xref: /openbmc/linux/drivers/video/fbdev/cyber2000fb.c (revision 04eb94d526423ff082efce61f4f26b0369d0bfdd)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/drivers/video/cyber2000fb.c
4  *
5  *  Copyright (C) 1998-2002 Russell King
6  *
7  *  MIPS and 50xx clock support
8  *  Copyright (C) 2001 Bradley D. LaRonde <brad@ltc.com>
9  *
10  *  32 bit support, text color and panning fixes for modes != 8 bit
11  *  Copyright (C) 2002 Denis Oliver Kropp <dok@directfb.org>
12  *
13  * Integraphics CyberPro 2000, 2010 and 5000 frame buffer device
14  *
15  * Based on cyberfb.c.
16  *
17  * Note that we now use the new fbcon fix, var and cmap scheme.  We do
18  * still have to check which console is the currently displayed one
19  * however, especially for the colourmap stuff.
20  *
21  * We also use the new hotplug PCI subsystem.  I'm not sure if there
22  * are any such cards, but I'm erring on the side of caution.  We don't
23  * want to go pop just because someone does have one.
24  *
25  * Note that this doesn't work fully in the case of multiple CyberPro
26  * cards with grabbers.  We currently can only attach to the first
27  * CyberPro card found.
28  *
29  * When we're in truecolour mode, we power down the LUT RAM as a power
30  * saving feature.  Also, when we enter any of the powersaving modes
31  * (except soft blanking) we power down the RAMDACs.  This saves about
32  * 1W, which is roughly 8% of the power consumption of a NetWinder
33  * (which, incidentally, is about the same saving as a 2.5in hard disk
34  * entering standby mode.)
35  */
36 #include <linux/module.h>
37 #include <linux/kernel.h>
38 #include <linux/errno.h>
39 #include <linux/string.h>
40 #include <linux/mm.h>
41 #include <linux/slab.h>
42 #include <linux/delay.h>
43 #include <linux/fb.h>
44 #include <linux/pci.h>
45 #include <linux/init.h>
46 #include <linux/io.h>
47 #include <linux/i2c.h>
48 #include <linux/i2c-algo-bit.h>
49 
50 #include <asm/pgtable.h>
51 
52 #ifdef __arm__
53 #include <asm/mach-types.h>
54 #endif
55 
56 #include "cyber2000fb.h"
57 
58 struct cfb_info {
59 	struct fb_info		fb;
60 	struct display_switch	*dispsw;
61 	unsigned char		__iomem *region;
62 	unsigned char		__iomem *regs;
63 	u_int			id;
64 	u_int			irq;
65 	int			func_use_count;
66 	u_long			ref_ps;
67 
68 	/*
69 	 * Clock divisors
70 	 */
71 	u_int			divisors[4];
72 
73 	struct {
74 		u8 red, green, blue;
75 	} palette[NR_PALETTE];
76 
77 	u_char			mem_ctl1;
78 	u_char			mem_ctl2;
79 	u_char			mclk_mult;
80 	u_char			mclk_div;
81 	/*
82 	 * RAMDAC control register is both of these or'ed together
83 	 */
84 	u_char			ramdac_ctrl;
85 	u_char			ramdac_powerdown;
86 
87 	u32			pseudo_palette[16];
88 
89 	spinlock_t		reg_b0_lock;
90 
91 #ifdef CONFIG_FB_CYBER2000_DDC
92 	bool			ddc_registered;
93 	struct i2c_adapter	ddc_adapter;
94 	struct i2c_algo_bit_data	ddc_algo;
95 #endif
96 
97 #ifdef CONFIG_FB_CYBER2000_I2C
98 	struct i2c_adapter	i2c_adapter;
99 	struct i2c_algo_bit_data i2c_algo;
100 #endif
101 };
102 
103 static char *default_font = "Acorn8x8";
104 module_param(default_font, charp, 0);
105 MODULE_PARM_DESC(default_font, "Default font name");
106 
107 /*
108  * Our access methods.
109  */
110 #define cyber2000fb_writel(val, reg, cfb)	writel(val, (cfb)->regs + (reg))
111 #define cyber2000fb_writew(val, reg, cfb)	writew(val, (cfb)->regs + (reg))
112 #define cyber2000fb_writeb(val, reg, cfb)	writeb(val, (cfb)->regs + (reg))
113 
114 #define cyber2000fb_readb(reg, cfb)		readb((cfb)->regs + (reg))
115 
116 static inline void
117 cyber2000_crtcw(unsigned int reg, unsigned int val, struct cfb_info *cfb)
118 {
119 	cyber2000fb_writew((reg & 255) | val << 8, 0x3d4, cfb);
120 }
121 
122 static inline void
123 cyber2000_grphw(unsigned int reg, unsigned int val, struct cfb_info *cfb)
124 {
125 	cyber2000fb_writew((reg & 255) | val << 8, 0x3ce, cfb);
126 }
127 
128 static inline unsigned int
129 cyber2000_grphr(unsigned int reg, struct cfb_info *cfb)
130 {
131 	cyber2000fb_writeb(reg, 0x3ce, cfb);
132 	return cyber2000fb_readb(0x3cf, cfb);
133 }
134 
135 static inline void
136 cyber2000_attrw(unsigned int reg, unsigned int val, struct cfb_info *cfb)
137 {
138 	cyber2000fb_readb(0x3da, cfb);
139 	cyber2000fb_writeb(reg, 0x3c0, cfb);
140 	cyber2000fb_readb(0x3c1, cfb);
141 	cyber2000fb_writeb(val, 0x3c0, cfb);
142 }
143 
144 static inline void
145 cyber2000_seqw(unsigned int reg, unsigned int val, struct cfb_info *cfb)
146 {
147 	cyber2000fb_writew((reg & 255) | val << 8, 0x3c4, cfb);
148 }
149 
150 /* -------------------- Hardware specific routines ------------------------- */
151 
152 /*
153  * Hardware Cyber2000 Acceleration
154  */
155 static void
156 cyber2000fb_fillrect(struct fb_info *info, const struct fb_fillrect *rect)
157 {
158 	struct cfb_info *cfb = container_of(info, struct cfb_info, fb);
159 	unsigned long dst, col;
160 
161 	if (!(cfb->fb.var.accel_flags & FB_ACCELF_TEXT)) {
162 		cfb_fillrect(info, rect);
163 		return;
164 	}
165 
166 	cyber2000fb_writeb(0, CO_REG_CONTROL, cfb);
167 	cyber2000fb_writew(rect->width - 1, CO_REG_PIXWIDTH, cfb);
168 	cyber2000fb_writew(rect->height - 1, CO_REG_PIXHEIGHT, cfb);
169 
170 	col = rect->color;
171 	if (cfb->fb.var.bits_per_pixel > 8)
172 		col = ((u32 *)cfb->fb.pseudo_palette)[col];
173 	cyber2000fb_writel(col, CO_REG_FGCOLOUR, cfb);
174 
175 	dst = rect->dx + rect->dy * cfb->fb.var.xres_virtual;
176 	if (cfb->fb.var.bits_per_pixel == 24) {
177 		cyber2000fb_writeb(dst, CO_REG_X_PHASE, cfb);
178 		dst *= 3;
179 	}
180 
181 	cyber2000fb_writel(dst, CO_REG_DEST_PTR, cfb);
182 	cyber2000fb_writeb(CO_FG_MIX_SRC, CO_REG_FGMIX, cfb);
183 	cyber2000fb_writew(CO_CMD_L_PATTERN_FGCOL, CO_REG_CMD_L, cfb);
184 	cyber2000fb_writew(CO_CMD_H_BLITTER, CO_REG_CMD_H, cfb);
185 }
186 
187 static void
188 cyber2000fb_copyarea(struct fb_info *info, const struct fb_copyarea *region)
189 {
190 	struct cfb_info *cfb = container_of(info, struct cfb_info, fb);
191 	unsigned int cmd = CO_CMD_L_PATTERN_FGCOL;
192 	unsigned long src, dst;
193 
194 	if (!(cfb->fb.var.accel_flags & FB_ACCELF_TEXT)) {
195 		cfb_copyarea(info, region);
196 		return;
197 	}
198 
199 	cyber2000fb_writeb(0, CO_REG_CONTROL, cfb);
200 	cyber2000fb_writew(region->width - 1, CO_REG_PIXWIDTH, cfb);
201 	cyber2000fb_writew(region->height - 1, CO_REG_PIXHEIGHT, cfb);
202 
203 	src = region->sx + region->sy * cfb->fb.var.xres_virtual;
204 	dst = region->dx + region->dy * cfb->fb.var.xres_virtual;
205 
206 	if (region->sx < region->dx) {
207 		src += region->width - 1;
208 		dst += region->width - 1;
209 		cmd |= CO_CMD_L_INC_LEFT;
210 	}
211 
212 	if (region->sy < region->dy) {
213 		src += (region->height - 1) * cfb->fb.var.xres_virtual;
214 		dst += (region->height - 1) * cfb->fb.var.xres_virtual;
215 		cmd |= CO_CMD_L_INC_UP;
216 	}
217 
218 	if (cfb->fb.var.bits_per_pixel == 24) {
219 		cyber2000fb_writeb(dst, CO_REG_X_PHASE, cfb);
220 		src *= 3;
221 		dst *= 3;
222 	}
223 	cyber2000fb_writel(src, CO_REG_SRC1_PTR, cfb);
224 	cyber2000fb_writel(dst, CO_REG_DEST_PTR, cfb);
225 	cyber2000fb_writew(CO_FG_MIX_SRC, CO_REG_FGMIX, cfb);
226 	cyber2000fb_writew(cmd, CO_REG_CMD_L, cfb);
227 	cyber2000fb_writew(CO_CMD_H_FGSRCMAP | CO_CMD_H_BLITTER,
228 			   CO_REG_CMD_H, cfb);
229 }
230 
231 static void
232 cyber2000fb_imageblit(struct fb_info *info, const struct fb_image *image)
233 {
234 	cfb_imageblit(info, image);
235 	return;
236 }
237 
238 static int cyber2000fb_sync(struct fb_info *info)
239 {
240 	struct cfb_info *cfb = container_of(info, struct cfb_info, fb);
241 	int count = 100000;
242 
243 	if (!(cfb->fb.var.accel_flags & FB_ACCELF_TEXT))
244 		return 0;
245 
246 	while (cyber2000fb_readb(CO_REG_CONTROL, cfb) & CO_CTRL_BUSY) {
247 		if (!count--) {
248 			debug_printf("accel_wait timed out\n");
249 			cyber2000fb_writeb(0, CO_REG_CONTROL, cfb);
250 			break;
251 		}
252 		udelay(1);
253 	}
254 	return 0;
255 }
256 
257 /*
258  * ===========================================================================
259  */
260 
261 static inline u32 convert_bitfield(u_int val, struct fb_bitfield *bf)
262 {
263 	u_int mask = (1 << bf->length) - 1;
264 
265 	return (val >> (16 - bf->length) & mask) << bf->offset;
266 }
267 
268 /*
269  *    Set a single color register. Return != 0 for invalid regno.
270  */
271 static int
272 cyber2000fb_setcolreg(u_int regno, u_int red, u_int green, u_int blue,
273 		      u_int transp, struct fb_info *info)
274 {
275 	struct cfb_info *cfb = container_of(info, struct cfb_info, fb);
276 	struct fb_var_screeninfo *var = &cfb->fb.var;
277 	u32 pseudo_val;
278 	int ret = 1;
279 
280 	switch (cfb->fb.fix.visual) {
281 	default:
282 		return 1;
283 
284 	/*
285 	 * Pseudocolour:
286 	 *	   8     8
287 	 * pixel --/--+--/-->  red lut  --> red dac
288 	 *	      |  8
289 	 *	      +--/--> green lut --> green dac
290 	 *	      |  8
291 	 *	      +--/-->  blue lut --> blue dac
292 	 */
293 	case FB_VISUAL_PSEUDOCOLOR:
294 		if (regno >= NR_PALETTE)
295 			return 1;
296 
297 		red >>= 8;
298 		green >>= 8;
299 		blue >>= 8;
300 
301 		cfb->palette[regno].red = red;
302 		cfb->palette[regno].green = green;
303 		cfb->palette[regno].blue = blue;
304 
305 		cyber2000fb_writeb(regno, 0x3c8, cfb);
306 		cyber2000fb_writeb(red, 0x3c9, cfb);
307 		cyber2000fb_writeb(green, 0x3c9, cfb);
308 		cyber2000fb_writeb(blue, 0x3c9, cfb);
309 		return 0;
310 
311 	/*
312 	 * Direct colour:
313 	 *	   n     rl
314 	 * pixel --/--+--/-->  red lut  --> red dac
315 	 *	      |  gl
316 	 *	      +--/--> green lut --> green dac
317 	 *	      |  bl
318 	 *	      +--/-->  blue lut --> blue dac
319 	 * n = bpp, rl = red length, gl = green length, bl = blue length
320 	 */
321 	case FB_VISUAL_DIRECTCOLOR:
322 		red >>= 8;
323 		green >>= 8;
324 		blue >>= 8;
325 
326 		if (var->green.length == 6 && regno < 64) {
327 			cfb->palette[regno << 2].green = green;
328 
329 			/*
330 			 * The 6 bits of the green component are applied
331 			 * to the high 6 bits of the LUT.
332 			 */
333 			cyber2000fb_writeb(regno << 2, 0x3c8, cfb);
334 			cyber2000fb_writeb(cfb->palette[regno >> 1].red,
335 					   0x3c9, cfb);
336 			cyber2000fb_writeb(green, 0x3c9, cfb);
337 			cyber2000fb_writeb(cfb->palette[regno >> 1].blue,
338 					   0x3c9, cfb);
339 
340 			green = cfb->palette[regno << 3].green;
341 
342 			ret = 0;
343 		}
344 
345 		if (var->green.length >= 5 && regno < 32) {
346 			cfb->palette[regno << 3].red = red;
347 			cfb->palette[regno << 3].green = green;
348 			cfb->palette[regno << 3].blue = blue;
349 
350 			/*
351 			 * The 5 bits of each colour component are
352 			 * applied to the high 5 bits of the LUT.
353 			 */
354 			cyber2000fb_writeb(regno << 3, 0x3c8, cfb);
355 			cyber2000fb_writeb(red, 0x3c9, cfb);
356 			cyber2000fb_writeb(green, 0x3c9, cfb);
357 			cyber2000fb_writeb(blue, 0x3c9, cfb);
358 			ret = 0;
359 		}
360 
361 		if (var->green.length == 4 && regno < 16) {
362 			cfb->palette[regno << 4].red = red;
363 			cfb->palette[regno << 4].green = green;
364 			cfb->palette[regno << 4].blue = blue;
365 
366 			/*
367 			 * The 5 bits of each colour component are
368 			 * applied to the high 5 bits of the LUT.
369 			 */
370 			cyber2000fb_writeb(regno << 4, 0x3c8, cfb);
371 			cyber2000fb_writeb(red, 0x3c9, cfb);
372 			cyber2000fb_writeb(green, 0x3c9, cfb);
373 			cyber2000fb_writeb(blue, 0x3c9, cfb);
374 			ret = 0;
375 		}
376 
377 		/*
378 		 * Since this is only used for the first 16 colours, we
379 		 * don't have to care about overflowing for regno >= 32
380 		 */
381 		pseudo_val = regno << var->red.offset |
382 			     regno << var->green.offset |
383 			     regno << var->blue.offset;
384 		break;
385 
386 	/*
387 	 * True colour:
388 	 *	   n     rl
389 	 * pixel --/--+--/--> red dac
390 	 *	      |  gl
391 	 *	      +--/--> green dac
392 	 *	      |  bl
393 	 *	      +--/--> blue dac
394 	 * n = bpp, rl = red length, gl = green length, bl = blue length
395 	 */
396 	case FB_VISUAL_TRUECOLOR:
397 		pseudo_val = convert_bitfield(transp ^ 0xffff, &var->transp);
398 		pseudo_val |= convert_bitfield(red, &var->red);
399 		pseudo_val |= convert_bitfield(green, &var->green);
400 		pseudo_val |= convert_bitfield(blue, &var->blue);
401 		ret = 0;
402 		break;
403 	}
404 
405 	/*
406 	 * Now set our pseudo palette for the CFB16/24/32 drivers.
407 	 */
408 	if (regno < 16)
409 		((u32 *)cfb->fb.pseudo_palette)[regno] = pseudo_val;
410 
411 	return ret;
412 }
413 
414 struct par_info {
415 	/*
416 	 * Hardware
417 	 */
418 	u_char	clock_mult;
419 	u_char	clock_div;
420 	u_char	extseqmisc;
421 	u_char	co_pixfmt;
422 	u_char	crtc_ofl;
423 	u_char	crtc[19];
424 	u_int	width;
425 	u_int	pitch;
426 	u_int	fetch;
427 
428 	/*
429 	 * Other
430 	 */
431 	u_char	ramdac;
432 };
433 
434 static const u_char crtc_idx[] = {
435 	0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07,
436 	0x08, 0x09,
437 	0x10, 0x11, 0x12, 0x13, 0x14, 0x15, 0x16, 0x17, 0x18
438 };
439 
440 static void cyber2000fb_write_ramdac_ctrl(struct cfb_info *cfb)
441 {
442 	unsigned int i;
443 	unsigned int val = cfb->ramdac_ctrl | cfb->ramdac_powerdown;
444 
445 	cyber2000fb_writeb(0x56, 0x3ce, cfb);
446 	i = cyber2000fb_readb(0x3cf, cfb);
447 	cyber2000fb_writeb(i | 4, 0x3cf, cfb);
448 	cyber2000fb_writeb(val, 0x3c6, cfb);
449 	cyber2000fb_writeb(i, 0x3cf, cfb);
450 	/* prevent card lock-up observed on x86 with CyberPro 2000 */
451 	cyber2000fb_readb(0x3cf, cfb);
452 }
453 
454 static void cyber2000fb_set_timing(struct cfb_info *cfb, struct par_info *hw)
455 {
456 	u_int i;
457 
458 	/*
459 	 * Blank palette
460 	 */
461 	for (i = 0; i < NR_PALETTE; i++) {
462 		cyber2000fb_writeb(i, 0x3c8, cfb);
463 		cyber2000fb_writeb(0, 0x3c9, cfb);
464 		cyber2000fb_writeb(0, 0x3c9, cfb);
465 		cyber2000fb_writeb(0, 0x3c9, cfb);
466 	}
467 
468 	cyber2000fb_writeb(0xef, 0x3c2, cfb);
469 	cyber2000_crtcw(0x11, 0x0b, cfb);
470 	cyber2000_attrw(0x11, 0x00, cfb);
471 
472 	cyber2000_seqw(0x00, 0x01, cfb);
473 	cyber2000_seqw(0x01, 0x01, cfb);
474 	cyber2000_seqw(0x02, 0x0f, cfb);
475 	cyber2000_seqw(0x03, 0x00, cfb);
476 	cyber2000_seqw(0x04, 0x0e, cfb);
477 	cyber2000_seqw(0x00, 0x03, cfb);
478 
479 	for (i = 0; i < sizeof(crtc_idx); i++)
480 		cyber2000_crtcw(crtc_idx[i], hw->crtc[i], cfb);
481 
482 	for (i = 0x0a; i < 0x10; i++)
483 		cyber2000_crtcw(i, 0, cfb);
484 
485 	cyber2000_grphw(EXT_CRT_VRTOFL, hw->crtc_ofl, cfb);
486 	cyber2000_grphw(0x00, 0x00, cfb);
487 	cyber2000_grphw(0x01, 0x00, cfb);
488 	cyber2000_grphw(0x02, 0x00, cfb);
489 	cyber2000_grphw(0x03, 0x00, cfb);
490 	cyber2000_grphw(0x04, 0x00, cfb);
491 	cyber2000_grphw(0x05, 0x60, cfb);
492 	cyber2000_grphw(0x06, 0x05, cfb);
493 	cyber2000_grphw(0x07, 0x0f, cfb);
494 	cyber2000_grphw(0x08, 0xff, cfb);
495 
496 	/* Attribute controller registers */
497 	for (i = 0; i < 16; i++)
498 		cyber2000_attrw(i, i, cfb);
499 
500 	cyber2000_attrw(0x10, 0x01, cfb);
501 	cyber2000_attrw(0x11, 0x00, cfb);
502 	cyber2000_attrw(0x12, 0x0f, cfb);
503 	cyber2000_attrw(0x13, 0x00, cfb);
504 	cyber2000_attrw(0x14, 0x00, cfb);
505 
506 	/* PLL registers */
507 	spin_lock(&cfb->reg_b0_lock);
508 	cyber2000_grphw(EXT_DCLK_MULT, hw->clock_mult, cfb);
509 	cyber2000_grphw(EXT_DCLK_DIV, hw->clock_div, cfb);
510 	cyber2000_grphw(EXT_MCLK_MULT, cfb->mclk_mult, cfb);
511 	cyber2000_grphw(EXT_MCLK_DIV, cfb->mclk_div, cfb);
512 	cyber2000_grphw(0x90, 0x01, cfb);
513 	cyber2000_grphw(0xb9, 0x80, cfb);
514 	cyber2000_grphw(0xb9, 0x00, cfb);
515 	spin_unlock(&cfb->reg_b0_lock);
516 
517 	cfb->ramdac_ctrl = hw->ramdac;
518 	cyber2000fb_write_ramdac_ctrl(cfb);
519 
520 	cyber2000fb_writeb(0x20, 0x3c0, cfb);
521 	cyber2000fb_writeb(0xff, 0x3c6, cfb);
522 
523 	cyber2000_grphw(0x14, hw->fetch, cfb);
524 	cyber2000_grphw(0x15, ((hw->fetch >> 8) & 0x03) |
525 			      ((hw->pitch >> 4) & 0x30), cfb);
526 	cyber2000_grphw(EXT_SEQ_MISC, hw->extseqmisc, cfb);
527 
528 	/*
529 	 * Set up accelerator registers
530 	 */
531 	cyber2000fb_writew(hw->width, CO_REG_SRC_WIDTH, cfb);
532 	cyber2000fb_writew(hw->width, CO_REG_DEST_WIDTH, cfb);
533 	cyber2000fb_writeb(hw->co_pixfmt, CO_REG_PIXFMT, cfb);
534 }
535 
536 static inline int
537 cyber2000fb_update_start(struct cfb_info *cfb, struct fb_var_screeninfo *var)
538 {
539 	u_int base = var->yoffset * var->xres_virtual + var->xoffset;
540 
541 	base *= var->bits_per_pixel;
542 
543 	/*
544 	 * Convert to bytes and shift two extra bits because DAC
545 	 * can only start on 4 byte aligned data.
546 	 */
547 	base >>= 5;
548 
549 	if (base >= 1 << 20)
550 		return -EINVAL;
551 
552 	cyber2000_grphw(0x10, base >> 16 | 0x10, cfb);
553 	cyber2000_crtcw(0x0c, base >> 8, cfb);
554 	cyber2000_crtcw(0x0d, base, cfb);
555 
556 	return 0;
557 }
558 
559 static int
560 cyber2000fb_decode_crtc(struct par_info *hw, struct cfb_info *cfb,
561 			struct fb_var_screeninfo *var)
562 {
563 	u_int Htotal, Hblankend, Hsyncend;
564 	u_int Vtotal, Vdispend, Vblankstart, Vblankend, Vsyncstart, Vsyncend;
565 #define ENCODE_BIT(v, b1, m, b2) ((((v) >> (b1)) & (m)) << (b2))
566 
567 	hw->crtc[13] = hw->pitch;
568 	hw->crtc[17] = 0xe3;
569 	hw->crtc[14] = 0;
570 	hw->crtc[8]  = 0;
571 
572 	Htotal     = var->xres + var->right_margin +
573 		     var->hsync_len + var->left_margin;
574 
575 	if (Htotal > 2080)
576 		return -EINVAL;
577 
578 	hw->crtc[0] = (Htotal >> 3) - 5;
579 	hw->crtc[1] = (var->xres >> 3) - 1;
580 	hw->crtc[2] = var->xres >> 3;
581 	hw->crtc[4] = (var->xres + var->right_margin) >> 3;
582 
583 	Hblankend   = (Htotal - 4 * 8) >> 3;
584 
585 	hw->crtc[3] = ENCODE_BIT(Hblankend,  0, 0x1f,  0) |
586 		      ENCODE_BIT(1,          0, 0x01,  7);
587 
588 	Hsyncend    = (var->xres + var->right_margin + var->hsync_len) >> 3;
589 
590 	hw->crtc[5] = ENCODE_BIT(Hsyncend,   0, 0x1f,  0) |
591 		      ENCODE_BIT(Hblankend,  5, 0x01,  7);
592 
593 	Vdispend    = var->yres - 1;
594 	Vsyncstart  = var->yres + var->lower_margin;
595 	Vsyncend    = var->yres + var->lower_margin + var->vsync_len;
596 	Vtotal      = var->yres + var->lower_margin + var->vsync_len +
597 		      var->upper_margin - 2;
598 
599 	if (Vtotal > 2047)
600 		return -EINVAL;
601 
602 	Vblankstart = var->yres + 6;
603 	Vblankend   = Vtotal - 10;
604 
605 	hw->crtc[6]  = Vtotal;
606 	hw->crtc[7]  = ENCODE_BIT(Vtotal,     8, 0x01,  0) |
607 			ENCODE_BIT(Vdispend,   8, 0x01,  1) |
608 			ENCODE_BIT(Vsyncstart, 8, 0x01,  2) |
609 			ENCODE_BIT(Vblankstart, 8, 0x01,  3) |
610 			ENCODE_BIT(1,          0, 0x01,  4) |
611 			ENCODE_BIT(Vtotal,     9, 0x01,  5) |
612 			ENCODE_BIT(Vdispend,   9, 0x01,  6) |
613 			ENCODE_BIT(Vsyncstart, 9, 0x01,  7);
614 	hw->crtc[9]  = ENCODE_BIT(0,          0, 0x1f,  0) |
615 			ENCODE_BIT(Vblankstart, 9, 0x01,  5) |
616 			ENCODE_BIT(1,          0, 0x01,  6);
617 	hw->crtc[10] = Vsyncstart;
618 	hw->crtc[11] = ENCODE_BIT(Vsyncend,   0, 0x0f,  0) |
619 		       ENCODE_BIT(1,          0, 0x01,  7);
620 	hw->crtc[12] = Vdispend;
621 	hw->crtc[15] = Vblankstart;
622 	hw->crtc[16] = Vblankend;
623 	hw->crtc[18] = 0xff;
624 
625 	/*
626 	 * overflow - graphics reg 0x11
627 	 * 0=VTOTAL:10 1=VDEND:10 2=VRSTART:10 3=VBSTART:10
628 	 * 4=LINECOMP:10 5-IVIDEO 6=FIXCNT
629 	 */
630 	hw->crtc_ofl =
631 		ENCODE_BIT(Vtotal, 10, 0x01, 0) |
632 		ENCODE_BIT(Vdispend, 10, 0x01, 1) |
633 		ENCODE_BIT(Vsyncstart, 10, 0x01, 2) |
634 		ENCODE_BIT(Vblankstart, 10, 0x01, 3) |
635 		EXT_CRT_VRTOFL_LINECOMP10;
636 
637 	/* woody: set the interlaced bit... */
638 	/* FIXME: what about doublescan? */
639 	if ((var->vmode & FB_VMODE_MASK) == FB_VMODE_INTERLACED)
640 		hw->crtc_ofl |= EXT_CRT_VRTOFL_INTERLACE;
641 
642 	return 0;
643 }
644 
645 /*
646  * The following was discovered by a good monitor, bit twiddling, theorising
647  * and but mostly luck.  Strangely, it looks like everyone elses' PLL!
648  *
649  * Clock registers:
650  *   fclock = fpll / div2
651  *   fpll   = fref * mult / div1
652  * where:
653  *   fref = 14.318MHz (69842ps)
654  *   mult = reg0xb0.7:0
655  *   div1 = (reg0xb1.5:0 + 1)
656  *   div2 =  2^(reg0xb1.7:6)
657  *   fpll should be between 115 and 260 MHz
658  *  (8696ps and 3846ps)
659  */
660 static int
661 cyber2000fb_decode_clock(struct par_info *hw, struct cfb_info *cfb,
662 			 struct fb_var_screeninfo *var)
663 {
664 	u_long pll_ps = var->pixclock;
665 	const u_long ref_ps = cfb->ref_ps;
666 	u_int div2, t_div1, best_div1, best_mult;
667 	int best_diff;
668 	int vco;
669 
670 	/*
671 	 * Step 1:
672 	 *   find div2 such that 115MHz < fpll < 260MHz
673 	 *   and 0 <= div2 < 4
674 	 */
675 	for (div2 = 0; div2 < 4; div2++) {
676 		u_long new_pll;
677 
678 		new_pll = pll_ps / cfb->divisors[div2];
679 		if (8696 > new_pll && new_pll > 3846) {
680 			pll_ps = new_pll;
681 			break;
682 		}
683 	}
684 
685 	if (div2 == 4)
686 		return -EINVAL;
687 
688 	/*
689 	 * Step 2:
690 	 *  Given pll_ps and ref_ps, find:
691 	 *    pll_ps * 0.995 < pll_ps_calc < pll_ps * 1.005
692 	 *  where { 1 < best_div1 < 32, 1 < best_mult < 256 }
693 	 *    pll_ps_calc = best_div1 / (ref_ps * best_mult)
694 	 */
695 	best_diff = 0x7fffffff;
696 	best_mult = 2;
697 	best_div1 = 32;
698 	for (t_div1 = 2; t_div1 < 32; t_div1 += 1) {
699 		u_int rr, t_mult, t_pll_ps;
700 		int diff;
701 
702 		/*
703 		 * Find the multiplier for this divisor
704 		 */
705 		rr = ref_ps * t_div1;
706 		t_mult = (rr + pll_ps / 2) / pll_ps;
707 
708 		/*
709 		 * Is the multiplier within the correct range?
710 		 */
711 		if (t_mult > 256 || t_mult < 2)
712 			continue;
713 
714 		/*
715 		 * Calculate the actual clock period from this multiplier
716 		 * and divisor, and estimate the error.
717 		 */
718 		t_pll_ps = (rr + t_mult / 2) / t_mult;
719 		diff = pll_ps - t_pll_ps;
720 		if (diff < 0)
721 			diff = -diff;
722 
723 		if (diff < best_diff) {
724 			best_diff = diff;
725 			best_mult = t_mult;
726 			best_div1 = t_div1;
727 		}
728 
729 		/*
730 		 * If we hit an exact value, there is no point in continuing.
731 		 */
732 		if (diff == 0)
733 			break;
734 	}
735 
736 	/*
737 	 * Step 3:
738 	 *  combine values
739 	 */
740 	hw->clock_mult = best_mult - 1;
741 	hw->clock_div  = div2 << 6 | (best_div1 - 1);
742 
743 	vco = ref_ps * best_div1 / best_mult;
744 	if ((ref_ps == 40690) && (vco < 5556))
745 		/* Set VFSEL when VCO > 180MHz (5.556 ps). */
746 		hw->clock_div |= EXT_DCLK_DIV_VFSEL;
747 
748 	return 0;
749 }
750 
751 /*
752  *    Set the User Defined Part of the Display
753  */
754 static int
755 cyber2000fb_check_var(struct fb_var_screeninfo *var, struct fb_info *info)
756 {
757 	struct cfb_info *cfb = container_of(info, struct cfb_info, fb);
758 	struct par_info hw;
759 	unsigned int mem;
760 	int err;
761 
762 	var->transp.msb_right	= 0;
763 	var->red.msb_right	= 0;
764 	var->green.msb_right	= 0;
765 	var->blue.msb_right	= 0;
766 	var->transp.offset	= 0;
767 	var->transp.length	= 0;
768 
769 	switch (var->bits_per_pixel) {
770 	case 8:	/* PSEUDOCOLOUR, 256 */
771 		var->red.offset		= 0;
772 		var->red.length		= 8;
773 		var->green.offset	= 0;
774 		var->green.length	= 8;
775 		var->blue.offset	= 0;
776 		var->blue.length	= 8;
777 		break;
778 
779 	case 16:/* DIRECTCOLOUR, 64k or 32k */
780 		switch (var->green.length) {
781 		case 6: /* RGB565, 64k */
782 			var->red.offset		= 11;
783 			var->red.length		= 5;
784 			var->green.offset	= 5;
785 			var->green.length	= 6;
786 			var->blue.offset	= 0;
787 			var->blue.length	= 5;
788 			break;
789 
790 		default:
791 		case 5: /* RGB555, 32k */
792 			var->red.offset		= 10;
793 			var->red.length		= 5;
794 			var->green.offset	= 5;
795 			var->green.length	= 5;
796 			var->blue.offset	= 0;
797 			var->blue.length	= 5;
798 			break;
799 
800 		case 4: /* RGB444, 4k + transparency? */
801 			var->transp.offset	= 12;
802 			var->transp.length	= 4;
803 			var->red.offset		= 8;
804 			var->red.length		= 4;
805 			var->green.offset	= 4;
806 			var->green.length	= 4;
807 			var->blue.offset	= 0;
808 			var->blue.length	= 4;
809 			break;
810 		}
811 		break;
812 
813 	case 24:/* TRUECOLOUR, 16m */
814 		var->red.offset		= 16;
815 		var->red.length		= 8;
816 		var->green.offset	= 8;
817 		var->green.length	= 8;
818 		var->blue.offset	= 0;
819 		var->blue.length	= 8;
820 		break;
821 
822 	case 32:/* TRUECOLOUR, 16m */
823 		var->transp.offset	= 24;
824 		var->transp.length	= 8;
825 		var->red.offset		= 16;
826 		var->red.length		= 8;
827 		var->green.offset	= 8;
828 		var->green.length	= 8;
829 		var->blue.offset	= 0;
830 		var->blue.length	= 8;
831 		break;
832 
833 	default:
834 		return -EINVAL;
835 	}
836 
837 	mem = var->xres_virtual * var->yres_virtual * (var->bits_per_pixel / 8);
838 	if (mem > cfb->fb.fix.smem_len)
839 		var->yres_virtual = cfb->fb.fix.smem_len * 8 /
840 				    (var->bits_per_pixel * var->xres_virtual);
841 
842 	if (var->yres > var->yres_virtual)
843 		var->yres = var->yres_virtual;
844 	if (var->xres > var->xres_virtual)
845 		var->xres = var->xres_virtual;
846 
847 	err = cyber2000fb_decode_clock(&hw, cfb, var);
848 	if (err)
849 		return err;
850 
851 	err = cyber2000fb_decode_crtc(&hw, cfb, var);
852 	if (err)
853 		return err;
854 
855 	return 0;
856 }
857 
858 static int cyber2000fb_set_par(struct fb_info *info)
859 {
860 	struct cfb_info *cfb = container_of(info, struct cfb_info, fb);
861 	struct fb_var_screeninfo *var = &cfb->fb.var;
862 	struct par_info hw;
863 	unsigned int mem;
864 
865 	hw.width = var->xres_virtual;
866 	hw.ramdac = RAMDAC_VREFEN | RAMDAC_DAC8BIT;
867 
868 	switch (var->bits_per_pixel) {
869 	case 8:
870 		hw.co_pixfmt		= CO_PIXFMT_8BPP;
871 		hw.pitch		= hw.width >> 3;
872 		hw.extseqmisc		= EXT_SEQ_MISC_8;
873 		break;
874 
875 	case 16:
876 		hw.co_pixfmt		= CO_PIXFMT_16BPP;
877 		hw.pitch		= hw.width >> 2;
878 
879 		switch (var->green.length) {
880 		case 6: /* RGB565, 64k */
881 			hw.extseqmisc	= EXT_SEQ_MISC_16_RGB565;
882 			break;
883 		case 5: /* RGB555, 32k */
884 			hw.extseqmisc	= EXT_SEQ_MISC_16_RGB555;
885 			break;
886 		case 4: /* RGB444, 4k + transparency? */
887 			hw.extseqmisc	= EXT_SEQ_MISC_16_RGB444;
888 			break;
889 		default:
890 			BUG();
891 		}
892 		break;
893 
894 	case 24:/* TRUECOLOUR, 16m */
895 		hw.co_pixfmt		= CO_PIXFMT_24BPP;
896 		hw.width		*= 3;
897 		hw.pitch		= hw.width >> 3;
898 		hw.ramdac		|= (RAMDAC_BYPASS | RAMDAC_RAMPWRDN);
899 		hw.extseqmisc		= EXT_SEQ_MISC_24_RGB888;
900 		break;
901 
902 	case 32:/* TRUECOLOUR, 16m */
903 		hw.co_pixfmt		= CO_PIXFMT_32BPP;
904 		hw.pitch		= hw.width >> 1;
905 		hw.ramdac		|= (RAMDAC_BYPASS | RAMDAC_RAMPWRDN);
906 		hw.extseqmisc		= EXT_SEQ_MISC_32;
907 		break;
908 
909 	default:
910 		BUG();
911 	}
912 
913 	/*
914 	 * Sigh, this is absolutely disgusting, but caused by
915 	 * the way the fbcon developers want to separate out
916 	 * the "checking" and the "setting" of the video mode.
917 	 *
918 	 * If the mode is not suitable for the hardware here,
919 	 * we can't prevent it being set by returning an error.
920 	 *
921 	 * In theory, since NetWinders contain just one VGA card,
922 	 * we should never end up hitting this problem.
923 	 */
924 	BUG_ON(cyber2000fb_decode_clock(&hw, cfb, var) != 0);
925 	BUG_ON(cyber2000fb_decode_crtc(&hw, cfb, var) != 0);
926 
927 	hw.width -= 1;
928 	hw.fetch = hw.pitch;
929 	if (!(cfb->mem_ctl2 & MEM_CTL2_64BIT))
930 		hw.fetch <<= 1;
931 	hw.fetch += 1;
932 
933 	cfb->fb.fix.line_length = var->xres_virtual * var->bits_per_pixel / 8;
934 
935 	/*
936 	 * Same here - if the size of the video mode exceeds the
937 	 * available RAM, we can't prevent this mode being set.
938 	 *
939 	 * In theory, since NetWinders contain just one VGA card,
940 	 * we should never end up hitting this problem.
941 	 */
942 	mem = cfb->fb.fix.line_length * var->yres_virtual;
943 	BUG_ON(mem > cfb->fb.fix.smem_len);
944 
945 	/*
946 	 * 8bpp displays are always pseudo colour.  16bpp and above
947 	 * are direct colour or true colour, depending on whether
948 	 * the RAMDAC palettes are bypassed.  (Direct colour has
949 	 * palettes, true colour does not.)
950 	 */
951 	if (var->bits_per_pixel == 8)
952 		cfb->fb.fix.visual = FB_VISUAL_PSEUDOCOLOR;
953 	else if (hw.ramdac & RAMDAC_BYPASS)
954 		cfb->fb.fix.visual = FB_VISUAL_TRUECOLOR;
955 	else
956 		cfb->fb.fix.visual = FB_VISUAL_DIRECTCOLOR;
957 
958 	cyber2000fb_set_timing(cfb, &hw);
959 	cyber2000fb_update_start(cfb, var);
960 
961 	return 0;
962 }
963 
964 /*
965  *    Pan or Wrap the Display
966  */
967 static int
968 cyber2000fb_pan_display(struct fb_var_screeninfo *var, struct fb_info *info)
969 {
970 	struct cfb_info *cfb = container_of(info, struct cfb_info, fb);
971 
972 	if (cyber2000fb_update_start(cfb, var))
973 		return -EINVAL;
974 
975 	cfb->fb.var.xoffset = var->xoffset;
976 	cfb->fb.var.yoffset = var->yoffset;
977 
978 	if (var->vmode & FB_VMODE_YWRAP) {
979 		cfb->fb.var.vmode |= FB_VMODE_YWRAP;
980 	} else {
981 		cfb->fb.var.vmode &= ~FB_VMODE_YWRAP;
982 	}
983 
984 	return 0;
985 }
986 
987 /*
988  *    (Un)Blank the display.
989  *
990  *  Blank the screen if blank_mode != 0, else unblank. If
991  *  blank == NULL then the caller blanks by setting the CLUT
992  *  (Color Look Up Table) to all black. Return 0 if blanking
993  *  succeeded, != 0 if un-/blanking failed due to e.g. a
994  *  video mode which doesn't support it. Implements VESA
995  *  suspend and powerdown modes on hardware that supports
996  *  disabling hsync/vsync:
997  *    blank_mode == 2: suspend vsync
998  *    blank_mode == 3: suspend hsync
999  *    blank_mode == 4: powerdown
1000  *
1001  *  wms...Enable VESA DMPS compatible powerdown mode
1002  *  run "setterm -powersave powerdown" to take advantage
1003  */
1004 static int cyber2000fb_blank(int blank, struct fb_info *info)
1005 {
1006 	struct cfb_info *cfb = container_of(info, struct cfb_info, fb);
1007 	unsigned int sync = 0;
1008 	int i;
1009 
1010 	switch (blank) {
1011 	case FB_BLANK_POWERDOWN:	/* powerdown - both sync lines down */
1012 		sync = EXT_SYNC_CTL_VS_0 | EXT_SYNC_CTL_HS_0;
1013 		break;
1014 	case FB_BLANK_HSYNC_SUSPEND:	/* hsync off */
1015 		sync = EXT_SYNC_CTL_VS_NORMAL | EXT_SYNC_CTL_HS_0;
1016 		break;
1017 	case FB_BLANK_VSYNC_SUSPEND:	/* vsync off */
1018 		sync = EXT_SYNC_CTL_VS_0 | EXT_SYNC_CTL_HS_NORMAL;
1019 		break;
1020 	case FB_BLANK_NORMAL:		/* soft blank */
1021 	default:			/* unblank */
1022 		break;
1023 	}
1024 
1025 	cyber2000_grphw(EXT_SYNC_CTL, sync, cfb);
1026 
1027 	if (blank <= 1) {
1028 		/* turn on ramdacs */
1029 		cfb->ramdac_powerdown &= ~(RAMDAC_DACPWRDN | RAMDAC_BYPASS |
1030 					   RAMDAC_RAMPWRDN);
1031 		cyber2000fb_write_ramdac_ctrl(cfb);
1032 	}
1033 
1034 	/*
1035 	 * Soft blank/unblank the display.
1036 	 */
1037 	if (blank) {	/* soft blank */
1038 		for (i = 0; i < NR_PALETTE; i++) {
1039 			cyber2000fb_writeb(i, 0x3c8, cfb);
1040 			cyber2000fb_writeb(0, 0x3c9, cfb);
1041 			cyber2000fb_writeb(0, 0x3c9, cfb);
1042 			cyber2000fb_writeb(0, 0x3c9, cfb);
1043 		}
1044 	} else {	/* unblank */
1045 		for (i = 0; i < NR_PALETTE; i++) {
1046 			cyber2000fb_writeb(i, 0x3c8, cfb);
1047 			cyber2000fb_writeb(cfb->palette[i].red, 0x3c9, cfb);
1048 			cyber2000fb_writeb(cfb->palette[i].green, 0x3c9, cfb);
1049 			cyber2000fb_writeb(cfb->palette[i].blue, 0x3c9, cfb);
1050 		}
1051 	}
1052 
1053 	if (blank >= 2) {
1054 		/* turn off ramdacs */
1055 		cfb->ramdac_powerdown |= RAMDAC_DACPWRDN | RAMDAC_BYPASS |
1056 					 RAMDAC_RAMPWRDN;
1057 		cyber2000fb_write_ramdac_ctrl(cfb);
1058 	}
1059 
1060 	return 0;
1061 }
1062 
1063 static struct fb_ops cyber2000fb_ops = {
1064 	.owner		= THIS_MODULE,
1065 	.fb_check_var	= cyber2000fb_check_var,
1066 	.fb_set_par	= cyber2000fb_set_par,
1067 	.fb_setcolreg	= cyber2000fb_setcolreg,
1068 	.fb_blank	= cyber2000fb_blank,
1069 	.fb_pan_display	= cyber2000fb_pan_display,
1070 	.fb_fillrect	= cyber2000fb_fillrect,
1071 	.fb_copyarea	= cyber2000fb_copyarea,
1072 	.fb_imageblit	= cyber2000fb_imageblit,
1073 	.fb_sync	= cyber2000fb_sync,
1074 };
1075 
1076 /*
1077  * This is the only "static" reference to the internal data structures
1078  * of this driver.  It is here solely at the moment to support the other
1079  * CyberPro modules external to this driver.
1080  */
1081 static struct cfb_info *int_cfb_info;
1082 
1083 /*
1084  * Enable access to the extended registers
1085  */
1086 void cyber2000fb_enable_extregs(struct cfb_info *cfb)
1087 {
1088 	cfb->func_use_count += 1;
1089 
1090 	if (cfb->func_use_count == 1) {
1091 		int old;
1092 
1093 		old = cyber2000_grphr(EXT_FUNC_CTL, cfb);
1094 		old |= EXT_FUNC_CTL_EXTREGENBL;
1095 		cyber2000_grphw(EXT_FUNC_CTL, old, cfb);
1096 	}
1097 }
1098 EXPORT_SYMBOL(cyber2000fb_enable_extregs);
1099 
1100 /*
1101  * Disable access to the extended registers
1102  */
1103 void cyber2000fb_disable_extregs(struct cfb_info *cfb)
1104 {
1105 	if (cfb->func_use_count == 1) {
1106 		int old;
1107 
1108 		old = cyber2000_grphr(EXT_FUNC_CTL, cfb);
1109 		old &= ~EXT_FUNC_CTL_EXTREGENBL;
1110 		cyber2000_grphw(EXT_FUNC_CTL, old, cfb);
1111 	}
1112 
1113 	if (cfb->func_use_count == 0)
1114 		printk(KERN_ERR "disable_extregs: count = 0\n");
1115 	else
1116 		cfb->func_use_count -= 1;
1117 }
1118 EXPORT_SYMBOL(cyber2000fb_disable_extregs);
1119 
1120 /*
1121  * Attach a capture/tv driver to the core CyberX0X0 driver.
1122  */
1123 int cyber2000fb_attach(struct cyberpro_info *info, int idx)
1124 {
1125 	if (int_cfb_info != NULL) {
1126 		info->dev	      = int_cfb_info->fb.device;
1127 #ifdef CONFIG_FB_CYBER2000_I2C
1128 		info->i2c	      = &int_cfb_info->i2c_adapter;
1129 #else
1130 		info->i2c	      = NULL;
1131 #endif
1132 		info->regs	      = int_cfb_info->regs;
1133 		info->irq             = int_cfb_info->irq;
1134 		info->fb	      = int_cfb_info->fb.screen_base;
1135 		info->fb_size	      = int_cfb_info->fb.fix.smem_len;
1136 		info->info	      = int_cfb_info;
1137 
1138 		strlcpy(info->dev_name, int_cfb_info->fb.fix.id,
1139 			sizeof(info->dev_name));
1140 	}
1141 
1142 	return int_cfb_info != NULL;
1143 }
1144 EXPORT_SYMBOL(cyber2000fb_attach);
1145 
1146 /*
1147  * Detach a capture/tv driver from the core CyberX0X0 driver.
1148  */
1149 void cyber2000fb_detach(int idx)
1150 {
1151 }
1152 EXPORT_SYMBOL(cyber2000fb_detach);
1153 
1154 #ifdef CONFIG_FB_CYBER2000_DDC
1155 
1156 #define DDC_REG		0xb0
1157 #define DDC_SCL_OUT	(1 << 0)
1158 #define DDC_SDA_OUT	(1 << 4)
1159 #define DDC_SCL_IN	(1 << 2)
1160 #define DDC_SDA_IN	(1 << 6)
1161 
1162 static void cyber2000fb_enable_ddc(struct cfb_info *cfb)
1163 {
1164 	spin_lock(&cfb->reg_b0_lock);
1165 	cyber2000fb_writew(0x1bf, 0x3ce, cfb);
1166 }
1167 
1168 static void cyber2000fb_disable_ddc(struct cfb_info *cfb)
1169 {
1170 	cyber2000fb_writew(0x0bf, 0x3ce, cfb);
1171 	spin_unlock(&cfb->reg_b0_lock);
1172 }
1173 
1174 
1175 static void cyber2000fb_ddc_setscl(void *data, int val)
1176 {
1177 	struct cfb_info *cfb = data;
1178 	unsigned char reg;
1179 
1180 	cyber2000fb_enable_ddc(cfb);
1181 	reg = cyber2000_grphr(DDC_REG, cfb);
1182 	if (!val)	/* bit is inverted */
1183 		reg |= DDC_SCL_OUT;
1184 	else
1185 		reg &= ~DDC_SCL_OUT;
1186 	cyber2000_grphw(DDC_REG, reg, cfb);
1187 	cyber2000fb_disable_ddc(cfb);
1188 }
1189 
1190 static void cyber2000fb_ddc_setsda(void *data, int val)
1191 {
1192 	struct cfb_info *cfb = data;
1193 	unsigned char reg;
1194 
1195 	cyber2000fb_enable_ddc(cfb);
1196 	reg = cyber2000_grphr(DDC_REG, cfb);
1197 	if (!val)	/* bit is inverted */
1198 		reg |= DDC_SDA_OUT;
1199 	else
1200 		reg &= ~DDC_SDA_OUT;
1201 	cyber2000_grphw(DDC_REG, reg, cfb);
1202 	cyber2000fb_disable_ddc(cfb);
1203 }
1204 
1205 static int cyber2000fb_ddc_getscl(void *data)
1206 {
1207 	struct cfb_info *cfb = data;
1208 	int retval;
1209 
1210 	cyber2000fb_enable_ddc(cfb);
1211 	retval = !!(cyber2000_grphr(DDC_REG, cfb) & DDC_SCL_IN);
1212 	cyber2000fb_disable_ddc(cfb);
1213 
1214 	return retval;
1215 }
1216 
1217 static int cyber2000fb_ddc_getsda(void *data)
1218 {
1219 	struct cfb_info *cfb = data;
1220 	int retval;
1221 
1222 	cyber2000fb_enable_ddc(cfb);
1223 	retval = !!(cyber2000_grphr(DDC_REG, cfb) & DDC_SDA_IN);
1224 	cyber2000fb_disable_ddc(cfb);
1225 
1226 	return retval;
1227 }
1228 
1229 static int cyber2000fb_setup_ddc_bus(struct cfb_info *cfb)
1230 {
1231 	strlcpy(cfb->ddc_adapter.name, cfb->fb.fix.id,
1232 		sizeof(cfb->ddc_adapter.name));
1233 	cfb->ddc_adapter.owner		= THIS_MODULE;
1234 	cfb->ddc_adapter.class		= I2C_CLASS_DDC;
1235 	cfb->ddc_adapter.algo_data	= &cfb->ddc_algo;
1236 	cfb->ddc_adapter.dev.parent	= cfb->fb.device;
1237 	cfb->ddc_algo.setsda		= cyber2000fb_ddc_setsda;
1238 	cfb->ddc_algo.setscl		= cyber2000fb_ddc_setscl;
1239 	cfb->ddc_algo.getsda		= cyber2000fb_ddc_getsda;
1240 	cfb->ddc_algo.getscl		= cyber2000fb_ddc_getscl;
1241 	cfb->ddc_algo.udelay		= 10;
1242 	cfb->ddc_algo.timeout		= 20;
1243 	cfb->ddc_algo.data		= cfb;
1244 
1245 	i2c_set_adapdata(&cfb->ddc_adapter, cfb);
1246 
1247 	return i2c_bit_add_bus(&cfb->ddc_adapter);
1248 }
1249 #endif /* CONFIG_FB_CYBER2000_DDC */
1250 
1251 #ifdef CONFIG_FB_CYBER2000_I2C
1252 static void cyber2000fb_i2c_setsda(void *data, int state)
1253 {
1254 	struct cfb_info *cfb = data;
1255 	unsigned int latch2;
1256 
1257 	spin_lock(&cfb->reg_b0_lock);
1258 	latch2 = cyber2000_grphr(EXT_LATCH2, cfb);
1259 	latch2 &= EXT_LATCH2_I2C_CLKEN;
1260 	if (state)
1261 		latch2 |= EXT_LATCH2_I2C_DATEN;
1262 	cyber2000_grphw(EXT_LATCH2, latch2, cfb);
1263 	spin_unlock(&cfb->reg_b0_lock);
1264 }
1265 
1266 static void cyber2000fb_i2c_setscl(void *data, int state)
1267 {
1268 	struct cfb_info *cfb = data;
1269 	unsigned int latch2;
1270 
1271 	spin_lock(&cfb->reg_b0_lock);
1272 	latch2 = cyber2000_grphr(EXT_LATCH2, cfb);
1273 	latch2 &= EXT_LATCH2_I2C_DATEN;
1274 	if (state)
1275 		latch2 |= EXT_LATCH2_I2C_CLKEN;
1276 	cyber2000_grphw(EXT_LATCH2, latch2, cfb);
1277 	spin_unlock(&cfb->reg_b0_lock);
1278 }
1279 
1280 static int cyber2000fb_i2c_getsda(void *data)
1281 {
1282 	struct cfb_info *cfb = data;
1283 	int ret;
1284 
1285 	spin_lock(&cfb->reg_b0_lock);
1286 	ret = !!(cyber2000_grphr(EXT_LATCH2, cfb) & EXT_LATCH2_I2C_DAT);
1287 	spin_unlock(&cfb->reg_b0_lock);
1288 
1289 	return ret;
1290 }
1291 
1292 static int cyber2000fb_i2c_getscl(void *data)
1293 {
1294 	struct cfb_info *cfb = data;
1295 	int ret;
1296 
1297 	spin_lock(&cfb->reg_b0_lock);
1298 	ret = !!(cyber2000_grphr(EXT_LATCH2, cfb) & EXT_LATCH2_I2C_CLK);
1299 	spin_unlock(&cfb->reg_b0_lock);
1300 
1301 	return ret;
1302 }
1303 
1304 static int cyber2000fb_i2c_register(struct cfb_info *cfb)
1305 {
1306 	strlcpy(cfb->i2c_adapter.name, cfb->fb.fix.id,
1307 		sizeof(cfb->i2c_adapter.name));
1308 	cfb->i2c_adapter.owner = THIS_MODULE;
1309 	cfb->i2c_adapter.algo_data = &cfb->i2c_algo;
1310 	cfb->i2c_adapter.dev.parent = cfb->fb.device;
1311 	cfb->i2c_algo.setsda = cyber2000fb_i2c_setsda;
1312 	cfb->i2c_algo.setscl = cyber2000fb_i2c_setscl;
1313 	cfb->i2c_algo.getsda = cyber2000fb_i2c_getsda;
1314 	cfb->i2c_algo.getscl = cyber2000fb_i2c_getscl;
1315 	cfb->i2c_algo.udelay = 5;
1316 	cfb->i2c_algo.timeout = msecs_to_jiffies(100);
1317 	cfb->i2c_algo.data = cfb;
1318 
1319 	return i2c_bit_add_bus(&cfb->i2c_adapter);
1320 }
1321 
1322 static void cyber2000fb_i2c_unregister(struct cfb_info *cfb)
1323 {
1324 	i2c_del_adapter(&cfb->i2c_adapter);
1325 }
1326 #else
1327 #define cyber2000fb_i2c_register(cfb)	(0)
1328 #define cyber2000fb_i2c_unregister(cfb)	do { } while (0)
1329 #endif
1330 
1331 /*
1332  * These parameters give
1333  * 640x480, hsync 31.5kHz, vsync 60Hz
1334  */
1335 static const struct fb_videomode cyber2000fb_default_mode = {
1336 	.refresh	= 60,
1337 	.xres		= 640,
1338 	.yres		= 480,
1339 	.pixclock	= 39722,
1340 	.left_margin	= 56,
1341 	.right_margin	= 16,
1342 	.upper_margin	= 34,
1343 	.lower_margin	= 9,
1344 	.hsync_len	= 88,
1345 	.vsync_len	= 2,
1346 	.sync		= FB_SYNC_COMP_HIGH_ACT | FB_SYNC_VERT_HIGH_ACT,
1347 	.vmode		= FB_VMODE_NONINTERLACED
1348 };
1349 
1350 static char igs_regs[] = {
1351 	EXT_CRT_IRQ,		0,
1352 	EXT_CRT_TEST,		0,
1353 	EXT_SYNC_CTL,		0,
1354 	EXT_SEG_WRITE_PTR,	0,
1355 	EXT_SEG_READ_PTR,	0,
1356 	EXT_BIU_MISC,		EXT_BIU_MISC_LIN_ENABLE |
1357 				EXT_BIU_MISC_COP_ENABLE |
1358 				EXT_BIU_MISC_COP_BFC,
1359 	EXT_FUNC_CTL,		0,
1360 	CURS_H_START,		0,
1361 	CURS_H_START + 1,	0,
1362 	CURS_H_PRESET,		0,
1363 	CURS_V_START,		0,
1364 	CURS_V_START + 1,	0,
1365 	CURS_V_PRESET,		0,
1366 	CURS_CTL,		0,
1367 	EXT_ATTRIB_CTL,		EXT_ATTRIB_CTL_EXT,
1368 	EXT_OVERSCAN_RED,	0,
1369 	EXT_OVERSCAN_GREEN,	0,
1370 	EXT_OVERSCAN_BLUE,	0,
1371 
1372 	/* some of these are questionable when we have a BIOS */
1373 	EXT_MEM_CTL0,		EXT_MEM_CTL0_7CLK |
1374 				EXT_MEM_CTL0_RAS_1 |
1375 				EXT_MEM_CTL0_MULTCAS,
1376 	EXT_HIDDEN_CTL1,	0x30,
1377 	EXT_FIFO_CTL,		0x0b,
1378 	EXT_FIFO_CTL + 1,	0x17,
1379 	0x76,			0x00,
1380 	EXT_HIDDEN_CTL4,	0xc8
1381 };
1382 
1383 /*
1384  * Initialise the CyberPro hardware.  On the CyberPro5XXXX,
1385  * ensure that we're using the correct PLL (5XXX's may be
1386  * programmed to use an additional set of PLLs.)
1387  */
1388 static void cyberpro_init_hw(struct cfb_info *cfb)
1389 {
1390 	int i;
1391 
1392 	for (i = 0; i < sizeof(igs_regs); i += 2)
1393 		cyber2000_grphw(igs_regs[i], igs_regs[i + 1], cfb);
1394 
1395 	if (cfb->id == ID_CYBERPRO_5000) {
1396 		unsigned char val;
1397 		cyber2000fb_writeb(0xba, 0x3ce, cfb);
1398 		val = cyber2000fb_readb(0x3cf, cfb) & 0x80;
1399 		cyber2000fb_writeb(val, 0x3cf, cfb);
1400 	}
1401 }
1402 
1403 static struct cfb_info *cyberpro_alloc_fb_info(unsigned int id, char *name)
1404 {
1405 	struct cfb_info *cfb;
1406 
1407 	cfb = kzalloc(sizeof(struct cfb_info), GFP_KERNEL);
1408 	if (!cfb)
1409 		return NULL;
1410 
1411 
1412 	cfb->id			= id;
1413 
1414 	if (id == ID_CYBERPRO_5000)
1415 		cfb->ref_ps	= 40690; /* 24.576 MHz */
1416 	else
1417 		cfb->ref_ps	= 69842; /* 14.31818 MHz (69841?) */
1418 
1419 	cfb->divisors[0]	= 1;
1420 	cfb->divisors[1]	= 2;
1421 	cfb->divisors[2]	= 4;
1422 
1423 	if (id == ID_CYBERPRO_2000)
1424 		cfb->divisors[3] = 8;
1425 	else
1426 		cfb->divisors[3] = 6;
1427 
1428 	strcpy(cfb->fb.fix.id, name);
1429 
1430 	cfb->fb.fix.type	= FB_TYPE_PACKED_PIXELS;
1431 	cfb->fb.fix.type_aux	= 0;
1432 	cfb->fb.fix.xpanstep	= 0;
1433 	cfb->fb.fix.ypanstep	= 1;
1434 	cfb->fb.fix.ywrapstep	= 0;
1435 
1436 	switch (id) {
1437 	case ID_IGA_1682:
1438 		cfb->fb.fix.accel = 0;
1439 		break;
1440 
1441 	case ID_CYBERPRO_2000:
1442 		cfb->fb.fix.accel = FB_ACCEL_IGS_CYBER2000;
1443 		break;
1444 
1445 	case ID_CYBERPRO_2010:
1446 		cfb->fb.fix.accel = FB_ACCEL_IGS_CYBER2010;
1447 		break;
1448 
1449 	case ID_CYBERPRO_5000:
1450 		cfb->fb.fix.accel = FB_ACCEL_IGS_CYBER5000;
1451 		break;
1452 	}
1453 
1454 	cfb->fb.var.nonstd	= 0;
1455 	cfb->fb.var.activate	= FB_ACTIVATE_NOW;
1456 	cfb->fb.var.height	= -1;
1457 	cfb->fb.var.width	= -1;
1458 	cfb->fb.var.accel_flags	= FB_ACCELF_TEXT;
1459 
1460 	cfb->fb.fbops		= &cyber2000fb_ops;
1461 	cfb->fb.flags		= FBINFO_DEFAULT | FBINFO_HWACCEL_YPAN;
1462 	cfb->fb.pseudo_palette	= cfb->pseudo_palette;
1463 
1464 	spin_lock_init(&cfb->reg_b0_lock);
1465 
1466 	fb_alloc_cmap(&cfb->fb.cmap, NR_PALETTE, 0);
1467 
1468 	return cfb;
1469 }
1470 
1471 static void cyberpro_free_fb_info(struct cfb_info *cfb)
1472 {
1473 	if (cfb) {
1474 		/*
1475 		 * Free the colourmap
1476 		 */
1477 		fb_alloc_cmap(&cfb->fb.cmap, 0, 0);
1478 
1479 		kfree(cfb);
1480 	}
1481 }
1482 
1483 /*
1484  * Parse Cyber2000fb options.  Usage:
1485  *  video=cyber2000:font:fontname
1486  */
1487 #ifndef MODULE
1488 static int cyber2000fb_setup(char *options)
1489 {
1490 	char *opt;
1491 
1492 	if (!options || !*options)
1493 		return 0;
1494 
1495 	while ((opt = strsep(&options, ",")) != NULL) {
1496 		if (!*opt)
1497 			continue;
1498 
1499 		if (strncmp(opt, "font:", 5) == 0) {
1500 			static char default_font_storage[40];
1501 
1502 			strlcpy(default_font_storage, opt + 5,
1503 				sizeof(default_font_storage));
1504 			default_font = default_font_storage;
1505 			continue;
1506 		}
1507 
1508 		printk(KERN_ERR "CyberPro20x0: unknown parameter: %s\n", opt);
1509 	}
1510 	return 0;
1511 }
1512 #endif  /*  MODULE  */
1513 
1514 /*
1515  * The CyberPro chips can be placed on many different bus types.
1516  * This probe function is common to all bus types.  The bus-specific
1517  * probe function is expected to have:
1518  *  - enabled access to the linear memory region
1519  *  - memory mapped access to the registers
1520  *  - initialised mem_ctl1 and mem_ctl2 appropriately.
1521  */
1522 static int cyberpro_common_probe(struct cfb_info *cfb)
1523 {
1524 	u_long smem_size;
1525 	u_int h_sync, v_sync;
1526 	int err;
1527 
1528 	cyberpro_init_hw(cfb);
1529 
1530 	/*
1531 	 * Get the video RAM size and width from the VGA register.
1532 	 * This should have been already initialised by the BIOS,
1533 	 * but if it's garbage, claim default 1MB VRAM (woody)
1534 	 */
1535 	cfb->mem_ctl1 = cyber2000_grphr(EXT_MEM_CTL1, cfb);
1536 	cfb->mem_ctl2 = cyber2000_grphr(EXT_MEM_CTL2, cfb);
1537 
1538 	/*
1539 	 * Determine the size of the memory.
1540 	 */
1541 	switch (cfb->mem_ctl2 & MEM_CTL2_SIZE_MASK) {
1542 	case MEM_CTL2_SIZE_4MB:
1543 		smem_size = 0x00400000;
1544 		break;
1545 	case MEM_CTL2_SIZE_2MB:
1546 		smem_size = 0x00200000;
1547 		break;
1548 	case MEM_CTL2_SIZE_1MB:
1549 		smem_size = 0x00100000;
1550 		break;
1551 	default:
1552 		smem_size = 0x00100000;
1553 		break;
1554 	}
1555 
1556 	cfb->fb.fix.smem_len   = smem_size;
1557 	cfb->fb.fix.mmio_len   = MMIO_SIZE;
1558 	cfb->fb.screen_base    = cfb->region;
1559 
1560 #ifdef CONFIG_FB_CYBER2000_DDC
1561 	if (cyber2000fb_setup_ddc_bus(cfb) == 0)
1562 		cfb->ddc_registered = true;
1563 #endif
1564 
1565 	err = -EINVAL;
1566 	if (!fb_find_mode(&cfb->fb.var, &cfb->fb, NULL, NULL, 0,
1567 			  &cyber2000fb_default_mode, 8)) {
1568 		printk(KERN_ERR "%s: no valid mode found\n", cfb->fb.fix.id);
1569 		goto failed;
1570 	}
1571 
1572 	cfb->fb.var.yres_virtual = cfb->fb.fix.smem_len * 8 /
1573 			(cfb->fb.var.bits_per_pixel * cfb->fb.var.xres_virtual);
1574 
1575 	if (cfb->fb.var.yres_virtual < cfb->fb.var.yres)
1576 		cfb->fb.var.yres_virtual = cfb->fb.var.yres;
1577 
1578 /*	fb_set_var(&cfb->fb.var, -1, &cfb->fb); */
1579 
1580 	/*
1581 	 * Calculate the hsync and vsync frequencies.  Note that
1582 	 * we split the 1e12 constant up so that we can preserve
1583 	 * the precision and fit the results into 32-bit registers.
1584 	 *  (1953125000 * 512 = 1e12)
1585 	 */
1586 	h_sync = 1953125000 / cfb->fb.var.pixclock;
1587 	h_sync = h_sync * 512 / (cfb->fb.var.xres + cfb->fb.var.left_margin +
1588 		 cfb->fb.var.right_margin + cfb->fb.var.hsync_len);
1589 	v_sync = h_sync / (cfb->fb.var.yres + cfb->fb.var.upper_margin +
1590 		 cfb->fb.var.lower_margin + cfb->fb.var.vsync_len);
1591 
1592 	printk(KERN_INFO "%s: %dKiB VRAM, using %dx%d, %d.%03dkHz, %dHz\n",
1593 		cfb->fb.fix.id, cfb->fb.fix.smem_len >> 10,
1594 		cfb->fb.var.xres, cfb->fb.var.yres,
1595 		h_sync / 1000, h_sync % 1000, v_sync);
1596 
1597 	err = cyber2000fb_i2c_register(cfb);
1598 	if (err)
1599 		goto failed;
1600 
1601 	err = register_framebuffer(&cfb->fb);
1602 	if (err)
1603 		cyber2000fb_i2c_unregister(cfb);
1604 
1605 failed:
1606 #ifdef CONFIG_FB_CYBER2000_DDC
1607 	if (err && cfb->ddc_registered)
1608 		i2c_del_adapter(&cfb->ddc_adapter);
1609 #endif
1610 	return err;
1611 }
1612 
1613 static void cyberpro_common_remove(struct cfb_info *cfb)
1614 {
1615 	unregister_framebuffer(&cfb->fb);
1616 #ifdef CONFIG_FB_CYBER2000_DDC
1617 	if (cfb->ddc_registered)
1618 		i2c_del_adapter(&cfb->ddc_adapter);
1619 #endif
1620 	cyber2000fb_i2c_unregister(cfb);
1621 }
1622 
1623 static void cyberpro_common_resume(struct cfb_info *cfb)
1624 {
1625 	cyberpro_init_hw(cfb);
1626 
1627 	/*
1628 	 * Reprogram the MEM_CTL1 and MEM_CTL2 registers
1629 	 */
1630 	cyber2000_grphw(EXT_MEM_CTL1, cfb->mem_ctl1, cfb);
1631 	cyber2000_grphw(EXT_MEM_CTL2, cfb->mem_ctl2, cfb);
1632 
1633 	/*
1634 	 * Restore the old video mode and the palette.
1635 	 * We also need to tell fbcon to redraw the console.
1636 	 */
1637 	cyber2000fb_set_par(&cfb->fb);
1638 }
1639 
1640 /*
1641  * We need to wake up the CyberPro, and make sure its in linear memory
1642  * mode.  Unfortunately, this is specific to the platform and card that
1643  * we are running on.
1644  *
1645  * On x86 and ARM, should we be initialising the CyberPro first via the
1646  * IO registers, and then the MMIO registers to catch all cases?  Can we
1647  * end up in the situation where the chip is in MMIO mode, but not awake
1648  * on an x86 system?
1649  */
1650 static int cyberpro_pci_enable_mmio(struct cfb_info *cfb)
1651 {
1652 	unsigned char val;
1653 
1654 #if defined(__sparc_v9__)
1655 #error "You lose, consult DaveM."
1656 #elif defined(__sparc__)
1657 	/*
1658 	 * SPARC does not have an "outb" instruction, so we generate
1659 	 * I/O cycles storing into a reserved memory space at
1660 	 * physical address 0x3000000
1661 	 */
1662 	unsigned char __iomem *iop;
1663 
1664 	iop = ioremap(0x3000000, 0x5000);
1665 	if (iop == NULL) {
1666 		printk(KERN_ERR "iga5000: cannot map I/O\n");
1667 		return -ENOMEM;
1668 	}
1669 
1670 	writeb(0x18, iop + 0x46e8);
1671 	writeb(0x01, iop + 0x102);
1672 	writeb(0x08, iop + 0x46e8);
1673 	writeb(EXT_BIU_MISC, iop + 0x3ce);
1674 	writeb(EXT_BIU_MISC_LIN_ENABLE, iop + 0x3cf);
1675 
1676 	iounmap(iop);
1677 #else
1678 	/*
1679 	 * Most other machine types are "normal", so
1680 	 * we use the standard IO-based wakeup.
1681 	 */
1682 	outb(0x18, 0x46e8);
1683 	outb(0x01, 0x102);
1684 	outb(0x08, 0x46e8);
1685 	outb(EXT_BIU_MISC, 0x3ce);
1686 	outb(EXT_BIU_MISC_LIN_ENABLE, 0x3cf);
1687 #endif
1688 
1689 	/*
1690 	 * Allow the CyberPro to accept PCI burst accesses
1691 	 */
1692 	if (cfb->id == ID_CYBERPRO_2010) {
1693 		printk(KERN_INFO "%s: NOT enabling PCI bursts\n",
1694 		       cfb->fb.fix.id);
1695 	} else {
1696 		val = cyber2000_grphr(EXT_BUS_CTL, cfb);
1697 		if (!(val & EXT_BUS_CTL_PCIBURST_WRITE)) {
1698 			printk(KERN_INFO "%s: enabling PCI bursts\n",
1699 				cfb->fb.fix.id);
1700 
1701 			val |= EXT_BUS_CTL_PCIBURST_WRITE;
1702 
1703 			if (cfb->id == ID_CYBERPRO_5000)
1704 				val |= EXT_BUS_CTL_PCIBURST_READ;
1705 
1706 			cyber2000_grphw(EXT_BUS_CTL, val, cfb);
1707 		}
1708 	}
1709 
1710 	return 0;
1711 }
1712 
1713 static int cyberpro_pci_probe(struct pci_dev *dev,
1714 			      const struct pci_device_id *id)
1715 {
1716 	struct cfb_info *cfb;
1717 	char name[16];
1718 	int err;
1719 
1720 	sprintf(name, "CyberPro%4X", id->device);
1721 
1722 	err = pci_enable_device(dev);
1723 	if (err)
1724 		return err;
1725 
1726 	err = -ENOMEM;
1727 	cfb = cyberpro_alloc_fb_info(id->driver_data, name);
1728 	if (!cfb)
1729 		goto failed_release;
1730 
1731 	err = pci_request_regions(dev, cfb->fb.fix.id);
1732 	if (err)
1733 		goto failed_regions;
1734 
1735 	cfb->irq = dev->irq;
1736 	cfb->region = pci_ioremap_bar(dev, 0);
1737 	if (!cfb->region) {
1738 		err = -ENOMEM;
1739 		goto failed_ioremap;
1740 	}
1741 
1742 	cfb->regs = cfb->region + MMIO_OFFSET;
1743 	cfb->fb.device = &dev->dev;
1744 	cfb->fb.fix.mmio_start = pci_resource_start(dev, 0) + MMIO_OFFSET;
1745 	cfb->fb.fix.smem_start = pci_resource_start(dev, 0);
1746 
1747 	/*
1748 	 * Bring up the hardware.  This is expected to enable access
1749 	 * to the linear memory region, and allow access to the memory
1750 	 * mapped registers.  Also, mem_ctl1 and mem_ctl2 must be
1751 	 * initialised.
1752 	 */
1753 	err = cyberpro_pci_enable_mmio(cfb);
1754 	if (err)
1755 		goto failed;
1756 
1757 	/*
1758 	 * Use MCLK from BIOS. FIXME: what about hotplug?
1759 	 */
1760 	cfb->mclk_mult = cyber2000_grphr(EXT_MCLK_MULT, cfb);
1761 	cfb->mclk_div  = cyber2000_grphr(EXT_MCLK_DIV, cfb);
1762 
1763 #ifdef __arm__
1764 	/*
1765 	 * MCLK on the NetWinder and the Shark is fixed at 75MHz
1766 	 */
1767 	if (machine_is_netwinder()) {
1768 		cfb->mclk_mult = 0xdb;
1769 		cfb->mclk_div  = 0x54;
1770 	}
1771 #endif
1772 
1773 	err = cyberpro_common_probe(cfb);
1774 	if (err)
1775 		goto failed;
1776 
1777 	/*
1778 	 * Our driver data
1779 	 */
1780 	pci_set_drvdata(dev, cfb);
1781 	if (int_cfb_info == NULL)
1782 		int_cfb_info = cfb;
1783 
1784 	return 0;
1785 
1786 failed:
1787 	iounmap(cfb->region);
1788 failed_ioremap:
1789 	pci_release_regions(dev);
1790 failed_regions:
1791 	cyberpro_free_fb_info(cfb);
1792 failed_release:
1793 	return err;
1794 }
1795 
1796 static void cyberpro_pci_remove(struct pci_dev *dev)
1797 {
1798 	struct cfb_info *cfb = pci_get_drvdata(dev);
1799 
1800 	if (cfb) {
1801 		cyberpro_common_remove(cfb);
1802 		iounmap(cfb->region);
1803 		cyberpro_free_fb_info(cfb);
1804 
1805 		if (cfb == int_cfb_info)
1806 			int_cfb_info = NULL;
1807 
1808 		pci_release_regions(dev);
1809 	}
1810 }
1811 
1812 static int cyberpro_pci_suspend(struct pci_dev *dev, pm_message_t state)
1813 {
1814 	return 0;
1815 }
1816 
1817 /*
1818  * Re-initialise the CyberPro hardware
1819  */
1820 static int cyberpro_pci_resume(struct pci_dev *dev)
1821 {
1822 	struct cfb_info *cfb = pci_get_drvdata(dev);
1823 
1824 	if (cfb) {
1825 		cyberpro_pci_enable_mmio(cfb);
1826 		cyberpro_common_resume(cfb);
1827 	}
1828 
1829 	return 0;
1830 }
1831 
1832 static struct pci_device_id cyberpro_pci_table[] = {
1833 /*	Not yet
1834  *	{ PCI_VENDOR_ID_INTERG, PCI_DEVICE_ID_INTERG_1682,
1835  *		PCI_ANY_ID, PCI_ANY_ID, 0, 0, ID_IGA_1682 },
1836  */
1837 	{ PCI_VENDOR_ID_INTERG, PCI_DEVICE_ID_INTERG_2000,
1838 		PCI_ANY_ID, PCI_ANY_ID, 0, 0, ID_CYBERPRO_2000 },
1839 	{ PCI_VENDOR_ID_INTERG, PCI_DEVICE_ID_INTERG_2010,
1840 		PCI_ANY_ID, PCI_ANY_ID, 0, 0, ID_CYBERPRO_2010 },
1841 	{ PCI_VENDOR_ID_INTERG, PCI_DEVICE_ID_INTERG_5000,
1842 		PCI_ANY_ID, PCI_ANY_ID, 0, 0, ID_CYBERPRO_5000 },
1843 	{ 0, }
1844 };
1845 
1846 MODULE_DEVICE_TABLE(pci, cyberpro_pci_table);
1847 
1848 static struct pci_driver cyberpro_driver = {
1849 	.name		= "CyberPro",
1850 	.probe		= cyberpro_pci_probe,
1851 	.remove		= cyberpro_pci_remove,
1852 	.suspend	= cyberpro_pci_suspend,
1853 	.resume		= cyberpro_pci_resume,
1854 	.id_table	= cyberpro_pci_table
1855 };
1856 
1857 /*
1858  * I don't think we can use the "module_init" stuff here because
1859  * the fbcon stuff may not be initialised yet.  Hence the #ifdef
1860  * around module_init.
1861  *
1862  * Tony: "module_init" is now required
1863  */
1864 static int __init cyber2000fb_init(void)
1865 {
1866 	int ret = -1, err;
1867 
1868 #ifndef MODULE
1869 	char *option = NULL;
1870 
1871 	if (fb_get_options("cyber2000fb", &option))
1872 		return -ENODEV;
1873 	cyber2000fb_setup(option);
1874 #endif
1875 
1876 	err = pci_register_driver(&cyberpro_driver);
1877 	if (!err)
1878 		ret = 0;
1879 
1880 	return ret ? err : 0;
1881 }
1882 module_init(cyber2000fb_init);
1883 
1884 static void __exit cyberpro_exit(void)
1885 {
1886 	pci_unregister_driver(&cyberpro_driver);
1887 }
1888 module_exit(cyberpro_exit);
1889 
1890 MODULE_AUTHOR("Russell King");
1891 MODULE_DESCRIPTION("CyberPro 2000, 2010 and 5000 framebuffer driver");
1892 MODULE_LICENSE("GPL");
1893