1 // SPDX-License-Identifier: GPL-2.0 2 3 /* 4 * ATI Mach64 CT/VT/GT/LT Support 5 */ 6 7 #include <linux/fb.h> 8 #include <linux/delay.h> 9 #include <asm/io.h> 10 #include <video/mach64.h> 11 #include "atyfb.h" 12 #ifdef CONFIG_PPC 13 #include <asm/machdep.h> 14 #endif 15 16 #undef DEBUG 17 18 static int aty_valid_pll_ct (const struct fb_info *info, u32 vclk_per, struct pll_ct *pll); 19 static int aty_dsp_gt (const struct fb_info *info, u32 bpp, struct pll_ct *pll); 20 static int aty_var_to_pll_ct(const struct fb_info *info, u32 vclk_per, u32 bpp, union aty_pll *pll); 21 static u32 aty_pll_to_var_ct(const struct fb_info *info, const union aty_pll *pll); 22 23 u8 aty_ld_pll_ct(int offset, const struct atyfb_par *par) 24 { 25 u8 res; 26 27 /* write addr byte */ 28 aty_st_8(CLOCK_CNTL_ADDR, (offset << 2) & PLL_ADDR, par); 29 /* read the register value */ 30 res = aty_ld_8(CLOCK_CNTL_DATA, par); 31 return res; 32 } 33 34 static void aty_st_pll_ct(int offset, u8 val, const struct atyfb_par *par) 35 { 36 /* write addr byte */ 37 aty_st_8(CLOCK_CNTL_ADDR, ((offset << 2) & PLL_ADDR) | PLL_WR_EN, par); 38 /* write the register value */ 39 aty_st_8(CLOCK_CNTL_DATA, val & PLL_DATA, par); 40 aty_st_8(CLOCK_CNTL_ADDR, ((offset << 2) & PLL_ADDR) & ~PLL_WR_EN, par); 41 } 42 43 /* 44 * by Daniel Mantione 45 * <daniel.mantione@freepascal.org> 46 * 47 * 48 * ATI Mach64 CT clock synthesis description. 49 * 50 * All clocks on the Mach64 can be calculated using the same principle: 51 * 52 * XTALIN * x * FB_DIV 53 * CLK = ---------------------- 54 * PLL_REF_DIV * POST_DIV 55 * 56 * XTALIN is a fixed speed clock. Common speeds are 14.31 MHz and 29.50 MHz. 57 * PLL_REF_DIV can be set by the user, but is the same for all clocks. 58 * FB_DIV can be set by the user for each clock individually, it should be set 59 * between 128 and 255, the chip will generate a bad clock signal for too low 60 * values. 61 * x depends on the type of clock; usually it is 2, but for the MCLK it can also 62 * be set to 4. 63 * POST_DIV can be set by the user for each clock individually, Possible values 64 * are 1,2,4,8 and for some clocks other values are available too. 65 * CLK is of course the clock speed that is generated. 66 * 67 * The Mach64 has these clocks: 68 * 69 * MCLK The clock rate of the chip 70 * XCLK The clock rate of the on-chip memory 71 * VCLK0 First pixel clock of first CRT controller 72 * VCLK1 Second pixel clock of first CRT controller 73 * VCLK2 Third pixel clock of first CRT controller 74 * VCLK3 Fourth pixel clock of first CRT controller 75 * VCLK Selected pixel clock, one of VCLK0, VCLK1, VCLK2, VCLK3 76 * V2CLK Pixel clock of the second CRT controller. 77 * SCLK Multi-purpose clock 78 * 79 * - MCLK and XCLK use the same FB_DIV 80 * - VCLK0 .. VCLK3 use the same FB_DIV 81 * - V2CLK is needed when the second CRTC is used (can be used for dualhead); 82 * i.e. CRT monitor connected to laptop has different resolution than built 83 * in LCD monitor. 84 * - SCLK is not available on all cards; it is know to exist on the Rage LT-PRO, 85 * Rage XL and Rage Mobility. It is know not to exist on the Mach64 VT. 86 * - V2CLK is not available on all cards, most likely only the Rage LT-PRO, 87 * the Rage XL and the Rage Mobility 88 * 89 * SCLK can be used to: 90 * - Clock the chip instead of MCLK 91 * - Replace XTALIN with a user defined frequency 92 * - Generate the pixel clock for the LCD monitor (instead of VCLK) 93 */ 94 95 /* 96 * It can be quite hard to calculate XCLK and MCLK if they don't run at the 97 * same frequency. Luckily, until now all cards that need asynchrone clock 98 * speeds seem to have SCLK. 99 * So this driver uses SCLK to clock the chip and XCLK to clock the memory. 100 */ 101 102 /* ------------------------------------------------------------------------- */ 103 104 /* 105 * PLL programming (Mach64 CT family) 106 * 107 * 108 * This procedure sets the display fifo. The display fifo is a buffer that 109 * contains data read from the video memory that waits to be processed by 110 * the CRT controller. 111 * 112 * On the more modern Mach64 variants, the chip doesn't calculate the 113 * interval after which the display fifo has to be reloaded from memory 114 * automatically, the driver has to do it instead. 115 */ 116 117 #define Maximum_DSP_PRECISION 7 118 const u8 aty_postdividers[8] = {1,2,4,8,3,5,6,12}; 119 120 static int aty_dsp_gt(const struct fb_info *info, u32 bpp, struct pll_ct *pll) 121 { 122 u32 dsp_off, dsp_on, dsp_xclks; 123 u32 multiplier, divider, ras_multiplier, ras_divider, tmp; 124 u8 vshift, xshift; 125 s8 dsp_precision; 126 127 multiplier = ((u32)pll->mclk_fb_div) * pll->vclk_post_div_real; 128 divider = ((u32)pll->vclk_fb_div) * pll->xclk_ref_div; 129 130 ras_multiplier = pll->xclkmaxrasdelay; 131 ras_divider = 1; 132 133 if (bpp>=8) 134 divider = divider * (bpp >> 2); 135 136 vshift = (6 - 2) - pll->xclk_post_div; /* FIFO is 64 bits wide in accelerator mode ... */ 137 138 if (bpp == 0) 139 vshift--; /* ... but only 32 bits in VGA mode. */ 140 141 #ifdef CONFIG_FB_ATY_GENERIC_LCD 142 if (pll->xres != 0) { 143 struct atyfb_par *par = (struct atyfb_par *) info->par; 144 145 multiplier = multiplier * par->lcd_width; 146 divider = divider * pll->xres & ~7; 147 148 ras_multiplier = ras_multiplier * par->lcd_width; 149 ras_divider = ras_divider * pll->xres & ~7; 150 } 151 #endif 152 /* If we don't do this, 32 bits for multiplier & divider won't be 153 enough in certain situations! */ 154 while (((multiplier | divider) & 1) == 0) { 155 multiplier = multiplier >> 1; 156 divider = divider >> 1; 157 } 158 159 /* Determine DSP precision first */ 160 tmp = ((multiplier * pll->fifo_size) << vshift) / divider; 161 162 for (dsp_precision = -5; tmp; dsp_precision++) 163 tmp >>= 1; 164 if (dsp_precision < 0) 165 dsp_precision = 0; 166 else if (dsp_precision > Maximum_DSP_PRECISION) 167 dsp_precision = Maximum_DSP_PRECISION; 168 169 xshift = 6 - dsp_precision; 170 vshift += xshift; 171 172 /* Move on to dsp_off */ 173 dsp_off = ((multiplier * (pll->fifo_size - 1)) << vshift) / divider - 174 (1 << (vshift - xshift)); 175 176 /* if (bpp == 0) 177 dsp_on = ((multiplier * 20 << vshift) + divider) / divider; 178 else */ 179 { 180 dsp_on = ((multiplier << vshift) + divider) / divider; 181 tmp = ((ras_multiplier << xshift) + ras_divider) / ras_divider; 182 if (dsp_on < tmp) 183 dsp_on = tmp; 184 dsp_on = dsp_on + (tmp * 2) + (pll->xclkpagefaultdelay << xshift); 185 } 186 187 /* Calculate rounding factor and apply it to dsp_on */ 188 tmp = ((1 << (Maximum_DSP_PRECISION - dsp_precision)) - 1) >> 1; 189 dsp_on = ((dsp_on + tmp) / (tmp + 1)) * (tmp + 1); 190 191 if (dsp_on >= ((dsp_off / (tmp + 1)) * (tmp + 1))) { 192 dsp_on = dsp_off - (multiplier << vshift) / divider; 193 dsp_on = (dsp_on / (tmp + 1)) * (tmp + 1); 194 } 195 196 /* Last but not least: dsp_xclks */ 197 dsp_xclks = ((multiplier << (vshift + 5)) + divider) / divider; 198 199 /* Get register values. */ 200 pll->dsp_on_off = (dsp_on << 16) + dsp_off; 201 pll->dsp_config = (dsp_precision << 20) | (pll->dsp_loop_latency << 16) | dsp_xclks; 202 #ifdef DEBUG 203 printk("atyfb(%s): dsp_config 0x%08x, dsp_on_off 0x%08x\n", 204 __func__, pll->dsp_config, pll->dsp_on_off); 205 #endif 206 return 0; 207 } 208 209 static int aty_valid_pll_ct(const struct fb_info *info, u32 vclk_per, struct pll_ct *pll) 210 { 211 u32 q; 212 struct atyfb_par *par = (struct atyfb_par *) info->par; 213 int pllvclk; 214 215 /* FIXME: use the VTB/GTB /{3,6,12} post dividers if they're better suited */ 216 q = par->ref_clk_per * pll->pll_ref_div * 4 / vclk_per; 217 if (q < 16*8 || q > 255*8) { 218 printk(KERN_CRIT "atyfb: vclk out of range\n"); 219 return -EINVAL; 220 } else { 221 pll->vclk_post_div = (q < 128*8); 222 pll->vclk_post_div += (q < 64*8); 223 pll->vclk_post_div += (q < 32*8); 224 } 225 pll->vclk_post_div_real = aty_postdividers[pll->vclk_post_div]; 226 // pll->vclk_post_div <<= 6; 227 pll->vclk_fb_div = q * pll->vclk_post_div_real / 8; 228 pllvclk = (1000000 * 2 * pll->vclk_fb_div) / 229 (par->ref_clk_per * pll->pll_ref_div); 230 #ifdef DEBUG 231 printk("atyfb(%s): pllvclk=%d MHz, vclk=%d MHz\n", 232 __func__, pllvclk, pllvclk / pll->vclk_post_div_real); 233 #endif 234 pll->pll_vclk_cntl = 0x03; /* VCLK = PLL_VCLK/VCLKx_POST */ 235 236 /* Set ECP (scaler/overlay clock) divider */ 237 if (par->pll_limits.ecp_max) { 238 int ecp = pllvclk / pll->vclk_post_div_real; 239 int ecp_div = 0; 240 241 while (ecp > par->pll_limits.ecp_max && ecp_div < 2) { 242 ecp >>= 1; 243 ecp_div++; 244 } 245 pll->pll_vclk_cntl |= ecp_div << 4; 246 } 247 248 return 0; 249 } 250 251 static int aty_var_to_pll_ct(const struct fb_info *info, u32 vclk_per, u32 bpp, union aty_pll *pll) 252 { 253 struct atyfb_par *par = (struct atyfb_par *) info->par; 254 int err; 255 256 if ((err = aty_valid_pll_ct(info, vclk_per, &pll->ct))) 257 return err; 258 if (M64_HAS(GTB_DSP) && (err = aty_dsp_gt(info, bpp, &pll->ct))) 259 return err; 260 /*aty_calc_pll_ct(info, &pll->ct);*/ 261 return 0; 262 } 263 264 static u32 aty_pll_to_var_ct(const struct fb_info *info, const union aty_pll *pll) 265 { 266 struct atyfb_par *par = (struct atyfb_par *) info->par; 267 u32 ret; 268 ret = par->ref_clk_per * pll->ct.pll_ref_div * pll->ct.vclk_post_div_real / pll->ct.vclk_fb_div / 2; 269 #ifdef CONFIG_FB_ATY_GENERIC_LCD 270 if(pll->ct.xres > 0) { 271 ret *= par->lcd_width; 272 ret /= pll->ct.xres; 273 } 274 #endif 275 #ifdef DEBUG 276 printk("atyfb(%s): calculated 0x%08X(%i)\n", __func__, ret, ret); 277 #endif 278 return ret; 279 } 280 281 void aty_set_pll_ct(const struct fb_info *info, const union aty_pll *pll) 282 { 283 struct atyfb_par *par = (struct atyfb_par *) info->par; 284 u32 crtc_gen_cntl, lcd_gen_cntrl; 285 u8 tmp, tmp2; 286 287 lcd_gen_cntrl = 0; 288 #ifdef DEBUG 289 printk("atyfb(%s): about to program:\n" 290 "pll_ext_cntl=0x%02x pll_gen_cntl=0x%02x pll_vclk_cntl=0x%02x\n", 291 __func__, 292 pll->ct.pll_ext_cntl, pll->ct.pll_gen_cntl, pll->ct.pll_vclk_cntl); 293 294 printk("atyfb(%s): setting clock %lu for FeedBackDivider %i, ReferenceDivider %i, PostDivider %i(%i)\n", 295 __func__, 296 par->clk_wr_offset, pll->ct.vclk_fb_div, 297 pll->ct.pll_ref_div, pll->ct.vclk_post_div, pll->ct.vclk_post_div_real); 298 #endif 299 #ifdef CONFIG_FB_ATY_GENERIC_LCD 300 if (par->lcd_table != 0) { 301 /* turn off LCD */ 302 lcd_gen_cntrl = aty_ld_lcd(LCD_GEN_CNTL, par); 303 aty_st_lcd(LCD_GEN_CNTL, lcd_gen_cntrl & ~LCD_ON, par); 304 } 305 #endif 306 aty_st_8(CLOCK_CNTL, par->clk_wr_offset | CLOCK_STROBE, par); 307 308 /* Temporarily switch to accelerator mode */ 309 crtc_gen_cntl = aty_ld_le32(CRTC_GEN_CNTL, par); 310 if (!(crtc_gen_cntl & CRTC_EXT_DISP_EN)) 311 aty_st_le32(CRTC_GEN_CNTL, crtc_gen_cntl | CRTC_EXT_DISP_EN, par); 312 313 /* Reset VCLK generator */ 314 aty_st_pll_ct(PLL_VCLK_CNTL, pll->ct.pll_vclk_cntl, par); 315 316 /* Set post-divider */ 317 tmp2 = par->clk_wr_offset << 1; 318 tmp = aty_ld_pll_ct(VCLK_POST_DIV, par); 319 tmp &= ~(0x03U << tmp2); 320 tmp |= ((pll->ct.vclk_post_div & 0x03U) << tmp2); 321 aty_st_pll_ct(VCLK_POST_DIV, tmp, par); 322 323 /* Set extended post-divider */ 324 tmp = aty_ld_pll_ct(PLL_EXT_CNTL, par); 325 tmp &= ~(0x10U << par->clk_wr_offset); 326 tmp &= 0xF0U; 327 tmp |= pll->ct.pll_ext_cntl; 328 aty_st_pll_ct(PLL_EXT_CNTL, tmp, par); 329 330 /* Set feedback divider */ 331 tmp = VCLK0_FB_DIV + par->clk_wr_offset; 332 aty_st_pll_ct(tmp, (pll->ct.vclk_fb_div & 0xFFU), par); 333 334 aty_st_pll_ct(PLL_GEN_CNTL, (pll->ct.pll_gen_cntl & (~(PLL_OVERRIDE | PLL_MCLK_RST))) | OSC_EN, par); 335 336 /* End VCLK generator reset */ 337 aty_st_pll_ct(PLL_VCLK_CNTL, pll->ct.pll_vclk_cntl & ~(PLL_VCLK_RST), par); 338 mdelay(5); 339 340 aty_st_pll_ct(PLL_GEN_CNTL, pll->ct.pll_gen_cntl, par); 341 aty_st_pll_ct(PLL_VCLK_CNTL, pll->ct.pll_vclk_cntl, par); 342 mdelay(1); 343 344 /* Restore mode register */ 345 if (!(crtc_gen_cntl & CRTC_EXT_DISP_EN)) 346 aty_st_le32(CRTC_GEN_CNTL, crtc_gen_cntl, par); 347 348 if (M64_HAS(GTB_DSP)) { 349 u8 dll_cntl; 350 351 if (M64_HAS(XL_DLL)) 352 dll_cntl = 0x80; 353 else if (par->ram_type >= SDRAM) 354 dll_cntl = 0xa6; 355 else 356 dll_cntl = 0xa0; 357 aty_st_pll_ct(DLL_CNTL, dll_cntl, par); 358 aty_st_pll_ct(VFC_CNTL, 0x1b, par); 359 aty_st_le32(DSP_CONFIG, pll->ct.dsp_config, par); 360 aty_st_le32(DSP_ON_OFF, pll->ct.dsp_on_off, par); 361 362 mdelay(10); 363 aty_st_pll_ct(DLL_CNTL, dll_cntl, par); 364 mdelay(10); 365 aty_st_pll_ct(DLL_CNTL, dll_cntl | 0x40, par); 366 mdelay(10); 367 aty_st_pll_ct(DLL_CNTL, dll_cntl & ~0x40, par); 368 } 369 #ifdef CONFIG_FB_ATY_GENERIC_LCD 370 if (par->lcd_table != 0) { 371 /* restore LCD */ 372 aty_st_lcd(LCD_GEN_CNTL, lcd_gen_cntrl, par); 373 } 374 #endif 375 } 376 377 static void aty_get_pll_ct(const struct fb_info *info, union aty_pll *pll) 378 { 379 struct atyfb_par *par = (struct atyfb_par *) info->par; 380 u8 tmp, clock; 381 382 clock = aty_ld_8(CLOCK_CNTL, par) & 0x03U; 383 tmp = clock << 1; 384 pll->ct.vclk_post_div = (aty_ld_pll_ct(VCLK_POST_DIV, par) >> tmp) & 0x03U; 385 386 pll->ct.pll_ext_cntl = aty_ld_pll_ct(PLL_EXT_CNTL, par) & 0x0FU; 387 pll->ct.vclk_fb_div = aty_ld_pll_ct(VCLK0_FB_DIV + clock, par) & 0xFFU; 388 pll->ct.pll_ref_div = aty_ld_pll_ct(PLL_REF_DIV, par); 389 pll->ct.mclk_fb_div = aty_ld_pll_ct(MCLK_FB_DIV, par); 390 391 pll->ct.pll_gen_cntl = aty_ld_pll_ct(PLL_GEN_CNTL, par); 392 pll->ct.pll_vclk_cntl = aty_ld_pll_ct(PLL_VCLK_CNTL, par); 393 394 if (M64_HAS(GTB_DSP)) { 395 pll->ct.dsp_config = aty_ld_le32(DSP_CONFIG, par); 396 pll->ct.dsp_on_off = aty_ld_le32(DSP_ON_OFF, par); 397 } 398 } 399 400 static int aty_init_pll_ct(const struct fb_info *info, union aty_pll *pll) 401 { 402 struct atyfb_par *par = (struct atyfb_par *) info->par; 403 u8 mpost_div, xpost_div, sclk_post_div_real; 404 u32 q, memcntl, trp; 405 u32 dsp_config, dsp_on_off, vga_dsp_config, vga_dsp_on_off; 406 #ifdef DEBUG 407 int pllmclk, pllsclk; 408 #endif 409 pll->ct.pll_ext_cntl = aty_ld_pll_ct(PLL_EXT_CNTL, par); 410 pll->ct.xclk_post_div = pll->ct.pll_ext_cntl & 0x07; 411 pll->ct.xclk_ref_div = 1; 412 switch (pll->ct.xclk_post_div) { 413 case 0: case 1: case 2: case 3: 414 break; 415 416 case 4: 417 pll->ct.xclk_ref_div = 3; 418 pll->ct.xclk_post_div = 0; 419 break; 420 421 default: 422 printk(KERN_CRIT "atyfb: Unsupported xclk source: %d.\n", pll->ct.xclk_post_div); 423 return -EINVAL; 424 } 425 pll->ct.mclk_fb_mult = 2; 426 if(pll->ct.pll_ext_cntl & PLL_MFB_TIMES_4_2B) { 427 pll->ct.mclk_fb_mult = 4; 428 pll->ct.xclk_post_div -= 1; 429 } 430 431 #ifdef DEBUG 432 printk("atyfb(%s): mclk_fb_mult=%d, xclk_post_div=%d\n", 433 __func__, pll->ct.mclk_fb_mult, pll->ct.xclk_post_div); 434 #endif 435 436 memcntl = aty_ld_le32(MEM_CNTL, par); 437 trp = (memcntl & 0x300) >> 8; 438 439 pll->ct.xclkpagefaultdelay = ((memcntl & 0xc00) >> 10) + ((memcntl & 0x1000) >> 12) + trp + 2; 440 pll->ct.xclkmaxrasdelay = ((memcntl & 0x70000) >> 16) + trp + 2; 441 442 if (M64_HAS(FIFO_32)) { 443 pll->ct.fifo_size = 32; 444 } else { 445 pll->ct.fifo_size = 24; 446 pll->ct.xclkpagefaultdelay += 2; 447 pll->ct.xclkmaxrasdelay += 3; 448 } 449 450 switch (par->ram_type) { 451 case DRAM: 452 if (info->fix.smem_len<=ONE_MB) { 453 pll->ct.dsp_loop_latency = 10; 454 } else { 455 pll->ct.dsp_loop_latency = 8; 456 pll->ct.xclkpagefaultdelay += 2; 457 } 458 break; 459 case EDO: 460 case PSEUDO_EDO: 461 if (info->fix.smem_len<=ONE_MB) { 462 pll->ct.dsp_loop_latency = 9; 463 } else { 464 pll->ct.dsp_loop_latency = 8; 465 pll->ct.xclkpagefaultdelay += 1; 466 } 467 break; 468 case SDRAM: 469 if (info->fix.smem_len<=ONE_MB) { 470 pll->ct.dsp_loop_latency = 11; 471 } else { 472 pll->ct.dsp_loop_latency = 10; 473 pll->ct.xclkpagefaultdelay += 1; 474 } 475 break; 476 case SGRAM: 477 pll->ct.dsp_loop_latency = 8; 478 pll->ct.xclkpagefaultdelay += 3; 479 break; 480 default: 481 pll->ct.dsp_loop_latency = 11; 482 pll->ct.xclkpagefaultdelay += 3; 483 break; 484 } 485 486 if (pll->ct.xclkmaxrasdelay <= pll->ct.xclkpagefaultdelay) 487 pll->ct.xclkmaxrasdelay = pll->ct.xclkpagefaultdelay + 1; 488 489 /* Allow BIOS to override */ 490 dsp_config = aty_ld_le32(DSP_CONFIG, par); 491 dsp_on_off = aty_ld_le32(DSP_ON_OFF, par); 492 vga_dsp_config = aty_ld_le32(VGA_DSP_CONFIG, par); 493 vga_dsp_on_off = aty_ld_le32(VGA_DSP_ON_OFF, par); 494 495 if (dsp_config) 496 pll->ct.dsp_loop_latency = (dsp_config & DSP_LOOP_LATENCY) >> 16; 497 #if 0 498 FIXME: is it relevant for us? 499 if ((!dsp_on_off && !M64_HAS(RESET_3D)) || 500 ((dsp_on_off == vga_dsp_on_off) && 501 (!dsp_config || !((dsp_config ^ vga_dsp_config) & DSP_XCLKS_PER_QW)))) { 502 vga_dsp_on_off &= VGA_DSP_OFF; 503 vga_dsp_config &= VGA_DSP_XCLKS_PER_QW; 504 if (ATIDivide(vga_dsp_on_off, vga_dsp_config, 5, 1) > 24) 505 pll->ct.fifo_size = 32; 506 else 507 pll->ct.fifo_size = 24; 508 } 509 #endif 510 /* Exit if the user does not want us to tamper with the clock 511 rates of her chip. */ 512 if (par->mclk_per == 0) { 513 u8 mclk_fb_div, pll_ext_cntl; 514 pll->ct.pll_ref_div = aty_ld_pll_ct(PLL_REF_DIV, par); 515 pll_ext_cntl = aty_ld_pll_ct(PLL_EXT_CNTL, par); 516 pll->ct.xclk_post_div_real = aty_postdividers[pll_ext_cntl & 0x07]; 517 mclk_fb_div = aty_ld_pll_ct(MCLK_FB_DIV, par); 518 if (pll_ext_cntl & PLL_MFB_TIMES_4_2B) 519 mclk_fb_div <<= 1; 520 pll->ct.mclk_fb_div = mclk_fb_div; 521 return 0; 522 } 523 524 pll->ct.pll_ref_div = par->pll_per * 2 * 255 / par->ref_clk_per; 525 526 /* FIXME: use the VTB/GTB /3 post divider if it's better suited */ 527 q = par->ref_clk_per * pll->ct.pll_ref_div * 8 / 528 (pll->ct.mclk_fb_mult * par->xclk_per); 529 530 if (q < 16*8 || q > 255*8) { 531 printk(KERN_CRIT "atxfb: xclk out of range\n"); 532 return -EINVAL; 533 } else { 534 xpost_div = (q < 128*8); 535 xpost_div += (q < 64*8); 536 xpost_div += (q < 32*8); 537 } 538 pll->ct.xclk_post_div_real = aty_postdividers[xpost_div]; 539 pll->ct.mclk_fb_div = q * pll->ct.xclk_post_div_real / 8; 540 541 #ifdef CONFIG_PPC 542 if (machine_is(powermac)) { 543 /* Override PLL_EXT_CNTL & 0x07. */ 544 pll->ct.xclk_post_div = xpost_div; 545 pll->ct.xclk_ref_div = 1; 546 } 547 #endif 548 549 #ifdef DEBUG 550 pllmclk = (1000000 * pll->ct.mclk_fb_mult * pll->ct.mclk_fb_div) / 551 (par->ref_clk_per * pll->ct.pll_ref_div); 552 printk("atyfb(%s): pllmclk=%d MHz, xclk=%d MHz\n", 553 __func__, pllmclk, pllmclk / pll->ct.xclk_post_div_real); 554 #endif 555 556 if (M64_HAS(SDRAM_MAGIC_PLL) && (par->ram_type >= SDRAM)) 557 pll->ct.pll_gen_cntl = OSC_EN; 558 else 559 pll->ct.pll_gen_cntl = OSC_EN | DLL_PWDN /* | FORCE_DCLK_TRI_STATE */; 560 561 if (M64_HAS(MAGIC_POSTDIV)) 562 pll->ct.pll_ext_cntl = 0; 563 else 564 pll->ct.pll_ext_cntl = xpost_div; 565 566 if (pll->ct.mclk_fb_mult == 4) 567 pll->ct.pll_ext_cntl |= PLL_MFB_TIMES_4_2B; 568 569 if (par->mclk_per == par->xclk_per) { 570 pll->ct.pll_gen_cntl |= (xpost_div << 4); /* mclk == xclk */ 571 } else { 572 /* 573 * The chip clock is not equal to the memory clock. 574 * Therefore we will use sclk to clock the chip. 575 */ 576 pll->ct.pll_gen_cntl |= (6 << 4); /* mclk == sclk */ 577 578 q = par->ref_clk_per * pll->ct.pll_ref_div * 4 / par->mclk_per; 579 if (q < 16*8 || q > 255*8) { 580 printk(KERN_CRIT "atyfb: mclk out of range\n"); 581 return -EINVAL; 582 } else { 583 mpost_div = (q < 128*8); 584 mpost_div += (q < 64*8); 585 mpost_div += (q < 32*8); 586 } 587 sclk_post_div_real = aty_postdividers[mpost_div]; 588 pll->ct.sclk_fb_div = q * sclk_post_div_real / 8; 589 pll->ct.spll_cntl2 = mpost_div << 4; 590 #ifdef DEBUG 591 pllsclk = (1000000 * 2 * pll->ct.sclk_fb_div) / 592 (par->ref_clk_per * pll->ct.pll_ref_div); 593 printk("atyfb(%s): use sclk, pllsclk=%d MHz, sclk=mclk=%d MHz\n", 594 __func__, pllsclk, pllsclk / sclk_post_div_real); 595 #endif 596 } 597 598 /* Disable the extra precision pixel clock controls since we do not use them. */ 599 pll->ct.ext_vpll_cntl = aty_ld_pll_ct(EXT_VPLL_CNTL, par); 600 pll->ct.ext_vpll_cntl &= ~(EXT_VPLL_EN | EXT_VPLL_VGA_EN | EXT_VPLL_INSYNC); 601 602 return 0; 603 } 604 605 static void aty_resume_pll_ct(const struct fb_info *info, 606 union aty_pll *pll) 607 { 608 struct atyfb_par *par = info->par; 609 610 if (par->mclk_per != par->xclk_per) { 611 /* 612 * This disables the sclk, crashes the computer as reported: 613 * aty_st_pll_ct(SPLL_CNTL2, 3, info); 614 * 615 * So it seems the sclk must be enabled before it is used; 616 * so PLL_GEN_CNTL must be programmed *after* the sclk. 617 */ 618 aty_st_pll_ct(SCLK_FB_DIV, pll->ct.sclk_fb_div, par); 619 aty_st_pll_ct(SPLL_CNTL2, pll->ct.spll_cntl2, par); 620 /* 621 * SCLK has been started. Wait for the PLL to lock. 5 ms 622 * should be enough according to mach64 programmer's guide. 623 */ 624 mdelay(5); 625 } 626 627 aty_st_pll_ct(PLL_REF_DIV, pll->ct.pll_ref_div, par); 628 aty_st_pll_ct(PLL_GEN_CNTL, pll->ct.pll_gen_cntl, par); 629 aty_st_pll_ct(MCLK_FB_DIV, pll->ct.mclk_fb_div, par); 630 aty_st_pll_ct(PLL_EXT_CNTL, pll->ct.pll_ext_cntl, par); 631 aty_st_pll_ct(EXT_VPLL_CNTL, pll->ct.ext_vpll_cntl, par); 632 } 633 634 static int dummy(void) 635 { 636 return 0; 637 } 638 639 const struct aty_dac_ops aty_dac_ct = { 640 .set_dac = (void *) dummy, 641 }; 642 643 const struct aty_pll_ops aty_pll_ct = { 644 .var_to_pll = aty_var_to_pll_ct, 645 .pll_to_var = aty_pll_to_var_ct, 646 .set_pll = aty_set_pll_ct, 647 .get_pll = aty_get_pll_ct, 648 .init_pll = aty_init_pll_ct, 649 .resume_pll = aty_resume_pll_ct, 650 }; 651