1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/drivers/video/cyber2000fb.c
4  *
5  *  Copyright (C) 1998-2002 Russell King
6  *
7  *  MIPS and 50xx clock support
8  *  Copyright (C) 2001 Bradley D. LaRonde <brad@ltc.com>
9  *
10  *  32 bit support, text color and panning fixes for modes != 8 bit
11  *  Copyright (C) 2002 Denis Oliver Kropp <dok@directfb.org>
12  *
13  * Integraphics CyberPro 2000, 2010 and 5000 frame buffer device
14  *
15  * Based on cyberfb.c.
16  *
17  * Note that we now use the new fbcon fix, var and cmap scheme.  We do
18  * still have to check which console is the currently displayed one
19  * however, especially for the colourmap stuff.
20  *
21  * We also use the new hotplug PCI subsystem.  I'm not sure if there
22  * are any such cards, but I'm erring on the side of caution.  We don't
23  * want to go pop just because someone does have one.
24  *
25  * Note that this doesn't work fully in the case of multiple CyberPro
26  * cards with grabbers.  We currently can only attach to the first
27  * CyberPro card found.
28  *
29  * When we're in truecolour mode, we power down the LUT RAM as a power
30  * saving feature.  Also, when we enter any of the powersaving modes
31  * (except soft blanking) we power down the RAMDACs.  This saves about
32  * 1W, which is roughly 8% of the power consumption of a NetWinder
33  * (which, incidentally, is about the same saving as a 2.5in hard disk
34  * entering standby mode.)
35  */
36 #include <linux/module.h>
37 #include <linux/kernel.h>
38 #include <linux/errno.h>
39 #include <linux/string.h>
40 #include <linux/mm.h>
41 #include <linux/slab.h>
42 #include <linux/delay.h>
43 #include <linux/fb.h>
44 #include <linux/pci.h>
45 #include <linux/init.h>
46 #include <linux/io.h>
47 #include <linux/i2c.h>
48 #include <linux/i2c-algo-bit.h>
49 
50 #include <asm/pgtable.h>
51 
52 #ifdef __arm__
53 #include <asm/mach-types.h>
54 #endif
55 
56 #include "cyber2000fb.h"
57 
58 struct cfb_info {
59 	struct fb_info		fb;
60 	struct display_switch	*dispsw;
61 	struct display		*display;
62 	unsigned char		__iomem *region;
63 	unsigned char		__iomem *regs;
64 	u_int			id;
65 	u_int			irq;
66 	int			func_use_count;
67 	u_long			ref_ps;
68 
69 	/*
70 	 * Clock divisors
71 	 */
72 	u_int			divisors[4];
73 
74 	struct {
75 		u8 red, green, blue;
76 	} palette[NR_PALETTE];
77 
78 	u_char			mem_ctl1;
79 	u_char			mem_ctl2;
80 	u_char			mclk_mult;
81 	u_char			mclk_div;
82 	/*
83 	 * RAMDAC control register is both of these or'ed together
84 	 */
85 	u_char			ramdac_ctrl;
86 	u_char			ramdac_powerdown;
87 
88 	u32			pseudo_palette[16];
89 
90 	spinlock_t		reg_b0_lock;
91 
92 #ifdef CONFIG_FB_CYBER2000_DDC
93 	bool			ddc_registered;
94 	struct i2c_adapter	ddc_adapter;
95 	struct i2c_algo_bit_data	ddc_algo;
96 #endif
97 
98 #ifdef CONFIG_FB_CYBER2000_I2C
99 	struct i2c_adapter	i2c_adapter;
100 	struct i2c_algo_bit_data i2c_algo;
101 #endif
102 };
103 
104 static char *default_font = "Acorn8x8";
105 module_param(default_font, charp, 0);
106 MODULE_PARM_DESC(default_font, "Default font name");
107 
108 /*
109  * Our access methods.
110  */
111 #define cyber2000fb_writel(val, reg, cfb)	writel(val, (cfb)->regs + (reg))
112 #define cyber2000fb_writew(val, reg, cfb)	writew(val, (cfb)->regs + (reg))
113 #define cyber2000fb_writeb(val, reg, cfb)	writeb(val, (cfb)->regs + (reg))
114 
115 #define cyber2000fb_readb(reg, cfb)		readb((cfb)->regs + (reg))
116 
117 static inline void
118 cyber2000_crtcw(unsigned int reg, unsigned int val, struct cfb_info *cfb)
119 {
120 	cyber2000fb_writew((reg & 255) | val << 8, 0x3d4, cfb);
121 }
122 
123 static inline void
124 cyber2000_grphw(unsigned int reg, unsigned int val, struct cfb_info *cfb)
125 {
126 	cyber2000fb_writew((reg & 255) | val << 8, 0x3ce, cfb);
127 }
128 
129 static inline unsigned int
130 cyber2000_grphr(unsigned int reg, struct cfb_info *cfb)
131 {
132 	cyber2000fb_writeb(reg, 0x3ce, cfb);
133 	return cyber2000fb_readb(0x3cf, cfb);
134 }
135 
136 static inline void
137 cyber2000_attrw(unsigned int reg, unsigned int val, struct cfb_info *cfb)
138 {
139 	cyber2000fb_readb(0x3da, cfb);
140 	cyber2000fb_writeb(reg, 0x3c0, cfb);
141 	cyber2000fb_readb(0x3c1, cfb);
142 	cyber2000fb_writeb(val, 0x3c0, cfb);
143 }
144 
145 static inline void
146 cyber2000_seqw(unsigned int reg, unsigned int val, struct cfb_info *cfb)
147 {
148 	cyber2000fb_writew((reg & 255) | val << 8, 0x3c4, cfb);
149 }
150 
151 /* -------------------- Hardware specific routines ------------------------- */
152 
153 /*
154  * Hardware Cyber2000 Acceleration
155  */
156 static void
157 cyber2000fb_fillrect(struct fb_info *info, const struct fb_fillrect *rect)
158 {
159 	struct cfb_info *cfb = container_of(info, struct cfb_info, fb);
160 	unsigned long dst, col;
161 
162 	if (!(cfb->fb.var.accel_flags & FB_ACCELF_TEXT)) {
163 		cfb_fillrect(info, rect);
164 		return;
165 	}
166 
167 	cyber2000fb_writeb(0, CO_REG_CONTROL, cfb);
168 	cyber2000fb_writew(rect->width - 1, CO_REG_PIXWIDTH, cfb);
169 	cyber2000fb_writew(rect->height - 1, CO_REG_PIXHEIGHT, cfb);
170 
171 	col = rect->color;
172 	if (cfb->fb.var.bits_per_pixel > 8)
173 		col = ((u32 *)cfb->fb.pseudo_palette)[col];
174 	cyber2000fb_writel(col, CO_REG_FGCOLOUR, cfb);
175 
176 	dst = rect->dx + rect->dy * cfb->fb.var.xres_virtual;
177 	if (cfb->fb.var.bits_per_pixel == 24) {
178 		cyber2000fb_writeb(dst, CO_REG_X_PHASE, cfb);
179 		dst *= 3;
180 	}
181 
182 	cyber2000fb_writel(dst, CO_REG_DEST_PTR, cfb);
183 	cyber2000fb_writeb(CO_FG_MIX_SRC, CO_REG_FGMIX, cfb);
184 	cyber2000fb_writew(CO_CMD_L_PATTERN_FGCOL, CO_REG_CMD_L, cfb);
185 	cyber2000fb_writew(CO_CMD_H_BLITTER, CO_REG_CMD_H, cfb);
186 }
187 
188 static void
189 cyber2000fb_copyarea(struct fb_info *info, const struct fb_copyarea *region)
190 {
191 	struct cfb_info *cfb = container_of(info, struct cfb_info, fb);
192 	unsigned int cmd = CO_CMD_L_PATTERN_FGCOL;
193 	unsigned long src, dst;
194 
195 	if (!(cfb->fb.var.accel_flags & FB_ACCELF_TEXT)) {
196 		cfb_copyarea(info, region);
197 		return;
198 	}
199 
200 	cyber2000fb_writeb(0, CO_REG_CONTROL, cfb);
201 	cyber2000fb_writew(region->width - 1, CO_REG_PIXWIDTH, cfb);
202 	cyber2000fb_writew(region->height - 1, CO_REG_PIXHEIGHT, cfb);
203 
204 	src = region->sx + region->sy * cfb->fb.var.xres_virtual;
205 	dst = region->dx + region->dy * cfb->fb.var.xres_virtual;
206 
207 	if (region->sx < region->dx) {
208 		src += region->width - 1;
209 		dst += region->width - 1;
210 		cmd |= CO_CMD_L_INC_LEFT;
211 	}
212 
213 	if (region->sy < region->dy) {
214 		src += (region->height - 1) * cfb->fb.var.xres_virtual;
215 		dst += (region->height - 1) * cfb->fb.var.xres_virtual;
216 		cmd |= CO_CMD_L_INC_UP;
217 	}
218 
219 	if (cfb->fb.var.bits_per_pixel == 24) {
220 		cyber2000fb_writeb(dst, CO_REG_X_PHASE, cfb);
221 		src *= 3;
222 		dst *= 3;
223 	}
224 	cyber2000fb_writel(src, CO_REG_SRC1_PTR, cfb);
225 	cyber2000fb_writel(dst, CO_REG_DEST_PTR, cfb);
226 	cyber2000fb_writew(CO_FG_MIX_SRC, CO_REG_FGMIX, cfb);
227 	cyber2000fb_writew(cmd, CO_REG_CMD_L, cfb);
228 	cyber2000fb_writew(CO_CMD_H_FGSRCMAP | CO_CMD_H_BLITTER,
229 			   CO_REG_CMD_H, cfb);
230 }
231 
232 static void
233 cyber2000fb_imageblit(struct fb_info *info, const struct fb_image *image)
234 {
235 	cfb_imageblit(info, image);
236 	return;
237 }
238 
239 static int cyber2000fb_sync(struct fb_info *info)
240 {
241 	struct cfb_info *cfb = container_of(info, struct cfb_info, fb);
242 	int count = 100000;
243 
244 	if (!(cfb->fb.var.accel_flags & FB_ACCELF_TEXT))
245 		return 0;
246 
247 	while (cyber2000fb_readb(CO_REG_CONTROL, cfb) & CO_CTRL_BUSY) {
248 		if (!count--) {
249 			debug_printf("accel_wait timed out\n");
250 			cyber2000fb_writeb(0, CO_REG_CONTROL, cfb);
251 			break;
252 		}
253 		udelay(1);
254 	}
255 	return 0;
256 }
257 
258 /*
259  * ===========================================================================
260  */
261 
262 static inline u32 convert_bitfield(u_int val, struct fb_bitfield *bf)
263 {
264 	u_int mask = (1 << bf->length) - 1;
265 
266 	return (val >> (16 - bf->length) & mask) << bf->offset;
267 }
268 
269 /*
270  *    Set a single color register. Return != 0 for invalid regno.
271  */
272 static int
273 cyber2000fb_setcolreg(u_int regno, u_int red, u_int green, u_int blue,
274 		      u_int transp, struct fb_info *info)
275 {
276 	struct cfb_info *cfb = container_of(info, struct cfb_info, fb);
277 	struct fb_var_screeninfo *var = &cfb->fb.var;
278 	u32 pseudo_val;
279 	int ret = 1;
280 
281 	switch (cfb->fb.fix.visual) {
282 	default:
283 		return 1;
284 
285 	/*
286 	 * Pseudocolour:
287 	 *	   8     8
288 	 * pixel --/--+--/-->  red lut  --> red dac
289 	 *	      |  8
290 	 *	      +--/--> green lut --> green dac
291 	 *	      |  8
292 	 *	      +--/-->  blue lut --> blue dac
293 	 */
294 	case FB_VISUAL_PSEUDOCOLOR:
295 		if (regno >= NR_PALETTE)
296 			return 1;
297 
298 		red >>= 8;
299 		green >>= 8;
300 		blue >>= 8;
301 
302 		cfb->palette[regno].red = red;
303 		cfb->palette[regno].green = green;
304 		cfb->palette[regno].blue = blue;
305 
306 		cyber2000fb_writeb(regno, 0x3c8, cfb);
307 		cyber2000fb_writeb(red, 0x3c9, cfb);
308 		cyber2000fb_writeb(green, 0x3c9, cfb);
309 		cyber2000fb_writeb(blue, 0x3c9, cfb);
310 		return 0;
311 
312 	/*
313 	 * Direct colour:
314 	 *	   n     rl
315 	 * pixel --/--+--/-->  red lut  --> red dac
316 	 *	      |  gl
317 	 *	      +--/--> green lut --> green dac
318 	 *	      |  bl
319 	 *	      +--/-->  blue lut --> blue dac
320 	 * n = bpp, rl = red length, gl = green length, bl = blue length
321 	 */
322 	case FB_VISUAL_DIRECTCOLOR:
323 		red >>= 8;
324 		green >>= 8;
325 		blue >>= 8;
326 
327 		if (var->green.length == 6 && regno < 64) {
328 			cfb->palette[regno << 2].green = green;
329 
330 			/*
331 			 * The 6 bits of the green component are applied
332 			 * to the high 6 bits of the LUT.
333 			 */
334 			cyber2000fb_writeb(regno << 2, 0x3c8, cfb);
335 			cyber2000fb_writeb(cfb->palette[regno >> 1].red,
336 					   0x3c9, cfb);
337 			cyber2000fb_writeb(green, 0x3c9, cfb);
338 			cyber2000fb_writeb(cfb->palette[regno >> 1].blue,
339 					   0x3c9, cfb);
340 
341 			green = cfb->palette[regno << 3].green;
342 
343 			ret = 0;
344 		}
345 
346 		if (var->green.length >= 5 && regno < 32) {
347 			cfb->palette[regno << 3].red = red;
348 			cfb->palette[regno << 3].green = green;
349 			cfb->palette[regno << 3].blue = blue;
350 
351 			/*
352 			 * The 5 bits of each colour component are
353 			 * applied to the high 5 bits of the LUT.
354 			 */
355 			cyber2000fb_writeb(regno << 3, 0x3c8, cfb);
356 			cyber2000fb_writeb(red, 0x3c9, cfb);
357 			cyber2000fb_writeb(green, 0x3c9, cfb);
358 			cyber2000fb_writeb(blue, 0x3c9, cfb);
359 			ret = 0;
360 		}
361 
362 		if (var->green.length == 4 && regno < 16) {
363 			cfb->palette[regno << 4].red = red;
364 			cfb->palette[regno << 4].green = green;
365 			cfb->palette[regno << 4].blue = blue;
366 
367 			/*
368 			 * The 5 bits of each colour component are
369 			 * applied to the high 5 bits of the LUT.
370 			 */
371 			cyber2000fb_writeb(regno << 4, 0x3c8, cfb);
372 			cyber2000fb_writeb(red, 0x3c9, cfb);
373 			cyber2000fb_writeb(green, 0x3c9, cfb);
374 			cyber2000fb_writeb(blue, 0x3c9, cfb);
375 			ret = 0;
376 		}
377 
378 		/*
379 		 * Since this is only used for the first 16 colours, we
380 		 * don't have to care about overflowing for regno >= 32
381 		 */
382 		pseudo_val = regno << var->red.offset |
383 			     regno << var->green.offset |
384 			     regno << var->blue.offset;
385 		break;
386 
387 	/*
388 	 * True colour:
389 	 *	   n     rl
390 	 * pixel --/--+--/--> red dac
391 	 *	      |  gl
392 	 *	      +--/--> green dac
393 	 *	      |  bl
394 	 *	      +--/--> blue dac
395 	 * n = bpp, rl = red length, gl = green length, bl = blue length
396 	 */
397 	case FB_VISUAL_TRUECOLOR:
398 		pseudo_val = convert_bitfield(transp ^ 0xffff, &var->transp);
399 		pseudo_val |= convert_bitfield(red, &var->red);
400 		pseudo_val |= convert_bitfield(green, &var->green);
401 		pseudo_val |= convert_bitfield(blue, &var->blue);
402 		ret = 0;
403 		break;
404 	}
405 
406 	/*
407 	 * Now set our pseudo palette for the CFB16/24/32 drivers.
408 	 */
409 	if (regno < 16)
410 		((u32 *)cfb->fb.pseudo_palette)[regno] = pseudo_val;
411 
412 	return ret;
413 }
414 
415 struct par_info {
416 	/*
417 	 * Hardware
418 	 */
419 	u_char	clock_mult;
420 	u_char	clock_div;
421 	u_char	extseqmisc;
422 	u_char	co_pixfmt;
423 	u_char	crtc_ofl;
424 	u_char	crtc[19];
425 	u_int	width;
426 	u_int	pitch;
427 	u_int	fetch;
428 
429 	/*
430 	 * Other
431 	 */
432 	u_char	ramdac;
433 };
434 
435 static const u_char crtc_idx[] = {
436 	0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07,
437 	0x08, 0x09,
438 	0x10, 0x11, 0x12, 0x13, 0x14, 0x15, 0x16, 0x17, 0x18
439 };
440 
441 static void cyber2000fb_write_ramdac_ctrl(struct cfb_info *cfb)
442 {
443 	unsigned int i;
444 	unsigned int val = cfb->ramdac_ctrl | cfb->ramdac_powerdown;
445 
446 	cyber2000fb_writeb(0x56, 0x3ce, cfb);
447 	i = cyber2000fb_readb(0x3cf, cfb);
448 	cyber2000fb_writeb(i | 4, 0x3cf, cfb);
449 	cyber2000fb_writeb(val, 0x3c6, cfb);
450 	cyber2000fb_writeb(i, 0x3cf, cfb);
451 	/* prevent card lock-up observed on x86 with CyberPro 2000 */
452 	cyber2000fb_readb(0x3cf, cfb);
453 }
454 
455 static void cyber2000fb_set_timing(struct cfb_info *cfb, struct par_info *hw)
456 {
457 	u_int i;
458 
459 	/*
460 	 * Blank palette
461 	 */
462 	for (i = 0; i < NR_PALETTE; i++) {
463 		cyber2000fb_writeb(i, 0x3c8, cfb);
464 		cyber2000fb_writeb(0, 0x3c9, cfb);
465 		cyber2000fb_writeb(0, 0x3c9, cfb);
466 		cyber2000fb_writeb(0, 0x3c9, cfb);
467 	}
468 
469 	cyber2000fb_writeb(0xef, 0x3c2, cfb);
470 	cyber2000_crtcw(0x11, 0x0b, cfb);
471 	cyber2000_attrw(0x11, 0x00, cfb);
472 
473 	cyber2000_seqw(0x00, 0x01, cfb);
474 	cyber2000_seqw(0x01, 0x01, cfb);
475 	cyber2000_seqw(0x02, 0x0f, cfb);
476 	cyber2000_seqw(0x03, 0x00, cfb);
477 	cyber2000_seqw(0x04, 0x0e, cfb);
478 	cyber2000_seqw(0x00, 0x03, cfb);
479 
480 	for (i = 0; i < sizeof(crtc_idx); i++)
481 		cyber2000_crtcw(crtc_idx[i], hw->crtc[i], cfb);
482 
483 	for (i = 0x0a; i < 0x10; i++)
484 		cyber2000_crtcw(i, 0, cfb);
485 
486 	cyber2000_grphw(EXT_CRT_VRTOFL, hw->crtc_ofl, cfb);
487 	cyber2000_grphw(0x00, 0x00, cfb);
488 	cyber2000_grphw(0x01, 0x00, cfb);
489 	cyber2000_grphw(0x02, 0x00, cfb);
490 	cyber2000_grphw(0x03, 0x00, cfb);
491 	cyber2000_grphw(0x04, 0x00, cfb);
492 	cyber2000_grphw(0x05, 0x60, cfb);
493 	cyber2000_grphw(0x06, 0x05, cfb);
494 	cyber2000_grphw(0x07, 0x0f, cfb);
495 	cyber2000_grphw(0x08, 0xff, cfb);
496 
497 	/* Attribute controller registers */
498 	for (i = 0; i < 16; i++)
499 		cyber2000_attrw(i, i, cfb);
500 
501 	cyber2000_attrw(0x10, 0x01, cfb);
502 	cyber2000_attrw(0x11, 0x00, cfb);
503 	cyber2000_attrw(0x12, 0x0f, cfb);
504 	cyber2000_attrw(0x13, 0x00, cfb);
505 	cyber2000_attrw(0x14, 0x00, cfb);
506 
507 	/* PLL registers */
508 	spin_lock(&cfb->reg_b0_lock);
509 	cyber2000_grphw(EXT_DCLK_MULT, hw->clock_mult, cfb);
510 	cyber2000_grphw(EXT_DCLK_DIV, hw->clock_div, cfb);
511 	cyber2000_grphw(EXT_MCLK_MULT, cfb->mclk_mult, cfb);
512 	cyber2000_grphw(EXT_MCLK_DIV, cfb->mclk_div, cfb);
513 	cyber2000_grphw(0x90, 0x01, cfb);
514 	cyber2000_grphw(0xb9, 0x80, cfb);
515 	cyber2000_grphw(0xb9, 0x00, cfb);
516 	spin_unlock(&cfb->reg_b0_lock);
517 
518 	cfb->ramdac_ctrl = hw->ramdac;
519 	cyber2000fb_write_ramdac_ctrl(cfb);
520 
521 	cyber2000fb_writeb(0x20, 0x3c0, cfb);
522 	cyber2000fb_writeb(0xff, 0x3c6, cfb);
523 
524 	cyber2000_grphw(0x14, hw->fetch, cfb);
525 	cyber2000_grphw(0x15, ((hw->fetch >> 8) & 0x03) |
526 			      ((hw->pitch >> 4) & 0x30), cfb);
527 	cyber2000_grphw(EXT_SEQ_MISC, hw->extseqmisc, cfb);
528 
529 	/*
530 	 * Set up accelerator registers
531 	 */
532 	cyber2000fb_writew(hw->width, CO_REG_SRC_WIDTH, cfb);
533 	cyber2000fb_writew(hw->width, CO_REG_DEST_WIDTH, cfb);
534 	cyber2000fb_writeb(hw->co_pixfmt, CO_REG_PIXFMT, cfb);
535 }
536 
537 static inline int
538 cyber2000fb_update_start(struct cfb_info *cfb, struct fb_var_screeninfo *var)
539 {
540 	u_int base = var->yoffset * var->xres_virtual + var->xoffset;
541 
542 	base *= var->bits_per_pixel;
543 
544 	/*
545 	 * Convert to bytes and shift two extra bits because DAC
546 	 * can only start on 4 byte aligned data.
547 	 */
548 	base >>= 5;
549 
550 	if (base >= 1 << 20)
551 		return -EINVAL;
552 
553 	cyber2000_grphw(0x10, base >> 16 | 0x10, cfb);
554 	cyber2000_crtcw(0x0c, base >> 8, cfb);
555 	cyber2000_crtcw(0x0d, base, cfb);
556 
557 	return 0;
558 }
559 
560 static int
561 cyber2000fb_decode_crtc(struct par_info *hw, struct cfb_info *cfb,
562 			struct fb_var_screeninfo *var)
563 {
564 	u_int Htotal, Hblankend, Hsyncend;
565 	u_int Vtotal, Vdispend, Vblankstart, Vblankend, Vsyncstart, Vsyncend;
566 #define ENCODE_BIT(v, b1, m, b2) ((((v) >> (b1)) & (m)) << (b2))
567 
568 	hw->crtc[13] = hw->pitch;
569 	hw->crtc[17] = 0xe3;
570 	hw->crtc[14] = 0;
571 	hw->crtc[8]  = 0;
572 
573 	Htotal     = var->xres + var->right_margin +
574 		     var->hsync_len + var->left_margin;
575 
576 	if (Htotal > 2080)
577 		return -EINVAL;
578 
579 	hw->crtc[0] = (Htotal >> 3) - 5;
580 	hw->crtc[1] = (var->xres >> 3) - 1;
581 	hw->crtc[2] = var->xres >> 3;
582 	hw->crtc[4] = (var->xres + var->right_margin) >> 3;
583 
584 	Hblankend   = (Htotal - 4 * 8) >> 3;
585 
586 	hw->crtc[3] = ENCODE_BIT(Hblankend,  0, 0x1f,  0) |
587 		      ENCODE_BIT(1,          0, 0x01,  7);
588 
589 	Hsyncend    = (var->xres + var->right_margin + var->hsync_len) >> 3;
590 
591 	hw->crtc[5] = ENCODE_BIT(Hsyncend,   0, 0x1f,  0) |
592 		      ENCODE_BIT(Hblankend,  5, 0x01,  7);
593 
594 	Vdispend    = var->yres - 1;
595 	Vsyncstart  = var->yres + var->lower_margin;
596 	Vsyncend    = var->yres + var->lower_margin + var->vsync_len;
597 	Vtotal      = var->yres + var->lower_margin + var->vsync_len +
598 		      var->upper_margin - 2;
599 
600 	if (Vtotal > 2047)
601 		return -EINVAL;
602 
603 	Vblankstart = var->yres + 6;
604 	Vblankend   = Vtotal - 10;
605 
606 	hw->crtc[6]  = Vtotal;
607 	hw->crtc[7]  = ENCODE_BIT(Vtotal,     8, 0x01,  0) |
608 			ENCODE_BIT(Vdispend,   8, 0x01,  1) |
609 			ENCODE_BIT(Vsyncstart, 8, 0x01,  2) |
610 			ENCODE_BIT(Vblankstart, 8, 0x01,  3) |
611 			ENCODE_BIT(1,          0, 0x01,  4) |
612 			ENCODE_BIT(Vtotal,     9, 0x01,  5) |
613 			ENCODE_BIT(Vdispend,   9, 0x01,  6) |
614 			ENCODE_BIT(Vsyncstart, 9, 0x01,  7);
615 	hw->crtc[9]  = ENCODE_BIT(0,          0, 0x1f,  0) |
616 			ENCODE_BIT(Vblankstart, 9, 0x01,  5) |
617 			ENCODE_BIT(1,          0, 0x01,  6);
618 	hw->crtc[10] = Vsyncstart;
619 	hw->crtc[11] = ENCODE_BIT(Vsyncend,   0, 0x0f,  0) |
620 		       ENCODE_BIT(1,          0, 0x01,  7);
621 	hw->crtc[12] = Vdispend;
622 	hw->crtc[15] = Vblankstart;
623 	hw->crtc[16] = Vblankend;
624 	hw->crtc[18] = 0xff;
625 
626 	/*
627 	 * overflow - graphics reg 0x11
628 	 * 0=VTOTAL:10 1=VDEND:10 2=VRSTART:10 3=VBSTART:10
629 	 * 4=LINECOMP:10 5-IVIDEO 6=FIXCNT
630 	 */
631 	hw->crtc_ofl =
632 		ENCODE_BIT(Vtotal, 10, 0x01, 0) |
633 		ENCODE_BIT(Vdispend, 10, 0x01, 1) |
634 		ENCODE_BIT(Vsyncstart, 10, 0x01, 2) |
635 		ENCODE_BIT(Vblankstart, 10, 0x01, 3) |
636 		EXT_CRT_VRTOFL_LINECOMP10;
637 
638 	/* woody: set the interlaced bit... */
639 	/* FIXME: what about doublescan? */
640 	if ((var->vmode & FB_VMODE_MASK) == FB_VMODE_INTERLACED)
641 		hw->crtc_ofl |= EXT_CRT_VRTOFL_INTERLACE;
642 
643 	return 0;
644 }
645 
646 /*
647  * The following was discovered by a good monitor, bit twiddling, theorising
648  * and but mostly luck.  Strangely, it looks like everyone elses' PLL!
649  *
650  * Clock registers:
651  *   fclock = fpll / div2
652  *   fpll   = fref * mult / div1
653  * where:
654  *   fref = 14.318MHz (69842ps)
655  *   mult = reg0xb0.7:0
656  *   div1 = (reg0xb1.5:0 + 1)
657  *   div2 =  2^(reg0xb1.7:6)
658  *   fpll should be between 115 and 260 MHz
659  *  (8696ps and 3846ps)
660  */
661 static int
662 cyber2000fb_decode_clock(struct par_info *hw, struct cfb_info *cfb,
663 			 struct fb_var_screeninfo *var)
664 {
665 	u_long pll_ps = var->pixclock;
666 	const u_long ref_ps = cfb->ref_ps;
667 	u_int div2, t_div1, best_div1, best_mult;
668 	int best_diff;
669 	int vco;
670 
671 	/*
672 	 * Step 1:
673 	 *   find div2 such that 115MHz < fpll < 260MHz
674 	 *   and 0 <= div2 < 4
675 	 */
676 	for (div2 = 0; div2 < 4; div2++) {
677 		u_long new_pll;
678 
679 		new_pll = pll_ps / cfb->divisors[div2];
680 		if (8696 > new_pll && new_pll > 3846) {
681 			pll_ps = new_pll;
682 			break;
683 		}
684 	}
685 
686 	if (div2 == 4)
687 		return -EINVAL;
688 
689 	/*
690 	 * Step 2:
691 	 *  Given pll_ps and ref_ps, find:
692 	 *    pll_ps * 0.995 < pll_ps_calc < pll_ps * 1.005
693 	 *  where { 1 < best_div1 < 32, 1 < best_mult < 256 }
694 	 *    pll_ps_calc = best_div1 / (ref_ps * best_mult)
695 	 */
696 	best_diff = 0x7fffffff;
697 	best_mult = 2;
698 	best_div1 = 32;
699 	for (t_div1 = 2; t_div1 < 32; t_div1 += 1) {
700 		u_int rr, t_mult, t_pll_ps;
701 		int diff;
702 
703 		/*
704 		 * Find the multiplier for this divisor
705 		 */
706 		rr = ref_ps * t_div1;
707 		t_mult = (rr + pll_ps / 2) / pll_ps;
708 
709 		/*
710 		 * Is the multiplier within the correct range?
711 		 */
712 		if (t_mult > 256 || t_mult < 2)
713 			continue;
714 
715 		/*
716 		 * Calculate the actual clock period from this multiplier
717 		 * and divisor, and estimate the error.
718 		 */
719 		t_pll_ps = (rr + t_mult / 2) / t_mult;
720 		diff = pll_ps - t_pll_ps;
721 		if (diff < 0)
722 			diff = -diff;
723 
724 		if (diff < best_diff) {
725 			best_diff = diff;
726 			best_mult = t_mult;
727 			best_div1 = t_div1;
728 		}
729 
730 		/*
731 		 * If we hit an exact value, there is no point in continuing.
732 		 */
733 		if (diff == 0)
734 			break;
735 	}
736 
737 	/*
738 	 * Step 3:
739 	 *  combine values
740 	 */
741 	hw->clock_mult = best_mult - 1;
742 	hw->clock_div  = div2 << 6 | (best_div1 - 1);
743 
744 	vco = ref_ps * best_div1 / best_mult;
745 	if ((ref_ps == 40690) && (vco < 5556))
746 		/* Set VFSEL when VCO > 180MHz (5.556 ps). */
747 		hw->clock_div |= EXT_DCLK_DIV_VFSEL;
748 
749 	return 0;
750 }
751 
752 /*
753  *    Set the User Defined Part of the Display
754  */
755 static int
756 cyber2000fb_check_var(struct fb_var_screeninfo *var, struct fb_info *info)
757 {
758 	struct cfb_info *cfb = container_of(info, struct cfb_info, fb);
759 	struct par_info hw;
760 	unsigned int mem;
761 	int err;
762 
763 	var->transp.msb_right	= 0;
764 	var->red.msb_right	= 0;
765 	var->green.msb_right	= 0;
766 	var->blue.msb_right	= 0;
767 	var->transp.offset	= 0;
768 	var->transp.length	= 0;
769 
770 	switch (var->bits_per_pixel) {
771 	case 8:	/* PSEUDOCOLOUR, 256 */
772 		var->red.offset		= 0;
773 		var->red.length		= 8;
774 		var->green.offset	= 0;
775 		var->green.length	= 8;
776 		var->blue.offset	= 0;
777 		var->blue.length	= 8;
778 		break;
779 
780 	case 16:/* DIRECTCOLOUR, 64k or 32k */
781 		switch (var->green.length) {
782 		case 6: /* RGB565, 64k */
783 			var->red.offset		= 11;
784 			var->red.length		= 5;
785 			var->green.offset	= 5;
786 			var->green.length	= 6;
787 			var->blue.offset	= 0;
788 			var->blue.length	= 5;
789 			break;
790 
791 		default:
792 		case 5: /* RGB555, 32k */
793 			var->red.offset		= 10;
794 			var->red.length		= 5;
795 			var->green.offset	= 5;
796 			var->green.length	= 5;
797 			var->blue.offset	= 0;
798 			var->blue.length	= 5;
799 			break;
800 
801 		case 4: /* RGB444, 4k + transparency? */
802 			var->transp.offset	= 12;
803 			var->transp.length	= 4;
804 			var->red.offset		= 8;
805 			var->red.length		= 4;
806 			var->green.offset	= 4;
807 			var->green.length	= 4;
808 			var->blue.offset	= 0;
809 			var->blue.length	= 4;
810 			break;
811 		}
812 		break;
813 
814 	case 24:/* TRUECOLOUR, 16m */
815 		var->red.offset		= 16;
816 		var->red.length		= 8;
817 		var->green.offset	= 8;
818 		var->green.length	= 8;
819 		var->blue.offset	= 0;
820 		var->blue.length	= 8;
821 		break;
822 
823 	case 32:/* TRUECOLOUR, 16m */
824 		var->transp.offset	= 24;
825 		var->transp.length	= 8;
826 		var->red.offset		= 16;
827 		var->red.length		= 8;
828 		var->green.offset	= 8;
829 		var->green.length	= 8;
830 		var->blue.offset	= 0;
831 		var->blue.length	= 8;
832 		break;
833 
834 	default:
835 		return -EINVAL;
836 	}
837 
838 	mem = var->xres_virtual * var->yres_virtual * (var->bits_per_pixel / 8);
839 	if (mem > cfb->fb.fix.smem_len)
840 		var->yres_virtual = cfb->fb.fix.smem_len * 8 /
841 				    (var->bits_per_pixel * var->xres_virtual);
842 
843 	if (var->yres > var->yres_virtual)
844 		var->yres = var->yres_virtual;
845 	if (var->xres > var->xres_virtual)
846 		var->xres = var->xres_virtual;
847 
848 	err = cyber2000fb_decode_clock(&hw, cfb, var);
849 	if (err)
850 		return err;
851 
852 	err = cyber2000fb_decode_crtc(&hw, cfb, var);
853 	if (err)
854 		return err;
855 
856 	return 0;
857 }
858 
859 static int cyber2000fb_set_par(struct fb_info *info)
860 {
861 	struct cfb_info *cfb = container_of(info, struct cfb_info, fb);
862 	struct fb_var_screeninfo *var = &cfb->fb.var;
863 	struct par_info hw;
864 	unsigned int mem;
865 
866 	hw.width = var->xres_virtual;
867 	hw.ramdac = RAMDAC_VREFEN | RAMDAC_DAC8BIT;
868 
869 	switch (var->bits_per_pixel) {
870 	case 8:
871 		hw.co_pixfmt		= CO_PIXFMT_8BPP;
872 		hw.pitch		= hw.width >> 3;
873 		hw.extseqmisc		= EXT_SEQ_MISC_8;
874 		break;
875 
876 	case 16:
877 		hw.co_pixfmt		= CO_PIXFMT_16BPP;
878 		hw.pitch		= hw.width >> 2;
879 
880 		switch (var->green.length) {
881 		case 6: /* RGB565, 64k */
882 			hw.extseqmisc	= EXT_SEQ_MISC_16_RGB565;
883 			break;
884 		case 5: /* RGB555, 32k */
885 			hw.extseqmisc	= EXT_SEQ_MISC_16_RGB555;
886 			break;
887 		case 4: /* RGB444, 4k + transparency? */
888 			hw.extseqmisc	= EXT_SEQ_MISC_16_RGB444;
889 			break;
890 		default:
891 			BUG();
892 		}
893 		break;
894 
895 	case 24:/* TRUECOLOUR, 16m */
896 		hw.co_pixfmt		= CO_PIXFMT_24BPP;
897 		hw.width		*= 3;
898 		hw.pitch		= hw.width >> 3;
899 		hw.ramdac		|= (RAMDAC_BYPASS | RAMDAC_RAMPWRDN);
900 		hw.extseqmisc		= EXT_SEQ_MISC_24_RGB888;
901 		break;
902 
903 	case 32:/* TRUECOLOUR, 16m */
904 		hw.co_pixfmt		= CO_PIXFMT_32BPP;
905 		hw.pitch		= hw.width >> 1;
906 		hw.ramdac		|= (RAMDAC_BYPASS | RAMDAC_RAMPWRDN);
907 		hw.extseqmisc		= EXT_SEQ_MISC_32;
908 		break;
909 
910 	default:
911 		BUG();
912 	}
913 
914 	/*
915 	 * Sigh, this is absolutely disgusting, but caused by
916 	 * the way the fbcon developers want to separate out
917 	 * the "checking" and the "setting" of the video mode.
918 	 *
919 	 * If the mode is not suitable for the hardware here,
920 	 * we can't prevent it being set by returning an error.
921 	 *
922 	 * In theory, since NetWinders contain just one VGA card,
923 	 * we should never end up hitting this problem.
924 	 */
925 	BUG_ON(cyber2000fb_decode_clock(&hw, cfb, var) != 0);
926 	BUG_ON(cyber2000fb_decode_crtc(&hw, cfb, var) != 0);
927 
928 	hw.width -= 1;
929 	hw.fetch = hw.pitch;
930 	if (!(cfb->mem_ctl2 & MEM_CTL2_64BIT))
931 		hw.fetch <<= 1;
932 	hw.fetch += 1;
933 
934 	cfb->fb.fix.line_length = var->xres_virtual * var->bits_per_pixel / 8;
935 
936 	/*
937 	 * Same here - if the size of the video mode exceeds the
938 	 * available RAM, we can't prevent this mode being set.
939 	 *
940 	 * In theory, since NetWinders contain just one VGA card,
941 	 * we should never end up hitting this problem.
942 	 */
943 	mem = cfb->fb.fix.line_length * var->yres_virtual;
944 	BUG_ON(mem > cfb->fb.fix.smem_len);
945 
946 	/*
947 	 * 8bpp displays are always pseudo colour.  16bpp and above
948 	 * are direct colour or true colour, depending on whether
949 	 * the RAMDAC palettes are bypassed.  (Direct colour has
950 	 * palettes, true colour does not.)
951 	 */
952 	if (var->bits_per_pixel == 8)
953 		cfb->fb.fix.visual = FB_VISUAL_PSEUDOCOLOR;
954 	else if (hw.ramdac & RAMDAC_BYPASS)
955 		cfb->fb.fix.visual = FB_VISUAL_TRUECOLOR;
956 	else
957 		cfb->fb.fix.visual = FB_VISUAL_DIRECTCOLOR;
958 
959 	cyber2000fb_set_timing(cfb, &hw);
960 	cyber2000fb_update_start(cfb, var);
961 
962 	return 0;
963 }
964 
965 /*
966  *    Pan or Wrap the Display
967  */
968 static int
969 cyber2000fb_pan_display(struct fb_var_screeninfo *var, struct fb_info *info)
970 {
971 	struct cfb_info *cfb = container_of(info, struct cfb_info, fb);
972 
973 	if (cyber2000fb_update_start(cfb, var))
974 		return -EINVAL;
975 
976 	cfb->fb.var.xoffset = var->xoffset;
977 	cfb->fb.var.yoffset = var->yoffset;
978 
979 	if (var->vmode & FB_VMODE_YWRAP) {
980 		cfb->fb.var.vmode |= FB_VMODE_YWRAP;
981 	} else {
982 		cfb->fb.var.vmode &= ~FB_VMODE_YWRAP;
983 	}
984 
985 	return 0;
986 }
987 
988 /*
989  *    (Un)Blank the display.
990  *
991  *  Blank the screen if blank_mode != 0, else unblank. If
992  *  blank == NULL then the caller blanks by setting the CLUT
993  *  (Color Look Up Table) to all black. Return 0 if blanking
994  *  succeeded, != 0 if un-/blanking failed due to e.g. a
995  *  video mode which doesn't support it. Implements VESA
996  *  suspend and powerdown modes on hardware that supports
997  *  disabling hsync/vsync:
998  *    blank_mode == 2: suspend vsync
999  *    blank_mode == 3: suspend hsync
1000  *    blank_mode == 4: powerdown
1001  *
1002  *  wms...Enable VESA DMPS compatible powerdown mode
1003  *  run "setterm -powersave powerdown" to take advantage
1004  */
1005 static int cyber2000fb_blank(int blank, struct fb_info *info)
1006 {
1007 	struct cfb_info *cfb = container_of(info, struct cfb_info, fb);
1008 	unsigned int sync = 0;
1009 	int i;
1010 
1011 	switch (blank) {
1012 	case FB_BLANK_POWERDOWN:	/* powerdown - both sync lines down */
1013 		sync = EXT_SYNC_CTL_VS_0 | EXT_SYNC_CTL_HS_0;
1014 		break;
1015 	case FB_BLANK_HSYNC_SUSPEND:	/* hsync off */
1016 		sync = EXT_SYNC_CTL_VS_NORMAL | EXT_SYNC_CTL_HS_0;
1017 		break;
1018 	case FB_BLANK_VSYNC_SUSPEND:	/* vsync off */
1019 		sync = EXT_SYNC_CTL_VS_0 | EXT_SYNC_CTL_HS_NORMAL;
1020 		break;
1021 	case FB_BLANK_NORMAL:		/* soft blank */
1022 	default:			/* unblank */
1023 		break;
1024 	}
1025 
1026 	cyber2000_grphw(EXT_SYNC_CTL, sync, cfb);
1027 
1028 	if (blank <= 1) {
1029 		/* turn on ramdacs */
1030 		cfb->ramdac_powerdown &= ~(RAMDAC_DACPWRDN | RAMDAC_BYPASS |
1031 					   RAMDAC_RAMPWRDN);
1032 		cyber2000fb_write_ramdac_ctrl(cfb);
1033 	}
1034 
1035 	/*
1036 	 * Soft blank/unblank the display.
1037 	 */
1038 	if (blank) {	/* soft blank */
1039 		for (i = 0; i < NR_PALETTE; i++) {
1040 			cyber2000fb_writeb(i, 0x3c8, cfb);
1041 			cyber2000fb_writeb(0, 0x3c9, cfb);
1042 			cyber2000fb_writeb(0, 0x3c9, cfb);
1043 			cyber2000fb_writeb(0, 0x3c9, cfb);
1044 		}
1045 	} else {	/* unblank */
1046 		for (i = 0; i < NR_PALETTE; i++) {
1047 			cyber2000fb_writeb(i, 0x3c8, cfb);
1048 			cyber2000fb_writeb(cfb->palette[i].red, 0x3c9, cfb);
1049 			cyber2000fb_writeb(cfb->palette[i].green, 0x3c9, cfb);
1050 			cyber2000fb_writeb(cfb->palette[i].blue, 0x3c9, cfb);
1051 		}
1052 	}
1053 
1054 	if (blank >= 2) {
1055 		/* turn off ramdacs */
1056 		cfb->ramdac_powerdown |= RAMDAC_DACPWRDN | RAMDAC_BYPASS |
1057 					 RAMDAC_RAMPWRDN;
1058 		cyber2000fb_write_ramdac_ctrl(cfb);
1059 	}
1060 
1061 	return 0;
1062 }
1063 
1064 static struct fb_ops cyber2000fb_ops = {
1065 	.owner		= THIS_MODULE,
1066 	.fb_check_var	= cyber2000fb_check_var,
1067 	.fb_set_par	= cyber2000fb_set_par,
1068 	.fb_setcolreg	= cyber2000fb_setcolreg,
1069 	.fb_blank	= cyber2000fb_blank,
1070 	.fb_pan_display	= cyber2000fb_pan_display,
1071 	.fb_fillrect	= cyber2000fb_fillrect,
1072 	.fb_copyarea	= cyber2000fb_copyarea,
1073 	.fb_imageblit	= cyber2000fb_imageblit,
1074 	.fb_sync	= cyber2000fb_sync,
1075 };
1076 
1077 /*
1078  * This is the only "static" reference to the internal data structures
1079  * of this driver.  It is here solely at the moment to support the other
1080  * CyberPro modules external to this driver.
1081  */
1082 static struct cfb_info *int_cfb_info;
1083 
1084 /*
1085  * Enable access to the extended registers
1086  */
1087 void cyber2000fb_enable_extregs(struct cfb_info *cfb)
1088 {
1089 	cfb->func_use_count += 1;
1090 
1091 	if (cfb->func_use_count == 1) {
1092 		int old;
1093 
1094 		old = cyber2000_grphr(EXT_FUNC_CTL, cfb);
1095 		old |= EXT_FUNC_CTL_EXTREGENBL;
1096 		cyber2000_grphw(EXT_FUNC_CTL, old, cfb);
1097 	}
1098 }
1099 EXPORT_SYMBOL(cyber2000fb_enable_extregs);
1100 
1101 /*
1102  * Disable access to the extended registers
1103  */
1104 void cyber2000fb_disable_extregs(struct cfb_info *cfb)
1105 {
1106 	if (cfb->func_use_count == 1) {
1107 		int old;
1108 
1109 		old = cyber2000_grphr(EXT_FUNC_CTL, cfb);
1110 		old &= ~EXT_FUNC_CTL_EXTREGENBL;
1111 		cyber2000_grphw(EXT_FUNC_CTL, old, cfb);
1112 	}
1113 
1114 	if (cfb->func_use_count == 0)
1115 		printk(KERN_ERR "disable_extregs: count = 0\n");
1116 	else
1117 		cfb->func_use_count -= 1;
1118 }
1119 EXPORT_SYMBOL(cyber2000fb_disable_extregs);
1120 
1121 /*
1122  * Attach a capture/tv driver to the core CyberX0X0 driver.
1123  */
1124 int cyber2000fb_attach(struct cyberpro_info *info, int idx)
1125 {
1126 	if (int_cfb_info != NULL) {
1127 		info->dev	      = int_cfb_info->fb.device;
1128 #ifdef CONFIG_FB_CYBER2000_I2C
1129 		info->i2c	      = &int_cfb_info->i2c_adapter;
1130 #else
1131 		info->i2c	      = NULL;
1132 #endif
1133 		info->regs	      = int_cfb_info->regs;
1134 		info->irq             = int_cfb_info->irq;
1135 		info->fb	      = int_cfb_info->fb.screen_base;
1136 		info->fb_size	      = int_cfb_info->fb.fix.smem_len;
1137 		info->info	      = int_cfb_info;
1138 
1139 		strlcpy(info->dev_name, int_cfb_info->fb.fix.id,
1140 			sizeof(info->dev_name));
1141 	}
1142 
1143 	return int_cfb_info != NULL;
1144 }
1145 EXPORT_SYMBOL(cyber2000fb_attach);
1146 
1147 /*
1148  * Detach a capture/tv driver from the core CyberX0X0 driver.
1149  */
1150 void cyber2000fb_detach(int idx)
1151 {
1152 }
1153 EXPORT_SYMBOL(cyber2000fb_detach);
1154 
1155 #ifdef CONFIG_FB_CYBER2000_DDC
1156 
1157 #define DDC_REG		0xb0
1158 #define DDC_SCL_OUT	(1 << 0)
1159 #define DDC_SDA_OUT	(1 << 4)
1160 #define DDC_SCL_IN	(1 << 2)
1161 #define DDC_SDA_IN	(1 << 6)
1162 
1163 static void cyber2000fb_enable_ddc(struct cfb_info *cfb)
1164 {
1165 	spin_lock(&cfb->reg_b0_lock);
1166 	cyber2000fb_writew(0x1bf, 0x3ce, cfb);
1167 }
1168 
1169 static void cyber2000fb_disable_ddc(struct cfb_info *cfb)
1170 {
1171 	cyber2000fb_writew(0x0bf, 0x3ce, cfb);
1172 	spin_unlock(&cfb->reg_b0_lock);
1173 }
1174 
1175 
1176 static void cyber2000fb_ddc_setscl(void *data, int val)
1177 {
1178 	struct cfb_info *cfb = data;
1179 	unsigned char reg;
1180 
1181 	cyber2000fb_enable_ddc(cfb);
1182 	reg = cyber2000_grphr(DDC_REG, cfb);
1183 	if (!val)	/* bit is inverted */
1184 		reg |= DDC_SCL_OUT;
1185 	else
1186 		reg &= ~DDC_SCL_OUT;
1187 	cyber2000_grphw(DDC_REG, reg, cfb);
1188 	cyber2000fb_disable_ddc(cfb);
1189 }
1190 
1191 static void cyber2000fb_ddc_setsda(void *data, int val)
1192 {
1193 	struct cfb_info *cfb = data;
1194 	unsigned char reg;
1195 
1196 	cyber2000fb_enable_ddc(cfb);
1197 	reg = cyber2000_grphr(DDC_REG, cfb);
1198 	if (!val)	/* bit is inverted */
1199 		reg |= DDC_SDA_OUT;
1200 	else
1201 		reg &= ~DDC_SDA_OUT;
1202 	cyber2000_grphw(DDC_REG, reg, cfb);
1203 	cyber2000fb_disable_ddc(cfb);
1204 }
1205 
1206 static int cyber2000fb_ddc_getscl(void *data)
1207 {
1208 	struct cfb_info *cfb = data;
1209 	int retval;
1210 
1211 	cyber2000fb_enable_ddc(cfb);
1212 	retval = !!(cyber2000_grphr(DDC_REG, cfb) & DDC_SCL_IN);
1213 	cyber2000fb_disable_ddc(cfb);
1214 
1215 	return retval;
1216 }
1217 
1218 static int cyber2000fb_ddc_getsda(void *data)
1219 {
1220 	struct cfb_info *cfb = data;
1221 	int retval;
1222 
1223 	cyber2000fb_enable_ddc(cfb);
1224 	retval = !!(cyber2000_grphr(DDC_REG, cfb) & DDC_SDA_IN);
1225 	cyber2000fb_disable_ddc(cfb);
1226 
1227 	return retval;
1228 }
1229 
1230 static int cyber2000fb_setup_ddc_bus(struct cfb_info *cfb)
1231 {
1232 	strlcpy(cfb->ddc_adapter.name, cfb->fb.fix.id,
1233 		sizeof(cfb->ddc_adapter.name));
1234 	cfb->ddc_adapter.owner		= THIS_MODULE;
1235 	cfb->ddc_adapter.class		= I2C_CLASS_DDC;
1236 	cfb->ddc_adapter.algo_data	= &cfb->ddc_algo;
1237 	cfb->ddc_adapter.dev.parent	= cfb->fb.device;
1238 	cfb->ddc_algo.setsda		= cyber2000fb_ddc_setsda;
1239 	cfb->ddc_algo.setscl		= cyber2000fb_ddc_setscl;
1240 	cfb->ddc_algo.getsda		= cyber2000fb_ddc_getsda;
1241 	cfb->ddc_algo.getscl		= cyber2000fb_ddc_getscl;
1242 	cfb->ddc_algo.udelay		= 10;
1243 	cfb->ddc_algo.timeout		= 20;
1244 	cfb->ddc_algo.data		= cfb;
1245 
1246 	i2c_set_adapdata(&cfb->ddc_adapter, cfb);
1247 
1248 	return i2c_bit_add_bus(&cfb->ddc_adapter);
1249 }
1250 #endif /* CONFIG_FB_CYBER2000_DDC */
1251 
1252 #ifdef CONFIG_FB_CYBER2000_I2C
1253 static void cyber2000fb_i2c_setsda(void *data, int state)
1254 {
1255 	struct cfb_info *cfb = data;
1256 	unsigned int latch2;
1257 
1258 	spin_lock(&cfb->reg_b0_lock);
1259 	latch2 = cyber2000_grphr(EXT_LATCH2, cfb);
1260 	latch2 &= EXT_LATCH2_I2C_CLKEN;
1261 	if (state)
1262 		latch2 |= EXT_LATCH2_I2C_DATEN;
1263 	cyber2000_grphw(EXT_LATCH2, latch2, cfb);
1264 	spin_unlock(&cfb->reg_b0_lock);
1265 }
1266 
1267 static void cyber2000fb_i2c_setscl(void *data, int state)
1268 {
1269 	struct cfb_info *cfb = data;
1270 	unsigned int latch2;
1271 
1272 	spin_lock(&cfb->reg_b0_lock);
1273 	latch2 = cyber2000_grphr(EXT_LATCH2, cfb);
1274 	latch2 &= EXT_LATCH2_I2C_DATEN;
1275 	if (state)
1276 		latch2 |= EXT_LATCH2_I2C_CLKEN;
1277 	cyber2000_grphw(EXT_LATCH2, latch2, cfb);
1278 	spin_unlock(&cfb->reg_b0_lock);
1279 }
1280 
1281 static int cyber2000fb_i2c_getsda(void *data)
1282 {
1283 	struct cfb_info *cfb = data;
1284 	int ret;
1285 
1286 	spin_lock(&cfb->reg_b0_lock);
1287 	ret = !!(cyber2000_grphr(EXT_LATCH2, cfb) & EXT_LATCH2_I2C_DAT);
1288 	spin_unlock(&cfb->reg_b0_lock);
1289 
1290 	return ret;
1291 }
1292 
1293 static int cyber2000fb_i2c_getscl(void *data)
1294 {
1295 	struct cfb_info *cfb = data;
1296 	int ret;
1297 
1298 	spin_lock(&cfb->reg_b0_lock);
1299 	ret = !!(cyber2000_grphr(EXT_LATCH2, cfb) & EXT_LATCH2_I2C_CLK);
1300 	spin_unlock(&cfb->reg_b0_lock);
1301 
1302 	return ret;
1303 }
1304 
1305 static int cyber2000fb_i2c_register(struct cfb_info *cfb)
1306 {
1307 	strlcpy(cfb->i2c_adapter.name, cfb->fb.fix.id,
1308 		sizeof(cfb->i2c_adapter.name));
1309 	cfb->i2c_adapter.owner = THIS_MODULE;
1310 	cfb->i2c_adapter.algo_data = &cfb->i2c_algo;
1311 	cfb->i2c_adapter.dev.parent = cfb->fb.device;
1312 	cfb->i2c_algo.setsda = cyber2000fb_i2c_setsda;
1313 	cfb->i2c_algo.setscl = cyber2000fb_i2c_setscl;
1314 	cfb->i2c_algo.getsda = cyber2000fb_i2c_getsda;
1315 	cfb->i2c_algo.getscl = cyber2000fb_i2c_getscl;
1316 	cfb->i2c_algo.udelay = 5;
1317 	cfb->i2c_algo.timeout = msecs_to_jiffies(100);
1318 	cfb->i2c_algo.data = cfb;
1319 
1320 	return i2c_bit_add_bus(&cfb->i2c_adapter);
1321 }
1322 
1323 static void cyber2000fb_i2c_unregister(struct cfb_info *cfb)
1324 {
1325 	i2c_del_adapter(&cfb->i2c_adapter);
1326 }
1327 #else
1328 #define cyber2000fb_i2c_register(cfb)	(0)
1329 #define cyber2000fb_i2c_unregister(cfb)	do { } while (0)
1330 #endif
1331 
1332 /*
1333  * These parameters give
1334  * 640x480, hsync 31.5kHz, vsync 60Hz
1335  */
1336 static const struct fb_videomode cyber2000fb_default_mode = {
1337 	.refresh	= 60,
1338 	.xres		= 640,
1339 	.yres		= 480,
1340 	.pixclock	= 39722,
1341 	.left_margin	= 56,
1342 	.right_margin	= 16,
1343 	.upper_margin	= 34,
1344 	.lower_margin	= 9,
1345 	.hsync_len	= 88,
1346 	.vsync_len	= 2,
1347 	.sync		= FB_SYNC_COMP_HIGH_ACT | FB_SYNC_VERT_HIGH_ACT,
1348 	.vmode		= FB_VMODE_NONINTERLACED
1349 };
1350 
1351 static char igs_regs[] = {
1352 	EXT_CRT_IRQ,		0,
1353 	EXT_CRT_TEST,		0,
1354 	EXT_SYNC_CTL,		0,
1355 	EXT_SEG_WRITE_PTR,	0,
1356 	EXT_SEG_READ_PTR,	0,
1357 	EXT_BIU_MISC,		EXT_BIU_MISC_LIN_ENABLE |
1358 				EXT_BIU_MISC_COP_ENABLE |
1359 				EXT_BIU_MISC_COP_BFC,
1360 	EXT_FUNC_CTL,		0,
1361 	CURS_H_START,		0,
1362 	CURS_H_START + 1,	0,
1363 	CURS_H_PRESET,		0,
1364 	CURS_V_START,		0,
1365 	CURS_V_START + 1,	0,
1366 	CURS_V_PRESET,		0,
1367 	CURS_CTL,		0,
1368 	EXT_ATTRIB_CTL,		EXT_ATTRIB_CTL_EXT,
1369 	EXT_OVERSCAN_RED,	0,
1370 	EXT_OVERSCAN_GREEN,	0,
1371 	EXT_OVERSCAN_BLUE,	0,
1372 
1373 	/* some of these are questionable when we have a BIOS */
1374 	EXT_MEM_CTL0,		EXT_MEM_CTL0_7CLK |
1375 				EXT_MEM_CTL0_RAS_1 |
1376 				EXT_MEM_CTL0_MULTCAS,
1377 	EXT_HIDDEN_CTL1,	0x30,
1378 	EXT_FIFO_CTL,		0x0b,
1379 	EXT_FIFO_CTL + 1,	0x17,
1380 	0x76,			0x00,
1381 	EXT_HIDDEN_CTL4,	0xc8
1382 };
1383 
1384 /*
1385  * Initialise the CyberPro hardware.  On the CyberPro5XXXX,
1386  * ensure that we're using the correct PLL (5XXX's may be
1387  * programmed to use an additional set of PLLs.)
1388  */
1389 static void cyberpro_init_hw(struct cfb_info *cfb)
1390 {
1391 	int i;
1392 
1393 	for (i = 0; i < sizeof(igs_regs); i += 2)
1394 		cyber2000_grphw(igs_regs[i], igs_regs[i + 1], cfb);
1395 
1396 	if (cfb->id == ID_CYBERPRO_5000) {
1397 		unsigned char val;
1398 		cyber2000fb_writeb(0xba, 0x3ce, cfb);
1399 		val = cyber2000fb_readb(0x3cf, cfb) & 0x80;
1400 		cyber2000fb_writeb(val, 0x3cf, cfb);
1401 	}
1402 }
1403 
1404 static struct cfb_info *cyberpro_alloc_fb_info(unsigned int id, char *name)
1405 {
1406 	struct cfb_info *cfb;
1407 
1408 	cfb = kzalloc(sizeof(struct cfb_info), GFP_KERNEL);
1409 	if (!cfb)
1410 		return NULL;
1411 
1412 
1413 	cfb->id			= id;
1414 
1415 	if (id == ID_CYBERPRO_5000)
1416 		cfb->ref_ps	= 40690; /* 24.576 MHz */
1417 	else
1418 		cfb->ref_ps	= 69842; /* 14.31818 MHz (69841?) */
1419 
1420 	cfb->divisors[0]	= 1;
1421 	cfb->divisors[1]	= 2;
1422 	cfb->divisors[2]	= 4;
1423 
1424 	if (id == ID_CYBERPRO_2000)
1425 		cfb->divisors[3] = 8;
1426 	else
1427 		cfb->divisors[3] = 6;
1428 
1429 	strcpy(cfb->fb.fix.id, name);
1430 
1431 	cfb->fb.fix.type	= FB_TYPE_PACKED_PIXELS;
1432 	cfb->fb.fix.type_aux	= 0;
1433 	cfb->fb.fix.xpanstep	= 0;
1434 	cfb->fb.fix.ypanstep	= 1;
1435 	cfb->fb.fix.ywrapstep	= 0;
1436 
1437 	switch (id) {
1438 	case ID_IGA_1682:
1439 		cfb->fb.fix.accel = 0;
1440 		break;
1441 
1442 	case ID_CYBERPRO_2000:
1443 		cfb->fb.fix.accel = FB_ACCEL_IGS_CYBER2000;
1444 		break;
1445 
1446 	case ID_CYBERPRO_2010:
1447 		cfb->fb.fix.accel = FB_ACCEL_IGS_CYBER2010;
1448 		break;
1449 
1450 	case ID_CYBERPRO_5000:
1451 		cfb->fb.fix.accel = FB_ACCEL_IGS_CYBER5000;
1452 		break;
1453 	}
1454 
1455 	cfb->fb.var.nonstd	= 0;
1456 	cfb->fb.var.activate	= FB_ACTIVATE_NOW;
1457 	cfb->fb.var.height	= -1;
1458 	cfb->fb.var.width	= -1;
1459 	cfb->fb.var.accel_flags	= FB_ACCELF_TEXT;
1460 
1461 	cfb->fb.fbops		= &cyber2000fb_ops;
1462 	cfb->fb.flags		= FBINFO_DEFAULT | FBINFO_HWACCEL_YPAN;
1463 	cfb->fb.pseudo_palette	= cfb->pseudo_palette;
1464 
1465 	spin_lock_init(&cfb->reg_b0_lock);
1466 
1467 	fb_alloc_cmap(&cfb->fb.cmap, NR_PALETTE, 0);
1468 
1469 	return cfb;
1470 }
1471 
1472 static void cyberpro_free_fb_info(struct cfb_info *cfb)
1473 {
1474 	if (cfb) {
1475 		/*
1476 		 * Free the colourmap
1477 		 */
1478 		fb_alloc_cmap(&cfb->fb.cmap, 0, 0);
1479 
1480 		kfree(cfb);
1481 	}
1482 }
1483 
1484 /*
1485  * Parse Cyber2000fb options.  Usage:
1486  *  video=cyber2000:font:fontname
1487  */
1488 #ifndef MODULE
1489 static int cyber2000fb_setup(char *options)
1490 {
1491 	char *opt;
1492 
1493 	if (!options || !*options)
1494 		return 0;
1495 
1496 	while ((opt = strsep(&options, ",")) != NULL) {
1497 		if (!*opt)
1498 			continue;
1499 
1500 		if (strncmp(opt, "font:", 5) == 0) {
1501 			static char default_font_storage[40];
1502 
1503 			strlcpy(default_font_storage, opt + 5,
1504 				sizeof(default_font_storage));
1505 			default_font = default_font_storage;
1506 			continue;
1507 		}
1508 
1509 		printk(KERN_ERR "CyberPro20x0: unknown parameter: %s\n", opt);
1510 	}
1511 	return 0;
1512 }
1513 #endif  /*  MODULE  */
1514 
1515 /*
1516  * The CyberPro chips can be placed on many different bus types.
1517  * This probe function is common to all bus types.  The bus-specific
1518  * probe function is expected to have:
1519  *  - enabled access to the linear memory region
1520  *  - memory mapped access to the registers
1521  *  - initialised mem_ctl1 and mem_ctl2 appropriately.
1522  */
1523 static int cyberpro_common_probe(struct cfb_info *cfb)
1524 {
1525 	u_long smem_size;
1526 	u_int h_sync, v_sync;
1527 	int err;
1528 
1529 	cyberpro_init_hw(cfb);
1530 
1531 	/*
1532 	 * Get the video RAM size and width from the VGA register.
1533 	 * This should have been already initialised by the BIOS,
1534 	 * but if it's garbage, claim default 1MB VRAM (woody)
1535 	 */
1536 	cfb->mem_ctl1 = cyber2000_grphr(EXT_MEM_CTL1, cfb);
1537 	cfb->mem_ctl2 = cyber2000_grphr(EXT_MEM_CTL2, cfb);
1538 
1539 	/*
1540 	 * Determine the size of the memory.
1541 	 */
1542 	switch (cfb->mem_ctl2 & MEM_CTL2_SIZE_MASK) {
1543 	case MEM_CTL2_SIZE_4MB:
1544 		smem_size = 0x00400000;
1545 		break;
1546 	case MEM_CTL2_SIZE_2MB:
1547 		smem_size = 0x00200000;
1548 		break;
1549 	case MEM_CTL2_SIZE_1MB:
1550 		smem_size = 0x00100000;
1551 		break;
1552 	default:
1553 		smem_size = 0x00100000;
1554 		break;
1555 	}
1556 
1557 	cfb->fb.fix.smem_len   = smem_size;
1558 	cfb->fb.fix.mmio_len   = MMIO_SIZE;
1559 	cfb->fb.screen_base    = cfb->region;
1560 
1561 #ifdef CONFIG_FB_CYBER2000_DDC
1562 	if (cyber2000fb_setup_ddc_bus(cfb) == 0)
1563 		cfb->ddc_registered = true;
1564 #endif
1565 
1566 	err = -EINVAL;
1567 	if (!fb_find_mode(&cfb->fb.var, &cfb->fb, NULL, NULL, 0,
1568 			  &cyber2000fb_default_mode, 8)) {
1569 		printk(KERN_ERR "%s: no valid mode found\n", cfb->fb.fix.id);
1570 		goto failed;
1571 	}
1572 
1573 	cfb->fb.var.yres_virtual = cfb->fb.fix.smem_len * 8 /
1574 			(cfb->fb.var.bits_per_pixel * cfb->fb.var.xres_virtual);
1575 
1576 	if (cfb->fb.var.yres_virtual < cfb->fb.var.yres)
1577 		cfb->fb.var.yres_virtual = cfb->fb.var.yres;
1578 
1579 /*	fb_set_var(&cfb->fb.var, -1, &cfb->fb); */
1580 
1581 	/*
1582 	 * Calculate the hsync and vsync frequencies.  Note that
1583 	 * we split the 1e12 constant up so that we can preserve
1584 	 * the precision and fit the results into 32-bit registers.
1585 	 *  (1953125000 * 512 = 1e12)
1586 	 */
1587 	h_sync = 1953125000 / cfb->fb.var.pixclock;
1588 	h_sync = h_sync * 512 / (cfb->fb.var.xres + cfb->fb.var.left_margin +
1589 		 cfb->fb.var.right_margin + cfb->fb.var.hsync_len);
1590 	v_sync = h_sync / (cfb->fb.var.yres + cfb->fb.var.upper_margin +
1591 		 cfb->fb.var.lower_margin + cfb->fb.var.vsync_len);
1592 
1593 	printk(KERN_INFO "%s: %dKiB VRAM, using %dx%d, %d.%03dkHz, %dHz\n",
1594 		cfb->fb.fix.id, cfb->fb.fix.smem_len >> 10,
1595 		cfb->fb.var.xres, cfb->fb.var.yres,
1596 		h_sync / 1000, h_sync % 1000, v_sync);
1597 
1598 	err = cyber2000fb_i2c_register(cfb);
1599 	if (err)
1600 		goto failed;
1601 
1602 	err = register_framebuffer(&cfb->fb);
1603 	if (err)
1604 		cyber2000fb_i2c_unregister(cfb);
1605 
1606 failed:
1607 #ifdef CONFIG_FB_CYBER2000_DDC
1608 	if (err && cfb->ddc_registered)
1609 		i2c_del_adapter(&cfb->ddc_adapter);
1610 #endif
1611 	return err;
1612 }
1613 
1614 static void cyberpro_common_remove(struct cfb_info *cfb)
1615 {
1616 	unregister_framebuffer(&cfb->fb);
1617 #ifdef CONFIG_FB_CYBER2000_DDC
1618 	if (cfb->ddc_registered)
1619 		i2c_del_adapter(&cfb->ddc_adapter);
1620 #endif
1621 	cyber2000fb_i2c_unregister(cfb);
1622 }
1623 
1624 static void cyberpro_common_resume(struct cfb_info *cfb)
1625 {
1626 	cyberpro_init_hw(cfb);
1627 
1628 	/*
1629 	 * Reprogram the MEM_CTL1 and MEM_CTL2 registers
1630 	 */
1631 	cyber2000_grphw(EXT_MEM_CTL1, cfb->mem_ctl1, cfb);
1632 	cyber2000_grphw(EXT_MEM_CTL2, cfb->mem_ctl2, cfb);
1633 
1634 	/*
1635 	 * Restore the old video mode and the palette.
1636 	 * We also need to tell fbcon to redraw the console.
1637 	 */
1638 	cyber2000fb_set_par(&cfb->fb);
1639 }
1640 
1641 /*
1642  * PCI specific support.
1643  */
1644 #ifdef CONFIG_PCI
1645 /*
1646  * We need to wake up the CyberPro, and make sure its in linear memory
1647  * mode.  Unfortunately, this is specific to the platform and card that
1648  * we are running on.
1649  *
1650  * On x86 and ARM, should we be initialising the CyberPro first via the
1651  * IO registers, and then the MMIO registers to catch all cases?  Can we
1652  * end up in the situation where the chip is in MMIO mode, but not awake
1653  * on an x86 system?
1654  */
1655 static int cyberpro_pci_enable_mmio(struct cfb_info *cfb)
1656 {
1657 	unsigned char val;
1658 
1659 #if defined(__sparc_v9__)
1660 #error "You lose, consult DaveM."
1661 #elif defined(__sparc__)
1662 	/*
1663 	 * SPARC does not have an "outb" instruction, so we generate
1664 	 * I/O cycles storing into a reserved memory space at
1665 	 * physical address 0x3000000
1666 	 */
1667 	unsigned char __iomem *iop;
1668 
1669 	iop = ioremap(0x3000000, 0x5000);
1670 	if (iop == NULL) {
1671 		printk(KERN_ERR "iga5000: cannot map I/O\n");
1672 		return -ENOMEM;
1673 	}
1674 
1675 	writeb(0x18, iop + 0x46e8);
1676 	writeb(0x01, iop + 0x102);
1677 	writeb(0x08, iop + 0x46e8);
1678 	writeb(EXT_BIU_MISC, iop + 0x3ce);
1679 	writeb(EXT_BIU_MISC_LIN_ENABLE, iop + 0x3cf);
1680 
1681 	iounmap(iop);
1682 #else
1683 	/*
1684 	 * Most other machine types are "normal", so
1685 	 * we use the standard IO-based wakeup.
1686 	 */
1687 	outb(0x18, 0x46e8);
1688 	outb(0x01, 0x102);
1689 	outb(0x08, 0x46e8);
1690 	outb(EXT_BIU_MISC, 0x3ce);
1691 	outb(EXT_BIU_MISC_LIN_ENABLE, 0x3cf);
1692 #endif
1693 
1694 	/*
1695 	 * Allow the CyberPro to accept PCI burst accesses
1696 	 */
1697 	if (cfb->id == ID_CYBERPRO_2010) {
1698 		printk(KERN_INFO "%s: NOT enabling PCI bursts\n",
1699 		       cfb->fb.fix.id);
1700 	} else {
1701 		val = cyber2000_grphr(EXT_BUS_CTL, cfb);
1702 		if (!(val & EXT_BUS_CTL_PCIBURST_WRITE)) {
1703 			printk(KERN_INFO "%s: enabling PCI bursts\n",
1704 				cfb->fb.fix.id);
1705 
1706 			val |= EXT_BUS_CTL_PCIBURST_WRITE;
1707 
1708 			if (cfb->id == ID_CYBERPRO_5000)
1709 				val |= EXT_BUS_CTL_PCIBURST_READ;
1710 
1711 			cyber2000_grphw(EXT_BUS_CTL, val, cfb);
1712 		}
1713 	}
1714 
1715 	return 0;
1716 }
1717 
1718 static int cyberpro_pci_probe(struct pci_dev *dev,
1719 			      const struct pci_device_id *id)
1720 {
1721 	struct cfb_info *cfb;
1722 	char name[16];
1723 	int err;
1724 
1725 	sprintf(name, "CyberPro%4X", id->device);
1726 
1727 	err = pci_enable_device(dev);
1728 	if (err)
1729 		return err;
1730 
1731 	err = -ENOMEM;
1732 	cfb = cyberpro_alloc_fb_info(id->driver_data, name);
1733 	if (!cfb)
1734 		goto failed_release;
1735 
1736 	err = pci_request_regions(dev, cfb->fb.fix.id);
1737 	if (err)
1738 		goto failed_regions;
1739 
1740 	cfb->irq = dev->irq;
1741 	cfb->region = pci_ioremap_bar(dev, 0);
1742 	if (!cfb->region) {
1743 		err = -ENOMEM;
1744 		goto failed_ioremap;
1745 	}
1746 
1747 	cfb->regs = cfb->region + MMIO_OFFSET;
1748 	cfb->fb.device = &dev->dev;
1749 	cfb->fb.fix.mmio_start = pci_resource_start(dev, 0) + MMIO_OFFSET;
1750 	cfb->fb.fix.smem_start = pci_resource_start(dev, 0);
1751 
1752 	/*
1753 	 * Bring up the hardware.  This is expected to enable access
1754 	 * to the linear memory region, and allow access to the memory
1755 	 * mapped registers.  Also, mem_ctl1 and mem_ctl2 must be
1756 	 * initialised.
1757 	 */
1758 	err = cyberpro_pci_enable_mmio(cfb);
1759 	if (err)
1760 		goto failed;
1761 
1762 	/*
1763 	 * Use MCLK from BIOS. FIXME: what about hotplug?
1764 	 */
1765 	cfb->mclk_mult = cyber2000_grphr(EXT_MCLK_MULT, cfb);
1766 	cfb->mclk_div  = cyber2000_grphr(EXT_MCLK_DIV, cfb);
1767 
1768 #ifdef __arm__
1769 	/*
1770 	 * MCLK on the NetWinder and the Shark is fixed at 75MHz
1771 	 */
1772 	if (machine_is_netwinder()) {
1773 		cfb->mclk_mult = 0xdb;
1774 		cfb->mclk_div  = 0x54;
1775 	}
1776 #endif
1777 
1778 	err = cyberpro_common_probe(cfb);
1779 	if (err)
1780 		goto failed;
1781 
1782 	/*
1783 	 * Our driver data
1784 	 */
1785 	pci_set_drvdata(dev, cfb);
1786 	if (int_cfb_info == NULL)
1787 		int_cfb_info = cfb;
1788 
1789 	return 0;
1790 
1791 failed:
1792 	iounmap(cfb->region);
1793 failed_ioremap:
1794 	pci_release_regions(dev);
1795 failed_regions:
1796 	cyberpro_free_fb_info(cfb);
1797 failed_release:
1798 	return err;
1799 }
1800 
1801 static void cyberpro_pci_remove(struct pci_dev *dev)
1802 {
1803 	struct cfb_info *cfb = pci_get_drvdata(dev);
1804 
1805 	if (cfb) {
1806 		cyberpro_common_remove(cfb);
1807 		iounmap(cfb->region);
1808 		cyberpro_free_fb_info(cfb);
1809 
1810 		if (cfb == int_cfb_info)
1811 			int_cfb_info = NULL;
1812 
1813 		pci_release_regions(dev);
1814 	}
1815 }
1816 
1817 static int cyberpro_pci_suspend(struct pci_dev *dev, pm_message_t state)
1818 {
1819 	return 0;
1820 }
1821 
1822 /*
1823  * Re-initialise the CyberPro hardware
1824  */
1825 static int cyberpro_pci_resume(struct pci_dev *dev)
1826 {
1827 	struct cfb_info *cfb = pci_get_drvdata(dev);
1828 
1829 	if (cfb) {
1830 		cyberpro_pci_enable_mmio(cfb);
1831 		cyberpro_common_resume(cfb);
1832 	}
1833 
1834 	return 0;
1835 }
1836 
1837 static struct pci_device_id cyberpro_pci_table[] = {
1838 /*	Not yet
1839  *	{ PCI_VENDOR_ID_INTERG, PCI_DEVICE_ID_INTERG_1682,
1840  *		PCI_ANY_ID, PCI_ANY_ID, 0, 0, ID_IGA_1682 },
1841  */
1842 	{ PCI_VENDOR_ID_INTERG, PCI_DEVICE_ID_INTERG_2000,
1843 		PCI_ANY_ID, PCI_ANY_ID, 0, 0, ID_CYBERPRO_2000 },
1844 	{ PCI_VENDOR_ID_INTERG, PCI_DEVICE_ID_INTERG_2010,
1845 		PCI_ANY_ID, PCI_ANY_ID, 0, 0, ID_CYBERPRO_2010 },
1846 	{ PCI_VENDOR_ID_INTERG, PCI_DEVICE_ID_INTERG_5000,
1847 		PCI_ANY_ID, PCI_ANY_ID, 0, 0, ID_CYBERPRO_5000 },
1848 	{ 0, }
1849 };
1850 
1851 MODULE_DEVICE_TABLE(pci, cyberpro_pci_table);
1852 
1853 static struct pci_driver cyberpro_driver = {
1854 	.name		= "CyberPro",
1855 	.probe		= cyberpro_pci_probe,
1856 	.remove		= cyberpro_pci_remove,
1857 	.suspend	= cyberpro_pci_suspend,
1858 	.resume		= cyberpro_pci_resume,
1859 	.id_table	= cyberpro_pci_table
1860 };
1861 #endif
1862 
1863 /*
1864  * I don't think we can use the "module_init" stuff here because
1865  * the fbcon stuff may not be initialised yet.  Hence the #ifdef
1866  * around module_init.
1867  *
1868  * Tony: "module_init" is now required
1869  */
1870 static int __init cyber2000fb_init(void)
1871 {
1872 	int ret = -1, err;
1873 
1874 #ifndef MODULE
1875 	char *option = NULL;
1876 
1877 	if (fb_get_options("cyber2000fb", &option))
1878 		return -ENODEV;
1879 	cyber2000fb_setup(option);
1880 #endif
1881 
1882 	err = pci_register_driver(&cyberpro_driver);
1883 	if (!err)
1884 		ret = 0;
1885 
1886 	return ret ? err : 0;
1887 }
1888 module_init(cyber2000fb_init);
1889 
1890 static void __exit cyberpro_exit(void)
1891 {
1892 	pci_unregister_driver(&cyberpro_driver);
1893 }
1894 module_exit(cyberpro_exit);
1895 
1896 MODULE_AUTHOR("Russell King");
1897 MODULE_DESCRIPTION("CyberPro 2000, 2010 and 5000 framebuffer driver");
1898 MODULE_LICENSE("GPL");
1899