1 /* $Id: aty128fb.c,v 1.1.1.1.36.1 1999/12/11 09:03:05 Exp $ 2 * linux/drivers/video/aty128fb.c -- Frame buffer device for ATI Rage128 3 * 4 * Copyright (C) 1999-2003, Brad Douglas <brad@neruo.com> 5 * Copyright (C) 1999, Anthony Tong <atong@uiuc.edu> 6 * 7 * Ani Joshi / Jeff Garzik 8 * - Code cleanup 9 * 10 * Michel Danzer <michdaen@iiic.ethz.ch> 11 * - 15/16 bit cleanup 12 * - fix panning 13 * 14 * Benjamin Herrenschmidt 15 * - pmac-specific PM stuff 16 * - various fixes & cleanups 17 * 18 * Andreas Hundt <andi@convergence.de> 19 * - FB_ACTIVATE fixes 20 * 21 * Paul Mackerras <paulus@samba.org> 22 * - Convert to new framebuffer API, 23 * fix colormap setting at 16 bits/pixel (565) 24 * 25 * Paul Mundt 26 * - PCI hotplug 27 * 28 * Jon Smirl <jonsmirl@yahoo.com> 29 * - PCI ID update 30 * - replace ROM BIOS search 31 * 32 * Based off of Geert's atyfb.c and vfb.c. 33 * 34 * TODO: 35 * - monitor sensing (DDC) 36 * - virtual display 37 * - other platform support (only ppc/x86 supported) 38 * - hardware cursor support 39 * 40 * Please cc: your patches to brad@neruo.com. 41 */ 42 43 /* 44 * A special note of gratitude to ATI's devrel for providing documentation, 45 * example code and hardware. Thanks Nitya. -atong and brad 46 */ 47 48 49 #include <linux/module.h> 50 #include <linux/moduleparam.h> 51 #include <linux/kernel.h> 52 #include <linux/errno.h> 53 #include <linux/string.h> 54 #include <linux/mm.h> 55 #include <linux/vmalloc.h> 56 #include <linux/delay.h> 57 #include <linux/interrupt.h> 58 #include <linux/uaccess.h> 59 #include <linux/fb.h> 60 #include <linux/init.h> 61 #include <linux/pci.h> 62 #include <linux/ioport.h> 63 #include <linux/console.h> 64 #include <linux/backlight.h> 65 #include <asm/io.h> 66 67 #ifdef CONFIG_PPC_PMAC 68 #include <asm/machdep.h> 69 #include <asm/pmac_feature.h> 70 #include <asm/prom.h> 71 #include <asm/pci-bridge.h> 72 #include "../macmodes.h" 73 #endif 74 75 #ifdef CONFIG_PMAC_BACKLIGHT 76 #include <asm/backlight.h> 77 #endif 78 79 #ifdef CONFIG_BOOTX_TEXT 80 #include <asm/btext.h> 81 #endif /* CONFIG_BOOTX_TEXT */ 82 83 #include <video/aty128.h> 84 85 /* Debug flag */ 86 #undef DEBUG 87 88 #ifdef DEBUG 89 #define DBG(fmt, args...) \ 90 printk(KERN_DEBUG "aty128fb: %s " fmt, __func__, ##args); 91 #else 92 #define DBG(fmt, args...) 93 #endif 94 95 #ifndef CONFIG_PPC_PMAC 96 /* default mode */ 97 static struct fb_var_screeninfo default_var = { 98 /* 640x480, 60 Hz, Non-Interlaced (25.175 MHz dotclock) */ 99 640, 480, 640, 480, 0, 0, 8, 0, 100 {0, 8, 0}, {0, 8, 0}, {0, 8, 0}, {0, 0, 0}, 101 0, 0, -1, -1, 0, 39722, 48, 16, 33, 10, 96, 2, 102 0, FB_VMODE_NONINTERLACED 103 }; 104 105 #else /* CONFIG_PPC_PMAC */ 106 /* default to 1024x768 at 75Hz on PPC - this will work 107 * on the iMac, the usual 640x480 @ 60Hz doesn't. */ 108 static struct fb_var_screeninfo default_var = { 109 /* 1024x768, 75 Hz, Non-Interlaced (78.75 MHz dotclock) */ 110 1024, 768, 1024, 768, 0, 0, 8, 0, 111 {0, 8, 0}, {0, 8, 0}, {0, 8, 0}, {0, 0, 0}, 112 0, 0, -1, -1, 0, 12699, 160, 32, 28, 1, 96, 3, 113 FB_SYNC_HOR_HIGH_ACT | FB_SYNC_VERT_HIGH_ACT, 114 FB_VMODE_NONINTERLACED 115 }; 116 #endif /* CONFIG_PPC_PMAC */ 117 118 /* default modedb mode */ 119 /* 640x480, 60 Hz, Non-Interlaced (25.172 MHz dotclock) */ 120 static struct fb_videomode defaultmode = { 121 .refresh = 60, 122 .xres = 640, 123 .yres = 480, 124 .pixclock = 39722, 125 .left_margin = 48, 126 .right_margin = 16, 127 .upper_margin = 33, 128 .lower_margin = 10, 129 .hsync_len = 96, 130 .vsync_len = 2, 131 .sync = 0, 132 .vmode = FB_VMODE_NONINTERLACED 133 }; 134 135 /* Chip generations */ 136 enum { 137 rage_128, 138 rage_128_pci, 139 rage_128_pro, 140 rage_128_pro_pci, 141 rage_M3, 142 rage_M3_pci, 143 rage_M4, 144 rage_128_ultra, 145 }; 146 147 /* Must match above enum */ 148 static char * const r128_family[] = { 149 "AGP", 150 "PCI", 151 "PRO AGP", 152 "PRO PCI", 153 "M3 AGP", 154 "M3 PCI", 155 "M4 AGP", 156 "Ultra AGP", 157 }; 158 159 /* 160 * PCI driver prototypes 161 */ 162 static int aty128_probe(struct pci_dev *pdev, 163 const struct pci_device_id *ent); 164 static void aty128_remove(struct pci_dev *pdev); 165 static int aty128_pci_suspend(struct pci_dev *pdev, pm_message_t state); 166 static int aty128_pci_resume(struct pci_dev *pdev); 167 static int aty128_do_resume(struct pci_dev *pdev); 168 169 /* supported Rage128 chipsets */ 170 static struct pci_device_id aty128_pci_tbl[] = { 171 { PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_LE, 172 PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_M3_pci }, 173 { PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_LF, 174 PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_M3 }, 175 { PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_MF, 176 PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_M4 }, 177 { PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_ML, 178 PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_M4 }, 179 { PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_PA, 180 PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128_pro }, 181 { PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_PB, 182 PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128_pro }, 183 { PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_PC, 184 PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128_pro }, 185 { PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_PD, 186 PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128_pro_pci }, 187 { PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_PE, 188 PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128_pro }, 189 { PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_PF, 190 PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128_pro }, 191 { PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_PG, 192 PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128_pro }, 193 { PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_PH, 194 PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128_pro }, 195 { PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_PI, 196 PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128_pro }, 197 { PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_PJ, 198 PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128_pro }, 199 { PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_PK, 200 PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128_pro }, 201 { PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_PL, 202 PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128_pro }, 203 { PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_PM, 204 PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128_pro }, 205 { PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_PN, 206 PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128_pro }, 207 { PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_PO, 208 PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128_pro }, 209 { PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_PP, 210 PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128_pro_pci }, 211 { PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_PQ, 212 PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128_pro }, 213 { PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_PR, 214 PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128_pro_pci }, 215 { PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_PS, 216 PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128_pro }, 217 { PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_PT, 218 PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128_pro }, 219 { PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_PU, 220 PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128_pro }, 221 { PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_PV, 222 PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128_pro }, 223 { PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_PW, 224 PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128_pro }, 225 { PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_PX, 226 PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128_pro }, 227 { PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_RE, 228 PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128_pci }, 229 { PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_RF, 230 PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128 }, 231 { PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_RG, 232 PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128 }, 233 { PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_RK, 234 PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128_pci }, 235 { PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_RL, 236 PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128 }, 237 { PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_SE, 238 PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128 }, 239 { PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_SF, 240 PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128_pci }, 241 { PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_SG, 242 PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128 }, 243 { PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_SH, 244 PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128 }, 245 { PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_SK, 246 PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128 }, 247 { PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_SL, 248 PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128 }, 249 { PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_SM, 250 PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128 }, 251 { PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_SN, 252 PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128 }, 253 { PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_TF, 254 PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128_ultra }, 255 { PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_TL, 256 PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128_ultra }, 257 { PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_TR, 258 PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128_ultra }, 259 { PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_TS, 260 PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128_ultra }, 261 { PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_TT, 262 PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128_ultra }, 263 { PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_TU, 264 PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128_ultra }, 265 { 0, } 266 }; 267 268 MODULE_DEVICE_TABLE(pci, aty128_pci_tbl); 269 270 static struct pci_driver aty128fb_driver = { 271 .name = "aty128fb", 272 .id_table = aty128_pci_tbl, 273 .probe = aty128_probe, 274 .remove = aty128_remove, 275 .suspend = aty128_pci_suspend, 276 .resume = aty128_pci_resume, 277 }; 278 279 /* packed BIOS settings */ 280 #ifndef CONFIG_PPC 281 typedef struct { 282 u8 clock_chip_type; 283 u8 struct_size; 284 u8 accelerator_entry; 285 u8 VGA_entry; 286 u16 VGA_table_offset; 287 u16 POST_table_offset; 288 u16 XCLK; 289 u16 MCLK; 290 u8 num_PLL_blocks; 291 u8 size_PLL_blocks; 292 u16 PCLK_ref_freq; 293 u16 PCLK_ref_divider; 294 u32 PCLK_min_freq; 295 u32 PCLK_max_freq; 296 u16 MCLK_ref_freq; 297 u16 MCLK_ref_divider; 298 u32 MCLK_min_freq; 299 u32 MCLK_max_freq; 300 u16 XCLK_ref_freq; 301 u16 XCLK_ref_divider; 302 u32 XCLK_min_freq; 303 u32 XCLK_max_freq; 304 } __attribute__ ((packed)) PLL_BLOCK; 305 #endif /* !CONFIG_PPC */ 306 307 /* onboard memory information */ 308 struct aty128_meminfo { 309 u8 ML; 310 u8 MB; 311 u8 Trcd; 312 u8 Trp; 313 u8 Twr; 314 u8 CL; 315 u8 Tr2w; 316 u8 LoopLatency; 317 u8 DspOn; 318 u8 Rloop; 319 const char *name; 320 }; 321 322 /* various memory configurations */ 323 static const struct aty128_meminfo sdr_128 = { 324 .ML = 4, 325 .MB = 4, 326 .Trcd = 3, 327 .Trp = 3, 328 .Twr = 1, 329 .CL = 3, 330 .Tr2w = 1, 331 .LoopLatency = 16, 332 .DspOn = 30, 333 .Rloop = 16, 334 .name = "128-bit SDR SGRAM (1:1)", 335 }; 336 337 static const struct aty128_meminfo sdr_64 = { 338 .ML = 4, 339 .MB = 8, 340 .Trcd = 3, 341 .Trp = 3, 342 .Twr = 1, 343 .CL = 3, 344 .Tr2w = 1, 345 .LoopLatency = 17, 346 .DspOn = 46, 347 .Rloop = 17, 348 .name = "64-bit SDR SGRAM (1:1)", 349 }; 350 351 static const struct aty128_meminfo sdr_sgram = { 352 .ML = 4, 353 .MB = 4, 354 .Trcd = 1, 355 .Trp = 2, 356 .Twr = 1, 357 .CL = 2, 358 .Tr2w = 1, 359 .LoopLatency = 16, 360 .DspOn = 24, 361 .Rloop = 16, 362 .name = "64-bit SDR SGRAM (2:1)", 363 }; 364 365 static const struct aty128_meminfo ddr_sgram = { 366 .ML = 4, 367 .MB = 4, 368 .Trcd = 3, 369 .Trp = 3, 370 .Twr = 2, 371 .CL = 3, 372 .Tr2w = 1, 373 .LoopLatency = 16, 374 .DspOn = 31, 375 .Rloop = 16, 376 .name = "64-bit DDR SGRAM", 377 }; 378 379 static struct fb_fix_screeninfo aty128fb_fix = { 380 .id = "ATY Rage128", 381 .type = FB_TYPE_PACKED_PIXELS, 382 .visual = FB_VISUAL_PSEUDOCOLOR, 383 .xpanstep = 8, 384 .ypanstep = 1, 385 .mmio_len = 0x2000, 386 .accel = FB_ACCEL_ATI_RAGE128, 387 }; 388 389 static char *mode_option = NULL; 390 391 #ifdef CONFIG_PPC_PMAC 392 static int default_vmode = VMODE_1024_768_60; 393 static int default_cmode = CMODE_8; 394 #endif 395 396 static int default_crt_on = 0; 397 static int default_lcd_on = 1; 398 static bool mtrr = true; 399 400 #ifdef CONFIG_FB_ATY128_BACKLIGHT 401 #ifdef CONFIG_PMAC_BACKLIGHT 402 static int backlight = 1; 403 #else 404 static int backlight = 0; 405 #endif 406 #endif 407 408 /* PLL constants */ 409 struct aty128_constants { 410 u32 ref_clk; 411 u32 ppll_min; 412 u32 ppll_max; 413 u32 ref_divider; 414 u32 xclk; 415 u32 fifo_width; 416 u32 fifo_depth; 417 }; 418 419 struct aty128_crtc { 420 u32 gen_cntl; 421 u32 h_total, h_sync_strt_wid; 422 u32 v_total, v_sync_strt_wid; 423 u32 pitch; 424 u32 offset, offset_cntl; 425 u32 xoffset, yoffset; 426 u32 vxres, vyres; 427 u32 depth, bpp; 428 }; 429 430 struct aty128_pll { 431 u32 post_divider; 432 u32 feedback_divider; 433 u32 vclk; 434 }; 435 436 struct aty128_ddafifo { 437 u32 dda_config; 438 u32 dda_on_off; 439 }; 440 441 /* register values for a specific mode */ 442 struct aty128fb_par { 443 struct aty128_crtc crtc; 444 struct aty128_pll pll; 445 struct aty128_ddafifo fifo_reg; 446 u32 accel_flags; 447 struct aty128_constants constants; /* PLL and others */ 448 void __iomem *regbase; /* remapped mmio */ 449 u32 vram_size; /* onboard video ram */ 450 int chip_gen; 451 const struct aty128_meminfo *mem; /* onboard mem info */ 452 int wc_cookie; 453 int blitter_may_be_busy; 454 int fifo_slots; /* free slots in FIFO (64 max) */ 455 456 int crt_on, lcd_on; 457 struct pci_dev *pdev; 458 struct fb_info *next; 459 int asleep; 460 int lock_blank; 461 462 u8 red[32]; /* see aty128fb_setcolreg */ 463 u8 green[64]; 464 u8 blue[32]; 465 u32 pseudo_palette[16]; /* used for TRUECOLOR */ 466 }; 467 468 469 #define round_div(n, d) ((n+(d/2))/d) 470 471 static int aty128fb_check_var(struct fb_var_screeninfo *var, 472 struct fb_info *info); 473 static int aty128fb_set_par(struct fb_info *info); 474 static int aty128fb_setcolreg(u_int regno, u_int red, u_int green, u_int blue, 475 u_int transp, struct fb_info *info); 476 static int aty128fb_pan_display(struct fb_var_screeninfo *var, 477 struct fb_info *fb); 478 static int aty128fb_blank(int blank, struct fb_info *fb); 479 static int aty128fb_ioctl(struct fb_info *info, u_int cmd, unsigned long arg); 480 static int aty128fb_sync(struct fb_info *info); 481 482 /* 483 * Internal routines 484 */ 485 486 static int aty128_encode_var(struct fb_var_screeninfo *var, 487 const struct aty128fb_par *par); 488 static int aty128_decode_var(struct fb_var_screeninfo *var, 489 struct aty128fb_par *par); 490 #if 0 491 static void aty128_get_pllinfo(struct aty128fb_par *par, void __iomem *bios); 492 static void __iomem *aty128_map_ROM(struct pci_dev *pdev, 493 const struct aty128fb_par *par); 494 #endif 495 static void aty128_timings(struct aty128fb_par *par); 496 static void aty128_init_engine(struct aty128fb_par *par); 497 static void aty128_reset_engine(const struct aty128fb_par *par); 498 static void aty128_flush_pixel_cache(const struct aty128fb_par *par); 499 static void do_wait_for_fifo(u16 entries, struct aty128fb_par *par); 500 static void wait_for_fifo(u16 entries, struct aty128fb_par *par); 501 static void wait_for_idle(struct aty128fb_par *par); 502 static u32 depth_to_dst(u32 depth); 503 504 #ifdef CONFIG_FB_ATY128_BACKLIGHT 505 static void aty128_bl_set_power(struct fb_info *info, int power); 506 #endif 507 508 #define BIOS_IN8(v) (readb(bios + (v))) 509 #define BIOS_IN16(v) (readb(bios + (v)) | \ 510 (readb(bios + (v) + 1) << 8)) 511 #define BIOS_IN32(v) (readb(bios + (v)) | \ 512 (readb(bios + (v) + 1) << 8) | \ 513 (readb(bios + (v) + 2) << 16) | \ 514 (readb(bios + (v) + 3) << 24)) 515 516 517 static struct fb_ops aty128fb_ops = { 518 .owner = THIS_MODULE, 519 .fb_check_var = aty128fb_check_var, 520 .fb_set_par = aty128fb_set_par, 521 .fb_setcolreg = aty128fb_setcolreg, 522 .fb_pan_display = aty128fb_pan_display, 523 .fb_blank = aty128fb_blank, 524 .fb_ioctl = aty128fb_ioctl, 525 .fb_sync = aty128fb_sync, 526 .fb_fillrect = cfb_fillrect, 527 .fb_copyarea = cfb_copyarea, 528 .fb_imageblit = cfb_imageblit, 529 }; 530 531 /* 532 * Functions to read from/write to the mmio registers 533 * - endian conversions may possibly be avoided by 534 * using the other register aperture. TODO. 535 */ 536 static inline u32 _aty_ld_le32(volatile unsigned int regindex, 537 const struct aty128fb_par *par) 538 { 539 return readl (par->regbase + regindex); 540 } 541 542 static inline void _aty_st_le32(volatile unsigned int regindex, u32 val, 543 const struct aty128fb_par *par) 544 { 545 writel (val, par->regbase + regindex); 546 } 547 548 static inline u8 _aty_ld_8(unsigned int regindex, 549 const struct aty128fb_par *par) 550 { 551 return readb (par->regbase + regindex); 552 } 553 554 static inline void _aty_st_8(unsigned int regindex, u8 val, 555 const struct aty128fb_par *par) 556 { 557 writeb (val, par->regbase + regindex); 558 } 559 560 #define aty_ld_le32(regindex) _aty_ld_le32(regindex, par) 561 #define aty_st_le32(regindex, val) _aty_st_le32(regindex, val, par) 562 #define aty_ld_8(regindex) _aty_ld_8(regindex, par) 563 #define aty_st_8(regindex, val) _aty_st_8(regindex, val, par) 564 565 /* 566 * Functions to read from/write to the pll registers 567 */ 568 569 #define aty_ld_pll(pll_index) _aty_ld_pll(pll_index, par) 570 #define aty_st_pll(pll_index, val) _aty_st_pll(pll_index, val, par) 571 572 573 static u32 _aty_ld_pll(unsigned int pll_index, 574 const struct aty128fb_par *par) 575 { 576 aty_st_8(CLOCK_CNTL_INDEX, pll_index & 0x3F); 577 return aty_ld_le32(CLOCK_CNTL_DATA); 578 } 579 580 581 static void _aty_st_pll(unsigned int pll_index, u32 val, 582 const struct aty128fb_par *par) 583 { 584 aty_st_8(CLOCK_CNTL_INDEX, (pll_index & 0x3F) | PLL_WR_EN); 585 aty_st_le32(CLOCK_CNTL_DATA, val); 586 } 587 588 589 /* return true when the PLL has completed an atomic update */ 590 static int aty_pll_readupdate(const struct aty128fb_par *par) 591 { 592 return !(aty_ld_pll(PPLL_REF_DIV) & PPLL_ATOMIC_UPDATE_R); 593 } 594 595 596 static void aty_pll_wait_readupdate(const struct aty128fb_par *par) 597 { 598 unsigned long timeout = jiffies + HZ/100; // should be more than enough 599 int reset = 1; 600 601 while (time_before(jiffies, timeout)) 602 if (aty_pll_readupdate(par)) { 603 reset = 0; 604 break; 605 } 606 607 if (reset) /* reset engine?? */ 608 printk(KERN_DEBUG "aty128fb: PLL write timeout!\n"); 609 } 610 611 612 /* tell PLL to update */ 613 static void aty_pll_writeupdate(const struct aty128fb_par *par) 614 { 615 aty_pll_wait_readupdate(par); 616 617 aty_st_pll(PPLL_REF_DIV, 618 aty_ld_pll(PPLL_REF_DIV) | PPLL_ATOMIC_UPDATE_W); 619 } 620 621 622 /* write to the scratch register to test r/w functionality */ 623 static int register_test(const struct aty128fb_par *par) 624 { 625 u32 val; 626 int flag = 0; 627 628 val = aty_ld_le32(BIOS_0_SCRATCH); 629 630 aty_st_le32(BIOS_0_SCRATCH, 0x55555555); 631 if (aty_ld_le32(BIOS_0_SCRATCH) == 0x55555555) { 632 aty_st_le32(BIOS_0_SCRATCH, 0xAAAAAAAA); 633 634 if (aty_ld_le32(BIOS_0_SCRATCH) == 0xAAAAAAAA) 635 flag = 1; 636 } 637 638 aty_st_le32(BIOS_0_SCRATCH, val); // restore value 639 return flag; 640 } 641 642 643 /* 644 * Accelerator engine functions 645 */ 646 static void do_wait_for_fifo(u16 entries, struct aty128fb_par *par) 647 { 648 int i; 649 650 for (;;) { 651 for (i = 0; i < 2000000; i++) { 652 par->fifo_slots = aty_ld_le32(GUI_STAT) & 0x0fff; 653 if (par->fifo_slots >= entries) 654 return; 655 } 656 aty128_reset_engine(par); 657 } 658 } 659 660 661 static void wait_for_idle(struct aty128fb_par *par) 662 { 663 int i; 664 665 do_wait_for_fifo(64, par); 666 667 for (;;) { 668 for (i = 0; i < 2000000; i++) { 669 if (!(aty_ld_le32(GUI_STAT) & (1 << 31))) { 670 aty128_flush_pixel_cache(par); 671 par->blitter_may_be_busy = 0; 672 return; 673 } 674 } 675 aty128_reset_engine(par); 676 } 677 } 678 679 680 static void wait_for_fifo(u16 entries, struct aty128fb_par *par) 681 { 682 if (par->fifo_slots < entries) 683 do_wait_for_fifo(64, par); 684 par->fifo_slots -= entries; 685 } 686 687 688 static void aty128_flush_pixel_cache(const struct aty128fb_par *par) 689 { 690 int i; 691 u32 tmp; 692 693 tmp = aty_ld_le32(PC_NGUI_CTLSTAT); 694 tmp &= ~(0x00ff); 695 tmp |= 0x00ff; 696 aty_st_le32(PC_NGUI_CTLSTAT, tmp); 697 698 for (i = 0; i < 2000000; i++) 699 if (!(aty_ld_le32(PC_NGUI_CTLSTAT) & PC_BUSY)) 700 break; 701 } 702 703 704 static void aty128_reset_engine(const struct aty128fb_par *par) 705 { 706 u32 gen_reset_cntl, clock_cntl_index, mclk_cntl; 707 708 aty128_flush_pixel_cache(par); 709 710 clock_cntl_index = aty_ld_le32(CLOCK_CNTL_INDEX); 711 mclk_cntl = aty_ld_pll(MCLK_CNTL); 712 713 aty_st_pll(MCLK_CNTL, mclk_cntl | 0x00030000); 714 715 gen_reset_cntl = aty_ld_le32(GEN_RESET_CNTL); 716 aty_st_le32(GEN_RESET_CNTL, gen_reset_cntl | SOFT_RESET_GUI); 717 aty_ld_le32(GEN_RESET_CNTL); 718 aty_st_le32(GEN_RESET_CNTL, gen_reset_cntl & ~(SOFT_RESET_GUI)); 719 aty_ld_le32(GEN_RESET_CNTL); 720 721 aty_st_pll(MCLK_CNTL, mclk_cntl); 722 aty_st_le32(CLOCK_CNTL_INDEX, clock_cntl_index); 723 aty_st_le32(GEN_RESET_CNTL, gen_reset_cntl); 724 725 /* use old pio mode */ 726 aty_st_le32(PM4_BUFFER_CNTL, PM4_BUFFER_CNTL_NONPM4); 727 728 DBG("engine reset"); 729 } 730 731 732 static void aty128_init_engine(struct aty128fb_par *par) 733 { 734 u32 pitch_value; 735 736 wait_for_idle(par); 737 738 /* 3D scaler not spoken here */ 739 wait_for_fifo(1, par); 740 aty_st_le32(SCALE_3D_CNTL, 0x00000000); 741 742 aty128_reset_engine(par); 743 744 pitch_value = par->crtc.pitch; 745 if (par->crtc.bpp == 24) { 746 pitch_value = pitch_value * 3; 747 } 748 749 wait_for_fifo(4, par); 750 /* setup engine offset registers */ 751 aty_st_le32(DEFAULT_OFFSET, 0x00000000); 752 753 /* setup engine pitch registers */ 754 aty_st_le32(DEFAULT_PITCH, pitch_value); 755 756 /* set the default scissor register to max dimensions */ 757 aty_st_le32(DEFAULT_SC_BOTTOM_RIGHT, (0x1FFF << 16) | 0x1FFF); 758 759 /* set the drawing controls registers */ 760 aty_st_le32(DP_GUI_MASTER_CNTL, 761 GMC_SRC_PITCH_OFFSET_DEFAULT | 762 GMC_DST_PITCH_OFFSET_DEFAULT | 763 GMC_SRC_CLIP_DEFAULT | 764 GMC_DST_CLIP_DEFAULT | 765 GMC_BRUSH_SOLIDCOLOR | 766 (depth_to_dst(par->crtc.depth) << 8) | 767 GMC_SRC_DSTCOLOR | 768 GMC_BYTE_ORDER_MSB_TO_LSB | 769 GMC_DP_CONVERSION_TEMP_6500 | 770 ROP3_PATCOPY | 771 GMC_DP_SRC_RECT | 772 GMC_3D_FCN_EN_CLR | 773 GMC_DST_CLR_CMP_FCN_CLEAR | 774 GMC_AUX_CLIP_CLEAR | 775 GMC_WRITE_MASK_SET); 776 777 wait_for_fifo(8, par); 778 /* clear the line drawing registers */ 779 aty_st_le32(DST_BRES_ERR, 0); 780 aty_st_le32(DST_BRES_INC, 0); 781 aty_st_le32(DST_BRES_DEC, 0); 782 783 /* set brush color registers */ 784 aty_st_le32(DP_BRUSH_FRGD_CLR, 0xFFFFFFFF); /* white */ 785 aty_st_le32(DP_BRUSH_BKGD_CLR, 0x00000000); /* black */ 786 787 /* set source color registers */ 788 aty_st_le32(DP_SRC_FRGD_CLR, 0xFFFFFFFF); /* white */ 789 aty_st_le32(DP_SRC_BKGD_CLR, 0x00000000); /* black */ 790 791 /* default write mask */ 792 aty_st_le32(DP_WRITE_MASK, 0xFFFFFFFF); 793 794 /* Wait for all the writes to be completed before returning */ 795 wait_for_idle(par); 796 } 797 798 799 /* convert depth values to their register representation */ 800 static u32 depth_to_dst(u32 depth) 801 { 802 if (depth <= 8) 803 return DST_8BPP; 804 else if (depth <= 15) 805 return DST_15BPP; 806 else if (depth == 16) 807 return DST_16BPP; 808 else if (depth <= 24) 809 return DST_24BPP; 810 else if (depth <= 32) 811 return DST_32BPP; 812 813 return -EINVAL; 814 } 815 816 /* 817 * PLL informations retreival 818 */ 819 820 821 #ifndef __sparc__ 822 static void __iomem *aty128_map_ROM(const struct aty128fb_par *par, 823 struct pci_dev *dev) 824 { 825 u16 dptr; 826 u8 rom_type; 827 void __iomem *bios; 828 size_t rom_size; 829 830 /* Fix from ATI for problem with Rage128 hardware not leaving ROM enabled */ 831 unsigned int temp; 832 temp = aty_ld_le32(RAGE128_MPP_TB_CONFIG); 833 temp &= 0x00ffffffu; 834 temp |= 0x04 << 24; 835 aty_st_le32(RAGE128_MPP_TB_CONFIG, temp); 836 temp = aty_ld_le32(RAGE128_MPP_TB_CONFIG); 837 838 bios = pci_map_rom(dev, &rom_size); 839 840 if (!bios) { 841 printk(KERN_ERR "aty128fb: ROM failed to map\n"); 842 return NULL; 843 } 844 845 /* Very simple test to make sure it appeared */ 846 if (BIOS_IN16(0) != 0xaa55) { 847 printk(KERN_DEBUG "aty128fb: Invalid ROM signature %x should " 848 " be 0xaa55\n", BIOS_IN16(0)); 849 goto failed; 850 } 851 852 /* Look for the PCI data to check the ROM type */ 853 dptr = BIOS_IN16(0x18); 854 855 /* Check the PCI data signature. If it's wrong, we still assume a normal 856 * x86 ROM for now, until I've verified this works everywhere. 857 * The goal here is more to phase out Open Firmware images. 858 * 859 * Currently, we only look at the first PCI data, we could iteratre and 860 * deal with them all, and we should use fb_bios_start relative to start 861 * of image and not relative start of ROM, but so far, I never found a 862 * dual-image ATI card. 863 * 864 * typedef struct { 865 * u32 signature; + 0x00 866 * u16 vendor; + 0x04 867 * u16 device; + 0x06 868 * u16 reserved_1; + 0x08 869 * u16 dlen; + 0x0a 870 * u8 drevision; + 0x0c 871 * u8 class_hi; + 0x0d 872 * u16 class_lo; + 0x0e 873 * u16 ilen; + 0x10 874 * u16 irevision; + 0x12 875 * u8 type; + 0x14 876 * u8 indicator; + 0x15 877 * u16 reserved_2; + 0x16 878 * } pci_data_t; 879 */ 880 if (BIOS_IN32(dptr) != (('R' << 24) | ('I' << 16) | ('C' << 8) | 'P')) { 881 printk(KERN_WARNING "aty128fb: PCI DATA signature in ROM incorrect: %08x\n", 882 BIOS_IN32(dptr)); 883 goto anyway; 884 } 885 rom_type = BIOS_IN8(dptr + 0x14); 886 switch(rom_type) { 887 case 0: 888 printk(KERN_INFO "aty128fb: Found Intel x86 BIOS ROM Image\n"); 889 break; 890 case 1: 891 printk(KERN_INFO "aty128fb: Found Open Firmware ROM Image\n"); 892 goto failed; 893 case 2: 894 printk(KERN_INFO "aty128fb: Found HP PA-RISC ROM Image\n"); 895 goto failed; 896 default: 897 printk(KERN_INFO "aty128fb: Found unknown type %d ROM Image\n", 898 rom_type); 899 goto failed; 900 } 901 anyway: 902 return bios; 903 904 failed: 905 pci_unmap_rom(dev, bios); 906 return NULL; 907 } 908 909 static void aty128_get_pllinfo(struct aty128fb_par *par, 910 unsigned char __iomem *bios) 911 { 912 unsigned int bios_hdr; 913 unsigned int bios_pll; 914 915 bios_hdr = BIOS_IN16(0x48); 916 bios_pll = BIOS_IN16(bios_hdr + 0x30); 917 918 par->constants.ppll_max = BIOS_IN32(bios_pll + 0x16); 919 par->constants.ppll_min = BIOS_IN32(bios_pll + 0x12); 920 par->constants.xclk = BIOS_IN16(bios_pll + 0x08); 921 par->constants.ref_divider = BIOS_IN16(bios_pll + 0x10); 922 par->constants.ref_clk = BIOS_IN16(bios_pll + 0x0e); 923 924 DBG("ppll_max %d ppll_min %d xclk %d ref_divider %d ref clock %d\n", 925 par->constants.ppll_max, par->constants.ppll_min, 926 par->constants.xclk, par->constants.ref_divider, 927 par->constants.ref_clk); 928 929 } 930 931 #ifdef CONFIG_X86 932 static void __iomem *aty128_find_mem_vbios(struct aty128fb_par *par) 933 { 934 /* I simplified this code as we used to miss the signatures in 935 * a lot of case. It's now closer to XFree, we just don't check 936 * for signatures at all... Something better will have to be done 937 * if we end up having conflicts 938 */ 939 u32 segstart; 940 unsigned char __iomem *rom_base = NULL; 941 942 for (segstart=0x000c0000; segstart<0x000f0000; segstart+=0x00001000) { 943 rom_base = ioremap(segstart, 0x10000); 944 if (rom_base == NULL) 945 return NULL; 946 if (readb(rom_base) == 0x55 && readb(rom_base + 1) == 0xaa) 947 break; 948 iounmap(rom_base); 949 rom_base = NULL; 950 } 951 return rom_base; 952 } 953 #endif 954 #endif /* ndef(__sparc__) */ 955 956 /* fill in known card constants if pll_block is not available */ 957 static void aty128_timings(struct aty128fb_par *par) 958 { 959 #ifdef CONFIG_PPC 960 /* instead of a table lookup, assume OF has properly 961 * setup the PLL registers and use their values 962 * to set the XCLK values and reference divider values */ 963 964 u32 x_mpll_ref_fb_div; 965 u32 xclk_cntl; 966 u32 Nx, M; 967 unsigned PostDivSet[] = { 0, 1, 2, 4, 8, 3, 6, 12 }; 968 #endif 969 970 if (!par->constants.ref_clk) 971 par->constants.ref_clk = 2950; 972 973 #ifdef CONFIG_PPC 974 x_mpll_ref_fb_div = aty_ld_pll(X_MPLL_REF_FB_DIV); 975 xclk_cntl = aty_ld_pll(XCLK_CNTL) & 0x7; 976 Nx = (x_mpll_ref_fb_div & 0x00ff00) >> 8; 977 M = x_mpll_ref_fb_div & 0x0000ff; 978 979 par->constants.xclk = round_div((2 * Nx * par->constants.ref_clk), 980 (M * PostDivSet[xclk_cntl])); 981 982 par->constants.ref_divider = 983 aty_ld_pll(PPLL_REF_DIV) & PPLL_REF_DIV_MASK; 984 #endif 985 986 if (!par->constants.ref_divider) { 987 par->constants.ref_divider = 0x3b; 988 989 aty_st_pll(X_MPLL_REF_FB_DIV, 0x004c4c1e); 990 aty_pll_writeupdate(par); 991 } 992 aty_st_pll(PPLL_REF_DIV, par->constants.ref_divider); 993 aty_pll_writeupdate(par); 994 995 /* from documentation */ 996 if (!par->constants.ppll_min) 997 par->constants.ppll_min = 12500; 998 if (!par->constants.ppll_max) 999 par->constants.ppll_max = 25000; /* 23000 on some cards? */ 1000 if (!par->constants.xclk) 1001 par->constants.xclk = 0x1d4d; /* same as mclk */ 1002 1003 par->constants.fifo_width = 128; 1004 par->constants.fifo_depth = 32; 1005 1006 switch (aty_ld_le32(MEM_CNTL) & 0x3) { 1007 case 0: 1008 par->mem = &sdr_128; 1009 break; 1010 case 1: 1011 par->mem = &sdr_sgram; 1012 break; 1013 case 2: 1014 par->mem = &ddr_sgram; 1015 break; 1016 default: 1017 par->mem = &sdr_sgram; 1018 } 1019 } 1020 1021 1022 1023 /* 1024 * CRTC programming 1025 */ 1026 1027 /* Program the CRTC registers */ 1028 static void aty128_set_crtc(const struct aty128_crtc *crtc, 1029 const struct aty128fb_par *par) 1030 { 1031 aty_st_le32(CRTC_GEN_CNTL, crtc->gen_cntl); 1032 aty_st_le32(CRTC_H_TOTAL_DISP, crtc->h_total); 1033 aty_st_le32(CRTC_H_SYNC_STRT_WID, crtc->h_sync_strt_wid); 1034 aty_st_le32(CRTC_V_TOTAL_DISP, crtc->v_total); 1035 aty_st_le32(CRTC_V_SYNC_STRT_WID, crtc->v_sync_strt_wid); 1036 aty_st_le32(CRTC_PITCH, crtc->pitch); 1037 aty_st_le32(CRTC_OFFSET, crtc->offset); 1038 aty_st_le32(CRTC_OFFSET_CNTL, crtc->offset_cntl); 1039 /* Disable ATOMIC updating. Is this the right place? */ 1040 aty_st_pll(PPLL_CNTL, aty_ld_pll(PPLL_CNTL) & ~(0x00030000)); 1041 } 1042 1043 1044 static int aty128_var_to_crtc(const struct fb_var_screeninfo *var, 1045 struct aty128_crtc *crtc, 1046 const struct aty128fb_par *par) 1047 { 1048 u32 xres, yres, vxres, vyres, xoffset, yoffset, bpp, dst; 1049 u32 left, right, upper, lower, hslen, vslen, sync, vmode; 1050 u32 h_total, h_disp, h_sync_strt, h_sync_wid, h_sync_pol; 1051 u32 v_total, v_disp, v_sync_strt, v_sync_wid, v_sync_pol, c_sync; 1052 u32 depth, bytpp; 1053 u8 mode_bytpp[7] = { 0, 0, 1, 2, 2, 3, 4 }; 1054 1055 /* input */ 1056 xres = var->xres; 1057 yres = var->yres; 1058 vxres = var->xres_virtual; 1059 vyres = var->yres_virtual; 1060 xoffset = var->xoffset; 1061 yoffset = var->yoffset; 1062 bpp = var->bits_per_pixel; 1063 left = var->left_margin; 1064 right = var->right_margin; 1065 upper = var->upper_margin; 1066 lower = var->lower_margin; 1067 hslen = var->hsync_len; 1068 vslen = var->vsync_len; 1069 sync = var->sync; 1070 vmode = var->vmode; 1071 1072 if (bpp != 16) 1073 depth = bpp; 1074 else 1075 depth = (var->green.length == 6) ? 16 : 15; 1076 1077 /* check for mode eligibility 1078 * accept only non interlaced modes */ 1079 if ((vmode & FB_VMODE_MASK) != FB_VMODE_NONINTERLACED) 1080 return -EINVAL; 1081 1082 /* convert (and round up) and validate */ 1083 xres = (xres + 7) & ~7; 1084 xoffset = (xoffset + 7) & ~7; 1085 1086 if (vxres < xres + xoffset) 1087 vxres = xres + xoffset; 1088 1089 if (vyres < yres + yoffset) 1090 vyres = yres + yoffset; 1091 1092 /* convert depth into ATI register depth */ 1093 dst = depth_to_dst(depth); 1094 1095 if (dst == -EINVAL) { 1096 printk(KERN_ERR "aty128fb: Invalid depth or RGBA\n"); 1097 return -EINVAL; 1098 } 1099 1100 /* convert register depth to bytes per pixel */ 1101 bytpp = mode_bytpp[dst]; 1102 1103 /* make sure there is enough video ram for the mode */ 1104 if ((u32)(vxres * vyres * bytpp) > par->vram_size) { 1105 printk(KERN_ERR "aty128fb: Not enough memory for mode\n"); 1106 return -EINVAL; 1107 } 1108 1109 h_disp = (xres >> 3) - 1; 1110 h_total = (((xres + right + hslen + left) >> 3) - 1) & 0xFFFFL; 1111 1112 v_disp = yres - 1; 1113 v_total = (yres + upper + vslen + lower - 1) & 0xFFFFL; 1114 1115 /* check to make sure h_total and v_total are in range */ 1116 if (((h_total >> 3) - 1) > 0x1ff || (v_total - 1) > 0x7FF) { 1117 printk(KERN_ERR "aty128fb: invalid width ranges\n"); 1118 return -EINVAL; 1119 } 1120 1121 h_sync_wid = (hslen + 7) >> 3; 1122 if (h_sync_wid == 0) 1123 h_sync_wid = 1; 1124 else if (h_sync_wid > 0x3f) /* 0x3f = max hwidth */ 1125 h_sync_wid = 0x3f; 1126 1127 h_sync_strt = (h_disp << 3) + right; 1128 1129 v_sync_wid = vslen; 1130 if (v_sync_wid == 0) 1131 v_sync_wid = 1; 1132 else if (v_sync_wid > 0x1f) /* 0x1f = max vwidth */ 1133 v_sync_wid = 0x1f; 1134 1135 v_sync_strt = v_disp + lower; 1136 1137 h_sync_pol = sync & FB_SYNC_HOR_HIGH_ACT ? 0 : 1; 1138 v_sync_pol = sync & FB_SYNC_VERT_HIGH_ACT ? 0 : 1; 1139 1140 c_sync = sync & FB_SYNC_COMP_HIGH_ACT ? (1 << 4) : 0; 1141 1142 crtc->gen_cntl = 0x3000000L | c_sync | (dst << 8); 1143 1144 crtc->h_total = h_total | (h_disp << 16); 1145 crtc->v_total = v_total | (v_disp << 16); 1146 1147 crtc->h_sync_strt_wid = h_sync_strt | (h_sync_wid << 16) | 1148 (h_sync_pol << 23); 1149 crtc->v_sync_strt_wid = v_sync_strt | (v_sync_wid << 16) | 1150 (v_sync_pol << 23); 1151 1152 crtc->pitch = vxres >> 3; 1153 1154 crtc->offset = 0; 1155 1156 if ((var->activate & FB_ACTIVATE_MASK) == FB_ACTIVATE_NOW) 1157 crtc->offset_cntl = 0x00010000; 1158 else 1159 crtc->offset_cntl = 0; 1160 1161 crtc->vxres = vxres; 1162 crtc->vyres = vyres; 1163 crtc->xoffset = xoffset; 1164 crtc->yoffset = yoffset; 1165 crtc->depth = depth; 1166 crtc->bpp = bpp; 1167 1168 return 0; 1169 } 1170 1171 1172 static int aty128_pix_width_to_var(int pix_width, struct fb_var_screeninfo *var) 1173 { 1174 1175 /* fill in pixel info */ 1176 var->red.msb_right = 0; 1177 var->green.msb_right = 0; 1178 var->blue.offset = 0; 1179 var->blue.msb_right = 0; 1180 var->transp.offset = 0; 1181 var->transp.length = 0; 1182 var->transp.msb_right = 0; 1183 switch (pix_width) { 1184 case CRTC_PIX_WIDTH_8BPP: 1185 var->bits_per_pixel = 8; 1186 var->red.offset = 0; 1187 var->red.length = 8; 1188 var->green.offset = 0; 1189 var->green.length = 8; 1190 var->blue.length = 8; 1191 break; 1192 case CRTC_PIX_WIDTH_15BPP: 1193 var->bits_per_pixel = 16; 1194 var->red.offset = 10; 1195 var->red.length = 5; 1196 var->green.offset = 5; 1197 var->green.length = 5; 1198 var->blue.length = 5; 1199 break; 1200 case CRTC_PIX_WIDTH_16BPP: 1201 var->bits_per_pixel = 16; 1202 var->red.offset = 11; 1203 var->red.length = 5; 1204 var->green.offset = 5; 1205 var->green.length = 6; 1206 var->blue.length = 5; 1207 break; 1208 case CRTC_PIX_WIDTH_24BPP: 1209 var->bits_per_pixel = 24; 1210 var->red.offset = 16; 1211 var->red.length = 8; 1212 var->green.offset = 8; 1213 var->green.length = 8; 1214 var->blue.length = 8; 1215 break; 1216 case CRTC_PIX_WIDTH_32BPP: 1217 var->bits_per_pixel = 32; 1218 var->red.offset = 16; 1219 var->red.length = 8; 1220 var->green.offset = 8; 1221 var->green.length = 8; 1222 var->blue.length = 8; 1223 var->transp.offset = 24; 1224 var->transp.length = 8; 1225 break; 1226 default: 1227 printk(KERN_ERR "aty128fb: Invalid pixel width\n"); 1228 return -EINVAL; 1229 } 1230 1231 return 0; 1232 } 1233 1234 1235 static int aty128_crtc_to_var(const struct aty128_crtc *crtc, 1236 struct fb_var_screeninfo *var) 1237 { 1238 u32 xres, yres, left, right, upper, lower, hslen, vslen, sync; 1239 u32 h_total, h_disp, h_sync_strt, h_sync_dly, h_sync_wid, h_sync_pol; 1240 u32 v_total, v_disp, v_sync_strt, v_sync_wid, v_sync_pol, c_sync; 1241 u32 pix_width; 1242 1243 /* fun with masking */ 1244 h_total = crtc->h_total & 0x1ff; 1245 h_disp = (crtc->h_total >> 16) & 0xff; 1246 h_sync_strt = (crtc->h_sync_strt_wid >> 3) & 0x1ff; 1247 h_sync_dly = crtc->h_sync_strt_wid & 0x7; 1248 h_sync_wid = (crtc->h_sync_strt_wid >> 16) & 0x3f; 1249 h_sync_pol = (crtc->h_sync_strt_wid >> 23) & 0x1; 1250 v_total = crtc->v_total & 0x7ff; 1251 v_disp = (crtc->v_total >> 16) & 0x7ff; 1252 v_sync_strt = crtc->v_sync_strt_wid & 0x7ff; 1253 v_sync_wid = (crtc->v_sync_strt_wid >> 16) & 0x1f; 1254 v_sync_pol = (crtc->v_sync_strt_wid >> 23) & 0x1; 1255 c_sync = crtc->gen_cntl & CRTC_CSYNC_EN ? 1 : 0; 1256 pix_width = crtc->gen_cntl & CRTC_PIX_WIDTH_MASK; 1257 1258 /* do conversions */ 1259 xres = (h_disp + 1) << 3; 1260 yres = v_disp + 1; 1261 left = ((h_total - h_sync_strt - h_sync_wid) << 3) - h_sync_dly; 1262 right = ((h_sync_strt - h_disp) << 3) + h_sync_dly; 1263 hslen = h_sync_wid << 3; 1264 upper = v_total - v_sync_strt - v_sync_wid; 1265 lower = v_sync_strt - v_disp; 1266 vslen = v_sync_wid; 1267 sync = (h_sync_pol ? 0 : FB_SYNC_HOR_HIGH_ACT) | 1268 (v_sync_pol ? 0 : FB_SYNC_VERT_HIGH_ACT) | 1269 (c_sync ? FB_SYNC_COMP_HIGH_ACT : 0); 1270 1271 aty128_pix_width_to_var(pix_width, var); 1272 1273 var->xres = xres; 1274 var->yres = yres; 1275 var->xres_virtual = crtc->vxres; 1276 var->yres_virtual = crtc->vyres; 1277 var->xoffset = crtc->xoffset; 1278 var->yoffset = crtc->yoffset; 1279 var->left_margin = left; 1280 var->right_margin = right; 1281 var->upper_margin = upper; 1282 var->lower_margin = lower; 1283 var->hsync_len = hslen; 1284 var->vsync_len = vslen; 1285 var->sync = sync; 1286 var->vmode = FB_VMODE_NONINTERLACED; 1287 1288 return 0; 1289 } 1290 1291 static void aty128_set_crt_enable(struct aty128fb_par *par, int on) 1292 { 1293 if (on) { 1294 aty_st_le32(CRTC_EXT_CNTL, aty_ld_le32(CRTC_EXT_CNTL) | 1295 CRT_CRTC_ON); 1296 aty_st_le32(DAC_CNTL, (aty_ld_le32(DAC_CNTL) | 1297 DAC_PALETTE2_SNOOP_EN)); 1298 } else 1299 aty_st_le32(CRTC_EXT_CNTL, aty_ld_le32(CRTC_EXT_CNTL) & 1300 ~CRT_CRTC_ON); 1301 } 1302 1303 static void aty128_set_lcd_enable(struct aty128fb_par *par, int on) 1304 { 1305 u32 reg; 1306 #ifdef CONFIG_FB_ATY128_BACKLIGHT 1307 struct fb_info *info = pci_get_drvdata(par->pdev); 1308 #endif 1309 1310 if (on) { 1311 reg = aty_ld_le32(LVDS_GEN_CNTL); 1312 reg |= LVDS_ON | LVDS_EN | LVDS_BLON | LVDS_DIGION; 1313 reg &= ~LVDS_DISPLAY_DIS; 1314 aty_st_le32(LVDS_GEN_CNTL, reg); 1315 #ifdef CONFIG_FB_ATY128_BACKLIGHT 1316 aty128_bl_set_power(info, FB_BLANK_UNBLANK); 1317 #endif 1318 } else { 1319 #ifdef CONFIG_FB_ATY128_BACKLIGHT 1320 aty128_bl_set_power(info, FB_BLANK_POWERDOWN); 1321 #endif 1322 reg = aty_ld_le32(LVDS_GEN_CNTL); 1323 reg |= LVDS_DISPLAY_DIS; 1324 aty_st_le32(LVDS_GEN_CNTL, reg); 1325 mdelay(100); 1326 reg &= ~(LVDS_ON /*| LVDS_EN*/); 1327 aty_st_le32(LVDS_GEN_CNTL, reg); 1328 } 1329 } 1330 1331 static void aty128_set_pll(struct aty128_pll *pll, 1332 const struct aty128fb_par *par) 1333 { 1334 u32 div3; 1335 1336 unsigned char post_conv[] = /* register values for post dividers */ 1337 { 2, 0, 1, 4, 2, 2, 6, 2, 3, 2, 2, 2, 7 }; 1338 1339 /* select PPLL_DIV_3 */ 1340 aty_st_le32(CLOCK_CNTL_INDEX, aty_ld_le32(CLOCK_CNTL_INDEX) | (3 << 8)); 1341 1342 /* reset PLL */ 1343 aty_st_pll(PPLL_CNTL, 1344 aty_ld_pll(PPLL_CNTL) | PPLL_RESET | PPLL_ATOMIC_UPDATE_EN); 1345 1346 /* write the reference divider */ 1347 aty_pll_wait_readupdate(par); 1348 aty_st_pll(PPLL_REF_DIV, par->constants.ref_divider & 0x3ff); 1349 aty_pll_writeupdate(par); 1350 1351 div3 = aty_ld_pll(PPLL_DIV_3); 1352 div3 &= ~PPLL_FB3_DIV_MASK; 1353 div3 |= pll->feedback_divider; 1354 div3 &= ~PPLL_POST3_DIV_MASK; 1355 div3 |= post_conv[pll->post_divider] << 16; 1356 1357 /* write feedback and post dividers */ 1358 aty_pll_wait_readupdate(par); 1359 aty_st_pll(PPLL_DIV_3, div3); 1360 aty_pll_writeupdate(par); 1361 1362 aty_pll_wait_readupdate(par); 1363 aty_st_pll(HTOTAL_CNTL, 0); /* no horiz crtc adjustment */ 1364 aty_pll_writeupdate(par); 1365 1366 /* clear the reset, just in case */ 1367 aty_st_pll(PPLL_CNTL, aty_ld_pll(PPLL_CNTL) & ~PPLL_RESET); 1368 } 1369 1370 1371 static int aty128_var_to_pll(u32 period_in_ps, struct aty128_pll *pll, 1372 const struct aty128fb_par *par) 1373 { 1374 const struct aty128_constants c = par->constants; 1375 unsigned char post_dividers[] = {1,2,4,8,3,6,12}; 1376 u32 output_freq; 1377 u32 vclk; /* in .01 MHz */ 1378 int i = 0; 1379 u32 n, d; 1380 1381 vclk = 100000000 / period_in_ps; /* convert units to 10 kHz */ 1382 1383 /* adjust pixel clock if necessary */ 1384 if (vclk > c.ppll_max) 1385 vclk = c.ppll_max; 1386 if (vclk * 12 < c.ppll_min) 1387 vclk = c.ppll_min/12; 1388 1389 /* now, find an acceptable divider */ 1390 for (i = 0; i < ARRAY_SIZE(post_dividers); i++) { 1391 output_freq = post_dividers[i] * vclk; 1392 if (output_freq >= c.ppll_min && output_freq <= c.ppll_max) { 1393 pll->post_divider = post_dividers[i]; 1394 break; 1395 } 1396 } 1397 1398 if (i == ARRAY_SIZE(post_dividers)) 1399 return -EINVAL; 1400 1401 /* calculate feedback divider */ 1402 n = c.ref_divider * output_freq; 1403 d = c.ref_clk; 1404 1405 pll->feedback_divider = round_div(n, d); 1406 pll->vclk = vclk; 1407 1408 DBG("post %d feedback %d vlck %d output %d ref_divider %d " 1409 "vclk_per: %d\n", pll->post_divider, 1410 pll->feedback_divider, vclk, output_freq, 1411 c.ref_divider, period_in_ps); 1412 1413 return 0; 1414 } 1415 1416 1417 static int aty128_pll_to_var(const struct aty128_pll *pll, 1418 struct fb_var_screeninfo *var) 1419 { 1420 var->pixclock = 100000000 / pll->vclk; 1421 1422 return 0; 1423 } 1424 1425 1426 static void aty128_set_fifo(const struct aty128_ddafifo *dsp, 1427 const struct aty128fb_par *par) 1428 { 1429 aty_st_le32(DDA_CONFIG, dsp->dda_config); 1430 aty_st_le32(DDA_ON_OFF, dsp->dda_on_off); 1431 } 1432 1433 1434 static int aty128_ddafifo(struct aty128_ddafifo *dsp, 1435 const struct aty128_pll *pll, 1436 u32 depth, 1437 const struct aty128fb_par *par) 1438 { 1439 const struct aty128_meminfo *m = par->mem; 1440 u32 xclk = par->constants.xclk; 1441 u32 fifo_width = par->constants.fifo_width; 1442 u32 fifo_depth = par->constants.fifo_depth; 1443 s32 x, b, p, ron, roff; 1444 u32 n, d, bpp; 1445 1446 /* round up to multiple of 8 */ 1447 bpp = (depth+7) & ~7; 1448 1449 n = xclk * fifo_width; 1450 d = pll->vclk * bpp; 1451 x = round_div(n, d); 1452 1453 ron = 4 * m->MB + 1454 3 * ((m->Trcd - 2 > 0) ? m->Trcd - 2 : 0) + 1455 2 * m->Trp + 1456 m->Twr + 1457 m->CL + 1458 m->Tr2w + 1459 x; 1460 1461 DBG("x %x\n", x); 1462 1463 b = 0; 1464 while (x) { 1465 x >>= 1; 1466 b++; 1467 } 1468 p = b + 1; 1469 1470 ron <<= (11 - p); 1471 1472 n <<= (11 - p); 1473 x = round_div(n, d); 1474 roff = x * (fifo_depth - 4); 1475 1476 if ((ron + m->Rloop) >= roff) { 1477 printk(KERN_ERR "aty128fb: Mode out of range!\n"); 1478 return -EINVAL; 1479 } 1480 1481 DBG("p: %x rloop: %x x: %x ron: %x roff: %x\n", 1482 p, m->Rloop, x, ron, roff); 1483 1484 dsp->dda_config = p << 16 | m->Rloop << 20 | x; 1485 dsp->dda_on_off = ron << 16 | roff; 1486 1487 return 0; 1488 } 1489 1490 1491 /* 1492 * This actually sets the video mode. 1493 */ 1494 static int aty128fb_set_par(struct fb_info *info) 1495 { 1496 struct aty128fb_par *par = info->par; 1497 u32 config; 1498 int err; 1499 1500 if ((err = aty128_decode_var(&info->var, par)) != 0) 1501 return err; 1502 1503 if (par->blitter_may_be_busy) 1504 wait_for_idle(par); 1505 1506 /* clear all registers that may interfere with mode setting */ 1507 aty_st_le32(OVR_CLR, 0); 1508 aty_st_le32(OVR_WID_LEFT_RIGHT, 0); 1509 aty_st_le32(OVR_WID_TOP_BOTTOM, 0); 1510 aty_st_le32(OV0_SCALE_CNTL, 0); 1511 aty_st_le32(MPP_TB_CONFIG, 0); 1512 aty_st_le32(MPP_GP_CONFIG, 0); 1513 aty_st_le32(SUBPIC_CNTL, 0); 1514 aty_st_le32(VIPH_CONTROL, 0); 1515 aty_st_le32(I2C_CNTL_1, 0); /* turn off i2c */ 1516 aty_st_le32(GEN_INT_CNTL, 0); /* turn off interrupts */ 1517 aty_st_le32(CAP0_TRIG_CNTL, 0); 1518 aty_st_le32(CAP1_TRIG_CNTL, 0); 1519 1520 aty_st_8(CRTC_EXT_CNTL + 1, 4); /* turn video off */ 1521 1522 aty128_set_crtc(&par->crtc, par); 1523 aty128_set_pll(&par->pll, par); 1524 aty128_set_fifo(&par->fifo_reg, par); 1525 1526 config = aty_ld_le32(CNFG_CNTL) & ~3; 1527 1528 #if defined(__BIG_ENDIAN) 1529 if (par->crtc.bpp == 32) 1530 config |= 2; /* make aperture do 32 bit swapping */ 1531 else if (par->crtc.bpp == 16) 1532 config |= 1; /* make aperture do 16 bit swapping */ 1533 #endif 1534 1535 aty_st_le32(CNFG_CNTL, config); 1536 aty_st_8(CRTC_EXT_CNTL + 1, 0); /* turn the video back on */ 1537 1538 info->fix.line_length = (par->crtc.vxres * par->crtc.bpp) >> 3; 1539 info->fix.visual = par->crtc.bpp == 8 ? FB_VISUAL_PSEUDOCOLOR 1540 : FB_VISUAL_DIRECTCOLOR; 1541 1542 if (par->chip_gen == rage_M3) { 1543 aty128_set_crt_enable(par, par->crt_on); 1544 aty128_set_lcd_enable(par, par->lcd_on); 1545 } 1546 if (par->accel_flags & FB_ACCELF_TEXT) 1547 aty128_init_engine(par); 1548 1549 #ifdef CONFIG_BOOTX_TEXT 1550 btext_update_display(info->fix.smem_start, 1551 (((par->crtc.h_total>>16) & 0xff)+1)*8, 1552 ((par->crtc.v_total>>16) & 0x7ff)+1, 1553 par->crtc.bpp, 1554 par->crtc.vxres*par->crtc.bpp/8); 1555 #endif /* CONFIG_BOOTX_TEXT */ 1556 1557 return 0; 1558 } 1559 1560 /* 1561 * encode/decode the User Defined Part of the Display 1562 */ 1563 1564 static int aty128_decode_var(struct fb_var_screeninfo *var, 1565 struct aty128fb_par *par) 1566 { 1567 int err; 1568 struct aty128_crtc crtc; 1569 struct aty128_pll pll; 1570 struct aty128_ddafifo fifo_reg; 1571 1572 if ((err = aty128_var_to_crtc(var, &crtc, par))) 1573 return err; 1574 1575 if ((err = aty128_var_to_pll(var->pixclock, &pll, par))) 1576 return err; 1577 1578 if ((err = aty128_ddafifo(&fifo_reg, &pll, crtc.depth, par))) 1579 return err; 1580 1581 par->crtc = crtc; 1582 par->pll = pll; 1583 par->fifo_reg = fifo_reg; 1584 par->accel_flags = var->accel_flags; 1585 1586 return 0; 1587 } 1588 1589 1590 static int aty128_encode_var(struct fb_var_screeninfo *var, 1591 const struct aty128fb_par *par) 1592 { 1593 int err; 1594 1595 if ((err = aty128_crtc_to_var(&par->crtc, var))) 1596 return err; 1597 1598 if ((err = aty128_pll_to_var(&par->pll, var))) 1599 return err; 1600 1601 var->nonstd = 0; 1602 var->activate = 0; 1603 1604 var->height = -1; 1605 var->width = -1; 1606 var->accel_flags = par->accel_flags; 1607 1608 return 0; 1609 } 1610 1611 1612 static int aty128fb_check_var(struct fb_var_screeninfo *var, 1613 struct fb_info *info) 1614 { 1615 struct aty128fb_par par; 1616 int err; 1617 1618 par = *(struct aty128fb_par *)info->par; 1619 if ((err = aty128_decode_var(var, &par)) != 0) 1620 return err; 1621 aty128_encode_var(var, &par); 1622 return 0; 1623 } 1624 1625 1626 /* 1627 * Pan or Wrap the Display 1628 */ 1629 static int aty128fb_pan_display(struct fb_var_screeninfo *var, 1630 struct fb_info *fb) 1631 { 1632 struct aty128fb_par *par = fb->par; 1633 u32 xoffset, yoffset; 1634 u32 offset; 1635 u32 xres, yres; 1636 1637 xres = (((par->crtc.h_total >> 16) & 0xff) + 1) << 3; 1638 yres = ((par->crtc.v_total >> 16) & 0x7ff) + 1; 1639 1640 xoffset = (var->xoffset +7) & ~7; 1641 yoffset = var->yoffset; 1642 1643 if (xoffset+xres > par->crtc.vxres || yoffset+yres > par->crtc.vyres) 1644 return -EINVAL; 1645 1646 par->crtc.xoffset = xoffset; 1647 par->crtc.yoffset = yoffset; 1648 1649 offset = ((yoffset * par->crtc.vxres + xoffset) * (par->crtc.bpp >> 3)) 1650 & ~7; 1651 1652 if (par->crtc.bpp == 24) 1653 offset += 8 * (offset % 3); /* Must be multiple of 8 and 3 */ 1654 1655 aty_st_le32(CRTC_OFFSET, offset); 1656 1657 return 0; 1658 } 1659 1660 1661 /* 1662 * Helper function to store a single palette register 1663 */ 1664 static void aty128_st_pal(u_int regno, u_int red, u_int green, u_int blue, 1665 struct aty128fb_par *par) 1666 { 1667 if (par->chip_gen == rage_M3) { 1668 #if 0 1669 /* Note: For now, on M3, we set palette on both heads, which may 1670 * be useless. Can someone with a M3 check this ? 1671 * 1672 * This code would still be useful if using the second CRTC to 1673 * do mirroring 1674 */ 1675 1676 aty_st_le32(DAC_CNTL, aty_ld_le32(DAC_CNTL) | 1677 DAC_PALETTE_ACCESS_CNTL); 1678 aty_st_8(PALETTE_INDEX, regno); 1679 aty_st_le32(PALETTE_DATA, (red<<16)|(green<<8)|blue); 1680 #endif 1681 aty_st_le32(DAC_CNTL, aty_ld_le32(DAC_CNTL) & 1682 ~DAC_PALETTE_ACCESS_CNTL); 1683 } 1684 1685 aty_st_8(PALETTE_INDEX, regno); 1686 aty_st_le32(PALETTE_DATA, (red<<16)|(green<<8)|blue); 1687 } 1688 1689 static int aty128fb_sync(struct fb_info *info) 1690 { 1691 struct aty128fb_par *par = info->par; 1692 1693 if (par->blitter_may_be_busy) 1694 wait_for_idle(par); 1695 return 0; 1696 } 1697 1698 #ifndef MODULE 1699 static int aty128fb_setup(char *options) 1700 { 1701 char *this_opt; 1702 1703 if (!options || !*options) 1704 return 0; 1705 1706 while ((this_opt = strsep(&options, ",")) != NULL) { 1707 if (!strncmp(this_opt, "lcd:", 4)) { 1708 default_lcd_on = simple_strtoul(this_opt+4, NULL, 0); 1709 continue; 1710 } else if (!strncmp(this_opt, "crt:", 4)) { 1711 default_crt_on = simple_strtoul(this_opt+4, NULL, 0); 1712 continue; 1713 } else if (!strncmp(this_opt, "backlight:", 10)) { 1714 #ifdef CONFIG_FB_ATY128_BACKLIGHT 1715 backlight = simple_strtoul(this_opt+10, NULL, 0); 1716 #endif 1717 continue; 1718 } 1719 if(!strncmp(this_opt, "nomtrr", 6)) { 1720 mtrr = 0; 1721 continue; 1722 } 1723 #ifdef CONFIG_PPC_PMAC 1724 /* vmode and cmode deprecated */ 1725 if (!strncmp(this_opt, "vmode:", 6)) { 1726 unsigned int vmode = simple_strtoul(this_opt+6, NULL, 0); 1727 if (vmode > 0 && vmode <= VMODE_MAX) 1728 default_vmode = vmode; 1729 continue; 1730 } else if (!strncmp(this_opt, "cmode:", 6)) { 1731 unsigned int cmode = simple_strtoul(this_opt+6, NULL, 0); 1732 switch (cmode) { 1733 case 0: 1734 case 8: 1735 default_cmode = CMODE_8; 1736 break; 1737 case 15: 1738 case 16: 1739 default_cmode = CMODE_16; 1740 break; 1741 case 24: 1742 case 32: 1743 default_cmode = CMODE_32; 1744 break; 1745 } 1746 continue; 1747 } 1748 #endif /* CONFIG_PPC_PMAC */ 1749 mode_option = this_opt; 1750 } 1751 return 0; 1752 } 1753 #endif /* MODULE */ 1754 1755 /* Backlight */ 1756 #ifdef CONFIG_FB_ATY128_BACKLIGHT 1757 #define MAX_LEVEL 0xFF 1758 1759 static int aty128_bl_get_level_brightness(struct aty128fb_par *par, 1760 int level) 1761 { 1762 struct fb_info *info = pci_get_drvdata(par->pdev); 1763 int atylevel; 1764 1765 /* Get and convert the value */ 1766 /* No locking of bl_curve since we read a single value */ 1767 atylevel = MAX_LEVEL - 1768 (info->bl_curve[level] * FB_BACKLIGHT_MAX / MAX_LEVEL); 1769 1770 if (atylevel < 0) 1771 atylevel = 0; 1772 else if (atylevel > MAX_LEVEL) 1773 atylevel = MAX_LEVEL; 1774 1775 return atylevel; 1776 } 1777 1778 /* We turn off the LCD completely instead of just dimming the backlight. 1779 * This provides greater power saving and the display is useless without 1780 * backlight anyway 1781 */ 1782 #define BACKLIGHT_LVDS_OFF 1783 /* That one prevents proper CRT output with LCD off */ 1784 #undef BACKLIGHT_DAC_OFF 1785 1786 static int aty128_bl_update_status(struct backlight_device *bd) 1787 { 1788 struct aty128fb_par *par = bl_get_data(bd); 1789 unsigned int reg = aty_ld_le32(LVDS_GEN_CNTL); 1790 int level; 1791 1792 if (bd->props.power != FB_BLANK_UNBLANK || 1793 bd->props.fb_blank != FB_BLANK_UNBLANK || 1794 !par->lcd_on) 1795 level = 0; 1796 else 1797 level = bd->props.brightness; 1798 1799 reg |= LVDS_BL_MOD_EN | LVDS_BLON; 1800 if (level > 0) { 1801 reg |= LVDS_DIGION; 1802 if (!(reg & LVDS_ON)) { 1803 reg &= ~LVDS_BLON; 1804 aty_st_le32(LVDS_GEN_CNTL, reg); 1805 aty_ld_le32(LVDS_GEN_CNTL); 1806 mdelay(10); 1807 reg |= LVDS_BLON; 1808 aty_st_le32(LVDS_GEN_CNTL, reg); 1809 } 1810 reg &= ~LVDS_BL_MOD_LEVEL_MASK; 1811 reg |= (aty128_bl_get_level_brightness(par, level) << 1812 LVDS_BL_MOD_LEVEL_SHIFT); 1813 #ifdef BACKLIGHT_LVDS_OFF 1814 reg |= LVDS_ON | LVDS_EN; 1815 reg &= ~LVDS_DISPLAY_DIS; 1816 #endif 1817 aty_st_le32(LVDS_GEN_CNTL, reg); 1818 #ifdef BACKLIGHT_DAC_OFF 1819 aty_st_le32(DAC_CNTL, aty_ld_le32(DAC_CNTL) & (~DAC_PDWN)); 1820 #endif 1821 } else { 1822 reg &= ~LVDS_BL_MOD_LEVEL_MASK; 1823 reg |= (aty128_bl_get_level_brightness(par, 0) << 1824 LVDS_BL_MOD_LEVEL_SHIFT); 1825 #ifdef BACKLIGHT_LVDS_OFF 1826 reg |= LVDS_DISPLAY_DIS; 1827 aty_st_le32(LVDS_GEN_CNTL, reg); 1828 aty_ld_le32(LVDS_GEN_CNTL); 1829 udelay(10); 1830 reg &= ~(LVDS_ON | LVDS_EN | LVDS_BLON | LVDS_DIGION); 1831 #endif 1832 aty_st_le32(LVDS_GEN_CNTL, reg); 1833 #ifdef BACKLIGHT_DAC_OFF 1834 aty_st_le32(DAC_CNTL, aty_ld_le32(DAC_CNTL) | DAC_PDWN); 1835 #endif 1836 } 1837 1838 return 0; 1839 } 1840 1841 static const struct backlight_ops aty128_bl_data = { 1842 .update_status = aty128_bl_update_status, 1843 }; 1844 1845 static void aty128_bl_set_power(struct fb_info *info, int power) 1846 { 1847 if (info->bl_dev) { 1848 info->bl_dev->props.power = power; 1849 backlight_update_status(info->bl_dev); 1850 } 1851 } 1852 1853 static void aty128_bl_init(struct aty128fb_par *par) 1854 { 1855 struct backlight_properties props; 1856 struct fb_info *info = pci_get_drvdata(par->pdev); 1857 struct backlight_device *bd; 1858 char name[12]; 1859 1860 /* Could be extended to Rage128Pro LVDS output too */ 1861 if (par->chip_gen != rage_M3) 1862 return; 1863 1864 #ifdef CONFIG_PMAC_BACKLIGHT 1865 if (!pmac_has_backlight_type("ati")) 1866 return; 1867 #endif 1868 1869 snprintf(name, sizeof(name), "aty128bl%d", info->node); 1870 1871 memset(&props, 0, sizeof(struct backlight_properties)); 1872 props.type = BACKLIGHT_RAW; 1873 props.max_brightness = FB_BACKLIGHT_LEVELS - 1; 1874 bd = backlight_device_register(name, info->dev, par, &aty128_bl_data, 1875 &props); 1876 if (IS_ERR(bd)) { 1877 info->bl_dev = NULL; 1878 printk(KERN_WARNING "aty128: Backlight registration failed\n"); 1879 goto error; 1880 } 1881 1882 info->bl_dev = bd; 1883 fb_bl_default_curve(info, 0, 1884 63 * FB_BACKLIGHT_MAX / MAX_LEVEL, 1885 219 * FB_BACKLIGHT_MAX / MAX_LEVEL); 1886 1887 bd->props.brightness = bd->props.max_brightness; 1888 bd->props.power = FB_BLANK_UNBLANK; 1889 backlight_update_status(bd); 1890 1891 printk("aty128: Backlight initialized (%s)\n", name); 1892 1893 return; 1894 1895 error: 1896 return; 1897 } 1898 1899 static void aty128_bl_exit(struct backlight_device *bd) 1900 { 1901 backlight_device_unregister(bd); 1902 printk("aty128: Backlight unloaded\n"); 1903 } 1904 #endif /* CONFIG_FB_ATY128_BACKLIGHT */ 1905 1906 /* 1907 * Initialisation 1908 */ 1909 1910 #ifdef CONFIG_PPC_PMAC__disabled 1911 static void aty128_early_resume(void *data) 1912 { 1913 struct aty128fb_par *par = data; 1914 1915 if (!console_trylock()) 1916 return; 1917 pci_restore_state(par->pdev); 1918 aty128_do_resume(par->pdev); 1919 console_unlock(); 1920 } 1921 #endif /* CONFIG_PPC_PMAC */ 1922 1923 static int aty128_init(struct pci_dev *pdev, const struct pci_device_id *ent) 1924 { 1925 struct fb_info *info = pci_get_drvdata(pdev); 1926 struct aty128fb_par *par = info->par; 1927 struct fb_var_screeninfo var; 1928 char video_card[50]; 1929 u8 chip_rev; 1930 u32 dac; 1931 1932 /* Get the chip revision */ 1933 chip_rev = (aty_ld_le32(CNFG_CNTL) >> 16) & 0x1F; 1934 1935 strcpy(video_card, "Rage128 XX "); 1936 video_card[8] = ent->device >> 8; 1937 video_card[9] = ent->device & 0xFF; 1938 1939 /* range check to make sure */ 1940 if (ent->driver_data < ARRAY_SIZE(r128_family)) 1941 strlcat(video_card, r128_family[ent->driver_data], 1942 sizeof(video_card)); 1943 1944 printk(KERN_INFO "aty128fb: %s [chip rev 0x%x] ", video_card, chip_rev); 1945 1946 if (par->vram_size % (1024 * 1024) == 0) 1947 printk("%dM %s\n", par->vram_size / (1024*1024), par->mem->name); 1948 else 1949 printk("%dk %s\n", par->vram_size / 1024, par->mem->name); 1950 1951 par->chip_gen = ent->driver_data; 1952 1953 /* fill in info */ 1954 info->fbops = &aty128fb_ops; 1955 info->flags = FBINFO_FLAG_DEFAULT; 1956 1957 par->lcd_on = default_lcd_on; 1958 par->crt_on = default_crt_on; 1959 1960 var = default_var; 1961 #ifdef CONFIG_PPC_PMAC 1962 if (machine_is(powermac)) { 1963 /* Indicate sleep capability */ 1964 if (par->chip_gen == rage_M3) { 1965 pmac_call_feature(PMAC_FTR_DEVICE_CAN_WAKE, NULL, 0, 1); 1966 #if 0 /* Disable the early video resume hack for now as it's causing problems, 1967 * among others we now rely on the PCI core restoring the config space 1968 * for us, which isn't the case with that hack, and that code path causes 1969 * various things to be called with interrupts off while they shouldn't. 1970 * I'm leaving the code in as it can be useful for debugging purposes 1971 */ 1972 pmac_set_early_video_resume(aty128_early_resume, par); 1973 #endif 1974 } 1975 1976 /* Find default mode */ 1977 if (mode_option) { 1978 if (!mac_find_mode(&var, info, mode_option, 8)) 1979 var = default_var; 1980 } else { 1981 if (default_vmode <= 0 || default_vmode > VMODE_MAX) 1982 default_vmode = VMODE_1024_768_60; 1983 1984 /* iMacs need that resolution 1985 * PowerMac2,1 first r128 iMacs 1986 * PowerMac2,2 summer 2000 iMacs 1987 * PowerMac4,1 january 2001 iMacs "flower power" 1988 */ 1989 if (of_machine_is_compatible("PowerMac2,1") || 1990 of_machine_is_compatible("PowerMac2,2") || 1991 of_machine_is_compatible("PowerMac4,1")) 1992 default_vmode = VMODE_1024_768_75; 1993 1994 /* iBook SE */ 1995 if (of_machine_is_compatible("PowerBook2,2")) 1996 default_vmode = VMODE_800_600_60; 1997 1998 /* PowerBook Firewire (Pismo), iBook Dual USB */ 1999 if (of_machine_is_compatible("PowerBook3,1") || 2000 of_machine_is_compatible("PowerBook4,1")) 2001 default_vmode = VMODE_1024_768_60; 2002 2003 /* PowerBook Titanium */ 2004 if (of_machine_is_compatible("PowerBook3,2")) 2005 default_vmode = VMODE_1152_768_60; 2006 2007 if (default_cmode > 16) 2008 default_cmode = CMODE_32; 2009 else if (default_cmode > 8) 2010 default_cmode = CMODE_16; 2011 else 2012 default_cmode = CMODE_8; 2013 2014 if (mac_vmode_to_var(default_vmode, default_cmode, &var)) 2015 var = default_var; 2016 } 2017 } else 2018 #endif /* CONFIG_PPC_PMAC */ 2019 { 2020 if (mode_option) 2021 if (fb_find_mode(&var, info, mode_option, NULL, 2022 0, &defaultmode, 8) == 0) 2023 var = default_var; 2024 } 2025 2026 var.accel_flags &= ~FB_ACCELF_TEXT; 2027 // var.accel_flags |= FB_ACCELF_TEXT;/* FIXME Will add accel later */ 2028 2029 if (aty128fb_check_var(&var, info)) { 2030 printk(KERN_ERR "aty128fb: Cannot set default mode.\n"); 2031 return 0; 2032 } 2033 2034 /* setup the DAC the way we like it */ 2035 dac = aty_ld_le32(DAC_CNTL); 2036 dac |= (DAC_8BIT_EN | DAC_RANGE_CNTL); 2037 dac |= DAC_MASK; 2038 if (par->chip_gen == rage_M3) 2039 dac |= DAC_PALETTE2_SNOOP_EN; 2040 aty_st_le32(DAC_CNTL, dac); 2041 2042 /* turn off bus mastering, just in case */ 2043 aty_st_le32(BUS_CNTL, aty_ld_le32(BUS_CNTL) | BUS_MASTER_DIS); 2044 2045 info->var = var; 2046 fb_alloc_cmap(&info->cmap, 256, 0); 2047 2048 var.activate = FB_ACTIVATE_NOW; 2049 2050 aty128_init_engine(par); 2051 2052 par->pdev = pdev; 2053 par->asleep = 0; 2054 par->lock_blank = 0; 2055 2056 #ifdef CONFIG_FB_ATY128_BACKLIGHT 2057 if (backlight) 2058 aty128_bl_init(par); 2059 #endif 2060 2061 if (register_framebuffer(info) < 0) 2062 return 0; 2063 2064 fb_info(info, "%s frame buffer device on %s\n", 2065 info->fix.id, video_card); 2066 2067 return 1; /* success! */ 2068 } 2069 2070 #ifdef CONFIG_PCI 2071 /* register a card ++ajoshi */ 2072 static int aty128_probe(struct pci_dev *pdev, const struct pci_device_id *ent) 2073 { 2074 unsigned long fb_addr, reg_addr; 2075 struct aty128fb_par *par; 2076 struct fb_info *info; 2077 int err; 2078 #ifndef __sparc__ 2079 void __iomem *bios = NULL; 2080 #endif 2081 2082 /* Enable device in PCI config */ 2083 if ((err = pci_enable_device(pdev))) { 2084 printk(KERN_ERR "aty128fb: Cannot enable PCI device: %d\n", 2085 err); 2086 return -ENODEV; 2087 } 2088 2089 fb_addr = pci_resource_start(pdev, 0); 2090 if (!request_mem_region(fb_addr, pci_resource_len(pdev, 0), 2091 "aty128fb FB")) { 2092 printk(KERN_ERR "aty128fb: cannot reserve frame " 2093 "buffer memory\n"); 2094 return -ENODEV; 2095 } 2096 2097 reg_addr = pci_resource_start(pdev, 2); 2098 if (!request_mem_region(reg_addr, pci_resource_len(pdev, 2), 2099 "aty128fb MMIO")) { 2100 printk(KERN_ERR "aty128fb: cannot reserve MMIO region\n"); 2101 goto err_free_fb; 2102 } 2103 2104 /* We have the resources. Now virtualize them */ 2105 info = framebuffer_alloc(sizeof(struct aty128fb_par), &pdev->dev); 2106 if (info == NULL) { 2107 printk(KERN_ERR "aty128fb: can't alloc fb_info_aty128\n"); 2108 goto err_free_mmio; 2109 } 2110 par = info->par; 2111 2112 info->pseudo_palette = par->pseudo_palette; 2113 2114 /* Virtualize mmio region */ 2115 info->fix.mmio_start = reg_addr; 2116 par->regbase = pci_ioremap_bar(pdev, 2); 2117 if (!par->regbase) 2118 goto err_free_info; 2119 2120 /* Grab memory size from the card */ 2121 // How does this relate to the resource length from the PCI hardware? 2122 par->vram_size = aty_ld_le32(CNFG_MEMSIZE) & 0x03FFFFFF; 2123 2124 /* Virtualize the framebuffer */ 2125 info->screen_base = ioremap_wc(fb_addr, par->vram_size); 2126 if (!info->screen_base) 2127 goto err_unmap_out; 2128 2129 /* Set up info->fix */ 2130 info->fix = aty128fb_fix; 2131 info->fix.smem_start = fb_addr; 2132 info->fix.smem_len = par->vram_size; 2133 info->fix.mmio_start = reg_addr; 2134 2135 /* If we can't test scratch registers, something is seriously wrong */ 2136 if (!register_test(par)) { 2137 printk(KERN_ERR "aty128fb: Can't write to video register!\n"); 2138 goto err_out; 2139 } 2140 2141 #ifndef __sparc__ 2142 bios = aty128_map_ROM(par, pdev); 2143 #ifdef CONFIG_X86 2144 if (bios == NULL) 2145 bios = aty128_find_mem_vbios(par); 2146 #endif 2147 if (bios == NULL) 2148 printk(KERN_INFO "aty128fb: BIOS not located, guessing timings.\n"); 2149 else { 2150 printk(KERN_INFO "aty128fb: Rage128 BIOS located\n"); 2151 aty128_get_pllinfo(par, bios); 2152 pci_unmap_rom(pdev, bios); 2153 } 2154 #endif /* __sparc__ */ 2155 2156 aty128_timings(par); 2157 pci_set_drvdata(pdev, info); 2158 2159 if (!aty128_init(pdev, ent)) 2160 goto err_out; 2161 2162 if (mtrr) 2163 par->wc_cookie = arch_phys_wc_add(info->fix.smem_start, 2164 par->vram_size); 2165 return 0; 2166 2167 err_out: 2168 iounmap(info->screen_base); 2169 err_unmap_out: 2170 iounmap(par->regbase); 2171 err_free_info: 2172 framebuffer_release(info); 2173 err_free_mmio: 2174 release_mem_region(pci_resource_start(pdev, 2), 2175 pci_resource_len(pdev, 2)); 2176 err_free_fb: 2177 release_mem_region(pci_resource_start(pdev, 0), 2178 pci_resource_len(pdev, 0)); 2179 return -ENODEV; 2180 } 2181 2182 static void aty128_remove(struct pci_dev *pdev) 2183 { 2184 struct fb_info *info = pci_get_drvdata(pdev); 2185 struct aty128fb_par *par; 2186 2187 if (!info) 2188 return; 2189 2190 par = info->par; 2191 2192 unregister_framebuffer(info); 2193 2194 #ifdef CONFIG_FB_ATY128_BACKLIGHT 2195 aty128_bl_exit(info->bl_dev); 2196 #endif 2197 2198 arch_phys_wc_del(par->wc_cookie); 2199 iounmap(par->regbase); 2200 iounmap(info->screen_base); 2201 2202 release_mem_region(pci_resource_start(pdev, 0), 2203 pci_resource_len(pdev, 0)); 2204 release_mem_region(pci_resource_start(pdev, 2), 2205 pci_resource_len(pdev, 2)); 2206 framebuffer_release(info); 2207 } 2208 #endif /* CONFIG_PCI */ 2209 2210 2211 2212 /* 2213 * Blank the display. 2214 */ 2215 static int aty128fb_blank(int blank, struct fb_info *fb) 2216 { 2217 struct aty128fb_par *par = fb->par; 2218 u8 state; 2219 2220 if (par->lock_blank || par->asleep) 2221 return 0; 2222 2223 switch (blank) { 2224 case FB_BLANK_NORMAL: 2225 state = 4; 2226 break; 2227 case FB_BLANK_VSYNC_SUSPEND: 2228 state = 6; 2229 break; 2230 case FB_BLANK_HSYNC_SUSPEND: 2231 state = 5; 2232 break; 2233 case FB_BLANK_POWERDOWN: 2234 state = 7; 2235 break; 2236 case FB_BLANK_UNBLANK: 2237 default: 2238 state = 0; 2239 break; 2240 } 2241 aty_st_8(CRTC_EXT_CNTL+1, state); 2242 2243 if (par->chip_gen == rage_M3) { 2244 aty128_set_crt_enable(par, par->crt_on && !blank); 2245 aty128_set_lcd_enable(par, par->lcd_on && !blank); 2246 } 2247 2248 return 0; 2249 } 2250 2251 /* 2252 * Set a single color register. The values supplied are already 2253 * rounded down to the hardware's capabilities (according to the 2254 * entries in the var structure). Return != 0 for invalid regno. 2255 */ 2256 static int aty128fb_setcolreg(u_int regno, u_int red, u_int green, u_int blue, 2257 u_int transp, struct fb_info *info) 2258 { 2259 struct aty128fb_par *par = info->par; 2260 2261 if (regno > 255 2262 || (par->crtc.depth == 16 && regno > 63) 2263 || (par->crtc.depth == 15 && regno > 31)) 2264 return 1; 2265 2266 red >>= 8; 2267 green >>= 8; 2268 blue >>= 8; 2269 2270 if (regno < 16) { 2271 int i; 2272 u32 *pal = info->pseudo_palette; 2273 2274 switch (par->crtc.depth) { 2275 case 15: 2276 pal[regno] = (regno << 10) | (regno << 5) | regno; 2277 break; 2278 case 16: 2279 pal[regno] = (regno << 11) | (regno << 6) | regno; 2280 break; 2281 case 24: 2282 pal[regno] = (regno << 16) | (regno << 8) | regno; 2283 break; 2284 case 32: 2285 i = (regno << 8) | regno; 2286 pal[regno] = (i << 16) | i; 2287 break; 2288 } 2289 } 2290 2291 if (par->crtc.depth == 16 && regno > 0) { 2292 /* 2293 * With the 5-6-5 split of bits for RGB at 16 bits/pixel, we 2294 * have 32 slots for R and B values but 64 slots for G values. 2295 * Thus the R and B values go in one slot but the G value 2296 * goes in a different slot, and we have to avoid disturbing 2297 * the other fields in the slots we touch. 2298 */ 2299 par->green[regno] = green; 2300 if (regno < 32) { 2301 par->red[regno] = red; 2302 par->blue[regno] = blue; 2303 aty128_st_pal(regno * 8, red, par->green[regno*2], 2304 blue, par); 2305 } 2306 red = par->red[regno/2]; 2307 blue = par->blue[regno/2]; 2308 regno <<= 2; 2309 } else if (par->crtc.bpp == 16) 2310 regno <<= 3; 2311 aty128_st_pal(regno, red, green, blue, par); 2312 2313 return 0; 2314 } 2315 2316 #define ATY_MIRROR_LCD_ON 0x00000001 2317 #define ATY_MIRROR_CRT_ON 0x00000002 2318 2319 /* out param: u32* backlight value: 0 to 15 */ 2320 #define FBIO_ATY128_GET_MIRROR _IOR('@', 1, __u32) 2321 /* in param: u32* backlight value: 0 to 15 */ 2322 #define FBIO_ATY128_SET_MIRROR _IOW('@', 2, __u32) 2323 2324 static int aty128fb_ioctl(struct fb_info *info, u_int cmd, u_long arg) 2325 { 2326 struct aty128fb_par *par = info->par; 2327 u32 value; 2328 int rc; 2329 2330 switch (cmd) { 2331 case FBIO_ATY128_SET_MIRROR: 2332 if (par->chip_gen != rage_M3) 2333 return -EINVAL; 2334 rc = get_user(value, (__u32 __user *)arg); 2335 if (rc) 2336 return rc; 2337 par->lcd_on = (value & 0x01) != 0; 2338 par->crt_on = (value & 0x02) != 0; 2339 if (!par->crt_on && !par->lcd_on) 2340 par->lcd_on = 1; 2341 aty128_set_crt_enable(par, par->crt_on); 2342 aty128_set_lcd_enable(par, par->lcd_on); 2343 return 0; 2344 case FBIO_ATY128_GET_MIRROR: 2345 if (par->chip_gen != rage_M3) 2346 return -EINVAL; 2347 value = (par->crt_on << 1) | par->lcd_on; 2348 return put_user(value, (__u32 __user *)arg); 2349 } 2350 return -EINVAL; 2351 } 2352 2353 #if 0 2354 /* 2355 * Accelerated functions 2356 */ 2357 2358 static inline void aty128_rectcopy(int srcx, int srcy, int dstx, int dsty, 2359 u_int width, u_int height, 2360 struct fb_info_aty128 *par) 2361 { 2362 u32 save_dp_datatype, save_dp_cntl, dstval; 2363 2364 if (!width || !height) 2365 return; 2366 2367 dstval = depth_to_dst(par->current_par.crtc.depth); 2368 if (dstval == DST_24BPP) { 2369 srcx *= 3; 2370 dstx *= 3; 2371 width *= 3; 2372 } else if (dstval == -EINVAL) { 2373 printk("aty128fb: invalid depth or RGBA\n"); 2374 return; 2375 } 2376 2377 wait_for_fifo(2, par); 2378 save_dp_datatype = aty_ld_le32(DP_DATATYPE); 2379 save_dp_cntl = aty_ld_le32(DP_CNTL); 2380 2381 wait_for_fifo(6, par); 2382 aty_st_le32(SRC_Y_X, (srcy << 16) | srcx); 2383 aty_st_le32(DP_MIX, ROP3_SRCCOPY | DP_SRC_RECT); 2384 aty_st_le32(DP_CNTL, DST_X_LEFT_TO_RIGHT | DST_Y_TOP_TO_BOTTOM); 2385 aty_st_le32(DP_DATATYPE, save_dp_datatype | dstval | SRC_DSTCOLOR); 2386 2387 aty_st_le32(DST_Y_X, (dsty << 16) | dstx); 2388 aty_st_le32(DST_HEIGHT_WIDTH, (height << 16) | width); 2389 2390 par->blitter_may_be_busy = 1; 2391 2392 wait_for_fifo(2, par); 2393 aty_st_le32(DP_DATATYPE, save_dp_datatype); 2394 aty_st_le32(DP_CNTL, save_dp_cntl); 2395 } 2396 2397 2398 /* 2399 * Text mode accelerated functions 2400 */ 2401 2402 static void fbcon_aty128_bmove(struct display *p, int sy, int sx, int dy, 2403 int dx, int height, int width) 2404 { 2405 sx *= fontwidth(p); 2406 sy *= fontheight(p); 2407 dx *= fontwidth(p); 2408 dy *= fontheight(p); 2409 width *= fontwidth(p); 2410 height *= fontheight(p); 2411 2412 aty128_rectcopy(sx, sy, dx, dy, width, height, 2413 (struct fb_info_aty128 *)p->fb_info); 2414 } 2415 #endif /* 0 */ 2416 2417 static void aty128_set_suspend(struct aty128fb_par *par, int suspend) 2418 { 2419 u32 pmgt; 2420 struct pci_dev *pdev = par->pdev; 2421 2422 if (!par->pdev->pm_cap) 2423 return; 2424 2425 /* Set the chip into the appropriate suspend mode (we use D2, 2426 * D3 would require a complete re-initialisation of the chip, 2427 * including PCI config registers, clocks, AGP configuration, ...) 2428 * 2429 * For resume, the core will have already brought us back to D0 2430 */ 2431 if (suspend) { 2432 /* Make sure CRTC2 is reset. Remove that the day we decide to 2433 * actually use CRTC2 and replace it with real code for disabling 2434 * the CRTC2 output during sleep 2435 */ 2436 aty_st_le32(CRTC2_GEN_CNTL, aty_ld_le32(CRTC2_GEN_CNTL) & 2437 ~(CRTC2_EN)); 2438 2439 /* Set the power management mode to be PCI based */ 2440 /* Use this magic value for now */ 2441 pmgt = 0x0c005407; 2442 aty_st_pll(POWER_MANAGEMENT, pmgt); 2443 (void)aty_ld_pll(POWER_MANAGEMENT); 2444 aty_st_le32(BUS_CNTL1, 0x00000010); 2445 aty_st_le32(MEM_POWER_MISC, 0x0c830000); 2446 mdelay(100); 2447 2448 /* Switch PCI power management to D2 */ 2449 pci_set_power_state(pdev, PCI_D2); 2450 } 2451 } 2452 2453 static int aty128_pci_suspend(struct pci_dev *pdev, pm_message_t state) 2454 { 2455 struct fb_info *info = pci_get_drvdata(pdev); 2456 struct aty128fb_par *par = info->par; 2457 2458 /* Because we may change PCI D state ourselves, we need to 2459 * first save the config space content so the core can 2460 * restore it properly on resume. 2461 */ 2462 pci_save_state(pdev); 2463 2464 /* We don't do anything but D2, for now we return 0, but 2465 * we may want to change that. How do we know if the BIOS 2466 * can properly take care of D3 ? Also, with swsusp, we 2467 * know we'll be rebooted, ... 2468 */ 2469 #ifndef CONFIG_PPC_PMAC 2470 /* HACK ALERT ! Once I find a proper way to say to each driver 2471 * individually what will happen with it's PCI slot, I'll change 2472 * that. On laptops, the AGP slot is just unclocked, so D2 is 2473 * expected, while on desktops, the card is powered off 2474 */ 2475 return 0; 2476 #endif /* CONFIG_PPC_PMAC */ 2477 2478 if (state.event == pdev->dev.power.power_state.event) 2479 return 0; 2480 2481 printk(KERN_DEBUG "aty128fb: suspending...\n"); 2482 2483 console_lock(); 2484 2485 fb_set_suspend(info, 1); 2486 2487 /* Make sure engine is reset */ 2488 wait_for_idle(par); 2489 aty128_reset_engine(par); 2490 wait_for_idle(par); 2491 2492 /* Blank display and LCD */ 2493 aty128fb_blank(FB_BLANK_POWERDOWN, info); 2494 2495 /* Sleep */ 2496 par->asleep = 1; 2497 par->lock_blank = 1; 2498 2499 #ifdef CONFIG_PPC_PMAC 2500 /* On powermac, we have hooks to properly suspend/resume AGP now, 2501 * use them here. We'll ultimately need some generic support here, 2502 * but the generic code isn't quite ready for that yet 2503 */ 2504 pmac_suspend_agp_for_card(pdev); 2505 #endif /* CONFIG_PPC_PMAC */ 2506 2507 /* We need a way to make sure the fbdev layer will _not_ touch the 2508 * framebuffer before we put the chip to suspend state. On 2.4, I 2509 * used dummy fb ops, 2.5 need proper support for this at the 2510 * fbdev level 2511 */ 2512 if (state.event != PM_EVENT_ON) 2513 aty128_set_suspend(par, 1); 2514 2515 console_unlock(); 2516 2517 pdev->dev.power.power_state = state; 2518 2519 return 0; 2520 } 2521 2522 static int aty128_do_resume(struct pci_dev *pdev) 2523 { 2524 struct fb_info *info = pci_get_drvdata(pdev); 2525 struct aty128fb_par *par = info->par; 2526 2527 if (pdev->dev.power.power_state.event == PM_EVENT_ON) 2528 return 0; 2529 2530 /* PCI state will have been restored by the core, so 2531 * we should be in D0 now with our config space fully 2532 * restored 2533 */ 2534 2535 /* Wakeup chip */ 2536 aty128_set_suspend(par, 0); 2537 par->asleep = 0; 2538 2539 /* Restore display & engine */ 2540 aty128_reset_engine(par); 2541 wait_for_idle(par); 2542 aty128fb_set_par(info); 2543 fb_pan_display(info, &info->var); 2544 fb_set_cmap(&info->cmap, info); 2545 2546 /* Refresh */ 2547 fb_set_suspend(info, 0); 2548 2549 /* Unblank */ 2550 par->lock_blank = 0; 2551 aty128fb_blank(0, info); 2552 2553 #ifdef CONFIG_PPC_PMAC 2554 /* On powermac, we have hooks to properly suspend/resume AGP now, 2555 * use them here. We'll ultimately need some generic support here, 2556 * but the generic code isn't quite ready for that yet 2557 */ 2558 pmac_resume_agp_for_card(pdev); 2559 #endif /* CONFIG_PPC_PMAC */ 2560 2561 pdev->dev.power.power_state = PMSG_ON; 2562 2563 printk(KERN_DEBUG "aty128fb: resumed !\n"); 2564 2565 return 0; 2566 } 2567 2568 static int aty128_pci_resume(struct pci_dev *pdev) 2569 { 2570 int rc; 2571 2572 console_lock(); 2573 rc = aty128_do_resume(pdev); 2574 console_unlock(); 2575 2576 return rc; 2577 } 2578 2579 2580 static int aty128fb_init(void) 2581 { 2582 #ifndef MODULE 2583 char *option = NULL; 2584 2585 if (fb_get_options("aty128fb", &option)) 2586 return -ENODEV; 2587 aty128fb_setup(option); 2588 #endif 2589 2590 return pci_register_driver(&aty128fb_driver); 2591 } 2592 2593 static void __exit aty128fb_exit(void) 2594 { 2595 pci_unregister_driver(&aty128fb_driver); 2596 } 2597 2598 module_init(aty128fb_init); 2599 2600 module_exit(aty128fb_exit); 2601 2602 MODULE_AUTHOR("(c)1999-2003 Brad Douglas <brad@neruo.com>"); 2603 MODULE_DESCRIPTION("FBDev driver for ATI Rage128 / Pro cards"); 2604 MODULE_LICENSE("GPL"); 2605 module_param(mode_option, charp, 0); 2606 MODULE_PARM_DESC(mode_option, "Specify resolution as \"<xres>x<yres>[-<bpp>][@<refresh>]\" "); 2607 module_param_named(nomtrr, mtrr, invbool, 0); 2608 MODULE_PARM_DESC(nomtrr, "bool: Disable MTRR support (0 or 1=disabled) (default=0)"); 2609