb_writeb(i, 0x3cf, cfb); 450 /* prevent card lock-up observed on x86 with CyberPro 2000 */ 451 cyber2000fb_readb(0x3cf, cfb); 452 } 453 454 static void cyber2000fb_set_timing(struct cfb_info *cfb, struct par_info *hw) 455 { 456 u_int i; 457 458 /* 459 * Blank palette 460 */ 461 for (i = 0; i < NR_PALETTE; i++) { 462 cyber2000fb_writeb(i, 0x3c8, cfb); 463 cyber2000fb_writeb(0, 0x3c9, cfb); 464 cyber2000fb_writeb(0, 0x3c9, cfb); 465 cyber2000fb_writeb(0, 0x3c9, cfb); 466 } 467 468 cyber2000fb_writeb(0xef, 0x3c2, cfb); 469 cyber2000_crtcw(0x11, 0x0b, cfb); 470 cyber2000_attrw(0x11, 0x00, cfb); 471 472 cyber2000_seqw(0x00, 0x01, cfb); 473 cyber2000_seqw(0x01, 0x01, cfb); 474 cyber2000_seqw(0x02, 0x0f, cfb); 475 cyber2000_seqw(0x03, 0x00, cfb); 476 cyber2000_seqw(0x04, 0x0e, cfb); 477 cyber2000_seqw(0x00, 0x03, cfb); 478 479 for (i = 0; i < sizeof(crtc_idx); i++) 480 cyber2000_crtcw(crtc_idx[i], hw->crtc[i], cfb); 481 482 for (i = 0x0a; i < 0x10; i++) 483 cyber2000_crtcw(i, 0, cfb); 484 485 cyber2000_grphw(EXT_CRT_VRTOFL, hw->crtc_ofl, cfb); 486 cyber2000_grphw(0x00, 0x00, cfb); 487 cyber2000_grphw(0x01, 0x00, cfb); 488 cyber2000_grphw(0x02, 0x00, cfb); 489 cyber2000_grphw(0x03, 0x00, cfb); 490 cyber2000_grphw(0x04, 0x00, cfb); 491 cyber2000_grphw(0x05, 0x60, cfb); 492 cyber2000_grphw(0x06, 0x05, cfb); 493 cyber2000_grphw(0x07, 0x0f, cfb); 494 cyber2000_grphw(0x08, 0xff, cfb); 495 496 /* Attribute controller registers */ 497 for (i = 0; i < 16; i++) 498 cyber2000_attrw(i, i, cfb); 499 500 cyber2000_attrw(0x10, 0x01, cfb); 501 cyber2000_attrw(0x11, 0x00, cfb); 502 cyber2000_attrw(0x12, 0x0f, cfb); 503 cyber2000_attrw(0x13, 0x00, cfb); 504 cyber2000_attrw(0x14, 0x00, cfb); 505 506 /* PLL registers */ 507 spin_lock(&cfb->reg_b0_lock); 508 cyber2000_grphw(EXT_DCLK_MULT, hw->clock_mult, cfb); 509 cyber2000_grphw(EXT_DCLK_DIV, hw->clock_div, cfb); 510 cyber2000_grphw(EXT_MCLK_MULT, cfb->mclk_mult, cfb); 511 cyber2000_grphw(EXT_MCLK_DIV, cfb->mclk_div, cfb); 512 cyber2000_grphw(0x90, 0x01, cfb); 513 cyber2000_grphw(0xb9, 0x80, cfb); 514 cyber2000_grphw(0xb9, 0x00, cfb); 515 spin_unlock(&cfb->reg_b0_lock); 516 517 cfb->ramdac_ctrl = hw->ramdac; 518 cyber2000fb_write_ramdac_ctrl(cfb); 519 520 cyber2000fb_writeb(0x20, 0x3c0, cfb); 521 cyber2000fb_writeb(0xff, 0x3c6, cfb); 522 523 cyber2000_grphw(0x14, hw->fetch, cfb); 524 cyber2000_grphw(0x15, ((hw->fetch >> 8) & 0x03) | 525 ((hw->pitch >> 4) & 0x30), cfb); 526 cyber2000_grphw(EXT_SEQ_MISC, hw->extseqmisc, cfb); 527 528 /* 529 * Set up accelerator registers 530 */ 531 cyber2000fb_writew(hw->width, CO_REG_SRC_WIDTH, cfb); 532 cyber2000fb_writew(hw->width, CO_REG_DEST_WIDTH, cfb); 533 cyber2000fb_writeb(hw->co_pixfmt, CO_REG_PIXFMT, cfb); 534 } 535 536 static inline int 537 cyber2000fb_update_start(struct cfb_info *cfb, struct fb_var_screeninfo *var) 538 { 539 u_int base = var->yoffset * var->xres_virtual + var->xoffset; 540 541 base *= var->bits_per_pixel; 542 543 /* 544 * Convert to bytes and shift two extra bits because DAC 545 * can only start on 4 byte aligned data. 546 */ 547 base >>= 5; 548 549 if (base >= 1 << 20) 550 return -EINVAL; 551 552 cyber2000_grphw(0x10, base >> 16 | 0x10, cfb); 553 cyber2000_crtcw(0x0c, base >> 8, cfb); 554 cyber2000_crtcw(0x0d, base, cfb); 555 556 return 0; 557 } 558 559 static int 560 cyber2000fb_decode_crtc(struct par_info *hw, struct cfb_info *cfb, 561 struct fb_var_screeninfo *var) 562 { 563 u_int Htotal, Hblankend, Hsyncend; 564 u_int Vtotal, Vdispend, Vblankstart, Vblankend, Vsyncstart, Vsyncend; 565 #define ENCODE_BIT(v, b1, m, b2) ((((v) >> (b1)) & (m)) << (b2)) 566 567 hw->crtc[13] = hw->pitch; 568 hw->crtc[17] = 0xe3; 569 hw->crtc[14] = 0; 570 hw->crtc[8] = 0; 571 572 Htotal = var->xres + var->right_margin + 573 var->hsync_len + var->left_margin; 574 575 if (Htotal > 2080) 576 return -EINVAL; 577 578 hw->crtc[0] = (Htotal >> 3) - 5; 579 hw->crtc[1] = (var->xres >> 3) - 1; 580 hw->crtc[2] = var->xres >> 3; 581 hw->crtc[4] = (var->xres + var->right_margin) >> 3; 582 583 Hblankend = (Htotal - 4 * 8) >> 3; 584 585 hw->crtc[3] = ENCODE_BIT(Hblankend, 0, 0x1f, 0) | 586 ENCODE_BIT(1, 0, 0x01, 7); 587 588 Hsyncend = (var->xres + var->right_margin + var->hsync_len) >> 3; 589 590 hw->crtc[5] = ENCODE_BIT(Hsyncend, 0, 0x1f, 0) | 591 ENCODE_BIT(Hblankend, 5, 0x01, 7); 592 593 Vdispend = var->yres - 1; 594 Vsyncstart = var->yres + var->lower_margin; 595 Vsyncend = var->yres + var->lower_margin + var->vsync_len; 596 Vtotal = var->yres + var->lower_margin + var->vsync_len + 597 var->upper_margin - 2; 598 599 if (Vtotal > 2047) 600 return -EINVAL; 601 602 Vblankstart = var->yres + 6; 603 Vblankend = Vtotal - 10; 604 605 hw->crtc[6] = Vtotal; 606 hw->crtc[7] = ENCODE_BIT(Vtotal, 8, 0x01, 0) | 607 ENCODE_BIT(Vdispend, 8, 0x01, 1) | 608 ENCODE_BIT(Vsyncstart, 8, 0x01, 2) | 609 ENCODE_BIT(Vblankstart, 8, 0x01, 3) | 610 ENCODE_BIT(1, 0, 0x01, 4) | 611 ENCODE_BIT(Vtotal, 9, 0x01, 5) | 612 ENCODE_BIT(Vdispend, 9, 0x01, 6) | 613 ENCODE_BIT(Vsyncstart, 9, 0x01, 7); 614 hw->crtc[9] = ENCODE_BIT(0, 0, 0x1f, 0) | 615 ENCODE_BIT(Vblankstart, 9, 0x01, 5) | 616 ENCODE_BIT(1, 0, 0x01, 6); 617 hw->crtc[10] = Vsyncstart; 618 hw->crtc[11] = ENCODE_BIT(Vsyncend, 0, 0x0f, 0) | 619 ENCODE_BIT(1, 0, 0x01, 7); 620 hw->crtc[12] = Vdispend; 621 hw->crtc[15] = Vblankstart; 622 hw->crtc[16] = Vblankend; 623 hw->crtc[18] = 0xff; 624 625 /* 626 * overflow - graphics reg 0x11 627 * 0=VTOTAL:10 1=VDEND:10 2=VRSTART:10 3=VBSTART:10 628 * 4=LINECOMP:10 5-IVIDEO 6=FIXCNT 629 */ 630 hw->crtc_ofl = 631 ENCODE_BIT(Vtotal, 10, 0x01, 0) | 632 ENCODE_BIT(Vdispend, 10, 0x01, 1) | 633 ENCODE_BIT(Vsyncstart, 10, 0x01, 2) | 634 ENCODE_BIT(Vblankstart, 10, 0x01, 3) | 635 EXT_CRT_VRTOFL_LINECOMP10; 636 637 /* woody: set the interlaced bit... */ 638 /* FIXME: what about doublescan? */ 639 if ((var->vmode & FB_VMODE_MASK) == FB_VMODE_INTERLACED) 640 hw->crtc_ofl |= EXT_CRT_VRTOFL_INTERLACE; 641 642 return 0; 643 } 644 645 /* 646 * The following was discovered by a good monitor, bit twiddling, theorising 647 * and but mostly luck. Strangely, it looks like everyone elses' PLL! 648 * 649 * Clock registers: 650 * fclock = fpll / div2 651 * fpll = fref * mult / div1 652 * where: 653 * fref = 14.318MHz (69842ps) 654 * mult = reg0xb0.7:0 655 * div1 = (reg0xb1.5:0 + 1) 656 * div2 = 2^(reg0xb1.7:6) 657 * fpll should be between 115 and 260 MHz 658 * (8696ps and 3846ps) 659 */ 660 static int 661 cyber2000fb_decode_clock(struct par_info *hw, struct cfb_info *cfb, 662 struct fb_var_screeninfo *var) 663 { 664 u_long pll_ps = var->pixclock; 665 const u_long ref_ps = cfb->ref_ps; 666 u_int div2, t_div1, best_div1, best_mult; 667 int best_diff; 668 int vco; 669 670 /* 671 * Step 1: 672 * find div2 such that 115MHz < fpll < 260MHz 673 * and 0 <= div2 < 4 674 */ 675 for (div2 = 0; div2 < 4; div2++) { 676 u_long new_pll; 677 678 new_pll = pll_ps / cfb->divisors[div2]; 679 if (8696 > new_pll && new_pll > 3846) { 680 pll_ps = new_pll; 681 break; 682 } 683 } 684 685 if (div2 == 4) 686 return -EINVAL; 687 688 /* 689 * Step 2: 690 * Given pll_ps and ref_ps, find: 691 * pll_ps * 0.995 < pll_ps_calc < pll_ps * 1.005 692 * where { 1 < best_div1 < 32, 1 < best_mult < 256 } 693 * pll_ps_calc = best_div1 / (ref_ps * best_mult) 694 */ 695 best_diff = 0x7fffffff; 696 best_mult = 2; 697 best_div1 = 32; 698 for (t_div1 = 2; t_div1 < 32; t_div1 += 1) { 699 u_int rr, t_mult, t_pll_ps; 700 int diff; 701 702 /* 703 * Find the multiplier for this divisor 704 */ 705 rr = ref_ps * t_div1; 706 t_mult = (rr + pll_ps / 2) / pll_ps; 707 708 /* 709 * Is the multiplier within the correct range? 710 */ 711 if (t_mult > 256 || t_mult < 2) 712 continue; 713 714 /* 715 * Calculate the actual clock period from this multiplier 716 * and divisor, and estimate the error. 717 */ 718 t_pll_ps = (rr + t_mult / 2) / t_mult; 719 diff = pll_ps - t_pll_ps; 720 if (diff < 0) 721 diff = -diff; 722 723 if (diff < best_diff) { 724 best_diff = diff; 725 best_mult = t_mult; 726 best_div1 = t_div1; 727 } 728 729 /* 730 * If we hit an exact value, there is no point in continuing. 731 */ 732 if (diff == 0) 733 break; 734 } 735 736 /* 737 * Step 3: 738 * combine values 739 */ 740 hw->clock_mult = best_mult - 1; 741 hw->clock_div = div2 << 6 | (best_div1 - 1); 742 743 vco = ref_ps * best_div1 / best_mult; 744 if ((ref_ps == 40690) && (vco < 5556)) 745 /* Set VFSEL when VCO > 180MHz (5.556 ps). */ 746 hw->clock_div |= EXT_DCLK_DIV_VFSEL; 747 748 return 0; 749 } 750 751 /* 752 * Set the User Defined Part of the Display 753 */ 754 static int 755 cyber2000fb_check_var(struct fb_var_screeninfo *var, struct fb_info *info) 756 { 757 struct cfb_info *cfb = container_of(info, struct cfb_info, fb); 758 struct par_info hw; 759 unsigned int mem; 760 int err; 761 762 var->transp.msb_right = 0; 763 var->red.msb_right = 0; 764 var->green.msb_right = 0; 765 var->blue.msb_right = 0; 766 var->transp.offset = 0; 767 var->transp.length = 0; 768 769 switch (var->bits_per_pixel) { 770 case 8: /* PSEUDOCOLOUR, 256 */ 771 var->red.offset = 0; 772 var->red.length = 8; 773 var->green.offset = 0; 774 var->green.length = 8; 775 var->blue.offset = 0; 776 var->blue.length = 8; 777 break; 778 779 case 16:/* DIRECTCOLOUR, 64k or 32k */ 780 switch (var->green.length) { 781 case 6: /* RGB565, 64k */ 782 var->red.offset = 11; 783 var->red.length = 5; 784 var->green.offset = 5; 785 var->green.length = 6; 786 var->blue.offset = 0; 787 var->blue.length = 5; 788 break; 789 790 default: 791 case 5: /* RGB555, 32k */ 792 var->red.offset = 10; 793 var->red.length = 5; 794 var->green.offset = 5; 795 var->green.length = 5; 796 var->blue.offset = 0; 797 var->blue.length = 5; 798 break; 799 800 case 4: /* RGB444, 4k + transparency? */ 801 var->transp.offset = 12; 802 var->transp.length = 4; 803 var->red.offset = 8; 804 var->red.length = 4; 805 var->green.offset = 4; 806 var->green.length = 4; 807 var->blue.offset = 0; 808 var->blue.length = 4; 809 break; 810 } 811 break; 812 813 case 24:/* TRUECOLOUR, 16m */ 814 var->red.offset = 16; 815 var->red.length = 8; 816 var->green.offset = 8; 817 var->green.length = 8; 818 var->blue.offset = 0; 819 var->blue.length = 8; 820 break; 821 822 case 32:/* TRUECOLOUR, 16m */ 823 var->transp.offset = 24; 824 var->transp.length = 8; 825 var->red.offset = 16; 826 var->red.length = 8; 827 var->green.offset = 8; 828 var->green.length = 8; 829 var->blue.offset = 0; 830 var->blue.length = 8; 831 break; 832 833 default: 834 return -EINVAL; 835 } 836 837 mem = var->xres_virtual * var->yres_virtual * (var->bits_per_pixel / 8); 838 if (mem > cfb->fb.fix.smem_len) 839 var->yres_virtual = cfb->fb.fix.smem_len * 8 / 840 (var->bits_per_pixel * var->xres_virtual); 841 842 if (var->yres > var->yres_virtual) 843 var->yres = var->yres_virtual; 844 if (var->xres > var->xres_virtual) 845 var->xres = var->xres_virtual; 846 847 err = cyber2000fb_decode_clock(&hw, cfb, var); 848 if (err) 849 return err; 850 851 err = cyber2000fb_decode_crtc(&hw, cfb, var); 852 if (err) 853 return err; 854 855 return 0; 856 } 857 858 static int cyber2000fb_set_par(struct fb_info *info) 859 { 860 struct cfb_info *cfb = container_of(info, struct cfb_info, fb); 861 struct fb_var_screeninfo *var = &cfb->fb.var; 862 struct par_info hw; 863 unsigned int mem; 864 865 hw.width = var->xres_virtual; 866 hw.ramdac = RAMDAC_VREFEN | RAMDAC_DAC8BIT; 867 868 switch (var->bits_per_pixel) { 869 case 8: 870 hw.co_pixfmt = CO_PIXFMT_8BPP; 871 hw.pitch = hw.width >> 3; 872 hw.extseqmisc = EXT_SEQ_MISC_8; 873 break; 874 875 case 16: 876 hw.co_pixfmt = CO_PIXFMT_16BPP; 877 hw.pitch = hw.width >> 2; 878 879 switch (var->green.length) { 880 case 6: /* RGB565, 64k */ 881 hw.extseqmisc = EXT_SEQ_MISC_16_RGB565; 882 break; 883 case 5: /* RGB555, 32k */ 884 hw.extseqmisc = EXT_SEQ_MISC_16_RGB555; 885 break; 886 case 4: /* RGB444, 4k + transparency? */ 887 hw.extseqmisc = EXT_SEQ_MISC_16_RGB444; 888 break; 889 default: 890 BUG(); 891 } 892 break; 893 894 case 24:/* TRUECOLOUR, 16m */ 895 hw.co_pixfmt = CO_PIXFMT_24BPP; 896 hw.width *= 3; 897 hw.pitch = hw.width >> 3; 898 hw.ramdac |= (RAMDAC_BYPASS | RAMDAC_RAMPWRDN); 899 hw.extseqmisc = EXT_SEQ_MISC_24_RGB888; 900 break; 901 902 case 32:/* TRUECOLOUR, 16m */ 903 hw.co_pixfmt = CO_PIXFMT_32BPP; 904 hw.pitch = hw.width >> 1; 905 hw.ramdac |= (RAMDAC_BYPASS | RAMDAC_RAMPWRDN); 906 hw.extseqmisc = EXT_SEQ_MISC_32; 907 break; 908 909 default: 910 BUG(); 911 } 912 913 /* 914 * Sigh, this is absolutely disgusting, but caused by 915 * the way the fbcon developers want to separate out 916 * the "checking" and the "setting" of the video mode. 917 * 918 * If the mode is not suitable for the hardware here, 919 * we can't prevent it being set by returning an error. 920 * 921 * In theory, since NetWinders contain just one VGA card, 922 * we should never end up hitting this problem. 923 */ 924 BUG_ON(cyber2000fb_decode_clock(&hw, cfb, var) != 0); 925 BUG_ON(cyber2000fb_decode_crtc(&hw, cfb, var) != 0); 926 927 hw.width -= 1; 928 hw.fetch = hw.pitch; 929 if (!(cfb->mem_ctl2 & MEM_CTL2_64BIT)) 930 hw.fetch <<= 1; 931 hw.fetch += 1; 932 933 cfb->fb.fix.line_length = var->xres_virtual * var->bits_per_pixel / 8; 934 935 /* 936 * Same here - if the size of the video mode exceeds the 937 * available RAM, we can't prevent this mode being set. 938 * 939 * In theory, since NetWinders contain just one VGA card, 940 * we should never end up hitting this problem. 941 */ 942 mem = cfb->fb.fix.line_length * var->yres_virtual; 943 BUG_ON(mem > cfb->fb.fix.smem_len); 944 945 /* 946 * 8bpp displays are always pseudo colour. 16bpp and above 947 * are direct colour or true colour, depending on whether 948 * the RAMDAC palettes are bypassed. (Direct colour has 949 * palettes, true colour does not.) 950 */ 951 if (var->bits_per_pixel == 8) 952 cfb->fb.fix.visual = FB_VISUAL_PSEUDOCOLOR; 953 else if (hw.ramdac & RAMDAC_BYPASS) 954 cfb->fb.fix.visual = FB_VISUAL_TRUECOLOR; 955 else 956 cfb->fb.fix.visual = FB_VISUAL_DIRECTCOLOR; 957 958 cyber2000fb_set_timing(cfb, &hw); 959 cyber2000fb_update_start(cfb, var); 960 961 return 0; 962 } 963 964 /* 965 * Pan or Wrap the Display 966 */ 967 static int 968 cyber2000fb_pan_display(struct fb_var_screeninfo *var, struct fb_info *info) 969 { 970 struct cfb_info *cfb = container_of(info, struct cfb_info, fb); 971 972 if (cyber2000fb_update_start(cfb, var)) 973 return -EINVAL; 974 975 cfb->fb.var.xoffset = var->xoffset; 976 cfb->fb.var.yoffset = var->yoffset; 977 978 if (var->vmode & FB_VMODE_YWRAP) { 979 cfb->fb.var.vmode |= FB_VMODE_YWRAP; 980 } else { 981 cfb->fb.var.vmode &= ~FB_VMODE_YWRAP; 982 } 983 984 return 0; 985 } 986 987 /* 988 * (Un)Blank the display. 989 * 990 * Blank the screen if blank_mode != 0, else unblank. If 991 * blank == NULL then the caller blanks by setting the CLUT 992 * (Color Look Up Table) to all black. Return 0 if blanking 993 * succeeded, != 0 if un-/blanking failed due to e.g. a 994 * video mode which doesn't support it. Implements VESA 995 * suspend and powerdown modes on hardware that supports 996 * disabling hsync/vsync: 997 * blank_mode == 2: suspend vsync 998 * blank_mode == 3: suspend hsync 999 * blank_mode == 4: powerdown 1000 * 1001 * wms...Enable VESA DMPS compatible powerdown mode 1002 * run "setterm -powersave powerdown" to take advantage 1003 */ 1004 static int cyber2000fb_blank(int blank, struct fb_info *info) 1005 { 1006 struct cfb_info *cfb = container_of(info, struct cfb_info, fb); 1007 unsigned int sync = 0; 1008 int i; 1009 1010 switch (blank) { 1011 case FB_BLANK_POWERDOWN: /* powerdown - both sync lines down */ 1012 sync = EXT_SYNC_CTL_VS_0 | EXT_SYNC_CTL_HS_0; 1013 break; 1014 case FB_BLANK_HSYNC_SUSPEND: /* hsync off */ 1015 sync = EXT_SYNC_CTL_VS_NORMAL | EXT_SYNC_CTL_HS_0; 1016 break; 1017 case FB_BLANK_VSYNC_SUSPEND: /* vsync off */ 1018 sync = EXT_SYNC_CTL_VS_0 | EXT_SYNC_CTL_HS_NORMAL; 1019 break; 1020 case FB_BLANK_NORMAL: /* soft blank */ 1021 default: /* unblank */ 1022 break; 1023 } 1024 1025 cyber2000_grphw(EXT_SYNC_CTL, sync, cfb); 1026 1027 if (blank <= 1) { 1028 /* turn on ramdacs */ 1029 cfb->ramdac_powerdown &= ~(RAMDAC_DACPWRDN | RAMDAC_BYPASS | 1030 RAMDAC_RAMPWRDN); 1031 cyber2000fb_write_ramdac_ctrl(cfb); 1032 } 1033 1034 /* 1035 * Soft blank/unblank the display. 1036 */ 1037 if (blank) { /* soft blank */ 1038 for (i = 0; i < NR_PALETTE; i++) { 1039 cyber2000fb_writeb(i, 0x3c8, cfb); 1040 cyber2000fb_writeb(0, 0x3c9, cfb); 1041 cyber2000fb_writeb(0, 0x3c9, cfb); 1042 cyber2000fb_writeb(0, 0x3c9, cfb); 1043 } 1044 } else { /* unblank */ 1045 for (i = 0; i < NR_PALETTE; i++) { 1046 cyber2000fb_writeb(i, 0x3c8, cfb); 1047 cyber2000fb_writeb(cfb->palette[i].red, 0x3c9, cfb); 1048 cyber2000fb_writeb(cfb->palette[i].green, 0x3c9, cfb); 1049 cyber2000fb_writeb(cfb->palette[i].blue, 0x3c9, cfb); 1050 } 1051 } 1052 1053 if (blank >= 2) { 1054 /* turn off ramdacs */ 1055 cfb->ramdac_powerdown |= RAMDAC_DACPWRDN | RAMDAC_BYPASS | 1056 RAMDAC_RAMPWRDN; 1057 cyber2000fb_write_ramdac_ctrl(cfb); 1058 } 1059 1060 return 0; 1061 } 1062 1063 static const struct fb_ops cyber2000fb_ops = { 1064 .owner = THIS_MODULE, 1065 .fb_check_var = cyber2000fb_check_var, 1066 .fb_set_par = cyber2000fb_set_par, 1067 .fb_setcolreg = cyber2000fb_setcolreg, 1068 .fb_blank = cyber2000fb_blank, 1069 .fb_pan_display = cyber2000fb_pan_display, 1070 .fb_fillrect = cyber2000fb_fillrect, 1071 .fb_copyarea = cyber2000fb_copyarea, 1072 .fb_imageblit = cyber2000fb_imageblit, 1073 .fb_sync = cyber2000fb_sync, 1074 }; 1075 1076 /* 1077 * This is the only "static" reference to the internal data structures 1078 * of this driver. It is here solely at the moment to support the other 1079 * CyberPro modules external to this driver. 1080 */ 1081 static struct cfb_info *int_cfb_info; 1082 1083 /* 1084 * Enable access to the extended registers 1085 */ 1086 void cyber2000fb_enable_extregs(struct cfb_info *cfb) 1087 { 1088 cfb->func_use_count += 1; 1089 1090 if (cfb->func_use_count == 1) { 1091 int old; 1092 1093 old = cyber2000_grphr(EXT_FUNC_CTL, cfb); 1094 old |= EXT_FUNC_CTL_EXTREGENBL; 1095 cyber2000_grphw(EXT_FUNC_CTL, old, cfb); 1096 } 1097 } 1098 EXPORT_SYMBOL(cyber2000fb_enable_extregs); 1099 1100 /* 1101 * Disable access to the extended registers 1102 */ 1103 void cyber2000fb_disable_extregs(struct cfb_info *cfb) 1104 { 1105 if (cfb->func_use_count == 1) { 1106 int old; 1107 1108 old = cyber2000_grphr(EXT_FUNC_CTL, cfb); 1109 old &= ~EXT_FUNC_CTL_EXTREGENBL; 1110 cyber2000_grphw(EXT_FUNC_CTL, old, cfb); 1111 } 1112 1113 if (cfb->func_use_count == 0) 1114 printk(KERN_ERR "disable_extregs: count = 0\n"); 1115 else 1116 cfb->func_use_count -= 1; 1117 } 1118 EXPORT_SYMBOL(cyber2000fb_disable_extregs); 1119 1120 /* 1121 * Attach a capture/tv driver to the core CyberX0X0 driver. 1122 */ 1123 int cyber2000fb_attach(struct cyberpro_info *info, int idx) 1124 { 1125 if (int_cfb_info != NULL) { 1126 info->dev = int_cfb_info->fb.device; 1127 #ifdef CONFIG_FB_CYBER2000_I2C 1128 info->i2c = &int_cfb_info->i2c_adapter; 1129 #else 1130 info->i2c = NULL; 1131 #endif 1132 info->regs = int_cfb_info->regs; 1133 info->irq = int_cfb_info->irq; 1134 info->fb = int_cfb_info->fb.screen_base; 1135 info->fb_size = int_cfb_info->fb.fix.smem_len; 1136 info->info = int_cfb_info; 1137 1138 strscpy(info->dev_name, int_cfb_info->fb.fix.id, 1139 sizeof(info->dev_name)); 1140 } 1141 1142 return int_cfb_info != NULL; 1143 } 1144 EXPORT_SYMBOL(cyber2000fb_attach); 1145 1146 /* 1147 * Detach a capture/tv driver from the core CyberX0X0 driver. 1148 */ 1149 void cyber2000fb_detach(int idx) 1150 { 1151 } 1152 EXPORT_SYMBOL(cyber2000fb_detach); 1153 1154 #ifdef CONFIG_FB_CYBER2000_DDC 1155 1156 #define DDC_REG 0xb0 1157 #define DDC_SCL_OUT (1 << 0) 1158 #define DDC_SDA_OUT (1 << 4) 1159 #define DDC_SCL_IN (1 << 2) 1160 #define DDC_SDA_IN (1 << 6) 1161 1162 static void cyber2000fb_enable_ddc(struct cfb_info *cfb) 1163 __acquires(&cfb->reg_b0_lock) 1164 { 1165 spin_lock(&cfb->reg_b0_lock); 1166 cyber2000fb_writew(0x1bf, 0x3ce, cfb); 1167 } 1168 1169 static void cyber2000fb_disable_ddc(struct cfb_info *cfb) 1170 __releases(&cfb->reg_b0_lock) 1171 { 1172 cyber2000fb_writew(0x0bf, 0x3ce, cfb); 1173 spin_unlock(&cfb->reg_b0_lock); 1174 } 1175 1176 1177 static void cyber2000fb_ddc_setscl(void *data, int val) 1178 { 1179 struct cfb_info *cfb = data; 1180 unsigned char reg; 1181 1182 cyber2000fb_enable_ddc(cfb); 1183 reg = cyber2000_grphr(DDC_REG, cfb); 1184 if (!val) /* bit is inverted */ 1185 reg |= DDC_SCL_OUT; 1186 else 1187 reg &= ~DDC_SCL_OUT; 1188 cyber2000_grphw(DDC_REG, reg, cfb); 1189 cyber2000fb_disable_ddc(cfb); 1190 } 1191 1192 static void cyber2000fb_ddc_setsda(void *data, int val) 1193 { 1194 struct cfb_info *cfb = data; 1195 unsigned char reg; 1196 1197 cyber2000fb_enable_ddc(cfb); 1198 reg = cyber2000_grphr(DDC_REG, cfb); 1199 if (!val) /* bit is inverted */ 1200 reg |= DDC_SDA_OUT; 1201 else 1202 reg &= ~DDC_SDA_OUT; 1203 cyber2000_grphw(DDC_REG, reg, cfb); 1204 cyber2000fb_disable_ddc(cfb); 1205 } 1206 1207 static int cyber2000fb_ddc_getscl(void *data) 1208 { 1209 struct cfb_info *cfb = data; 1210 int retval; 1211 1212 cyber2000fb_enable_ddc(cfb); 1213 retval = !!(cyber2000_grphr(DDC_REG, cfb) & DDC_SCL_IN); 1214 cyber2000fb_disable_ddc(cfb); 1215 1216 return retval; 1217 } 1218 1219 static int cyber2000fb_ddc_getsda(void *data) 1220 { 1221 struct cfb_info *cfb = data; 1222 int retval; 1223 1224 cyber2000fb_enable_ddc(cfb); 1225 retval = !!(cyber2000_grphr(DDC_REG, cfb) & DDC_SDA_IN); 1226 cyber2000fb_disable_ddc(cfb); 1227 1228 return retval; 1229 } 1230 1231 static int cyber2000fb_setup_ddc_bus(struct cfb_info *cfb) 1232 { 1233 strscpy(cfb->ddc_adapter.name, cfb->fb.fix.id, 1234 sizeof(cfb->ddc_adapter.name)); 1235 cfb->ddc_adapter.owner = THIS_MODULE; 1236 cfb->ddc_adapter.class = I2C_CLASS_DDC; 1237 cfb->ddc_adapter.algo_data = &cfb->ddc_algo; 1238 cfb->ddc_adapter.dev.parent = cfb->fb.device; 1239 cfb->ddc_algo.setsda = cyber2000fb_ddc_setsda; 1240 cfb->ddc_algo.setscl = cyber2000fb_ddc_setscl; 1241 cfb->ddc_algo.getsda = cyber2000fb_ddc_getsda; 1242 cfb->ddc_algo.getscl = cyber2000fb_ddc_getscl; 1243 cfb->ddc_algo.udelay = 10; 1244 cfb->ddc_algo.timeout = 20; 1245 cfb->ddc_algo.data = cfb; 1246 1247 i2c_set_adapdata(&cfb->ddc_adapter, cfb); 1248 1249 return i2c_bit_add_bus(&cfb->ddc_adapter); 1250 } 1251 #endif /* CONFIG_FB_CYBER2000_DDC */ 1252 1253 #ifdef CONFIG_FB_CYBER2000_I2C 1254 static void cyber2000fb_i2c_setsda(void *data, int state) 1255 { 1256 struct cfb_info *cfb = data; 1257 unsigned int latch2; 1258 1259 spin_lock(&cfb->reg_b0_lock); 1260 latch2 = cyber2000_grphr(EXT_LATCH2, cfb); 1261 latch2 &= EXT_LATCH2_I2C_CLKEN; 1262 if (state) 1263 latch2 |= EXT_LATCH2_I2C_DATEN; 1264 cyber2000_grphw(EXT_LATCH2, latch2, cfb); 1265 spin_unlock(&cfb->reg_b0_lock); 1266 } 1267 1268 static void cyber2000fb_i2c_setscl(void *data, int state) 1269 { 1270 struct cfb_info *cfb = data; 1271 unsigned int latch2; 1272 1273 spin_lock(&cfb->reg_b0_lock); 1274 latch2 = cyber2000_grphr(EXT_LATCH2, cfb); 1275 latch2 &= EXT_LATCH2_I2C_DATEN; 1276 if (state) 1277 latch2 |= EXT_LATCH2_I2C_CLKEN; 1278 cyber2000_grphw(EXT_LATCH2, latch2, cfb); 1279 spin_unlock(&cfb->reg_b0_lock); 1280 } 1281 1282 static int cyber2000fb_i2c_getsda(void *data) 1283 { 1284 struct cfb_info *cfb = data; 1285 int ret; 1286 1287 spin_lock(&cfb->reg_b0_lock); 1288 ret = !!(cyber2000_grphr(EXT_LATCH2, cfb) & EXT_LATCH2_I2C_DAT); 1289 spin_unlock(&cfb->reg_b0_lock); 1290 1291 return ret; 1292 } 1293 1294 static int cyber2000fb_i2c_getscl(void *data) 1295 { 1296 struct cfb_info *cfb = data; 1297 int ret; 1298 1299 spin_lock(&cfb->reg_b0_lock); 1300 ret = !!(cyber2000_grphr(EXT_LATCH2, cfb) & EXT_LATCH2_I2C_CLK); 1301 spin_unlock(&cfb->reg_b0_lock); 1302 1303 return ret; 1304 } 1305 1306 static int cyber2000fb_i2c_register(struct cfb_info *cfb) 1307 { 1308 strscpy(cfb->i2c_adapter.name, cfb->fb.fix.id, 1309 sizeof(cfb->i2c_adapter.name)); 1310 cfb->i2c_adapter.owner = THIS_MODULE; 1311 cfb->i2c_adapter.algo_data = &cfb->i2c_algo; 1312 cfb->i2c_adapter.dev.parent = cfb->fb.device; 1313 cfb->i2c_algo.setsda = cyber2000fb_i2c_setsda; 1314 cfb->i2c_algo.setscl = cyber2000fb_i2c_setscl; 1315 cfb->i2c_algo.getsda = cyber2000fb_i2c_getsda; 1316 cfb->i2c_algo.getscl = cyber2000fb_i2c_getscl; 1317 cfb->i2c_algo.udelay = 5; 1318 cfb->i2c_algo.timeout = msecs_to_jiffies(100); 1319 cfb->i2c_algo.data = cfb; 1320 1321 return i2c_bit_add_bus(&cfb->i2c_adapter); 1322 } 1323 1324 static void cyber2000fb_i2c_unregister(struct cfb_info *cfb) 1325 { 1326 i2c_del_adapter(&cfb->i2c_adapter); 1327 } 1328 #else 1329 #define cyber2000fb_i2c_register(cfb) (0) 1330 #define cyber2000fb_i2c_unregister(cfb) do { } while (0) 1331 #endif 1332 1333 /* 1334 * These parameters give 1335 * 640x480, hsync 31.5kHz, vsync 60Hz 1336 */ 1337 static const struct fb_videomode cyber2000fb_default_mode = { 1338 .refresh = 60, 1339 .xres = 640, 1340 .yres = 480, 1341 .pixclock = 39722, 1342 .left_margin = 56, 1343 .right_margin = 16, 1344 .upper_margin = 34, 1345 .lower_margin = 9, 1346 .hsync_len = 88, 1347 .vsync_len = 2, 1348 .sync = FB_SYNC_COMP_HIGH_ACT | FB_SYNC_VERT_HIGH_ACT, 1349 .vmode = FB_VMODE_NONINTERLACED 1350 }; 1351 1352 static char igs_regs[] = { 1353 EXT_CRT_IRQ, 0, 1354 EXT_CRT_TEST, 0, 1355 EXT_SYNC_CTL, 0, 1356 EXT_SEG_WRITE_PTR, 0, 1357 EXT_SEG_READ_PTR, 0, 1358 EXT_BIU_MISC, EXT_BIU_MISC_LIN_ENABLE | 1359 EXT_BIU_MISC_COP_ENABLE | 1360 EXT_BIU_MISC_COP_BFC, 1361 EXT_FUNC_CTL, 0, 1362 CURS_H_START, 0, 1363 CURS_H_START + 1, 0, 1364 CURS_H_PRESET, 0, 1365 CURS_V_START, 0, 1366 CURS_V_START + 1, 0, 1367 CURS_V_PRESET, 0, 1368 CURS_CTL, 0, 1369 EXT_ATTRIB_CTL, EXT_ATTRIB_CTL_EXT, 1370 EXT_OVERSCAN_RED, 0, 1371 EXT_OVERSCAN_GREEN, 0, 1372 EXT_OVERSCAN_BLUE, 0, 1373 1374 /* some of these are questionable when we have a BIOS */ 1375 EXT_MEM_CTL0, EXT_MEM_CTL0_7CLK | 1376 EXT_MEM_CTL0_RAS_1 | 1377 EXT_MEM_CTL0_MULTCAS, 1378 EXT_HIDDEN_CTL1, 0x30, 1379 EXT_FIFO_CTL, 0x0b, 1380 EXT_FIFO_CTL + 1, 0x17, 1381 0x76, 0x00, 1382 EXT_HIDDEN_CTL4, 0xc8 1383 }; 1384 1385 /* 1386 * Initialise the CyberPro hardware. On the CyberPro5XXXX, 1387 * ensure that we're using the correct PLL (5XXX's may be 1388 * programmed to use an additional set of PLLs.) 1389 */ 1390 static void cyberpro_init_hw(struct cfb_info *cfb) 1391 { 1392 int i; 1393 1394 for (i = 0; i < sizeof(igs_regs); i += 2) 1395 cyber2000_grphw(igs_regs[i], igs_regs[i + 1], cfb); 1396 1397 if (cfb->id == ID_CYBERPRO_5000) { 1398 unsigned char val; 1399 cyber2000fb_writeb(0xba, 0x3ce, cfb); 1400 val = cyber2000fb_readb(0x3cf, cfb) & 0x80; 1401 cyber2000fb_writeb(val, 0x3cf, cfb); 1402 } 1403 } 1404 1405 static struct cfb_info *cyberpro_alloc_fb_info(unsigned int id, char *name) 1406 { 1407 struct cfb_info *cfb; 1408 1409 cfb = kzalloc(sizeof(struct cfb_info), GFP_KERNEL); 1410 if (!cfb) 1411 return NULL; 1412 1413 1414 cfb->id = id; 1415 1416 if (id == ID_CYBERPRO_5000) 1417 cfb->ref_ps = 40690; /* 24.576 MHz */ 1418 else 1419 cfb->ref_ps = 69842; /* 14.31818 MHz (69841?) */ 1420 1421 cfb->divisors[0] = 1; 1422 cfb->divisors[1] = 2; 1423 cfb->divisors[2] = 4; 1424 1425 if (id == ID_CYBERPRO_2000) 1426 cfb->divisors[3] = 8; 1427 else 1428 cfb->divisors[3] = 6; 1429 1430 strcpy(cfb->fb.fix.id, name); 1431 1432 cfb->fb.fix.type = FB_TYPE_PACKED_PIXELS; 1433 cfb->fb.fix.type_aux = 0; 1434 cfb->fb.fix.xpanstep = 0; 1435 cfb->fb.fix.ypanstep = 1; 1436 cfb->fb.fix.ywrapstep = 0; 1437 1438 switch (id) { 1439 case ID_IGA_1682: 1440 cfb->fb.fix.accel = 0; 1441 break; 1442 1443 case ID_CYBERPRO_2000: 1444 cfb->fb.fix.accel = FB_ACCEL_IGS_CYBER2000; 1445 break; 1446 1447 case ID_CYBERPRO_2010: 1448 cfb->fb.fix.accel = FB_ACCEL_IGS_CYBER2010; 1449 break; 1450 1451 case ID_CYBERPRO_5000: 1452 cfb->fb.fix.accel = FB_ACCEL_IGS_CYBER5000; 1453 break; 1454 } 1455 1456 cfb->fb.var.nonstd = 0; 1457 cfb->fb.var.activate = FB_ACTIVATE_NOW; 1458 cfb->fb.var.height = -1; 1459 cfb->fb.var.width = -1; 1460 cfb->fb.var.accel_flags = FB_ACCELF_TEXT; 1461 1462 cfb->fb.fbops = &cyber2000fb_ops; 1463 cfb->fb.flags = FBINFO_DEFAULT | FBINFO_HWACCEL_YPAN; 1464 cfb->fb.pseudo_palette = cfb->pseudo_palette; 1465 1466 spin_lock_init(&cfb->reg_b0_lock); 1467 1468 fb_alloc_cmap(&cfb->fb.cmap, NR_PALETTE, 0); 1469 1470 return cfb; 1471 } 1472 1473 static void cyberpro_free_fb_info(struct cfb_info *cfb) 1474 { 1475 if (cfb) { 1476 /* 1477 * Free the colourmap 1478 */ 1479 fb_alloc_cmap(&cfb->fb.cmap, 0, 0); 1480 1481 kfree(cfb); 1482 } 1483 } 1484 1485 /* 1486 * Parse Cyber2000fb options. Usage: 1487 * video=cyber2000:font:fontname 1488 */ 1489 #ifndef MODULE 1490 static int cyber2000fb_setup(char *options) 1491 { 1492 char *opt; 1493 1494 if (!options || !*options) 1495 return 0; 1496 1497 while ((opt = strsep(&options, ",")) != NULL) { 1498 if (!*opt) 1499 continue; 1500 1501 if (strncmp(opt, "font:", 5) == 0) { 1502 static char default_font_storage[40]; 1503 1504 strscpy(default_font_storage, opt + 5, 1505 sizeof(default_font_storage)); 1506 default_font = default_font_storage; 1507 continue; 1508 } 1509 1510 printk(KERN_ERR "CyberPro20x0: unknown parameter: %s\n", opt); 1511 } 1512 return 0; 1513 } 1514 #endif /* MODULE */ 1515 1516 /* 1517 * The CyberPro chips can be placed on many different bus types. 1518 * This probe function is common to all bus types. The bus-specific 1519 * probe function is expected to have: 1520 * - enabled access to the linear memory region 1521 * - memory mapped access to the registers 1522 * - initialised mem_ctl1 and mem_ctl2 appropriately. 1523 */ 1524 static int cyberpro_common_probe(struct cfb_info *cfb) 1525 { 1526 u_long smem_size; 1527 u_int h_sync, v_sync; 1528 int err; 1529 1530 cyberpro_init_hw(cfb); 1531 1532 /* 1533 * Get the video RAM size and width from the VGA register. 1534 * This should have been already initialised by the BIOS, 1535 * but if it's garbage, claim default 1MB VRAM (woody) 1536 */ 1537 cfb->mem_ctl1 = cyber2000_grphr(EXT_MEM_CTL1, cfb); 1538 cfb->mem_ctl2 = cyber2000_grphr(EXT_MEM_CTL2, cfb); 1539 1540 /* 1541 * Determine the size of the memory. 1542 */ 1543 switch (cfb->mem_ctl2 & MEM_CTL2_SIZE_MASK) { 1544 case MEM_CTL2_SIZE_4MB: 1545 smem_size = 0x00400000; 1546 break; 1547 case MEM_CTL2_SIZE_2MB: 1548 smem_size = 0x00200000; 1549 break; 1550 case MEM_CTL2_SIZE_1MB: 1551 smem_size = 0x00100000; 1552 break; 1553 default: 1554 smem_size = 0x00100000; 1555 break; 1556 } 1557 1558 cfb->fb.fix.smem_len = smem_size; 1559 cfb->fb.fix.mmio_len = MMIO_SIZE; 1560 cfb->fb.screen_base = cfb->region; 1561 1562 #ifdef CONFIG_FB_CYBER2000_DDC 1563 if (cyber2000fb_setup_ddc_bus(cfb) == 0) 1564 cfb->ddc_registered = true; 1565 #endif 1566 1567 err = -EINVAL; 1568 if (!fb_find_mode(&cfb->fb.var, &cfb->fb, NULL, NULL, 0, 1569 &cyber2000fb_default_mode, 8)) { 1570 printk(KERN_ERR "%s: no valid mode found\n", cfb->fb.fix.id); 1571 goto failed; 1572 } 1573 1574 cfb->fb.var.yres_virtual = cfb->fb.fix.smem_len * 8 / 1575 (cfb->fb.var.bits_per_pixel * cfb->fb.var.xres_virtual); 1576 1577 if (cfb->fb.var.yres_virtual < cfb->fb.var.yres) 1578 cfb->fb.var.yres_virtual = cfb->fb.var.yres; 1579 1580 /* fb_set_var(&cfb->fb.var, -1, &cfb->fb); */ 1581 1582 /* 1583 * Calculate the hsync and vsync frequencies. Note that 1584 * we split the 1e12 constant up so that we can preserve 1585 * the precision and fit the results into 32-bit registers. 1586 * (1953125000 * 512 = 1e12) 1587 */ 1588 h_sync = 1953125000 / cfb->fb.var.pixclock; 1589 h_sync = h_sync * 512 / (cfb->fb.var.xres + cfb->fb.var.left_margin + 1590 cfb->fb.var.right_margin + cfb->fb.var.hsync_len); 1591 v_sync = h_sync / (cfb->fb.var.yres + cfb->fb.var.upper_margin + 1592 cfb->fb.var.lower_margin + cfb->fb.var.vsync_len); 1593 1594 printk(KERN_INFO "%s: %dKiB VRAM, using %dx%d, %d.%03dkHz, %dHz\n", 1595 cfb->fb.fix.id, cfb->fb.fix.smem_len >> 10, 1596 cfb->fb.var.xres, cfb->fb.var.yres, 1597 h_sync / 1000, h_sync % 1000, v_sync); 1598 1599 err = cyber2000fb_i2c_register(cfb); 1600 if (err) 1601 goto failed; 1602 1603 err = register_framebuffer(&cfb->fb); 1604 if (err) 1605 cyber2000fb_i2c_unregister(cfb); 1606 1607 failed: 1608 #ifdef CONFIG_FB_CYBER2000_DDC 1609 if (err && cfb->ddc_registered) 1610 i2c_del_adapter(&cfb->ddc_adapter); 1611 #endif 1612 return err; 1613 } 1614 1615 static void cyberpro_common_remove(struct cfb_info *cfb) 1616 { 1617 unregister_framebuffer(&cfb->fb); 1618 #ifdef CONFIG_FB_CYBER2000_DDC 1619 if (cfb->ddc_registered) 1620 i2c_del_adapter(&cfb->ddc_adapter); 1621 #endif 1622 cyber2000fb_i2c_unregister(cfb); 1623 } 1624 1625 static void cyberpro_common_resume(struct cfb_info *cfb) 1626 { 1627 cyberpro_init_hw(cfb); 1628 1629 /* 1630 * Reprogram the MEM_CTL1 and MEM_CTL2 registers 1631 */ 1632 cyber2000_grphw(EXT_MEM_CTL1, cfb->mem_ctl1, cfb); 1633 cyber2000_grphw(EXT_MEM_CTL2, cfb->mem_ctl2, cfb); 1634 1635 /* 1636 * Restore the old video mode and the palette. 1637 * We also need to tell fbcon to redraw the console. 1638 */ 1639 cyber2000fb_set_par(&cfb->fb); 1640 } 1641 1642 /* 1643 * We need to wake up the CyberPro, and make sure its in linear memory 1644 * mode. Unfortunately, this is specific to the platform and card that 1645 * we are running on. 1646 * 1647 * On x86 and ARM, should we be initialising the CyberPro first via the 1648 * IO registers, and then the MMIO registers to catch all cases? Can we 1649 * end up in the situation where the chip is in MMIO mode, but not awake 1650 * on an x86 system? 1651 */ 1652 static int cyberpro_pci_enable_mmio(struct cfb_info *cfb) 1653 { 1654 unsigned char val; 1655 1656 #if defined(__sparc_v9__) 1657 #error "You lose, consult DaveM." 1658 #elif defined(__sparc__) 1659 /* 1660 * SPARC does not have an "outb" instruction, so we generate 1661 * I/O cycles storing into a reserved memory space at 1662 * physical address 0x3000000 1663 */ 1664 unsigned char __iomem *iop; 1665 1666 iop = ioremap(0x3000000, 0x5000); 1667 if (iop == NULL) { 1668 printk(KERN_ERR "iga5000: cannot map I/O\n"); 1669 return -ENOMEM; 1670 } 1671 1672 writeb(0x18, iop + 0x46e8); 1673 writeb(0x01, iop + 0x102); 1674 writeb(0x08, iop + 0x46e8); 1675 writeb(EXT_BIU_MISC, iop + 0x3ce); 1676 writeb(EXT_BIU_MISC_LIN_ENABLE, iop + 0x3cf); 1677 1678 iounmap(iop); 1679 #else 1680 /* 1681 * Most other machine types are "normal", so 1682 * we use the standard IO-based wakeup. 1683 */ 1684 outb(0x18, 0x46e8); 1685 outb(0x01, 0x102); 1686 outb(0x08, 0x46e8); 1687 outb(EXT_BIU_MISC, 0x3ce); 1688 outb(EXT_BIU_MISC_LIN_ENABLE, 0x3cf); 1689 #endif 1690 1691 /* 1692 * Allow the CyberPro to accept PCI burst accesses 1693 */ 1694 if (cfb->id == ID_CYBERPRO_2010) { 1695 printk(KERN_INFO "%s: NOT enabling PCI bursts\n", 1696 cfb->fb.fix.id); 1697 } else { 1698 val = cyber2000_grphr(EXT_BUS_CTL, cfb); 1699 if (!(val & EXT_BUS_CTL_PCIBURST_WRITE)) { 1700 printk(KERN_INFO "%s: enabling PCI bursts\n", 1701 cfb->fb.fix.id); 1702 1703 val |= EXT_BUS_CTL_PCIBURST_WRITE; 1704 1705 if (cfb->id == ID_CYBERPRO_5000) 1706 val |= EXT_BUS_CTL_PCIBURST_READ; 1707 1708 cyber2000_grphw(EXT_BUS_CTL, val, cfb); 1709 } 1710 } 1711 1712 return 0; 1713 } 1714 1715 static int cyberpro_pci_probe(struct pci_dev *dev, 1716 const struct pci_device_id *id) 1717 { 1718 struct cfb_info *cfb; 1719 char name[16]; 1720 int err; 1721 1722 sprintf(name, "CyberPro%4X", id->device); 1723 1724 err = aperture_remove_conflicting_pci_devices(dev, name); 1725 if (err) 1726 return err; 1727 1728 err = pci_enable_device(dev); 1729 if (err) 1730 return err; 1731 1732 err = -ENOMEM; 1733 cfb = cyberpro_alloc_fb_info(id->driver_data, name); 1734 if (!cfb) 1735 goto failed_release; 1736 1737 err = pci_request_regions(dev, cfb->fb.fix.id); 1738 if (err) 1739 goto failed_regions; 1740 1741 cfb->irq = dev->irq; 1742 cfb->region = pci_ioremap_bar(dev, 0); 1743 if (!cfb->region) { 1744 err = -ENOMEM; 1745 goto failed_ioremap; 1746 } 1747 1748 cfb->regs = cfb->region + MMIO_OFFSET; 1749 cfb->fb.device = &dev->dev; 1750 cfb->fb.fix.mmio_start = pci_resource_start(dev, 0) + MMIO_OFFSET; 1751 cfb->fb.fix.smem_start = pci_resource_start(dev, 0); 1752 1753 /* 1754 * Bring up the hardware. This is expected to enable access 1755 * to the linear memory region, and allow access to the memory 1756 * mapped registers. Also, mem_ctl1 and mem_ctl2 must be 1757 * initialised. 1758 */ 1759 err = cyberpro_pci_enable_mmio(cfb); 1760 if (err) 1761 goto failed; 1762 1763 /* 1764 * Use MCLK from BIOS. FIXME: what about hotplug? 1765 */ 1766 cfb->mclk_mult = cyber2000_grphr(EXT_MCLK_MULT, cfb); 1767 cfb->mclk_div = cyber2000_grphr(EXT_MCLK_DIV, cfb); 1768 1769 #ifdef __arm__ 1770 /* 1771 * MCLK on the NetWinder and the Shark is fixed at 75MHz 1772 */ 1773 if (machine_is_netwinder()) { 1774 cfb->mclk_mult = 0xdb; 1775 cfb->mclk_div = 0x54; 1776 } 1777 #endif 1778 1779 err = cyberpro_common_probe(cfb); 1780 if (err) 1781 goto failed; 1782 1783 /* 1784 * Our driver data 1785 */ 1786 pci_set_drvdata(dev, cfb); 1787 if (int_cfb_info == NULL) 1788 int_cfb_info = cfb; 1789 1790 return 0; 1791 1792 failed: 1793 iounmap(cfb->region); 1794 failed_ioremap: 1795 pci_release_regions(dev); 1796 failed_regions: 1797 cyberpro_free_fb_info(cfb); 1798 failed_release: 1799 pci_disable_device(dev); 1800 return err; 1801 } 1802 1803 static void cyberpro_pci_remove(struct pci_dev *dev) 1804 { 1805 struct cfb_info *cfb = pci_get_drvdata(dev); 1806 1807 if (cfb) { 1808 cyberpro_common_remove(cfb); 1809 iounmap(cfb->region); 1810 cyberpro_free_fb_info(cfb); 1811 1812 if (cfb == int_cfb_info) 1813 int_cfb_info = NULL; 1814 1815 pci_release_regions(dev); 1816 pci_disable_device(dev); 1817 } 1818 } 1819 1820 static int __maybe_unused cyberpro_pci_suspend(struct device *dev) 1821 { 1822 return 0; 1823 } 1824 1825 /* 1826 * Re-initialise the CyberPro hardware 1827 */ 1828 static int __maybe_unused cyberpro_pci_resume(struct device *dev) 1829 { 1830 struct cfb_info *cfb = dev_get_drvdata(dev); 1831 1832 if (cfb) { 1833 cyberpro_pci_enable_mmio(cfb); 1834 cyberpro_common_resume(cfb); 1835 } 1836 1837 return 0; 1838 } 1839 1840 static struct pci_device_id cyberpro_pci_table[] = { 1841 /* Not yet 1842 * { PCI_VENDOR_ID_INTERG, PCI_DEVICE_ID_INTERG_1682, 1843 * PCI_ANY_ID, PCI_ANY_ID, 0, 0, ID_IGA_1682 }, 1844 */ 1845 { PCI_VENDOR_ID_INTERG, PCI_DEVICE_ID_INTERG_2000, 1846 PCI_ANY_ID, PCI_ANY_ID, 0, 0, ID_CYBERPRO_2000 }, 1847 { PCI_VENDOR_ID_INTERG, PCI_DEVICE_ID_INTERG_2010, 1848 PCI_ANY_ID, PCI_ANY_ID, 0, 0, ID_CYBERPRO_2010 }, 1849 { PCI_VENDOR_ID_INTERG, PCI_DEVICE_ID_INTERG_5000, 1850 PCI_ANY_ID, PCI_ANY_ID, 0, 0, ID_CYBERPRO_5000 }, 1851 { 0, } 1852 }; 1853 1854 MODULE_DEVICE_TABLE(pci, cyberpro_pci_table); 1855 1856 static SIMPLE_DEV_PM_OPS(cyberpro_pci_pm_ops, 1857 cyberpro_pci_suspend, 1858 cyberpro_pci_resume); 1859 1860 static struct pci_driver cyberpro_driver = { 1861 .name = "CyberPro", 1862 .probe = cyberpro_pci_probe, 1863 .remove = cyberpro_pci_remove, 1864 .driver.pm = &cyberpro_pci_pm_ops, 1865 .id_table = cyberpro_pci_table 1866 }; 1867 1868 /* 1869 * I don't think we can use the "module_init" stuff here because 1870 * the fbcon stuff may not be initialised yet. Hence the #ifdef 1871 * around module_init. 1872 * 1873 * Tony: "module_init" is now required 1874 */ 1875 static int __init cyber2000fb_init(void) 1876 { 1877 int ret = -1, err; 1878 1879 #ifndef MODULE 1880 char *option = NULL; 1881 1882 if (fb_get_options("cyber2000fb", &option)) 1883 return -ENODEV; 1884 cyber2000fb_setup(option); 1885 #endif 1886 1887 err = pci_register_driver(&cyberpro_driver); 1888 if (!err) 1889 ret = 0; 1890 1891 return ret ? err : 0; 1892 } 1893 module_init(cyber2000fb_init); 1894 1895 static void __exit cyberpro_exit(void) 1896 { 1897 pci_unregister_driver(&cyberpro_driver); 1898 } 1899 module_exit(cyberpro_exit); 1900 1901 MODULE_AUTHOR("Russell King"); 1902 MODULE_DESCRIPTION("CyberPro 2000, 2010 and 5000 framebuffer driver"); 1903 MODULE_LICENSE("GPL"); 1904