1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * linux/drivers/video/cyber2000fb.c
4 *
5 * Copyright (C) 1998-2002 Russell King
6 *
7 * MIPS and 50xx clock support
8 * Copyright (C) 2001 Bradley D. LaRonde <brad@ltc.com>
9 *
10 * 32 bit support, text color and panning fixes for modes != 8 bit
11 * Copyright (C) 2002 Denis Oliver Kropp <dok@directfb.org>
12 *
13 * Integraphics CyberPro 2000, 2010 and 5000 frame buffer device
14 *
15 * Based on cyberfb.c.
16 *
17 * Note that we now use the new fbcon fix, var and cmap scheme. We do
18 * still have to check which console is the currently displayed one
19 * however, especially for the colourmap stuff.
20 *
21 * We also use the new hotplug PCI subsystem. I'm not sure if there
22 * are any such cards, but I'm erring on the side of caution. We don't
23 * want to go pop just because someone does have one.
24 *
25 * Note that this doesn't work fully in the case of multiple CyberPro
26 * cards with grabbers. We currently can only attach to the first
27 * CyberPro card found.
28 *
29 * When we're in truecolour mode, we power down the LUT RAM as a power
30 * saving feature. Also, when we enter any of the powersaving modes
31 * (except soft blanking) we power down the RAMDACs. This saves about
32 * 1W, which is roughly 8% of the power consumption of a NetWinder
33 * (which, incidentally, is about the same saving as a 2.5in hard disk
34 * entering standby mode.)
35 */
36 #include <linux/aperture.h>
37 #include <linux/module.h>
38 #include <linux/kernel.h>
39 #include <linux/errno.h>
40 #include <linux/string.h>
41 #include <linux/mm.h>
42 #include <linux/slab.h>
43 #include <linux/delay.h>
44 #include <linux/fb.h>
45 #include <linux/pci.h>
46 #include <linux/init.h>
47 #include <linux/io.h>
48 #include <linux/i2c.h>
49 #include <linux/i2c-algo-bit.h>
50
51 #ifdef __arm__
52 #include <asm/mach-types.h>
53 #endif
54
55 #include "cyber2000fb.h"
56
57 struct cfb_info {
58 struct fb_info fb;
59 struct display_switch *dispsw;
60 unsigned char __iomem *region;
61 unsigned char __iomem *regs;
62 u_int id;
63 u_int irq;
64 int func_use_count;
65 u_long ref_ps;
66
67 /*
68 * Clock divisors
69 */
70 u_int divisors[4];
71
72 struct {
73 u8 red, green, blue;
74 } palette[NR_PALETTE];
75
76 u_char mem_ctl1;
77 u_char mem_ctl2;
78 u_char mclk_mult;
79 u_char mclk_div;
80 /*
81 * RAMDAC control register is both of these or'ed together
82 */
83 u_char ramdac_ctrl;
84 u_char ramdac_powerdown;
85
86 u32 pseudo_palette[16];
87
88 spinlock_t reg_b0_lock;
89
90 #ifdef CONFIG_FB_CYBER2000_DDC
91 bool ddc_registered;
92 struct i2c_adapter ddc_adapter;
93 struct i2c_algo_bit_data ddc_algo;
94 #endif
95
96 #ifdef CONFIG_FB_CYBER2000_I2C
97 struct i2c_adapter i2c_adapter;
98 struct i2c_algo_bit_data i2c_algo;
99 #endif
100 };
101
102 static char *default_font = "Acorn8x8";
103 module_param(default_font, charp, 0);
104 MODULE_PARM_DESC(default_font, "Default font name");
105
106 /*
107 * Our access methods.
108 */
109 #define cyber2000fb_writel(val, reg, cfb) writel(val, (cfb)->regs + (reg))
110 #define cyber2000fb_writew(val, reg, cfb) writew(val, (cfb)->regs + (reg))
111 #define cyber2000fb_writeb(val, reg, cfb) writeb(val, (cfb)->regs + (reg))
112
113 #define cyber2000fb_readb(reg, cfb) readb((cfb)->regs + (reg))
114
115 static inline void
cyber2000_crtcw(unsigned int reg,unsigned int val,struct cfb_info * cfb)116 cyber2000_crtcw(unsigned int reg, unsigned int val, struct cfb_info *cfb)
117 {
118 cyber2000fb_writew((reg & 255) | val << 8, 0x3d4, cfb);
119 }
120
121 static inline void
cyber2000_grphw(unsigned int reg,unsigned int val,struct cfb_info * cfb)122 cyber2000_grphw(unsigned int reg, unsigned int val, struct cfb_info *cfb)
123 {
124 cyber2000fb_writew((reg & 255) | val << 8, 0x3ce, cfb);
125 }
126
127 static inline unsigned int
cyber2000_grphr(unsigned int reg,struct cfb_info * cfb)128 cyber2000_grphr(unsigned int reg, struct cfb_info *cfb)
129 {
130 cyber2000fb_writeb(reg, 0x3ce, cfb);
131 return cyber2000fb_readb(0x3cf, cfb);
132 }
133
134 static inline void
cyber2000_attrw(unsigned int reg,unsigned int val,struct cfb_info * cfb)135 cyber2000_attrw(unsigned int reg, unsigned int val, struct cfb_info *cfb)
136 {
137 cyber2000fb_readb(0x3da, cfb);
138 cyber2000fb_writeb(reg, 0x3c0, cfb);
139 cyber2000fb_readb(0x3c1, cfb);
140 cyber2000fb_writeb(val, 0x3c0, cfb);
141 }
142
143 static inline void
cyber2000_seqw(unsigned int reg,unsigned int val,struct cfb_info * cfb)144 cyber2000_seqw(unsigned int reg, unsigned int val, struct cfb_info *cfb)
145 {
146 cyber2000fb_writew((reg & 255) | val << 8, 0x3c4, cfb);
147 }
148
149 /* -------------------- Hardware specific routines ------------------------- */
150
151 /*
152 * Hardware Cyber2000 Acceleration
153 */
154 static void
cyber2000fb_fillrect(struct fb_info * info,const struct fb_fillrect * rect)155 cyber2000fb_fillrect(struct fb_info *info, const struct fb_fillrect *rect)
156 {
157 struct cfb_info *cfb = container_of(info, struct cfb_info, fb);
158 unsigned long dst, col;
159
160 if (!(cfb->fb.var.accel_flags & FB_ACCELF_TEXT)) {
161 cfb_fillrect(info, rect);
162 return;
163 }
164
165 cyber2000fb_writeb(0, CO_REG_CONTROL, cfb);
166 cyber2000fb_writew(rect->width - 1, CO_REG_PIXWIDTH, cfb);
167 cyber2000fb_writew(rect->height - 1, CO_REG_PIXHEIGHT, cfb);
168
169 col = rect->color;
170 if (cfb->fb.var.bits_per_pixel > 8)
171 col = ((u32 *)cfb->fb.pseudo_palette)[col];
172 cyber2000fb_writel(col, CO_REG_FGCOLOUR, cfb);
173
174 dst = rect->dx + rect->dy * cfb->fb.var.xres_virtual;
175 if (cfb->fb.var.bits_per_pixel == 24) {
176 cyber2000fb_writeb(dst, CO_REG_X_PHASE, cfb);
177 dst *= 3;
178 }
179
180 cyber2000fb_writel(dst, CO_REG_DEST_PTR, cfb);
181 cyber2000fb_writeb(CO_FG_MIX_SRC, CO_REG_FGMIX, cfb);
182 cyber2000fb_writew(CO_CMD_L_PATTERN_FGCOL, CO_REG_CMD_L, cfb);
183 cyber2000fb_writew(CO_CMD_H_BLITTER, CO_REG_CMD_H, cfb);
184 }
185
186 static void
cyber2000fb_copyarea(struct fb_info * info,const struct fb_copyarea * region)187 cyber2000fb_copyarea(struct fb_info *info, const struct fb_copyarea *region)
188 {
189 struct cfb_info *cfb = container_of(info, struct cfb_info, fb);
190 unsigned int cmd = CO_CMD_L_PATTERN_FGCOL;
191 unsigned long src, dst;
192
193 if (!(cfb->fb.var.accel_flags & FB_ACCELF_TEXT)) {
194 cfb_copyarea(info, region);
195 return;
196 }
197
198 cyber2000fb_writeb(0, CO_REG_CONTROL, cfb);
199 cyber2000fb_writew(region->width - 1, CO_REG_PIXWIDTH, cfb);
200 cyber2000fb_writew(region->height - 1, CO_REG_PIXHEIGHT, cfb);
201
202 src = region->sx + region->sy * cfb->fb.var.xres_virtual;
203 dst = region->dx + region->dy * cfb->fb.var.xres_virtual;
204
205 if (region->sx < region->dx) {
206 src += region->width - 1;
207 dst += region->width - 1;
208 cmd |= CO_CMD_L_INC_LEFT;
209 }
210
211 if (region->sy < region->dy) {
212 src += (region->height - 1) * cfb->fb.var.xres_virtual;
213 dst += (region->height - 1) * cfb->fb.var.xres_virtual;
214 cmd |= CO_CMD_L_INC_UP;
215 }
216
217 if (cfb->fb.var.bits_per_pixel == 24) {
218 cyber2000fb_writeb(dst, CO_REG_X_PHASE, cfb);
219 src *= 3;
220 dst *= 3;
221 }
222 cyber2000fb_writel(src, CO_REG_SRC1_PTR, cfb);
223 cyber2000fb_writel(dst, CO_REG_DEST_PTR, cfb);
224 cyber2000fb_writew(CO_FG_MIX_SRC, CO_REG_FGMIX, cfb);
225 cyber2000fb_writew(cmd, CO_REG_CMD_L, cfb);
226 cyber2000fb_writew(CO_CMD_H_FGSRCMAP | CO_CMD_H_BLITTER,
227 CO_REG_CMD_H, cfb);
228 }
229
230 static void
cyber2000fb_imageblit(struct fb_info * info,const struct fb_image * image)231 cyber2000fb_imageblit(struct fb_info *info, const struct fb_image *image)
232 {
233 cfb_imageblit(info, image);
234 return;
235 }
236
cyber2000fb_sync(struct fb_info * info)237 static int cyber2000fb_sync(struct fb_info *info)
238 {
239 struct cfb_info *cfb = container_of(info, struct cfb_info, fb);
240 int count = 100000;
241
242 if (!(cfb->fb.var.accel_flags & FB_ACCELF_TEXT))
243 return 0;
244
245 while (cyber2000fb_readb(CO_REG_CONTROL, cfb) & CO_CTRL_BUSY) {
246 if (!count--) {
247 debug_printf("accel_wait timed out\n");
248 cyber2000fb_writeb(0, CO_REG_CONTROL, cfb);
249 break;
250 }
251 udelay(1);
252 }
253 return 0;
254 }
255
256 /*
257 * ===========================================================================
258 */
259
convert_bitfield(u_int val,struct fb_bitfield * bf)260 static inline u32 convert_bitfield(u_int val, struct fb_bitfield *bf)
261 {
262 u_int mask = (1 << bf->length) - 1;
263
264 return (val >> (16 - bf->length) & mask) << bf->offset;
265 }
266
267 /*
268 * Set a single color register. Return != 0 for invalid regno.
269 */
270 static int
cyber2000fb_setcolreg(u_int regno,u_int red,u_int green,u_int blue,u_int transp,struct fb_info * info)271 cyber2000fb_setcolreg(u_int regno, u_int red, u_int green, u_int blue,
272 u_int transp, struct fb_info *info)
273 {
274 struct cfb_info *cfb = container_of(info, struct cfb_info, fb);
275 struct fb_var_screeninfo *var = &cfb->fb.var;
276 u32 pseudo_val;
277 int ret = 1;
278
279 switch (cfb->fb.fix.visual) {
280 default:
281 return 1;
282
283 /*
284 * Pseudocolour:
285 * 8 8
286 * pixel --/--+--/--> red lut --> red dac
287 * | 8
288 * +--/--> green lut --> green dac
289 * | 8
290 * +--/--> blue lut --> blue dac
291 */
292 case FB_VISUAL_PSEUDOCOLOR:
293 if (regno >= NR_PALETTE)
294 return 1;
295
296 red >>= 8;
297 green >>= 8;
298 blue >>= 8;
299
300 cfb->palette[regno].red = red;
301 cfb->palette[regno].green = green;
302 cfb->palette[regno].blue = blue;
303
304 cyber2000fb_writeb(regno, 0x3c8, cfb);
305 cyber2000fb_writeb(red, 0x3c9, cfb);
306 cyber2000fb_writeb(green, 0x3c9, cfb);
307 cyber2000fb_writeb(blue, 0x3c9, cfb);
308 return 0;
309
310 /*
311 * Direct colour:
312 * n rl
313 * pixel --/--+--/--> red lut --> red dac
314 * | gl
315 * +--/--> green lut --> green dac
316 * | bl
317 * +--/--> blue lut --> blue dac
318 * n = bpp, rl = red length, gl = green length, bl = blue length
319 */
320 case FB_VISUAL_DIRECTCOLOR:
321 red >>= 8;
322 green >>= 8;
323 blue >>= 8;
324
325 if (var->green.length == 6 && regno < 64) {
326 cfb->palette[regno << 2].green = green;
327
328 /*
329 * The 6 bits of the green component are applied
330 * to the high 6 bits of the LUT.
331 */
332 cyber2000fb_writeb(regno << 2, 0x3c8, cfb);
333 cyber2000fb_writeb(cfb->palette[regno >> 1].red,
334 0x3c9, cfb);
335 cyber2000fb_writeb(green, 0x3c9, cfb);
336 cyber2000fb_writeb(cfb->palette[regno >> 1].blue,
337 0x3c9, cfb);
338
339 green = cfb->palette[regno << 3].green;
340
341 ret = 0;
342 }
343
344 if (var->green.length >= 5 && regno < 32) {
345 cfb->palette[regno << 3].red = red;
346 cfb->palette[regno << 3].green = green;
347 cfb->palette[regno << 3].blue = blue;
348
349 /*
350 * The 5 bits of each colour component are
351 * applied to the high 5 bits of the LUT.
352 */
353 cyber2000fb_writeb(regno << 3, 0x3c8, cfb);
354 cyber2000fb_writeb(red, 0x3c9, cfb);
355 cyber2000fb_writeb(green, 0x3c9, cfb);
356 cyber2000fb_writeb(blue, 0x3c9, cfb);
357 ret = 0;
358 }
359
360 if (var->green.length == 4 && regno < 16) {
361 cfb->palette[regno << 4].red = red;
362 cfb->palette[regno << 4].green = green;
363 cfb->palette[regno << 4].blue = blue;
364
365 /*
366 * The 5 bits of each colour component are
367 * applied to the high 5 bits of the LUT.
368 */
369 cyber2000fb_writeb(regno << 4, 0x3c8, cfb);
370 cyber2000fb_writeb(red, 0x3c9, cfb);
371 cyber2000fb_writeb(green, 0x3c9, cfb);
372 cyber2000fb_writeb(blue, 0x3c9, cfb);
373 ret = 0;
374 }
375
376 /*
377 * Since this is only used for the first 16 colours, we
378 * don't have to care about overflowing for regno >= 32
379 */
380 pseudo_val = regno << var->red.offset |
381 regno << var->green.offset |
382 regno << var->blue.offset;
383 break;
384
385 /*
386 * True colour:
387 * n rl
388 * pixel --/--+--/--> red dac
389 * | gl
390 * +--/--> green dac
391 * | bl
392 * +--/--> blue dac
393 * n = bpp, rl = red length, gl = green length, bl = blue length
394 */
395 case FB_VISUAL_TRUECOLOR:
396 pseudo_val = convert_bitfield(transp ^ 0xffff, &var->transp);
397 pseudo_val |= convert_bitfield(red, &var->red);
398 pseudo_val |= convert_bitfield(green, &var->green);
399 pseudo_val |= convert_bitfield(blue, &var->blue);
400 ret = 0;
401 break;
402 }
403
404 /*
405 * Now set our pseudo palette for the CFB16/24/32 drivers.
406 */
407 if (regno < 16)
408 ((u32 *)cfb->fb.pseudo_palette)[regno] = pseudo_val;
409
410 return ret;
411 }
412
413 struct par_info {
414 /*
415 * Hardware
416 */
417 u_char clock_mult;
418 u_char clock_div;
419 u_char extseqmisc;
420 u_char co_pixfmt;
421 u_char crtc_ofl;
422 u_char crtc[19];
423 u_int width;
424 u_int pitch;
425 u_int fetch;
426
427 /*
428 * Other
429 */
430 u_char ramdac;
431 };
432
433 static const u_char crtc_idx[] = {
434 0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07,
435 0x08, 0x09,
436 0x10, 0x11, 0x12, 0x13, 0x14, 0x15, 0x16, 0x17, 0x18
437 };
438
cyber2000fb_write_ramdac_ctrl(struct cfb_info * cfb)439 static void cyber2000fb_write_ramdac_ctrl(struct cfb_info *cfb)
440 {
441 unsigned int i;
442 unsigned int val = cfb->ramdac_ctrl | cfb->ramdac_powerdown;
443
444 cyber2000fb_writeb(0x56, 0x3ce, cfb);
445 i = cyber2000fb_readb(0x3cf, cfb);
446 cyber2000fb_writeb(i | 4, 0x3cf, cfb);
447 cyber2000fb_writeb(val, 0x3c6, cfb);
448 cyber2000fb_writeb(i, 0x3cf, cfb);
449 /* prevent card lock-up observed on x86 with CyberPro 2000 */
450 cyber2000fb_readb(0x3cf, cfb);
451 }
452
cyber2000fb_set_timing(struct cfb_info * cfb,struct par_info * hw)453 static void cyber2000fb_set_timing(struct cfb_info *cfb, struct par_info *hw)
454 {
455 u_int i;
456
457 /*
458 * Blank palette
459 */
460 for (i = 0; i < NR_PALETTE; i++) {
461 cyber2000fb_writeb(i, 0x3c8, cfb);
462 cyber2000fb_writeb(0, 0x3c9, cfb);
463 cyber2000fb_writeb(0, 0x3c9, cfb);
464 cyber2000fb_writeb(0, 0x3c9, cfb);
465 }
466
467 cyber2000fb_writeb(0xef, 0x3c2, cfb);
468 cyber2000_crtcw(0x11, 0x0b, cfb);
469 cyber2000_attrw(0x11, 0x00, cfb);
470
471 cyber2000_seqw(0x00, 0x01, cfb);
472 cyber2000_seqw(0x01, 0x01, cfb);
473 cyber2000_seqw(0x02, 0x0f, cfb);
474 cyber2000_seqw(0x03, 0x00, cfb);
475 cyber2000_seqw(0x04, 0x0e, cfb);
476 cyber2000_seqw(0x00, 0x03, cfb);
477
478 for (i = 0; i < sizeof(crtc_idx); i++)
479 cyber2000_crtcw(crtc_idx[i], hw->crtc[i], cfb);
480
481 for (i = 0x0a; i < 0x10; i++)
482 cyber2000_crtcw(i, 0, cfb);
483
484 cyber2000_grphw(EXT_CRT_VRTOFL, hw->crtc_ofl, cfb);
485 cyber2000_grphw(0x00, 0x00, cfb);
486 cyber2000_grphw(0x01, 0x00, cfb);
487 cyber2000_grphw(0x02, 0x00, cfb);
488 cyber2000_grphw(0x03, 0x00, cfb);
489 cyber2000_grphw(0x04, 0x00, cfb);
490 cyber2000_grphw(0x05, 0x60, cfb);
491 cyber2000_grphw(0x06, 0x05, cfb);
492 cyber2000_grphw(0x07, 0x0f, cfb);
493 cyber2000_grphw(0x08, 0xff, cfb);
494
495 /* Attribute controller registers */
496 for (i = 0; i < 16; i++)
497 cyber2000_attrw(i, i, cfb);
498
499 cyber2000_attrw(0x10, 0x01, cfb);
500 cyber2000_attrw(0x11, 0x00, cfb);
501 cyber2000_attrw(0x12, 0x0f, cfb);
502 cyber2000_attrw(0x13, 0x00, cfb);
503 cyber2000_attrw(0x14, 0x00, cfb);
504
505 /* PLL registers */
506 spin_lock(&cfb->reg_b0_lock);
507 cyber2000_grphw(EXT_DCLK_MULT, hw->clock_mult, cfb);
508 cyber2000_grphw(EXT_DCLK_DIV, hw->clock_div, cfb);
509 cyber2000_grphw(EXT_MCLK_MULT, cfb->mclk_mult, cfb);
510 cyber2000_grphw(EXT_MCLK_DIV, cfb->mclk_div, cfb);
511 cyber2000_grphw(0x90, 0x01, cfb);
512 cyber2000_grphw(0xb9, 0x80, cfb);
513 cyber2000_grphw(0xb9, 0x00, cfb);
514 spin_unlock(&cfb->reg_b0_lock);
515
516 cfb->ramdac_ctrl = hw->ramdac;
517 cyber2000fb_write_ramdac_ctrl(cfb);
518
519 cyber2000fb_writeb(0x20, 0x3c0, cfb);
520 cyber2000fb_writeb(0xff, 0x3c6, cfb);
521
522 cyber2000_grphw(0x14, hw->fetch, cfb);
523 cyber2000_grphw(0x15, ((hw->fetch >> 8) & 0x03) |
524 ((hw->pitch >> 4) & 0x30), cfb);
525 cyber2000_grphw(EXT_SEQ_MISC, hw->extseqmisc, cfb);
526
527 /*
528 * Set up accelerator registers
529 */
530 cyber2000fb_writew(hw->width, CO_REG_SRC_WIDTH, cfb);
531 cyber2000fb_writew(hw->width, CO_REG_DEST_WIDTH, cfb);
532 cyber2000fb_writeb(hw->co_pixfmt, CO_REG_PIXFMT, cfb);
533 }
534
535 static inline int
cyber2000fb_update_start(struct cfb_info * cfb,struct fb_var_screeninfo * var)536 cyber2000fb_update_start(struct cfb_info *cfb, struct fb_var_screeninfo *var)
537 {
538 u_int base = var->yoffset * var->xres_virtual + var->xoffset;
539
540 base *= var->bits_per_pixel;
541
542 /*
543 * Convert to bytes and shift two extra bits because DAC
544 * can only start on 4 byte aligned data.
545 */
546 base >>= 5;
547
548 if (base >= 1 << 20)
549 return -EINVAL;
550
551 cyber2000_grphw(0x10, base >> 16 | 0x10, cfb);
552 cyber2000_crtcw(0x0c, base >> 8, cfb);
553 cyber2000_crtcw(0x0d, base, cfb);
554
555 return 0;
556 }
557
558 static int
cyber2000fb_decode_crtc(struct par_info * hw,struct cfb_info * cfb,struct fb_var_screeninfo * var)559 cyber2000fb_decode_crtc(struct par_info *hw, struct cfb_info *cfb,
560 struct fb_var_screeninfo *var)
561 {
562 u_int Htotal, Hblankend, Hsyncend;
563 u_int Vtotal, Vdispend, Vblankstart, Vblankend, Vsyncstart, Vsyncend;
564 #define ENCODE_BIT(v, b1, m, b2) ((((v) >> (b1)) & (m)) << (b2))
565
566 hw->crtc[13] = hw->pitch;
567 hw->crtc[17] = 0xe3;
568 hw->crtc[14] = 0;
569 hw->crtc[8] = 0;
570
571 Htotal = var->xres + var->right_margin +
572 var->hsync_len + var->left_margin;
573
574 if (Htotal > 2080)
575 return -EINVAL;
576
577 hw->crtc[0] = (Htotal >> 3) - 5;
578 hw->crtc[1] = (var->xres >> 3) - 1;
579 hw->crtc[2] = var->xres >> 3;
580 hw->crtc[4] = (var->xres + var->right_margin) >> 3;
581
582 Hblankend = (Htotal - 4 * 8) >> 3;
583
584 hw->crtc[3] = ENCODE_BIT(Hblankend, 0, 0x1f, 0) |
585 ENCODE_BIT(1, 0, 0x01, 7);
586
587 Hsyncend = (var->xres + var->right_margin + var->hsync_len) >> 3;
588
589 hw->crtc[5] = ENCODE_BIT(Hsyncend, 0, 0x1f, 0) |
590 ENCODE_BIT(Hblankend, 5, 0x01, 7);
591
592 Vdispend = var->yres - 1;
593 Vsyncstart = var->yres + var->lower_margin;
594 Vsyncend = var->yres + var->lower_margin + var->vsync_len;
595 Vtotal = var->yres + var->lower_margin + var->vsync_len +
596 var->upper_margin - 2;
597
598 if (Vtotal > 2047)
599 return -EINVAL;
600
601 Vblankstart = var->yres + 6;
602 Vblankend = Vtotal - 10;
603
604 hw->crtc[6] = Vtotal;
605 hw->crtc[7] = ENCODE_BIT(Vtotal, 8, 0x01, 0) |
606 ENCODE_BIT(Vdispend, 8, 0x01, 1) |
607 ENCODE_BIT(Vsyncstart, 8, 0x01, 2) |
608 ENCODE_BIT(Vblankstart, 8, 0x01, 3) |
609 ENCODE_BIT(1, 0, 0x01, 4) |
610 ENCODE_BIT(Vtotal, 9, 0x01, 5) |
611 ENCODE_BIT(Vdispend, 9, 0x01, 6) |
612 ENCODE_BIT(Vsyncstart, 9, 0x01, 7);
613 hw->crtc[9] = ENCODE_BIT(0, 0, 0x1f, 0) |
614 ENCODE_BIT(Vblankstart, 9, 0x01, 5) |
615 ENCODE_BIT(1, 0, 0x01, 6);
616 hw->crtc[10] = Vsyncstart;
617 hw->crtc[11] = ENCODE_BIT(Vsyncend, 0, 0x0f, 0) |
618 ENCODE_BIT(1, 0, 0x01, 7);
619 hw->crtc[12] = Vdispend;
620 hw->crtc[15] = Vblankstart;
621 hw->crtc[16] = Vblankend;
622 hw->crtc[18] = 0xff;
623
624 /*
625 * overflow - graphics reg 0x11
626 * 0=VTOTAL:10 1=VDEND:10 2=VRSTART:10 3=VBSTART:10
627 * 4=LINECOMP:10 5-IVIDEO 6=FIXCNT
628 */
629 hw->crtc_ofl =
630 ENCODE_BIT(Vtotal, 10, 0x01, 0) |
631 ENCODE_BIT(Vdispend, 10, 0x01, 1) |
632 ENCODE_BIT(Vsyncstart, 10, 0x01, 2) |
633 ENCODE_BIT(Vblankstart, 10, 0x01, 3) |
634 EXT_CRT_VRTOFL_LINECOMP10;
635
636 /* woody: set the interlaced bit... */
637 /* FIXME: what about doublescan? */
638 if ((var->vmode & FB_VMODE_MASK) == FB_VMODE_INTERLACED)
639 hw->crtc_ofl |= EXT_CRT_VRTOFL_INTERLACE;
640
641 return 0;
642 }
643
644 /*
645 * The following was discovered by a good monitor, bit twiddling, theorising
646 * and but mostly luck. Strangely, it looks like everyone elses' PLL!
647 *
648 * Clock registers:
649 * fclock = fpll / div2
650 * fpll = fref * mult / div1
651 * where:
652 * fref = 14.318MHz (69842ps)
653 * mult = reg0xb0.7:0
654 * div1 = (reg0xb1.5:0 + 1)
655 * div2 = 2^(reg0xb1.7:6)
656 * fpll should be between 115 and 260 MHz
657 * (8696ps and 3846ps)
658 */
659 static int
cyber2000fb_decode_clock(struct par_info * hw,struct cfb_info * cfb,struct fb_var_screeninfo * var)660 cyber2000fb_decode_clock(struct par_info *hw, struct cfb_info *cfb,
661 struct fb_var_screeninfo *var)
662 {
663 u_long pll_ps = var->pixclock;
664 const u_long ref_ps = cfb->ref_ps;
665 u_int div2, t_div1, best_div1, best_mult;
666 int best_diff;
667 int vco;
668
669 /*
670 * Step 1:
671 * find div2 such that 115MHz < fpll < 260MHz
672 * and 0 <= div2 < 4
673 */
674 for (div2 = 0; div2 < 4; div2++) {
675 u_long new_pll;
676
677 new_pll = pll_ps / cfb->divisors[div2];
678 if (8696 > new_pll && new_pll > 3846) {
679 pll_ps = new_pll;
680 break;
681 }
682 }
683
684 if (div2 == 4)
685 return -EINVAL;
686
687 /*
688 * Step 2:
689 * Given pll_ps and ref_ps, find:
690 * pll_ps * 0.995 < pll_ps_calc < pll_ps * 1.005
691 * where { 1 < best_div1 < 32, 1 < best_mult < 256 }
692 * pll_ps_calc = best_div1 / (ref_ps * best_mult)
693 */
694 best_diff = 0x7fffffff;
695 best_mult = 2;
696 best_div1 = 32;
697 for (t_div1 = 2; t_div1 < 32; t_div1 += 1) {
698 u_int rr, t_mult, t_pll_ps;
699 int diff;
700
701 /*
702 * Find the multiplier for this divisor
703 */
704 rr = ref_ps * t_div1;
705 t_mult = (rr + pll_ps / 2) / pll_ps;
706
707 /*
708 * Is the multiplier within the correct range?
709 */
710 if (t_mult > 256 || t_mult < 2)
711 continue;
712
713 /*
714 * Calculate the actual clock period from this multiplier
715 * and divisor, and estimate the error.
716 */
717 t_pll_ps = (rr + t_mult / 2) / t_mult;
718 diff = pll_ps - t_pll_ps;
719 if (diff < 0)
720 diff = -diff;
721
722 if (diff < best_diff) {
723 best_diff = diff;
724 best_mult = t_mult;
725 best_div1 = t_div1;
726 }
727
728 /*
729 * If we hit an exact value, there is no point in continuing.
730 */
731 if (diff == 0)
732 break;
733 }
734
735 /*
736 * Step 3:
737 * combine values
738 */
739 hw->clock_mult = best_mult - 1;
740 hw->clock_div = div2 << 6 | (best_div1 - 1);
741
742 vco = ref_ps * best_div1 / best_mult;
743 if ((ref_ps == 40690) && (vco < 5556))
744 /* Set VFSEL when VCO > 180MHz (5.556 ps). */
745 hw->clock_div |= EXT_DCLK_DIV_VFSEL;
746
747 return 0;
748 }
749
750 /*
751 * Set the User Defined Part of the Display
752 */
753 static int
cyber2000fb_check_var(struct fb_var_screeninfo * var,struct fb_info * info)754 cyber2000fb_check_var(struct fb_var_screeninfo *var, struct fb_info *info)
755 {
756 struct cfb_info *cfb = container_of(info, struct cfb_info, fb);
757 struct par_info hw;
758 unsigned int mem;
759 int err;
760
761 var->transp.msb_right = 0;
762 var->red.msb_right = 0;
763 var->green.msb_right = 0;
764 var->blue.msb_right = 0;
765 var->transp.offset = 0;
766 var->transp.length = 0;
767
768 switch (var->bits_per_pixel) {
769 case 8: /* PSEUDOCOLOUR, 256 */
770 var->red.offset = 0;
771 var->red.length = 8;
772 var->green.offset = 0;
773 var->green.length = 8;
774 var->blue.offset = 0;
775 var->blue.length = 8;
776 break;
777
778 case 16:/* DIRECTCOLOUR, 64k or 32k */
779 switch (var->green.length) {
780 case 6: /* RGB565, 64k */
781 var->red.offset = 11;
782 var->red.length = 5;
783 var->green.offset = 5;
784 var->green.length = 6;
785 var->blue.offset = 0;
786 var->blue.length = 5;
787 break;
788
789 default:
790 case 5: /* RGB555, 32k */
791 var->red.offset = 10;
792 var->red.length = 5;
793 var->green.offset = 5;
794 var->green.length = 5;
795 var->blue.offset = 0;
796 var->blue.length = 5;
797 break;
798
799 case 4: /* RGB444, 4k + transparency? */
800 var->transp.offset = 12;
801 var->transp.length = 4;
802 var->red.offset = 8;
803 var->red.length = 4;
804 var->green.offset = 4;
805 var->green.length = 4;
806 var->blue.offset = 0;
807 var->blue.length = 4;
808 break;
809 }
810 break;
811
812 case 24:/* TRUECOLOUR, 16m */
813 var->red.offset = 16;
814 var->red.length = 8;
815 var->green.offset = 8;
816 var->green.length = 8;
817 var->blue.offset = 0;
818 var->blue.length = 8;
819 break;
820
821 case 32:/* TRUECOLOUR, 16m */
822 var->transp.offset = 24;
823 var->transp.length = 8;
824 var->red.offset = 16;
825 var->red.length = 8;
826 var->green.offset = 8;
827 var->green.length = 8;
828 var->blue.offset = 0;
829 var->blue.length = 8;
830 break;
831
832 default:
833 return -EINVAL;
834 }
835
836 mem = var->xres_virtual * var->yres_virtual * (var->bits_per_pixel / 8);
837 if (mem > cfb->fb.fix.smem_len)
838 var->yres_virtual = cfb->fb.fix.smem_len * 8 /
839 (var->bits_per_pixel * var->xres_virtual);
840
841 if (var->yres > var->yres_virtual)
842 var->yres = var->yres_virtual;
843 if (var->xres > var->xres_virtual)
844 var->xres = var->xres_virtual;
845
846 err = cyber2000fb_decode_clock(&hw, cfb, var);
847 if (err)
848 return err;
849
850 err = cyber2000fb_decode_crtc(&hw, cfb, var);
851 if (err)
852 return err;
853
854 return 0;
855 }
856
cyber2000fb_set_par(struct fb_info * info)857 static int cyber2000fb_set_par(struct fb_info *info)
858 {
859 struct cfb_info *cfb = container_of(info, struct cfb_info, fb);
860 struct fb_var_screeninfo *var = &cfb->fb.var;
861 struct par_info hw;
862 unsigned int mem;
863
864 hw.width = var->xres_virtual;
865 hw.ramdac = RAMDAC_VREFEN | RAMDAC_DAC8BIT;
866
867 switch (var->bits_per_pixel) {
868 case 8:
869 hw.co_pixfmt = CO_PIXFMT_8BPP;
870 hw.pitch = hw.width >> 3;
871 hw.extseqmisc = EXT_SEQ_MISC_8;
872 break;
873
874 case 16:
875 hw.co_pixfmt = CO_PIXFMT_16BPP;
876 hw.pitch = hw.width >> 2;
877
878 switch (var->green.length) {
879 case 6: /* RGB565, 64k */
880 hw.extseqmisc = EXT_SEQ_MISC_16_RGB565;
881 break;
882 case 5: /* RGB555, 32k */
883 hw.extseqmisc = EXT_SEQ_MISC_16_RGB555;
884 break;
885 case 4: /* RGB444, 4k + transparency? */
886 hw.extseqmisc = EXT_SEQ_MISC_16_RGB444;
887 break;
888 default:
889 BUG();
890 }
891 break;
892
893 case 24:/* TRUECOLOUR, 16m */
894 hw.co_pixfmt = CO_PIXFMT_24BPP;
895 hw.width *= 3;
896 hw.pitch = hw.width >> 3;
897 hw.ramdac |= (RAMDAC_BYPASS | RAMDAC_RAMPWRDN);
898 hw.extseqmisc = EXT_SEQ_MISC_24_RGB888;
899 break;
900
901 case 32:/* TRUECOLOUR, 16m */
902 hw.co_pixfmt = CO_PIXFMT_32BPP;
903 hw.pitch = hw.width >> 1;
904 hw.ramdac |= (RAMDAC_BYPASS | RAMDAC_RAMPWRDN);
905 hw.extseqmisc = EXT_SEQ_MISC_32;
906 break;
907
908 default:
909 BUG();
910 }
911
912 /*
913 * Sigh, this is absolutely disgusting, but caused by
914 * the way the fbcon developers want to separate out
915 * the "checking" and the "setting" of the video mode.
916 *
917 * If the mode is not suitable for the hardware here,
918 * we can't prevent it being set by returning an error.
919 *
920 * In theory, since NetWinders contain just one VGA card,
921 * we should never end up hitting this problem.
922 */
923 BUG_ON(cyber2000fb_decode_clock(&hw, cfb, var) != 0);
924 BUG_ON(cyber2000fb_decode_crtc(&hw, cfb, var) != 0);
925
926 hw.width -= 1;
927 hw.fetch = hw.pitch;
928 if (!(cfb->mem_ctl2 & MEM_CTL2_64BIT))
929 hw.fetch <<= 1;
930 hw.fetch += 1;
931
932 cfb->fb.fix.line_length = var->xres_virtual * var->bits_per_pixel / 8;
933
934 /*
935 * Same here - if the size of the video mode exceeds the
936 * available RAM, we can't prevent this mode being set.
937 *
938 * In theory, since NetWinders contain just one VGA card,
939 * we should never end up hitting this problem.
940 */
941 mem = cfb->fb.fix.line_length * var->yres_virtual;
942 BUG_ON(mem > cfb->fb.fix.smem_len);
943
944 /*
945 * 8bpp displays are always pseudo colour. 16bpp and above
946 * are direct colour or true colour, depending on whether
947 * the RAMDAC palettes are bypassed. (Direct colour has
948 * palettes, true colour does not.)
949 */
950 if (var->bits_per_pixel == 8)
951 cfb->fb.fix.visual = FB_VISUAL_PSEUDOCOLOR;
952 else if (hw.ramdac & RAMDAC_BYPASS)
953 cfb->fb.fix.visual = FB_VISUAL_TRUECOLOR;
954 else
955 cfb->fb.fix.visual = FB_VISUAL_DIRECTCOLOR;
956
957 cyber2000fb_set_timing(cfb, &hw);
958 cyber2000fb_update_start(cfb, var);
959
960 return 0;
961 }
962
963 /*
964 * Pan or Wrap the Display
965 */
966 static int
cyber2000fb_pan_display(struct fb_var_screeninfo * var,struct fb_info * info)967 cyber2000fb_pan_display(struct fb_var_screeninfo *var, struct fb_info *info)
968 {
969 struct cfb_info *cfb = container_of(info, struct cfb_info, fb);
970
971 if (cyber2000fb_update_start(cfb, var))
972 return -EINVAL;
973
974 cfb->fb.var.xoffset = var->xoffset;
975 cfb->fb.var.yoffset = var->yoffset;
976
977 if (var->vmode & FB_VMODE_YWRAP) {
978 cfb->fb.var.vmode |= FB_VMODE_YWRAP;
979 } else {
980 cfb->fb.var.vmode &= ~FB_VMODE_YWRAP;
981 }
982
983 return 0;
984 }
985
986 /*
987 * (Un)Blank the display.
988 *
989 * Blank the screen if blank_mode != 0, else unblank. If
990 * blank == NULL then the caller blanks by setting the CLUT
991 * (Color Look Up Table) to all black. Return 0 if blanking
992 * succeeded, != 0 if un-/blanking failed due to e.g. a
993 * video mode which doesn't support it. Implements VESA
994 * suspend and powerdown modes on hardware that supports
995 * disabling hsync/vsync:
996 * blank_mode == 2: suspend vsync
997 * blank_mode == 3: suspend hsync
998 * blank_mode == 4: powerdown
999 *
1000 * wms...Enable VESA DMPS compatible powerdown mode
1001 * run "setterm -powersave powerdown" to take advantage
1002 */
cyber2000fb_blank(int blank,struct fb_info * info)1003 static int cyber2000fb_blank(int blank, struct fb_info *info)
1004 {
1005 struct cfb_info *cfb = container_of(info, struct cfb_info, fb);
1006 unsigned int sync = 0;
1007 int i;
1008
1009 switch (blank) {
1010 case FB_BLANK_POWERDOWN: /* powerdown - both sync lines down */
1011 sync = EXT_SYNC_CTL_VS_0 | EXT_SYNC_CTL_HS_0;
1012 break;
1013 case FB_BLANK_HSYNC_SUSPEND: /* hsync off */
1014 sync = EXT_SYNC_CTL_VS_NORMAL | EXT_SYNC_CTL_HS_0;
1015 break;
1016 case FB_BLANK_VSYNC_SUSPEND: /* vsync off */
1017 sync = EXT_SYNC_CTL_VS_0 | EXT_SYNC_CTL_HS_NORMAL;
1018 break;
1019 case FB_BLANK_NORMAL: /* soft blank */
1020 default: /* unblank */
1021 break;
1022 }
1023
1024 cyber2000_grphw(EXT_SYNC_CTL, sync, cfb);
1025
1026 if (blank <= 1) {
1027 /* turn on ramdacs */
1028 cfb->ramdac_powerdown &= ~(RAMDAC_DACPWRDN | RAMDAC_BYPASS |
1029 RAMDAC_RAMPWRDN);
1030 cyber2000fb_write_ramdac_ctrl(cfb);
1031 }
1032
1033 /*
1034 * Soft blank/unblank the display.
1035 */
1036 if (blank) { /* soft blank */
1037 for (i = 0; i < NR_PALETTE; i++) {
1038 cyber2000fb_writeb(i, 0x3c8, cfb);
1039 cyber2000fb_writeb(0, 0x3c9, cfb);
1040 cyber2000fb_writeb(0, 0x3c9, cfb);
1041 cyber2000fb_writeb(0, 0x3c9, cfb);
1042 }
1043 } else { /* unblank */
1044 for (i = 0; i < NR_PALETTE; i++) {
1045 cyber2000fb_writeb(i, 0x3c8, cfb);
1046 cyber2000fb_writeb(cfb->palette[i].red, 0x3c9, cfb);
1047 cyber2000fb_writeb(cfb->palette[i].green, 0x3c9, cfb);
1048 cyber2000fb_writeb(cfb->palette[i].blue, 0x3c9, cfb);
1049 }
1050 }
1051
1052 if (blank >= 2) {
1053 /* turn off ramdacs */
1054 cfb->ramdac_powerdown |= RAMDAC_DACPWRDN | RAMDAC_BYPASS |
1055 RAMDAC_RAMPWRDN;
1056 cyber2000fb_write_ramdac_ctrl(cfb);
1057 }
1058
1059 return 0;
1060 }
1061
1062 static const struct fb_ops cyber2000fb_ops = {
1063 .owner = THIS_MODULE,
1064 .fb_check_var = cyber2000fb_check_var,
1065 .fb_set_par = cyber2000fb_set_par,
1066 .fb_setcolreg = cyber2000fb_setcolreg,
1067 .fb_blank = cyber2000fb_blank,
1068 .fb_pan_display = cyber2000fb_pan_display,
1069 .fb_fillrect = cyber2000fb_fillrect,
1070 .fb_copyarea = cyber2000fb_copyarea,
1071 .fb_imageblit = cyber2000fb_imageblit,
1072 .fb_sync = cyber2000fb_sync,
1073 };
1074
1075 /*
1076 * This is the only "static" reference to the internal data structures
1077 * of this driver. It is here solely at the moment to support the other
1078 * CyberPro modules external to this driver.
1079 */
1080 static struct cfb_info *int_cfb_info;
1081
1082 /*
1083 * Enable access to the extended registers
1084 */
cyber2000fb_enable_extregs(struct cfb_info * cfb)1085 void cyber2000fb_enable_extregs(struct cfb_info *cfb)
1086 {
1087 cfb->func_use_count += 1;
1088
1089 if (cfb->func_use_count == 1) {
1090 int old;
1091
1092 old = cyber2000_grphr(EXT_FUNC_CTL, cfb);
1093 old |= EXT_FUNC_CTL_EXTREGENBL;
1094 cyber2000_grphw(EXT_FUNC_CTL, old, cfb);
1095 }
1096 }
1097 EXPORT_SYMBOL(cyber2000fb_enable_extregs);
1098
1099 /*
1100 * Disable access to the extended registers
1101 */
cyber2000fb_disable_extregs(struct cfb_info * cfb)1102 void cyber2000fb_disable_extregs(struct cfb_info *cfb)
1103 {
1104 if (cfb->func_use_count == 1) {
1105 int old;
1106
1107 old = cyber2000_grphr(EXT_FUNC_CTL, cfb);
1108 old &= ~EXT_FUNC_CTL_EXTREGENBL;
1109 cyber2000_grphw(EXT_FUNC_CTL, old, cfb);
1110 }
1111
1112 if (cfb->func_use_count == 0)
1113 printk(KERN_ERR "disable_extregs: count = 0\n");
1114 else
1115 cfb->func_use_count -= 1;
1116 }
1117 EXPORT_SYMBOL(cyber2000fb_disable_extregs);
1118
1119 /*
1120 * Attach a capture/tv driver to the core CyberX0X0 driver.
1121 */
cyber2000fb_attach(struct cyberpro_info * info,int idx)1122 int cyber2000fb_attach(struct cyberpro_info *info, int idx)
1123 {
1124 if (int_cfb_info != NULL) {
1125 info->dev = int_cfb_info->fb.device;
1126 #ifdef CONFIG_FB_CYBER2000_I2C
1127 info->i2c = &int_cfb_info->i2c_adapter;
1128 #else
1129 info->i2c = NULL;
1130 #endif
1131 info->regs = int_cfb_info->regs;
1132 info->irq = int_cfb_info->irq;
1133 info->fb = int_cfb_info->fb.screen_base;
1134 info->fb_size = int_cfb_info->fb.fix.smem_len;
1135 info->info = int_cfb_info;
1136
1137 strscpy(info->dev_name, int_cfb_info->fb.fix.id,
1138 sizeof(info->dev_name));
1139 }
1140
1141 return int_cfb_info != NULL;
1142 }
1143 EXPORT_SYMBOL(cyber2000fb_attach);
1144
1145 /*
1146 * Detach a capture/tv driver from the core CyberX0X0 driver.
1147 */
cyber2000fb_detach(int idx)1148 void cyber2000fb_detach(int idx)
1149 {
1150 }
1151 EXPORT_SYMBOL(cyber2000fb_detach);
1152
1153 #ifdef CONFIG_FB_CYBER2000_DDC
1154
1155 #define DDC_REG 0xb0
1156 #define DDC_SCL_OUT (1 << 0)
1157 #define DDC_SDA_OUT (1 << 4)
1158 #define DDC_SCL_IN (1 << 2)
1159 #define DDC_SDA_IN (1 << 6)
1160
cyber2000fb_enable_ddc(struct cfb_info * cfb)1161 static void cyber2000fb_enable_ddc(struct cfb_info *cfb)
1162 __acquires(&cfb->reg_b0_lock)
1163 {
1164 spin_lock(&cfb->reg_b0_lock);
1165 cyber2000fb_writew(0x1bf, 0x3ce, cfb);
1166 }
1167
cyber2000fb_disable_ddc(struct cfb_info * cfb)1168 static void cyber2000fb_disable_ddc(struct cfb_info *cfb)
1169 __releases(&cfb->reg_b0_lock)
1170 {
1171 cyber2000fb_writew(0x0bf, 0x3ce, cfb);
1172 spin_unlock(&cfb->reg_b0_lock);
1173 }
1174
1175
cyber2000fb_ddc_setscl(void * data,int val)1176 static void cyber2000fb_ddc_setscl(void *data, int val)
1177 {
1178 struct cfb_info *cfb = data;
1179 unsigned char reg;
1180
1181 cyber2000fb_enable_ddc(cfb);
1182 reg = cyber2000_grphr(DDC_REG, cfb);
1183 if (!val) /* bit is inverted */
1184 reg |= DDC_SCL_OUT;
1185 else
1186 reg &= ~DDC_SCL_OUT;
1187 cyber2000_grphw(DDC_REG, reg, cfb);
1188 cyber2000fb_disable_ddc(cfb);
1189 }
1190
cyber2000fb_ddc_setsda(void * data,int val)1191 static void cyber2000fb_ddc_setsda(void *data, int val)
1192 {
1193 struct cfb_info *cfb = data;
1194 unsigned char reg;
1195
1196 cyber2000fb_enable_ddc(cfb);
1197 reg = cyber2000_grphr(DDC_REG, cfb);
1198 if (!val) /* bit is inverted */
1199 reg |= DDC_SDA_OUT;
1200 else
1201 reg &= ~DDC_SDA_OUT;
1202 cyber2000_grphw(DDC_REG, reg, cfb);
1203 cyber2000fb_disable_ddc(cfb);
1204 }
1205
cyber2000fb_ddc_getscl(void * data)1206 static int cyber2000fb_ddc_getscl(void *data)
1207 {
1208 struct cfb_info *cfb = data;
1209 int retval;
1210
1211 cyber2000fb_enable_ddc(cfb);
1212 retval = !!(cyber2000_grphr(DDC_REG, cfb) & DDC_SCL_IN);
1213 cyber2000fb_disable_ddc(cfb);
1214
1215 return retval;
1216 }
1217
cyber2000fb_ddc_getsda(void * data)1218 static int cyber2000fb_ddc_getsda(void *data)
1219 {
1220 struct cfb_info *cfb = data;
1221 int retval;
1222
1223 cyber2000fb_enable_ddc(cfb);
1224 retval = !!(cyber2000_grphr(DDC_REG, cfb) & DDC_SDA_IN);
1225 cyber2000fb_disable_ddc(cfb);
1226
1227 return retval;
1228 }
1229
cyber2000fb_setup_ddc_bus(struct cfb_info * cfb)1230 static int cyber2000fb_setup_ddc_bus(struct cfb_info *cfb)
1231 {
1232 strscpy(cfb->ddc_adapter.name, cfb->fb.fix.id,
1233 sizeof(cfb->ddc_adapter.name));
1234 cfb->ddc_adapter.owner = THIS_MODULE;
1235 cfb->ddc_adapter.class = I2C_CLASS_DDC;
1236 cfb->ddc_adapter.algo_data = &cfb->ddc_algo;
1237 cfb->ddc_adapter.dev.parent = cfb->fb.device;
1238 cfb->ddc_algo.setsda = cyber2000fb_ddc_setsda;
1239 cfb->ddc_algo.setscl = cyber2000fb_ddc_setscl;
1240 cfb->ddc_algo.getsda = cyber2000fb_ddc_getsda;
1241 cfb->ddc_algo.getscl = cyber2000fb_ddc_getscl;
1242 cfb->ddc_algo.udelay = 10;
1243 cfb->ddc_algo.timeout = 20;
1244 cfb->ddc_algo.data = cfb;
1245
1246 i2c_set_adapdata(&cfb->ddc_adapter, cfb);
1247
1248 return i2c_bit_add_bus(&cfb->ddc_adapter);
1249 }
1250 #endif /* CONFIG_FB_CYBER2000_DDC */
1251
1252 #ifdef CONFIG_FB_CYBER2000_I2C
cyber2000fb_i2c_setsda(void * data,int state)1253 static void cyber2000fb_i2c_setsda(void *data, int state)
1254 {
1255 struct cfb_info *cfb = data;
1256 unsigned int latch2;
1257
1258 spin_lock(&cfb->reg_b0_lock);
1259 latch2 = cyber2000_grphr(EXT_LATCH2, cfb);
1260 latch2 &= EXT_LATCH2_I2C_CLKEN;
1261 if (state)
1262 latch2 |= EXT_LATCH2_I2C_DATEN;
1263 cyber2000_grphw(EXT_LATCH2, latch2, cfb);
1264 spin_unlock(&cfb->reg_b0_lock);
1265 }
1266
cyber2000fb_i2c_setscl(void * data,int state)1267 static void cyber2000fb_i2c_setscl(void *data, int state)
1268 {
1269 struct cfb_info *cfb = data;
1270 unsigned int latch2;
1271
1272 spin_lock(&cfb->reg_b0_lock);
1273 latch2 = cyber2000_grphr(EXT_LATCH2, cfb);
1274 latch2 &= EXT_LATCH2_I2C_DATEN;
1275 if (state)
1276 latch2 |= EXT_LATCH2_I2C_CLKEN;
1277 cyber2000_grphw(EXT_LATCH2, latch2, cfb);
1278 spin_unlock(&cfb->reg_b0_lock);
1279 }
1280
cyber2000fb_i2c_getsda(void * data)1281 static int cyber2000fb_i2c_getsda(void *data)
1282 {
1283 struct cfb_info *cfb = data;
1284 int ret;
1285
1286 spin_lock(&cfb->reg_b0_lock);
1287 ret = !!(cyber2000_grphr(EXT_LATCH2, cfb) & EXT_LATCH2_I2C_DAT);
1288 spin_unlock(&cfb->reg_b0_lock);
1289
1290 return ret;
1291 }
1292
cyber2000fb_i2c_getscl(void * data)1293 static int cyber2000fb_i2c_getscl(void *data)
1294 {
1295 struct cfb_info *cfb = data;
1296 int ret;
1297
1298 spin_lock(&cfb->reg_b0_lock);
1299 ret = !!(cyber2000_grphr(EXT_LATCH2, cfb) & EXT_LATCH2_I2C_CLK);
1300 spin_unlock(&cfb->reg_b0_lock);
1301
1302 return ret;
1303 }
1304
cyber2000fb_i2c_register(struct cfb_info * cfb)1305 static int cyber2000fb_i2c_register(struct cfb_info *cfb)
1306 {
1307 strscpy(cfb->i2c_adapter.name, cfb->fb.fix.id,
1308 sizeof(cfb->i2c_adapter.name));
1309 cfb->i2c_adapter.owner = THIS_MODULE;
1310 cfb->i2c_adapter.algo_data = &cfb->i2c_algo;
1311 cfb->i2c_adapter.dev.parent = cfb->fb.device;
1312 cfb->i2c_algo.setsda = cyber2000fb_i2c_setsda;
1313 cfb->i2c_algo.setscl = cyber2000fb_i2c_setscl;
1314 cfb->i2c_algo.getsda = cyber2000fb_i2c_getsda;
1315 cfb->i2c_algo.getscl = cyber2000fb_i2c_getscl;
1316 cfb->i2c_algo.udelay = 5;
1317 cfb->i2c_algo.timeout = msecs_to_jiffies(100);
1318 cfb->i2c_algo.data = cfb;
1319
1320 return i2c_bit_add_bus(&cfb->i2c_adapter);
1321 }
1322
cyber2000fb_i2c_unregister(struct cfb_info * cfb)1323 static void cyber2000fb_i2c_unregister(struct cfb_info *cfb)
1324 {
1325 i2c_del_adapter(&cfb->i2c_adapter);
1326 }
1327 #else
1328 #define cyber2000fb_i2c_register(cfb) (0)
1329 #define cyber2000fb_i2c_unregister(cfb) do { } while (0)
1330 #endif
1331
1332 /*
1333 * These parameters give
1334 * 640x480, hsync 31.5kHz, vsync 60Hz
1335 */
1336 static const struct fb_videomode cyber2000fb_default_mode = {
1337 .refresh = 60,
1338 .xres = 640,
1339 .yres = 480,
1340 .pixclock = 39722,
1341 .left_margin = 56,
1342 .right_margin = 16,
1343 .upper_margin = 34,
1344 .lower_margin = 9,
1345 .hsync_len = 88,
1346 .vsync_len = 2,
1347 .sync = FB_SYNC_COMP_HIGH_ACT | FB_SYNC_VERT_HIGH_ACT,
1348 .vmode = FB_VMODE_NONINTERLACED
1349 };
1350
1351 static char igs_regs[] = {
1352 EXT_CRT_IRQ, 0,
1353 EXT_CRT_TEST, 0,
1354 EXT_SYNC_CTL, 0,
1355 EXT_SEG_WRITE_PTR, 0,
1356 EXT_SEG_READ_PTR, 0,
1357 EXT_BIU_MISC, EXT_BIU_MISC_LIN_ENABLE |
1358 EXT_BIU_MISC_COP_ENABLE |
1359 EXT_BIU_MISC_COP_BFC,
1360 EXT_FUNC_CTL, 0,
1361 CURS_H_START, 0,
1362 CURS_H_START + 1, 0,
1363 CURS_H_PRESET, 0,
1364 CURS_V_START, 0,
1365 CURS_V_START + 1, 0,
1366 CURS_V_PRESET, 0,
1367 CURS_CTL, 0,
1368 EXT_ATTRIB_CTL, EXT_ATTRIB_CTL_EXT,
1369 EXT_OVERSCAN_RED, 0,
1370 EXT_OVERSCAN_GREEN, 0,
1371 EXT_OVERSCAN_BLUE, 0,
1372
1373 /* some of these are questionable when we have a BIOS */
1374 EXT_MEM_CTL0, EXT_MEM_CTL0_7CLK |
1375 EXT_MEM_CTL0_RAS_1 |
1376 EXT_MEM_CTL0_MULTCAS,
1377 EXT_HIDDEN_CTL1, 0x30,
1378 EXT_FIFO_CTL, 0x0b,
1379 EXT_FIFO_CTL + 1, 0x17,
1380 0x76, 0x00,
1381 EXT_HIDDEN_CTL4, 0xc8
1382 };
1383
1384 /*
1385 * Initialise the CyberPro hardware. On the CyberPro5XXXX,
1386 * ensure that we're using the correct PLL (5XXX's may be
1387 * programmed to use an additional set of PLLs.)
1388 */
cyberpro_init_hw(struct cfb_info * cfb)1389 static void cyberpro_init_hw(struct cfb_info *cfb)
1390 {
1391 int i;
1392
1393 for (i = 0; i < sizeof(igs_regs); i += 2)
1394 cyber2000_grphw(igs_regs[i], igs_regs[i + 1], cfb);
1395
1396 if (cfb->id == ID_CYBERPRO_5000) {
1397 unsigned char val;
1398 cyber2000fb_writeb(0xba, 0x3ce, cfb);
1399 val = cyber2000fb_readb(0x3cf, cfb) & 0x80;
1400 cyber2000fb_writeb(val, 0x3cf, cfb);
1401 }
1402 }
1403
cyberpro_alloc_fb_info(unsigned int id,char * name)1404 static struct cfb_info *cyberpro_alloc_fb_info(unsigned int id, char *name)
1405 {
1406 struct cfb_info *cfb;
1407
1408 cfb = kzalloc(sizeof(struct cfb_info), GFP_KERNEL);
1409 if (!cfb)
1410 return NULL;
1411
1412
1413 cfb->id = id;
1414
1415 if (id == ID_CYBERPRO_5000)
1416 cfb->ref_ps = 40690; /* 24.576 MHz */
1417 else
1418 cfb->ref_ps = 69842; /* 14.31818 MHz (69841?) */
1419
1420 cfb->divisors[0] = 1;
1421 cfb->divisors[1] = 2;
1422 cfb->divisors[2] = 4;
1423
1424 if (id == ID_CYBERPRO_2000)
1425 cfb->divisors[3] = 8;
1426 else
1427 cfb->divisors[3] = 6;
1428
1429 strcpy(cfb->fb.fix.id, name);
1430
1431 cfb->fb.fix.type = FB_TYPE_PACKED_PIXELS;
1432 cfb->fb.fix.type_aux = 0;
1433 cfb->fb.fix.xpanstep = 0;
1434 cfb->fb.fix.ypanstep = 1;
1435 cfb->fb.fix.ywrapstep = 0;
1436
1437 switch (id) {
1438 case ID_IGA_1682:
1439 cfb->fb.fix.accel = 0;
1440 break;
1441
1442 case ID_CYBERPRO_2000:
1443 cfb->fb.fix.accel = FB_ACCEL_IGS_CYBER2000;
1444 break;
1445
1446 case ID_CYBERPRO_2010:
1447 cfb->fb.fix.accel = FB_ACCEL_IGS_CYBER2010;
1448 break;
1449
1450 case ID_CYBERPRO_5000:
1451 cfb->fb.fix.accel = FB_ACCEL_IGS_CYBER5000;
1452 break;
1453 }
1454
1455 cfb->fb.var.nonstd = 0;
1456 cfb->fb.var.activate = FB_ACTIVATE_NOW;
1457 cfb->fb.var.height = -1;
1458 cfb->fb.var.width = -1;
1459 cfb->fb.var.accel_flags = FB_ACCELF_TEXT;
1460
1461 cfb->fb.fbops = &cyber2000fb_ops;
1462 cfb->fb.flags = FBINFO_HWACCEL_YPAN;
1463 cfb->fb.pseudo_palette = cfb->pseudo_palette;
1464
1465 spin_lock_init(&cfb->reg_b0_lock);
1466
1467 fb_alloc_cmap(&cfb->fb.cmap, NR_PALETTE, 0);
1468
1469 return cfb;
1470 }
1471
cyberpro_free_fb_info(struct cfb_info * cfb)1472 static void cyberpro_free_fb_info(struct cfb_info *cfb)
1473 {
1474 if (cfb) {
1475 /*
1476 * Free the colourmap
1477 */
1478 fb_alloc_cmap(&cfb->fb.cmap, 0, 0);
1479
1480 kfree(cfb);
1481 }
1482 }
1483
1484 /*
1485 * Parse Cyber2000fb options. Usage:
1486 * video=cyber2000:font:fontname
1487 */
1488 #ifndef MODULE
cyber2000fb_setup(char * options)1489 static int cyber2000fb_setup(char *options)
1490 {
1491 char *opt;
1492
1493 if (!options || !*options)
1494 return 0;
1495
1496 while ((opt = strsep(&options, ",")) != NULL) {
1497 if (!*opt)
1498 continue;
1499
1500 if (strncmp(opt, "font:", 5) == 0) {
1501 static char default_font_storage[40];
1502
1503 strscpy(default_font_storage, opt + 5,
1504 sizeof(default_font_storage));
1505 default_font = default_font_storage;
1506 continue;
1507 }
1508
1509 printk(KERN_ERR "CyberPro20x0: unknown parameter: %s\n", opt);
1510 }
1511 return 0;
1512 }
1513 #endif /* MODULE */
1514
1515 /*
1516 * The CyberPro chips can be placed on many different bus types.
1517 * This probe function is common to all bus types. The bus-specific
1518 * probe function is expected to have:
1519 * - enabled access to the linear memory region
1520 * - memory mapped access to the registers
1521 * - initialised mem_ctl1 and mem_ctl2 appropriately.
1522 */
cyberpro_common_probe(struct cfb_info * cfb)1523 static int cyberpro_common_probe(struct cfb_info *cfb)
1524 {
1525 u_long smem_size;
1526 u_int h_sync, v_sync;
1527 int err;
1528
1529 cyberpro_init_hw(cfb);
1530
1531 /*
1532 * Get the video RAM size and width from the VGA register.
1533 * This should have been already initialised by the BIOS,
1534 * but if it's garbage, claim default 1MB VRAM (woody)
1535 */
1536 cfb->mem_ctl1 = cyber2000_grphr(EXT_MEM_CTL1, cfb);
1537 cfb->mem_ctl2 = cyber2000_grphr(EXT_MEM_CTL2, cfb);
1538
1539 /*
1540 * Determine the size of the memory.
1541 */
1542 switch (cfb->mem_ctl2 & MEM_CTL2_SIZE_MASK) {
1543 case MEM_CTL2_SIZE_4MB:
1544 smem_size = 0x00400000;
1545 break;
1546 case MEM_CTL2_SIZE_2MB:
1547 smem_size = 0x00200000;
1548 break;
1549 case MEM_CTL2_SIZE_1MB:
1550 smem_size = 0x00100000;
1551 break;
1552 default:
1553 smem_size = 0x00100000;
1554 break;
1555 }
1556
1557 cfb->fb.fix.smem_len = smem_size;
1558 cfb->fb.fix.mmio_len = MMIO_SIZE;
1559 cfb->fb.screen_base = cfb->region;
1560
1561 #ifdef CONFIG_FB_CYBER2000_DDC
1562 if (cyber2000fb_setup_ddc_bus(cfb) == 0)
1563 cfb->ddc_registered = true;
1564 #endif
1565
1566 err = -EINVAL;
1567 if (!fb_find_mode(&cfb->fb.var, &cfb->fb, NULL, NULL, 0,
1568 &cyber2000fb_default_mode, 8)) {
1569 printk(KERN_ERR "%s: no valid mode found\n", cfb->fb.fix.id);
1570 goto failed;
1571 }
1572
1573 cfb->fb.var.yres_virtual = cfb->fb.fix.smem_len * 8 /
1574 (cfb->fb.var.bits_per_pixel * cfb->fb.var.xres_virtual);
1575
1576 if (cfb->fb.var.yres_virtual < cfb->fb.var.yres)
1577 cfb->fb.var.yres_virtual = cfb->fb.var.yres;
1578
1579 /* fb_set_var(&cfb->fb.var, -1, &cfb->fb); */
1580
1581 /*
1582 * Calculate the hsync and vsync frequencies. Note that
1583 * we split the 1e12 constant up so that we can preserve
1584 * the precision and fit the results into 32-bit registers.
1585 * (1953125000 * 512 = 1e12)
1586 */
1587 h_sync = 1953125000 / cfb->fb.var.pixclock;
1588 h_sync = h_sync * 512 / (cfb->fb.var.xres + cfb->fb.var.left_margin +
1589 cfb->fb.var.right_margin + cfb->fb.var.hsync_len);
1590 v_sync = h_sync / (cfb->fb.var.yres + cfb->fb.var.upper_margin +
1591 cfb->fb.var.lower_margin + cfb->fb.var.vsync_len);
1592
1593 printk(KERN_INFO "%s: %dKiB VRAM, using %dx%d, %d.%03dkHz, %dHz\n",
1594 cfb->fb.fix.id, cfb->fb.fix.smem_len >> 10,
1595 cfb->fb.var.xres, cfb->fb.var.yres,
1596 h_sync / 1000, h_sync % 1000, v_sync);
1597
1598 err = cyber2000fb_i2c_register(cfb);
1599 if (err)
1600 goto failed;
1601
1602 err = register_framebuffer(&cfb->fb);
1603 if (err)
1604 cyber2000fb_i2c_unregister(cfb);
1605
1606 failed:
1607 #ifdef CONFIG_FB_CYBER2000_DDC
1608 if (err && cfb->ddc_registered)
1609 i2c_del_adapter(&cfb->ddc_adapter);
1610 #endif
1611 return err;
1612 }
1613
cyberpro_common_remove(struct cfb_info * cfb)1614 static void cyberpro_common_remove(struct cfb_info *cfb)
1615 {
1616 unregister_framebuffer(&cfb->fb);
1617 #ifdef CONFIG_FB_CYBER2000_DDC
1618 if (cfb->ddc_registered)
1619 i2c_del_adapter(&cfb->ddc_adapter);
1620 #endif
1621 cyber2000fb_i2c_unregister(cfb);
1622 }
1623
cyberpro_common_resume(struct cfb_info * cfb)1624 static void cyberpro_common_resume(struct cfb_info *cfb)
1625 {
1626 cyberpro_init_hw(cfb);
1627
1628 /*
1629 * Reprogram the MEM_CTL1 and MEM_CTL2 registers
1630 */
1631 cyber2000_grphw(EXT_MEM_CTL1, cfb->mem_ctl1, cfb);
1632 cyber2000_grphw(EXT_MEM_CTL2, cfb->mem_ctl2, cfb);
1633
1634 /*
1635 * Restore the old video mode and the palette.
1636 * We also need to tell fbcon to redraw the console.
1637 */
1638 cyber2000fb_set_par(&cfb->fb);
1639 }
1640
1641 /*
1642 * We need to wake up the CyberPro, and make sure its in linear memory
1643 * mode. Unfortunately, this is specific to the platform and card that
1644 * we are running on.
1645 *
1646 * On x86 and ARM, should we be initialising the CyberPro first via the
1647 * IO registers, and then the MMIO registers to catch all cases? Can we
1648 * end up in the situation where the chip is in MMIO mode, but not awake
1649 * on an x86 system?
1650 */
cyberpro_pci_enable_mmio(struct cfb_info * cfb)1651 static int cyberpro_pci_enable_mmio(struct cfb_info *cfb)
1652 {
1653 unsigned char val;
1654
1655 #if defined(__sparc_v9__)
1656 #error "You lose, consult DaveM."
1657 #elif defined(__sparc__)
1658 /*
1659 * SPARC does not have an "outb" instruction, so we generate
1660 * I/O cycles storing into a reserved memory space at
1661 * physical address 0x3000000
1662 */
1663 unsigned char __iomem *iop;
1664
1665 iop = ioremap(0x3000000, 0x5000);
1666 if (iop == NULL) {
1667 printk(KERN_ERR "iga5000: cannot map I/O\n");
1668 return -ENOMEM;
1669 }
1670
1671 writeb(0x18, iop + 0x46e8);
1672 writeb(0x01, iop + 0x102);
1673 writeb(0x08, iop + 0x46e8);
1674 writeb(EXT_BIU_MISC, iop + 0x3ce);
1675 writeb(EXT_BIU_MISC_LIN_ENABLE, iop + 0x3cf);
1676
1677 iounmap(iop);
1678 #else
1679 /*
1680 * Most other machine types are "normal", so
1681 * we use the standard IO-based wakeup.
1682 */
1683 outb(0x18, 0x46e8);
1684 outb(0x01, 0x102);
1685 outb(0x08, 0x46e8);
1686 outb(EXT_BIU_MISC, 0x3ce);
1687 outb(EXT_BIU_MISC_LIN_ENABLE, 0x3cf);
1688 #endif
1689
1690 /*
1691 * Allow the CyberPro to accept PCI burst accesses
1692 */
1693 if (cfb->id == ID_CYBERPRO_2010) {
1694 printk(KERN_INFO "%s: NOT enabling PCI bursts\n",
1695 cfb->fb.fix.id);
1696 } else {
1697 val = cyber2000_grphr(EXT_BUS_CTL, cfb);
1698 if (!(val & EXT_BUS_CTL_PCIBURST_WRITE)) {
1699 printk(KERN_INFO "%s: enabling PCI bursts\n",
1700 cfb->fb.fix.id);
1701
1702 val |= EXT_BUS_CTL_PCIBURST_WRITE;
1703
1704 if (cfb->id == ID_CYBERPRO_5000)
1705 val |= EXT_BUS_CTL_PCIBURST_READ;
1706
1707 cyber2000_grphw(EXT_BUS_CTL, val, cfb);
1708 }
1709 }
1710
1711 return 0;
1712 }
1713
cyberpro_pci_probe(struct pci_dev * dev,const struct pci_device_id * id)1714 static int cyberpro_pci_probe(struct pci_dev *dev,
1715 const struct pci_device_id *id)
1716 {
1717 struct cfb_info *cfb;
1718 char name[16];
1719 int err;
1720
1721 sprintf(name, "CyberPro%4X", id->device);
1722
1723 err = aperture_remove_conflicting_pci_devices(dev, name);
1724 if (err)
1725 return err;
1726
1727 err = pci_enable_device(dev);
1728 if (err)
1729 return err;
1730
1731 err = -ENOMEM;
1732 cfb = cyberpro_alloc_fb_info(id->driver_data, name);
1733 if (!cfb)
1734 goto failed_release;
1735
1736 err = pci_request_regions(dev, cfb->fb.fix.id);
1737 if (err)
1738 goto failed_regions;
1739
1740 cfb->irq = dev->irq;
1741 cfb->region = pci_ioremap_bar(dev, 0);
1742 if (!cfb->region) {
1743 err = -ENOMEM;
1744 goto failed_ioremap;
1745 }
1746
1747 cfb->regs = cfb->region + MMIO_OFFSET;
1748 cfb->fb.device = &dev->dev;
1749 cfb->fb.fix.mmio_start = pci_resource_start(dev, 0) + MMIO_OFFSET;
1750 cfb->fb.fix.smem_start = pci_resource_start(dev, 0);
1751
1752 /*
1753 * Bring up the hardware. This is expected to enable access
1754 * to the linear memory region, and allow access to the memory
1755 * mapped registers. Also, mem_ctl1 and mem_ctl2 must be
1756 * initialised.
1757 */
1758 err = cyberpro_pci_enable_mmio(cfb);
1759 if (err)
1760 goto failed;
1761
1762 /*
1763 * Use MCLK from BIOS. FIXME: what about hotplug?
1764 */
1765 cfb->mclk_mult = cyber2000_grphr(EXT_MCLK_MULT, cfb);
1766 cfb->mclk_div = cyber2000_grphr(EXT_MCLK_DIV, cfb);
1767
1768 #ifdef __arm__
1769 /*
1770 * MCLK on the NetWinder and the Shark is fixed at 75MHz
1771 */
1772 if (machine_is_netwinder()) {
1773 cfb->mclk_mult = 0xdb;
1774 cfb->mclk_div = 0x54;
1775 }
1776 #endif
1777
1778 err = cyberpro_common_probe(cfb);
1779 if (err)
1780 goto failed;
1781
1782 /*
1783 * Our driver data
1784 */
1785 pci_set_drvdata(dev, cfb);
1786 if (int_cfb_info == NULL)
1787 int_cfb_info = cfb;
1788
1789 return 0;
1790
1791 failed:
1792 iounmap(cfb->region);
1793 failed_ioremap:
1794 pci_release_regions(dev);
1795 failed_regions:
1796 cyberpro_free_fb_info(cfb);
1797 failed_release:
1798 pci_disable_device(dev);
1799 return err;
1800 }
1801
cyberpro_pci_remove(struct pci_dev * dev)1802 static void cyberpro_pci_remove(struct pci_dev *dev)
1803 {
1804 struct cfb_info *cfb = pci_get_drvdata(dev);
1805
1806 if (cfb) {
1807 cyberpro_common_remove(cfb);
1808 iounmap(cfb->region);
1809 cyberpro_free_fb_info(cfb);
1810
1811 if (cfb == int_cfb_info)
1812 int_cfb_info = NULL;
1813
1814 pci_release_regions(dev);
1815 pci_disable_device(dev);
1816 }
1817 }
1818
cyberpro_pci_suspend(struct device * dev)1819 static int __maybe_unused cyberpro_pci_suspend(struct device *dev)
1820 {
1821 return 0;
1822 }
1823
1824 /*
1825 * Re-initialise the CyberPro hardware
1826 */
cyberpro_pci_resume(struct device * dev)1827 static int __maybe_unused cyberpro_pci_resume(struct device *dev)
1828 {
1829 struct cfb_info *cfb = dev_get_drvdata(dev);
1830
1831 if (cfb) {
1832 cyberpro_pci_enable_mmio(cfb);
1833 cyberpro_common_resume(cfb);
1834 }
1835
1836 return 0;
1837 }
1838
1839 static struct pci_device_id cyberpro_pci_table[] = {
1840 /* Not yet
1841 * { PCI_VENDOR_ID_INTERG, PCI_DEVICE_ID_INTERG_1682,
1842 * PCI_ANY_ID, PCI_ANY_ID, 0, 0, ID_IGA_1682 },
1843 */
1844 { PCI_VENDOR_ID_INTERG, PCI_DEVICE_ID_INTERG_2000,
1845 PCI_ANY_ID, PCI_ANY_ID, 0, 0, ID_CYBERPRO_2000 },
1846 { PCI_VENDOR_ID_INTERG, PCI_DEVICE_ID_INTERG_2010,
1847 PCI_ANY_ID, PCI_ANY_ID, 0, 0, ID_CYBERPRO_2010 },
1848 { PCI_VENDOR_ID_INTERG, PCI_DEVICE_ID_INTERG_5000,
1849 PCI_ANY_ID, PCI_ANY_ID, 0, 0, ID_CYBERPRO_5000 },
1850 { 0, }
1851 };
1852
1853 MODULE_DEVICE_TABLE(pci, cyberpro_pci_table);
1854
1855 static SIMPLE_DEV_PM_OPS(cyberpro_pci_pm_ops,
1856 cyberpro_pci_suspend,
1857 cyberpro_pci_resume);
1858
1859 static struct pci_driver cyberpro_driver = {
1860 .name = "CyberPro",
1861 .probe = cyberpro_pci_probe,
1862 .remove = cyberpro_pci_remove,
1863 .driver.pm = &cyberpro_pci_pm_ops,
1864 .id_table = cyberpro_pci_table
1865 };
1866
1867 /*
1868 * I don't think we can use the "module_init" stuff here because
1869 * the fbcon stuff may not be initialised yet. Hence the #ifdef
1870 * around module_init.
1871 *
1872 * Tony: "module_init" is now required
1873 */
cyber2000fb_init(void)1874 static int __init cyber2000fb_init(void)
1875 {
1876 int ret = -1, err;
1877
1878 #ifndef MODULE
1879 char *option = NULL;
1880 #endif
1881
1882 if (fb_modesetting_disabled("CyberPro"))
1883 return -ENODEV;
1884
1885 #ifndef MODULE
1886 if (fb_get_options("cyber2000fb", &option))
1887 return -ENODEV;
1888 cyber2000fb_setup(option);
1889 #endif
1890
1891 err = pci_register_driver(&cyberpro_driver);
1892 if (!err)
1893 ret = 0;
1894
1895 return ret ? err : 0;
1896 }
1897 module_init(cyber2000fb_init);
1898
cyberpro_exit(void)1899 static void __exit cyberpro_exit(void)
1900 {
1901 pci_unregister_driver(&cyberpro_driver);
1902 }
1903 module_exit(cyberpro_exit);
1904
1905 MODULE_AUTHOR("Russell King");
1906 MODULE_DESCRIPTION("CyberPro 2000, 2010 and 5000 framebuffer driver");
1907 MODULE_LICENSE("GPL");
1908