xref: /openbmc/linux/drivers/video/fbdev/aty/aty128fb.c (revision d2999e1b)
1 /* $Id: aty128fb.c,v 1.1.1.1.36.1 1999/12/11 09:03:05 Exp $
2  *  linux/drivers/video/aty128fb.c -- Frame buffer device for ATI Rage128
3  *
4  *  Copyright (C) 1999-2003, Brad Douglas <brad@neruo.com>
5  *  Copyright (C) 1999, Anthony Tong <atong@uiuc.edu>
6  *
7  *                Ani Joshi / Jeff Garzik
8  *                      - Code cleanup
9  *
10  *                Michel Danzer <michdaen@iiic.ethz.ch>
11  *                      - 15/16 bit cleanup
12  *                      - fix panning
13  *
14  *                Benjamin Herrenschmidt
15  *                      - pmac-specific PM stuff
16  *			- various fixes & cleanups
17  *
18  *                Andreas Hundt <andi@convergence.de>
19  *                      - FB_ACTIVATE fixes
20  *
21  *		  Paul Mackerras <paulus@samba.org>
22  *			- Convert to new framebuffer API,
23  *			  fix colormap setting at 16 bits/pixel (565)
24  *
25  *		  Paul Mundt
26  *		  	- PCI hotplug
27  *
28  *		  Jon Smirl <jonsmirl@yahoo.com>
29  * 			- PCI ID update
30  * 			- replace ROM BIOS search
31  *
32  *  Based off of Geert's atyfb.c and vfb.c.
33  *
34  *  TODO:
35  *		- monitor sensing (DDC)
36  *              - virtual display
37  *		- other platform support (only ppc/x86 supported)
38  *		- hardware cursor support
39  *
40  *    Please cc: your patches to brad@neruo.com.
41  */
42 
43 /*
44  * A special note of gratitude to ATI's devrel for providing documentation,
45  * example code and hardware. Thanks Nitya.	-atong and brad
46  */
47 
48 
49 #include <linux/module.h>
50 #include <linux/moduleparam.h>
51 #include <linux/kernel.h>
52 #include <linux/errno.h>
53 #include <linux/string.h>
54 #include <linux/mm.h>
55 #include <linux/vmalloc.h>
56 #include <linux/delay.h>
57 #include <linux/interrupt.h>
58 #include <linux/uaccess.h>
59 #include <linux/fb.h>
60 #include <linux/init.h>
61 #include <linux/pci.h>
62 #include <linux/ioport.h>
63 #include <linux/console.h>
64 #include <linux/backlight.h>
65 #include <asm/io.h>
66 
67 #ifdef CONFIG_PPC_PMAC
68 #include <asm/machdep.h>
69 #include <asm/pmac_feature.h>
70 #include <asm/prom.h>
71 #include <asm/pci-bridge.h>
72 #include "../macmodes.h"
73 #endif
74 
75 #ifdef CONFIG_PMAC_BACKLIGHT
76 #include <asm/backlight.h>
77 #endif
78 
79 #ifdef CONFIG_BOOTX_TEXT
80 #include <asm/btext.h>
81 #endif /* CONFIG_BOOTX_TEXT */
82 
83 #ifdef CONFIG_MTRR
84 #include <asm/mtrr.h>
85 #endif
86 
87 #include <video/aty128.h>
88 
89 /* Debug flag */
90 #undef DEBUG
91 
92 #ifdef DEBUG
93 #define DBG(fmt, args...) \
94 	printk(KERN_DEBUG "aty128fb: %s " fmt, __func__, ##args);
95 #else
96 #define DBG(fmt, args...)
97 #endif
98 
99 #ifndef CONFIG_PPC_PMAC
100 /* default mode */
101 static struct fb_var_screeninfo default_var = {
102 	/* 640x480, 60 Hz, Non-Interlaced (25.175 MHz dotclock) */
103 	640, 480, 640, 480, 0, 0, 8, 0,
104 	{0, 8, 0}, {0, 8, 0}, {0, 8, 0}, {0, 0, 0},
105 	0, 0, -1, -1, 0, 39722, 48, 16, 33, 10, 96, 2,
106 	0, FB_VMODE_NONINTERLACED
107 };
108 
109 #else /* CONFIG_PPC_PMAC */
110 /* default to 1024x768 at 75Hz on PPC - this will work
111  * on the iMac, the usual 640x480 @ 60Hz doesn't. */
112 static struct fb_var_screeninfo default_var = {
113 	/* 1024x768, 75 Hz, Non-Interlaced (78.75 MHz dotclock) */
114 	1024, 768, 1024, 768, 0, 0, 8, 0,
115 	{0, 8, 0}, {0, 8, 0}, {0, 8, 0}, {0, 0, 0},
116 	0, 0, -1, -1, 0, 12699, 160, 32, 28, 1, 96, 3,
117 	FB_SYNC_HOR_HIGH_ACT | FB_SYNC_VERT_HIGH_ACT,
118 	FB_VMODE_NONINTERLACED
119 };
120 #endif /* CONFIG_PPC_PMAC */
121 
122 /* default modedb mode */
123 /* 640x480, 60 Hz, Non-Interlaced (25.172 MHz dotclock) */
124 static struct fb_videomode defaultmode = {
125 	.refresh =	60,
126 	.xres =		640,
127 	.yres =		480,
128 	.pixclock =	39722,
129 	.left_margin =	48,
130 	.right_margin =	16,
131 	.upper_margin =	33,
132 	.lower_margin =	10,
133 	.hsync_len =	96,
134 	.vsync_len =	2,
135 	.sync =		0,
136 	.vmode =	FB_VMODE_NONINTERLACED
137 };
138 
139 /* Chip generations */
140 enum {
141 	rage_128,
142 	rage_128_pci,
143 	rage_128_pro,
144 	rage_128_pro_pci,
145 	rage_M3,
146 	rage_M3_pci,
147 	rage_M4,
148 	rage_128_ultra,
149 };
150 
151 /* Must match above enum */
152 static char * const r128_family[] = {
153 	"AGP",
154 	"PCI",
155 	"PRO AGP",
156 	"PRO PCI",
157 	"M3 AGP",
158 	"M3 PCI",
159 	"M4 AGP",
160 	"Ultra AGP",
161 };
162 
163 /*
164  * PCI driver prototypes
165  */
166 static int aty128_probe(struct pci_dev *pdev,
167                                const struct pci_device_id *ent);
168 static void aty128_remove(struct pci_dev *pdev);
169 static int aty128_pci_suspend(struct pci_dev *pdev, pm_message_t state);
170 static int aty128_pci_resume(struct pci_dev *pdev);
171 static int aty128_do_resume(struct pci_dev *pdev);
172 
173 /* supported Rage128 chipsets */
174 static struct pci_device_id aty128_pci_tbl[] = {
175 	{ PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_LE,
176 	  PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_M3_pci },
177 	{ PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_LF,
178 	  PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_M3 },
179 	{ PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_MF,
180 	  PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_M4 },
181 	{ PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_ML,
182 	  PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_M4 },
183 	{ PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_PA,
184 	  PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128_pro },
185 	{ PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_PB,
186 	  PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128_pro },
187 	{ PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_PC,
188 	  PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128_pro },
189 	{ PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_PD,
190 	  PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128_pro_pci },
191 	{ PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_PE,
192 	  PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128_pro },
193 	{ PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_PF,
194 	  PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128_pro },
195 	{ PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_PG,
196 	  PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128_pro },
197 	{ PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_PH,
198 	  PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128_pro },
199 	{ PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_PI,
200 	  PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128_pro },
201 	{ PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_PJ,
202 	  PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128_pro },
203 	{ PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_PK,
204 	  PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128_pro },
205 	{ PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_PL,
206 	  PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128_pro },
207 	{ PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_PM,
208 	  PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128_pro },
209 	{ PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_PN,
210 	  PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128_pro },
211 	{ PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_PO,
212 	  PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128_pro },
213 	{ PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_PP,
214 	  PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128_pro_pci },
215 	{ PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_PQ,
216 	  PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128_pro },
217 	{ PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_PR,
218 	  PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128_pro_pci },
219 	{ PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_PS,
220 	  PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128_pro },
221 	{ PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_PT,
222 	  PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128_pro },
223 	{ PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_PU,
224 	  PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128_pro },
225 	{ PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_PV,
226 	  PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128_pro },
227 	{ PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_PW,
228 	  PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128_pro },
229 	{ PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_PX,
230 	  PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128_pro },
231 	{ PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_RE,
232 	  PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128_pci },
233 	{ PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_RF,
234 	  PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128 },
235 	{ PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_RG,
236 	  PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128 },
237 	{ PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_RK,
238 	  PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128_pci },
239 	{ PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_RL,
240 	  PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128 },
241 	{ PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_SE,
242 	  PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128 },
243 	{ PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_SF,
244 	  PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128_pci },
245 	{ PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_SG,
246 	  PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128 },
247 	{ PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_SH,
248 	  PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128 },
249 	{ PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_SK,
250 	  PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128 },
251 	{ PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_SL,
252 	  PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128 },
253 	{ PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_SM,
254 	  PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128 },
255 	{ PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_SN,
256 	  PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128 },
257 	{ PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_TF,
258 	  PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128_ultra },
259 	{ PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_TL,
260 	  PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128_ultra },
261 	{ PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_TR,
262 	  PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128_ultra },
263 	{ PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_TS,
264 	  PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128_ultra },
265 	{ PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_TT,
266 	  PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128_ultra },
267 	{ PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_TU,
268 	  PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128_ultra },
269 	{ 0, }
270 };
271 
272 MODULE_DEVICE_TABLE(pci, aty128_pci_tbl);
273 
274 static struct pci_driver aty128fb_driver = {
275 	.name		= "aty128fb",
276 	.id_table	= aty128_pci_tbl,
277 	.probe		= aty128_probe,
278 	.remove		= aty128_remove,
279 	.suspend	= aty128_pci_suspend,
280 	.resume		= aty128_pci_resume,
281 };
282 
283 /* packed BIOS settings */
284 #ifndef CONFIG_PPC
285 typedef struct {
286 	u8 clock_chip_type;
287 	u8 struct_size;
288 	u8 accelerator_entry;
289 	u8 VGA_entry;
290 	u16 VGA_table_offset;
291 	u16 POST_table_offset;
292 	u16 XCLK;
293 	u16 MCLK;
294 	u8 num_PLL_blocks;
295 	u8 size_PLL_blocks;
296 	u16 PCLK_ref_freq;
297 	u16 PCLK_ref_divider;
298 	u32 PCLK_min_freq;
299 	u32 PCLK_max_freq;
300 	u16 MCLK_ref_freq;
301 	u16 MCLK_ref_divider;
302 	u32 MCLK_min_freq;
303 	u32 MCLK_max_freq;
304 	u16 XCLK_ref_freq;
305 	u16 XCLK_ref_divider;
306 	u32 XCLK_min_freq;
307 	u32 XCLK_max_freq;
308 } __attribute__ ((packed)) PLL_BLOCK;
309 #endif /* !CONFIG_PPC */
310 
311 /* onboard memory information */
312 struct aty128_meminfo {
313 	u8 ML;
314 	u8 MB;
315 	u8 Trcd;
316 	u8 Trp;
317 	u8 Twr;
318 	u8 CL;
319 	u8 Tr2w;
320 	u8 LoopLatency;
321 	u8 DspOn;
322 	u8 Rloop;
323 	const char *name;
324 };
325 
326 /* various memory configurations */
327 static const struct aty128_meminfo sdr_128   =
328 	{ 4, 4, 3, 3, 1, 3, 1, 16, 30, 16, "128-bit SDR SGRAM (1:1)" };
329 static const struct aty128_meminfo sdr_64    =
330 	{ 4, 8, 3, 3, 1, 3, 1, 17, 46, 17, "64-bit SDR SGRAM (1:1)" };
331 static const struct aty128_meminfo sdr_sgram =
332 	{ 4, 4, 1, 2, 1, 2, 1, 16, 24, 16, "64-bit SDR SGRAM (2:1)" };
333 static const struct aty128_meminfo ddr_sgram =
334 	{ 4, 4, 3, 3, 2, 3, 1, 16, 31, 16, "64-bit DDR SGRAM" };
335 
336 static struct fb_fix_screeninfo aty128fb_fix = {
337 	.id		= "ATY Rage128",
338 	.type		= FB_TYPE_PACKED_PIXELS,
339 	.visual		= FB_VISUAL_PSEUDOCOLOR,
340 	.xpanstep	= 8,
341 	.ypanstep	= 1,
342 	.mmio_len	= 0x2000,
343 	.accel		= FB_ACCEL_ATI_RAGE128,
344 };
345 
346 static char *mode_option = NULL;
347 
348 #ifdef CONFIG_PPC_PMAC
349 static int default_vmode = VMODE_1024_768_60;
350 static int default_cmode = CMODE_8;
351 #endif
352 
353 static int default_crt_on = 0;
354 static int default_lcd_on = 1;
355 
356 #ifdef CONFIG_MTRR
357 static bool mtrr = true;
358 #endif
359 
360 #ifdef CONFIG_FB_ATY128_BACKLIGHT
361 #ifdef CONFIG_PMAC_BACKLIGHT
362 static int backlight = 1;
363 #else
364 static int backlight = 0;
365 #endif
366 #endif
367 
368 /* PLL constants */
369 struct aty128_constants {
370 	u32 ref_clk;
371 	u32 ppll_min;
372 	u32 ppll_max;
373 	u32 ref_divider;
374 	u32 xclk;
375 	u32 fifo_width;
376 	u32 fifo_depth;
377 };
378 
379 struct aty128_crtc {
380 	u32 gen_cntl;
381 	u32 h_total, h_sync_strt_wid;
382 	u32 v_total, v_sync_strt_wid;
383 	u32 pitch;
384 	u32 offset, offset_cntl;
385 	u32 xoffset, yoffset;
386 	u32 vxres, vyres;
387 	u32 depth, bpp;
388 };
389 
390 struct aty128_pll {
391 	u32 post_divider;
392 	u32 feedback_divider;
393 	u32 vclk;
394 };
395 
396 struct aty128_ddafifo {
397 	u32 dda_config;
398 	u32 dda_on_off;
399 };
400 
401 /* register values for a specific mode */
402 struct aty128fb_par {
403 	struct aty128_crtc crtc;
404 	struct aty128_pll pll;
405 	struct aty128_ddafifo fifo_reg;
406 	u32 accel_flags;
407 	struct aty128_constants constants;  /* PLL and others      */
408 	void __iomem *regbase;              /* remapped mmio       */
409 	u32 vram_size;                      /* onboard video ram   */
410 	int chip_gen;
411 	const struct aty128_meminfo *mem;   /* onboard mem info    */
412 #ifdef CONFIG_MTRR
413 	struct { int vram; int vram_valid; } mtrr;
414 #endif
415 	int blitter_may_be_busy;
416 	int fifo_slots;                 /* free slots in FIFO (64 max) */
417 
418 	int crt_on, lcd_on;
419 	struct pci_dev *pdev;
420 	struct fb_info *next;
421 	int	asleep;
422 	int	lock_blank;
423 
424 	u8	red[32];		/* see aty128fb_setcolreg */
425 	u8	green[64];
426 	u8	blue[32];
427 	u32	pseudo_palette[16];	/* used for TRUECOLOR */
428 };
429 
430 
431 #define round_div(n, d) ((n+(d/2))/d)
432 
433 static int aty128fb_check_var(struct fb_var_screeninfo *var,
434 			      struct fb_info *info);
435 static int aty128fb_set_par(struct fb_info *info);
436 static int aty128fb_setcolreg(u_int regno, u_int red, u_int green, u_int blue,
437 			      u_int transp, struct fb_info *info);
438 static int aty128fb_pan_display(struct fb_var_screeninfo *var,
439 			   struct fb_info *fb);
440 static int aty128fb_blank(int blank, struct fb_info *fb);
441 static int aty128fb_ioctl(struct fb_info *info, u_int cmd, unsigned long arg);
442 static int aty128fb_sync(struct fb_info *info);
443 
444     /*
445      *  Internal routines
446      */
447 
448 static int aty128_encode_var(struct fb_var_screeninfo *var,
449                              const struct aty128fb_par *par);
450 static int aty128_decode_var(struct fb_var_screeninfo *var,
451                              struct aty128fb_par *par);
452 #if 0
453 static void aty128_get_pllinfo(struct aty128fb_par *par, void __iomem *bios);
454 static void __iomem *aty128_map_ROM(struct pci_dev *pdev,
455 				    const struct aty128fb_par *par);
456 #endif
457 static void aty128_timings(struct aty128fb_par *par);
458 static void aty128_init_engine(struct aty128fb_par *par);
459 static void aty128_reset_engine(const struct aty128fb_par *par);
460 static void aty128_flush_pixel_cache(const struct aty128fb_par *par);
461 static void do_wait_for_fifo(u16 entries, struct aty128fb_par *par);
462 static void wait_for_fifo(u16 entries, struct aty128fb_par *par);
463 static void wait_for_idle(struct aty128fb_par *par);
464 static u32 depth_to_dst(u32 depth);
465 
466 #ifdef CONFIG_FB_ATY128_BACKLIGHT
467 static void aty128_bl_set_power(struct fb_info *info, int power);
468 #endif
469 
470 #define BIOS_IN8(v)  	(readb(bios + (v)))
471 #define BIOS_IN16(v) 	(readb(bios + (v)) | \
472 			  (readb(bios + (v) + 1) << 8))
473 #define BIOS_IN32(v) 	(readb(bios + (v)) | \
474 			  (readb(bios + (v) + 1) << 8) | \
475 			  (readb(bios + (v) + 2) << 16) | \
476 			  (readb(bios + (v) + 3) << 24))
477 
478 
479 static struct fb_ops aty128fb_ops = {
480 	.owner		= THIS_MODULE,
481 	.fb_check_var	= aty128fb_check_var,
482 	.fb_set_par	= aty128fb_set_par,
483 	.fb_setcolreg	= aty128fb_setcolreg,
484 	.fb_pan_display = aty128fb_pan_display,
485 	.fb_blank	= aty128fb_blank,
486 	.fb_ioctl	= aty128fb_ioctl,
487 	.fb_sync	= aty128fb_sync,
488 	.fb_fillrect	= cfb_fillrect,
489 	.fb_copyarea	= cfb_copyarea,
490 	.fb_imageblit	= cfb_imageblit,
491 };
492 
493     /*
494      * Functions to read from/write to the mmio registers
495      *	- endian conversions may possibly be avoided by
496      *    using the other register aperture. TODO.
497      */
498 static inline u32 _aty_ld_le32(volatile unsigned int regindex,
499 			       const struct aty128fb_par *par)
500 {
501 	return readl (par->regbase + regindex);
502 }
503 
504 static inline void _aty_st_le32(volatile unsigned int regindex, u32 val,
505 				const struct aty128fb_par *par)
506 {
507 	writel (val, par->regbase + regindex);
508 }
509 
510 static inline u8 _aty_ld_8(unsigned int regindex,
511 			   const struct aty128fb_par *par)
512 {
513 	return readb (par->regbase + regindex);
514 }
515 
516 static inline void _aty_st_8(unsigned int regindex, u8 val,
517 			     const struct aty128fb_par *par)
518 {
519 	writeb (val, par->regbase + regindex);
520 }
521 
522 #define aty_ld_le32(regindex)		_aty_ld_le32(regindex, par)
523 #define aty_st_le32(regindex, val)	_aty_st_le32(regindex, val, par)
524 #define aty_ld_8(regindex)		_aty_ld_8(regindex, par)
525 #define aty_st_8(regindex, val)		_aty_st_8(regindex, val, par)
526 
527     /*
528      * Functions to read from/write to the pll registers
529      */
530 
531 #define aty_ld_pll(pll_index)		_aty_ld_pll(pll_index, par)
532 #define aty_st_pll(pll_index, val)	_aty_st_pll(pll_index, val, par)
533 
534 
535 static u32 _aty_ld_pll(unsigned int pll_index,
536 		       const struct aty128fb_par *par)
537 {
538 	aty_st_8(CLOCK_CNTL_INDEX, pll_index & 0x3F);
539 	return aty_ld_le32(CLOCK_CNTL_DATA);
540 }
541 
542 
543 static void _aty_st_pll(unsigned int pll_index, u32 val,
544 			const struct aty128fb_par *par)
545 {
546 	aty_st_8(CLOCK_CNTL_INDEX, (pll_index & 0x3F) | PLL_WR_EN);
547 	aty_st_le32(CLOCK_CNTL_DATA, val);
548 }
549 
550 
551 /* return true when the PLL has completed an atomic update */
552 static int aty_pll_readupdate(const struct aty128fb_par *par)
553 {
554 	return !(aty_ld_pll(PPLL_REF_DIV) & PPLL_ATOMIC_UPDATE_R);
555 }
556 
557 
558 static void aty_pll_wait_readupdate(const struct aty128fb_par *par)
559 {
560 	unsigned long timeout = jiffies + HZ/100; // should be more than enough
561 	int reset = 1;
562 
563 	while (time_before(jiffies, timeout))
564 		if (aty_pll_readupdate(par)) {
565 			reset = 0;
566 			break;
567 		}
568 
569 	if (reset)	/* reset engine?? */
570 		printk(KERN_DEBUG "aty128fb: PLL write timeout!\n");
571 }
572 
573 
574 /* tell PLL to update */
575 static void aty_pll_writeupdate(const struct aty128fb_par *par)
576 {
577 	aty_pll_wait_readupdate(par);
578 
579 	aty_st_pll(PPLL_REF_DIV,
580 		   aty_ld_pll(PPLL_REF_DIV) | PPLL_ATOMIC_UPDATE_W);
581 }
582 
583 
584 /* write to the scratch register to test r/w functionality */
585 static int register_test(const struct aty128fb_par *par)
586 {
587 	u32 val;
588 	int flag = 0;
589 
590 	val = aty_ld_le32(BIOS_0_SCRATCH);
591 
592 	aty_st_le32(BIOS_0_SCRATCH, 0x55555555);
593 	if (aty_ld_le32(BIOS_0_SCRATCH) == 0x55555555) {
594 		aty_st_le32(BIOS_0_SCRATCH, 0xAAAAAAAA);
595 
596 		if (aty_ld_le32(BIOS_0_SCRATCH) == 0xAAAAAAAA)
597 			flag = 1;
598 	}
599 
600 	aty_st_le32(BIOS_0_SCRATCH, val);	// restore value
601 	return flag;
602 }
603 
604 
605 /*
606  * Accelerator engine functions
607  */
608 static void do_wait_for_fifo(u16 entries, struct aty128fb_par *par)
609 {
610 	int i;
611 
612 	for (;;) {
613 		for (i = 0; i < 2000000; i++) {
614 			par->fifo_slots = aty_ld_le32(GUI_STAT) & 0x0fff;
615 			if (par->fifo_slots >= entries)
616 				return;
617 		}
618 		aty128_reset_engine(par);
619 	}
620 }
621 
622 
623 static void wait_for_idle(struct aty128fb_par *par)
624 {
625 	int i;
626 
627 	do_wait_for_fifo(64, par);
628 
629 	for (;;) {
630 		for (i = 0; i < 2000000; i++) {
631 			if (!(aty_ld_le32(GUI_STAT) & (1 << 31))) {
632 				aty128_flush_pixel_cache(par);
633 				par->blitter_may_be_busy = 0;
634 				return;
635 			}
636 		}
637 		aty128_reset_engine(par);
638 	}
639 }
640 
641 
642 static void wait_for_fifo(u16 entries, struct aty128fb_par *par)
643 {
644 	if (par->fifo_slots < entries)
645 		do_wait_for_fifo(64, par);
646 	par->fifo_slots -= entries;
647 }
648 
649 
650 static void aty128_flush_pixel_cache(const struct aty128fb_par *par)
651 {
652 	int i;
653 	u32 tmp;
654 
655 	tmp = aty_ld_le32(PC_NGUI_CTLSTAT);
656 	tmp &= ~(0x00ff);
657 	tmp |= 0x00ff;
658 	aty_st_le32(PC_NGUI_CTLSTAT, tmp);
659 
660 	for (i = 0; i < 2000000; i++)
661 		if (!(aty_ld_le32(PC_NGUI_CTLSTAT) & PC_BUSY))
662 			break;
663 }
664 
665 
666 static void aty128_reset_engine(const struct aty128fb_par *par)
667 {
668 	u32 gen_reset_cntl, clock_cntl_index, mclk_cntl;
669 
670 	aty128_flush_pixel_cache(par);
671 
672 	clock_cntl_index = aty_ld_le32(CLOCK_CNTL_INDEX);
673 	mclk_cntl = aty_ld_pll(MCLK_CNTL);
674 
675 	aty_st_pll(MCLK_CNTL, mclk_cntl | 0x00030000);
676 
677 	gen_reset_cntl = aty_ld_le32(GEN_RESET_CNTL);
678 	aty_st_le32(GEN_RESET_CNTL, gen_reset_cntl | SOFT_RESET_GUI);
679 	aty_ld_le32(GEN_RESET_CNTL);
680 	aty_st_le32(GEN_RESET_CNTL, gen_reset_cntl & ~(SOFT_RESET_GUI));
681 	aty_ld_le32(GEN_RESET_CNTL);
682 
683 	aty_st_pll(MCLK_CNTL, mclk_cntl);
684 	aty_st_le32(CLOCK_CNTL_INDEX, clock_cntl_index);
685 	aty_st_le32(GEN_RESET_CNTL, gen_reset_cntl);
686 
687 	/* use old pio mode */
688 	aty_st_le32(PM4_BUFFER_CNTL, PM4_BUFFER_CNTL_NONPM4);
689 
690 	DBG("engine reset");
691 }
692 
693 
694 static void aty128_init_engine(struct aty128fb_par *par)
695 {
696 	u32 pitch_value;
697 
698 	wait_for_idle(par);
699 
700 	/* 3D scaler not spoken here */
701 	wait_for_fifo(1, par);
702 	aty_st_le32(SCALE_3D_CNTL, 0x00000000);
703 
704 	aty128_reset_engine(par);
705 
706 	pitch_value = par->crtc.pitch;
707 	if (par->crtc.bpp == 24) {
708 		pitch_value = pitch_value * 3;
709 	}
710 
711 	wait_for_fifo(4, par);
712 	/* setup engine offset registers */
713 	aty_st_le32(DEFAULT_OFFSET, 0x00000000);
714 
715 	/* setup engine pitch registers */
716 	aty_st_le32(DEFAULT_PITCH, pitch_value);
717 
718 	/* set the default scissor register to max dimensions */
719 	aty_st_le32(DEFAULT_SC_BOTTOM_RIGHT, (0x1FFF << 16) | 0x1FFF);
720 
721 	/* set the drawing controls registers */
722 	aty_st_le32(DP_GUI_MASTER_CNTL,
723 		    GMC_SRC_PITCH_OFFSET_DEFAULT		|
724 		    GMC_DST_PITCH_OFFSET_DEFAULT		|
725 		    GMC_SRC_CLIP_DEFAULT			|
726 		    GMC_DST_CLIP_DEFAULT			|
727 		    GMC_BRUSH_SOLIDCOLOR			|
728 		    (depth_to_dst(par->crtc.depth) << 8)	|
729 		    GMC_SRC_DSTCOLOR			|
730 		    GMC_BYTE_ORDER_MSB_TO_LSB		|
731 		    GMC_DP_CONVERSION_TEMP_6500		|
732 		    ROP3_PATCOPY				|
733 		    GMC_DP_SRC_RECT				|
734 		    GMC_3D_FCN_EN_CLR			|
735 		    GMC_DST_CLR_CMP_FCN_CLEAR		|
736 		    GMC_AUX_CLIP_CLEAR			|
737 		    GMC_WRITE_MASK_SET);
738 
739 	wait_for_fifo(8, par);
740 	/* clear the line drawing registers */
741 	aty_st_le32(DST_BRES_ERR, 0);
742 	aty_st_le32(DST_BRES_INC, 0);
743 	aty_st_le32(DST_BRES_DEC, 0);
744 
745 	/* set brush color registers */
746 	aty_st_le32(DP_BRUSH_FRGD_CLR, 0xFFFFFFFF); /* white */
747 	aty_st_le32(DP_BRUSH_BKGD_CLR, 0x00000000); /* black */
748 
749 	/* set source color registers */
750 	aty_st_le32(DP_SRC_FRGD_CLR, 0xFFFFFFFF);   /* white */
751 	aty_st_le32(DP_SRC_BKGD_CLR, 0x00000000);   /* black */
752 
753 	/* default write mask */
754 	aty_st_le32(DP_WRITE_MASK, 0xFFFFFFFF);
755 
756 	/* Wait for all the writes to be completed before returning */
757 	wait_for_idle(par);
758 }
759 
760 
761 /* convert depth values to their register representation */
762 static u32 depth_to_dst(u32 depth)
763 {
764 	if (depth <= 8)
765 		return DST_8BPP;
766 	else if (depth <= 15)
767 		return DST_15BPP;
768 	else if (depth == 16)
769 		return DST_16BPP;
770 	else if (depth <= 24)
771 		return DST_24BPP;
772 	else if (depth <= 32)
773 		return DST_32BPP;
774 
775 	return -EINVAL;
776 }
777 
778 /*
779  * PLL informations retreival
780  */
781 
782 
783 #ifndef __sparc__
784 static void __iomem *aty128_map_ROM(const struct aty128fb_par *par,
785 				    struct pci_dev *dev)
786 {
787 	u16 dptr;
788 	u8 rom_type;
789 	void __iomem *bios;
790 	size_t rom_size;
791 
792     	/* Fix from ATI for problem with Rage128 hardware not leaving ROM enabled */
793     	unsigned int temp;
794 	temp = aty_ld_le32(RAGE128_MPP_TB_CONFIG);
795 	temp &= 0x00ffffffu;
796 	temp |= 0x04 << 24;
797 	aty_st_le32(RAGE128_MPP_TB_CONFIG, temp);
798 	temp = aty_ld_le32(RAGE128_MPP_TB_CONFIG);
799 
800 	bios = pci_map_rom(dev, &rom_size);
801 
802 	if (!bios) {
803 		printk(KERN_ERR "aty128fb: ROM failed to map\n");
804 		return NULL;
805 	}
806 
807 	/* Very simple test to make sure it appeared */
808 	if (BIOS_IN16(0) != 0xaa55) {
809 		printk(KERN_DEBUG "aty128fb: Invalid ROM signature %x should "
810 			" be 0xaa55\n", BIOS_IN16(0));
811 		goto failed;
812 	}
813 
814 	/* Look for the PCI data to check the ROM type */
815 	dptr = BIOS_IN16(0x18);
816 
817 	/* Check the PCI data signature. If it's wrong, we still assume a normal
818 	 * x86 ROM for now, until I've verified this works everywhere.
819 	 * The goal here is more to phase out Open Firmware images.
820 	 *
821 	 * Currently, we only look at the first PCI data, we could iteratre and
822 	 * deal with them all, and we should use fb_bios_start relative to start
823 	 * of image and not relative start of ROM, but so far, I never found a
824 	 * dual-image ATI card.
825 	 *
826 	 * typedef struct {
827 	 * 	u32	signature;	+ 0x00
828 	 * 	u16	vendor;		+ 0x04
829 	 * 	u16	device;		+ 0x06
830 	 * 	u16	reserved_1;	+ 0x08
831 	 * 	u16	dlen;		+ 0x0a
832 	 * 	u8	drevision;	+ 0x0c
833 	 * 	u8	class_hi;	+ 0x0d
834 	 * 	u16	class_lo;	+ 0x0e
835 	 * 	u16	ilen;		+ 0x10
836 	 * 	u16	irevision;	+ 0x12
837 	 * 	u8	type;		+ 0x14
838 	 * 	u8	indicator;	+ 0x15
839 	 * 	u16	reserved_2;	+ 0x16
840 	 * } pci_data_t;
841 	 */
842 	if (BIOS_IN32(dptr) !=  (('R' << 24) | ('I' << 16) | ('C' << 8) | 'P')) {
843 		printk(KERN_WARNING "aty128fb: PCI DATA signature in ROM incorrect: %08x\n",
844 		       BIOS_IN32(dptr));
845 		goto anyway;
846 	}
847 	rom_type = BIOS_IN8(dptr + 0x14);
848 	switch(rom_type) {
849 	case 0:
850 		printk(KERN_INFO "aty128fb: Found Intel x86 BIOS ROM Image\n");
851 		break;
852 	case 1:
853 		printk(KERN_INFO "aty128fb: Found Open Firmware ROM Image\n");
854 		goto failed;
855 	case 2:
856 		printk(KERN_INFO "aty128fb: Found HP PA-RISC ROM Image\n");
857 		goto failed;
858 	default:
859 		printk(KERN_INFO "aty128fb: Found unknown type %d ROM Image\n",
860 		       rom_type);
861 		goto failed;
862 	}
863  anyway:
864 	return bios;
865 
866  failed:
867 	pci_unmap_rom(dev, bios);
868 	return NULL;
869 }
870 
871 static void aty128_get_pllinfo(struct aty128fb_par *par,
872 			       unsigned char __iomem *bios)
873 {
874 	unsigned int bios_hdr;
875 	unsigned int bios_pll;
876 
877 	bios_hdr = BIOS_IN16(0x48);
878 	bios_pll = BIOS_IN16(bios_hdr + 0x30);
879 
880 	par->constants.ppll_max = BIOS_IN32(bios_pll + 0x16);
881 	par->constants.ppll_min = BIOS_IN32(bios_pll + 0x12);
882 	par->constants.xclk = BIOS_IN16(bios_pll + 0x08);
883 	par->constants.ref_divider = BIOS_IN16(bios_pll + 0x10);
884 	par->constants.ref_clk = BIOS_IN16(bios_pll + 0x0e);
885 
886 	DBG("ppll_max %d ppll_min %d xclk %d ref_divider %d ref clock %d\n",
887 			par->constants.ppll_max, par->constants.ppll_min,
888 			par->constants.xclk, par->constants.ref_divider,
889 			par->constants.ref_clk);
890 
891 }
892 
893 #ifdef CONFIG_X86
894 static void __iomem *aty128_find_mem_vbios(struct aty128fb_par *par)
895 {
896 	/* I simplified this code as we used to miss the signatures in
897 	 * a lot of case. It's now closer to XFree, we just don't check
898 	 * for signatures at all... Something better will have to be done
899 	 * if we end up having conflicts
900 	 */
901         u32  segstart;
902         unsigned char __iomem *rom_base = NULL;
903 
904         for (segstart=0x000c0000; segstart<0x000f0000; segstart+=0x00001000) {
905                 rom_base = ioremap(segstart, 0x10000);
906 		if (rom_base == NULL)
907 			return NULL;
908 		if (readb(rom_base) == 0x55 && readb(rom_base + 1) == 0xaa)
909 	                break;
910                 iounmap(rom_base);
911 		rom_base = NULL;
912         }
913 	return rom_base;
914 }
915 #endif
916 #endif /* ndef(__sparc__) */
917 
918 /* fill in known card constants if pll_block is not available */
919 static void aty128_timings(struct aty128fb_par *par)
920 {
921 #ifdef CONFIG_PPC_OF
922 	/* instead of a table lookup, assume OF has properly
923 	 * setup the PLL registers and use their values
924 	 * to set the XCLK values and reference divider values */
925 
926 	u32 x_mpll_ref_fb_div;
927 	u32 xclk_cntl;
928 	u32 Nx, M;
929 	unsigned PostDivSet[] = { 0, 1, 2, 4, 8, 3, 6, 12 };
930 #endif
931 
932 	if (!par->constants.ref_clk)
933 		par->constants.ref_clk = 2950;
934 
935 #ifdef CONFIG_PPC_OF
936 	x_mpll_ref_fb_div = aty_ld_pll(X_MPLL_REF_FB_DIV);
937 	xclk_cntl = aty_ld_pll(XCLK_CNTL) & 0x7;
938 	Nx = (x_mpll_ref_fb_div & 0x00ff00) >> 8;
939 	M  = x_mpll_ref_fb_div & 0x0000ff;
940 
941 	par->constants.xclk = round_div((2 * Nx * par->constants.ref_clk),
942 					(M * PostDivSet[xclk_cntl]));
943 
944 	par->constants.ref_divider =
945 		aty_ld_pll(PPLL_REF_DIV) & PPLL_REF_DIV_MASK;
946 #endif
947 
948 	if (!par->constants.ref_divider) {
949 		par->constants.ref_divider = 0x3b;
950 
951 		aty_st_pll(X_MPLL_REF_FB_DIV, 0x004c4c1e);
952 		aty_pll_writeupdate(par);
953 	}
954 	aty_st_pll(PPLL_REF_DIV, par->constants.ref_divider);
955 	aty_pll_writeupdate(par);
956 
957 	/* from documentation */
958 	if (!par->constants.ppll_min)
959 		par->constants.ppll_min = 12500;
960 	if (!par->constants.ppll_max)
961 		par->constants.ppll_max = 25000;    /* 23000 on some cards? */
962 	if (!par->constants.xclk)
963 		par->constants.xclk = 0x1d4d;	     /* same as mclk */
964 
965 	par->constants.fifo_width = 128;
966 	par->constants.fifo_depth = 32;
967 
968 	switch (aty_ld_le32(MEM_CNTL) & 0x3) {
969 	case 0:
970 		par->mem = &sdr_128;
971 		break;
972 	case 1:
973 		par->mem = &sdr_sgram;
974 		break;
975 	case 2:
976 		par->mem = &ddr_sgram;
977 		break;
978 	default:
979 		par->mem = &sdr_sgram;
980 	}
981 }
982 
983 
984 
985 /*
986  * CRTC programming
987  */
988 
989 /* Program the CRTC registers */
990 static void aty128_set_crtc(const struct aty128_crtc *crtc,
991 			    const struct aty128fb_par *par)
992 {
993 	aty_st_le32(CRTC_GEN_CNTL, crtc->gen_cntl);
994 	aty_st_le32(CRTC_H_TOTAL_DISP, crtc->h_total);
995 	aty_st_le32(CRTC_H_SYNC_STRT_WID, crtc->h_sync_strt_wid);
996 	aty_st_le32(CRTC_V_TOTAL_DISP, crtc->v_total);
997 	aty_st_le32(CRTC_V_SYNC_STRT_WID, crtc->v_sync_strt_wid);
998 	aty_st_le32(CRTC_PITCH, crtc->pitch);
999 	aty_st_le32(CRTC_OFFSET, crtc->offset);
1000 	aty_st_le32(CRTC_OFFSET_CNTL, crtc->offset_cntl);
1001 	/* Disable ATOMIC updating.  Is this the right place? */
1002 	aty_st_pll(PPLL_CNTL, aty_ld_pll(PPLL_CNTL) & ~(0x00030000));
1003 }
1004 
1005 
1006 static int aty128_var_to_crtc(const struct fb_var_screeninfo *var,
1007 			      struct aty128_crtc *crtc,
1008 			      const struct aty128fb_par *par)
1009 {
1010 	u32 xres, yres, vxres, vyres, xoffset, yoffset, bpp, dst;
1011 	u32 left, right, upper, lower, hslen, vslen, sync, vmode;
1012 	u32 h_total, h_disp, h_sync_strt, h_sync_wid, h_sync_pol;
1013 	u32 v_total, v_disp, v_sync_strt, v_sync_wid, v_sync_pol, c_sync;
1014 	u32 depth, bytpp;
1015 	u8 mode_bytpp[7] = { 0, 0, 1, 2, 2, 3, 4 };
1016 
1017 	/* input */
1018 	xres = var->xres;
1019 	yres = var->yres;
1020 	vxres   = var->xres_virtual;
1021 	vyres   = var->yres_virtual;
1022 	xoffset = var->xoffset;
1023 	yoffset = var->yoffset;
1024 	bpp   = var->bits_per_pixel;
1025 	left  = var->left_margin;
1026 	right = var->right_margin;
1027 	upper = var->upper_margin;
1028 	lower = var->lower_margin;
1029 	hslen = var->hsync_len;
1030 	vslen = var->vsync_len;
1031 	sync  = var->sync;
1032 	vmode = var->vmode;
1033 
1034 	if (bpp != 16)
1035 		depth = bpp;
1036 	else
1037 		depth = (var->green.length == 6) ? 16 : 15;
1038 
1039 	/* check for mode eligibility
1040 	 * accept only non interlaced modes */
1041 	if ((vmode & FB_VMODE_MASK) != FB_VMODE_NONINTERLACED)
1042 		return -EINVAL;
1043 
1044 	/* convert (and round up) and validate */
1045 	xres = (xres + 7) & ~7;
1046 	xoffset = (xoffset + 7) & ~7;
1047 
1048 	if (vxres < xres + xoffset)
1049 		vxres = xres + xoffset;
1050 
1051 	if (vyres < yres + yoffset)
1052 		vyres = yres + yoffset;
1053 
1054 	/* convert depth into ATI register depth */
1055 	dst = depth_to_dst(depth);
1056 
1057 	if (dst == -EINVAL) {
1058 		printk(KERN_ERR "aty128fb: Invalid depth or RGBA\n");
1059 		return -EINVAL;
1060 	}
1061 
1062 	/* convert register depth to bytes per pixel */
1063 	bytpp = mode_bytpp[dst];
1064 
1065 	/* make sure there is enough video ram for the mode */
1066 	if ((u32)(vxres * vyres * bytpp) > par->vram_size) {
1067 		printk(KERN_ERR "aty128fb: Not enough memory for mode\n");
1068 		return -EINVAL;
1069 	}
1070 
1071 	h_disp = (xres >> 3) - 1;
1072 	h_total = (((xres + right + hslen + left) >> 3) - 1) & 0xFFFFL;
1073 
1074 	v_disp = yres - 1;
1075 	v_total = (yres + upper + vslen + lower - 1) & 0xFFFFL;
1076 
1077 	/* check to make sure h_total and v_total are in range */
1078 	if (((h_total >> 3) - 1) > 0x1ff || (v_total - 1) > 0x7FF) {
1079 		printk(KERN_ERR "aty128fb: invalid width ranges\n");
1080 		return -EINVAL;
1081 	}
1082 
1083 	h_sync_wid = (hslen + 7) >> 3;
1084 	if (h_sync_wid == 0)
1085 		h_sync_wid = 1;
1086 	else if (h_sync_wid > 0x3f)        /* 0x3f = max hwidth */
1087 		h_sync_wid = 0x3f;
1088 
1089 	h_sync_strt = (h_disp << 3) + right;
1090 
1091 	v_sync_wid = vslen;
1092 	if (v_sync_wid == 0)
1093 		v_sync_wid = 1;
1094 	else if (v_sync_wid > 0x1f)        /* 0x1f = max vwidth */
1095 		v_sync_wid = 0x1f;
1096 
1097 	v_sync_strt = v_disp + lower;
1098 
1099 	h_sync_pol = sync & FB_SYNC_HOR_HIGH_ACT ? 0 : 1;
1100 	v_sync_pol = sync & FB_SYNC_VERT_HIGH_ACT ? 0 : 1;
1101 
1102 	c_sync = sync & FB_SYNC_COMP_HIGH_ACT ? (1 << 4) : 0;
1103 
1104 	crtc->gen_cntl = 0x3000000L | c_sync | (dst << 8);
1105 
1106 	crtc->h_total = h_total | (h_disp << 16);
1107 	crtc->v_total = v_total | (v_disp << 16);
1108 
1109 	crtc->h_sync_strt_wid = h_sync_strt | (h_sync_wid << 16) |
1110 	        (h_sync_pol << 23);
1111 	crtc->v_sync_strt_wid = v_sync_strt | (v_sync_wid << 16) |
1112                 (v_sync_pol << 23);
1113 
1114 	crtc->pitch = vxres >> 3;
1115 
1116 	crtc->offset = 0;
1117 
1118 	if ((var->activate & FB_ACTIVATE_MASK) == FB_ACTIVATE_NOW)
1119 		crtc->offset_cntl = 0x00010000;
1120 	else
1121 		crtc->offset_cntl = 0;
1122 
1123 	crtc->vxres = vxres;
1124 	crtc->vyres = vyres;
1125 	crtc->xoffset = xoffset;
1126 	crtc->yoffset = yoffset;
1127 	crtc->depth = depth;
1128 	crtc->bpp = bpp;
1129 
1130 	return 0;
1131 }
1132 
1133 
1134 static int aty128_pix_width_to_var(int pix_width, struct fb_var_screeninfo *var)
1135 {
1136 
1137 	/* fill in pixel info */
1138 	var->red.msb_right = 0;
1139 	var->green.msb_right = 0;
1140 	var->blue.offset = 0;
1141 	var->blue.msb_right = 0;
1142 	var->transp.offset = 0;
1143 	var->transp.length = 0;
1144 	var->transp.msb_right = 0;
1145 	switch (pix_width) {
1146 	case CRTC_PIX_WIDTH_8BPP:
1147 		var->bits_per_pixel = 8;
1148 		var->red.offset = 0;
1149 		var->red.length = 8;
1150 		var->green.offset = 0;
1151 		var->green.length = 8;
1152 		var->blue.length = 8;
1153 		break;
1154 	case CRTC_PIX_WIDTH_15BPP:
1155 		var->bits_per_pixel = 16;
1156 		var->red.offset = 10;
1157 		var->red.length = 5;
1158 		var->green.offset = 5;
1159 		var->green.length = 5;
1160 		var->blue.length = 5;
1161 		break;
1162 	case CRTC_PIX_WIDTH_16BPP:
1163 		var->bits_per_pixel = 16;
1164 		var->red.offset = 11;
1165 		var->red.length = 5;
1166 		var->green.offset = 5;
1167 		var->green.length = 6;
1168 		var->blue.length = 5;
1169 		break;
1170 	case CRTC_PIX_WIDTH_24BPP:
1171 		var->bits_per_pixel = 24;
1172 		var->red.offset = 16;
1173 		var->red.length = 8;
1174 		var->green.offset = 8;
1175 		var->green.length = 8;
1176 		var->blue.length = 8;
1177 		break;
1178 	case CRTC_PIX_WIDTH_32BPP:
1179 		var->bits_per_pixel = 32;
1180 		var->red.offset = 16;
1181 		var->red.length = 8;
1182 		var->green.offset = 8;
1183 		var->green.length = 8;
1184 		var->blue.length = 8;
1185 		var->transp.offset = 24;
1186 		var->transp.length = 8;
1187 		break;
1188 	default:
1189 		printk(KERN_ERR "aty128fb: Invalid pixel width\n");
1190 		return -EINVAL;
1191 	}
1192 
1193 	return 0;
1194 }
1195 
1196 
1197 static int aty128_crtc_to_var(const struct aty128_crtc *crtc,
1198 			      struct fb_var_screeninfo *var)
1199 {
1200 	u32 xres, yres, left, right, upper, lower, hslen, vslen, sync;
1201 	u32 h_total, h_disp, h_sync_strt, h_sync_dly, h_sync_wid, h_sync_pol;
1202 	u32 v_total, v_disp, v_sync_strt, v_sync_wid, v_sync_pol, c_sync;
1203 	u32 pix_width;
1204 
1205 	/* fun with masking */
1206 	h_total     = crtc->h_total & 0x1ff;
1207 	h_disp      = (crtc->h_total >> 16) & 0xff;
1208 	h_sync_strt = (crtc->h_sync_strt_wid >> 3) & 0x1ff;
1209 	h_sync_dly  = crtc->h_sync_strt_wid & 0x7;
1210 	h_sync_wid  = (crtc->h_sync_strt_wid >> 16) & 0x3f;
1211 	h_sync_pol  = (crtc->h_sync_strt_wid >> 23) & 0x1;
1212 	v_total     = crtc->v_total & 0x7ff;
1213 	v_disp      = (crtc->v_total >> 16) & 0x7ff;
1214 	v_sync_strt = crtc->v_sync_strt_wid & 0x7ff;
1215 	v_sync_wid  = (crtc->v_sync_strt_wid >> 16) & 0x1f;
1216 	v_sync_pol  = (crtc->v_sync_strt_wid >> 23) & 0x1;
1217 	c_sync      = crtc->gen_cntl & CRTC_CSYNC_EN ? 1 : 0;
1218 	pix_width   = crtc->gen_cntl & CRTC_PIX_WIDTH_MASK;
1219 
1220 	/* do conversions */
1221 	xres  = (h_disp + 1) << 3;
1222 	yres  = v_disp + 1;
1223 	left  = ((h_total - h_sync_strt - h_sync_wid) << 3) - h_sync_dly;
1224 	right = ((h_sync_strt - h_disp) << 3) + h_sync_dly;
1225 	hslen = h_sync_wid << 3;
1226 	upper = v_total - v_sync_strt - v_sync_wid;
1227 	lower = v_sync_strt - v_disp;
1228 	vslen = v_sync_wid;
1229 	sync  = (h_sync_pol ? 0 : FB_SYNC_HOR_HIGH_ACT) |
1230 		(v_sync_pol ? 0 : FB_SYNC_VERT_HIGH_ACT) |
1231 		(c_sync ? FB_SYNC_COMP_HIGH_ACT : 0);
1232 
1233 	aty128_pix_width_to_var(pix_width, var);
1234 
1235 	var->xres = xres;
1236 	var->yres = yres;
1237 	var->xres_virtual = crtc->vxres;
1238 	var->yres_virtual = crtc->vyres;
1239 	var->xoffset = crtc->xoffset;
1240 	var->yoffset = crtc->yoffset;
1241 	var->left_margin  = left;
1242 	var->right_margin = right;
1243 	var->upper_margin = upper;
1244 	var->lower_margin = lower;
1245 	var->hsync_len = hslen;
1246 	var->vsync_len = vslen;
1247 	var->sync  = sync;
1248 	var->vmode = FB_VMODE_NONINTERLACED;
1249 
1250 	return 0;
1251 }
1252 
1253 static void aty128_set_crt_enable(struct aty128fb_par *par, int on)
1254 {
1255 	if (on) {
1256 		aty_st_le32(CRTC_EXT_CNTL, aty_ld_le32(CRTC_EXT_CNTL) |
1257 			    CRT_CRTC_ON);
1258 		aty_st_le32(DAC_CNTL, (aty_ld_le32(DAC_CNTL) |
1259 			    DAC_PALETTE2_SNOOP_EN));
1260 	} else
1261 		aty_st_le32(CRTC_EXT_CNTL, aty_ld_le32(CRTC_EXT_CNTL) &
1262 			    ~CRT_CRTC_ON);
1263 }
1264 
1265 static void aty128_set_lcd_enable(struct aty128fb_par *par, int on)
1266 {
1267 	u32 reg;
1268 #ifdef CONFIG_FB_ATY128_BACKLIGHT
1269 	struct fb_info *info = pci_get_drvdata(par->pdev);
1270 #endif
1271 
1272 	if (on) {
1273 		reg = aty_ld_le32(LVDS_GEN_CNTL);
1274 		reg |= LVDS_ON | LVDS_EN | LVDS_BLON | LVDS_DIGION;
1275 		reg &= ~LVDS_DISPLAY_DIS;
1276 		aty_st_le32(LVDS_GEN_CNTL, reg);
1277 #ifdef CONFIG_FB_ATY128_BACKLIGHT
1278 		aty128_bl_set_power(info, FB_BLANK_UNBLANK);
1279 #endif
1280 	} else {
1281 #ifdef CONFIG_FB_ATY128_BACKLIGHT
1282 		aty128_bl_set_power(info, FB_BLANK_POWERDOWN);
1283 #endif
1284 		reg = aty_ld_le32(LVDS_GEN_CNTL);
1285 		reg |= LVDS_DISPLAY_DIS;
1286 		aty_st_le32(LVDS_GEN_CNTL, reg);
1287 		mdelay(100);
1288 		reg &= ~(LVDS_ON /*| LVDS_EN*/);
1289 		aty_st_le32(LVDS_GEN_CNTL, reg);
1290 	}
1291 }
1292 
1293 static void aty128_set_pll(struct aty128_pll *pll,
1294 			   const struct aty128fb_par *par)
1295 {
1296 	u32 div3;
1297 
1298 	unsigned char post_conv[] =	/* register values for post dividers */
1299         { 2, 0, 1, 4, 2, 2, 6, 2, 3, 2, 2, 2, 7 };
1300 
1301 	/* select PPLL_DIV_3 */
1302 	aty_st_le32(CLOCK_CNTL_INDEX, aty_ld_le32(CLOCK_CNTL_INDEX) | (3 << 8));
1303 
1304 	/* reset PLL */
1305 	aty_st_pll(PPLL_CNTL,
1306 		   aty_ld_pll(PPLL_CNTL) | PPLL_RESET | PPLL_ATOMIC_UPDATE_EN);
1307 
1308 	/* write the reference divider */
1309 	aty_pll_wait_readupdate(par);
1310 	aty_st_pll(PPLL_REF_DIV, par->constants.ref_divider & 0x3ff);
1311 	aty_pll_writeupdate(par);
1312 
1313 	div3 = aty_ld_pll(PPLL_DIV_3);
1314 	div3 &= ~PPLL_FB3_DIV_MASK;
1315 	div3 |= pll->feedback_divider;
1316 	div3 &= ~PPLL_POST3_DIV_MASK;
1317 	div3 |= post_conv[pll->post_divider] << 16;
1318 
1319 	/* write feedback and post dividers */
1320 	aty_pll_wait_readupdate(par);
1321 	aty_st_pll(PPLL_DIV_3, div3);
1322 	aty_pll_writeupdate(par);
1323 
1324 	aty_pll_wait_readupdate(par);
1325 	aty_st_pll(HTOTAL_CNTL, 0);	/* no horiz crtc adjustment */
1326 	aty_pll_writeupdate(par);
1327 
1328 	/* clear the reset, just in case */
1329 	aty_st_pll(PPLL_CNTL, aty_ld_pll(PPLL_CNTL) & ~PPLL_RESET);
1330 }
1331 
1332 
1333 static int aty128_var_to_pll(u32 period_in_ps, struct aty128_pll *pll,
1334 			     const struct aty128fb_par *par)
1335 {
1336 	const struct aty128_constants c = par->constants;
1337 	unsigned char post_dividers[] = {1,2,4,8,3,6,12};
1338 	u32 output_freq;
1339 	u32 vclk;        /* in .01 MHz */
1340 	int i = 0;
1341 	u32 n, d;
1342 
1343 	vclk = 100000000 / period_in_ps;	/* convert units to 10 kHz */
1344 
1345 	/* adjust pixel clock if necessary */
1346 	if (vclk > c.ppll_max)
1347 		vclk = c.ppll_max;
1348 	if (vclk * 12 < c.ppll_min)
1349 		vclk = c.ppll_min/12;
1350 
1351 	/* now, find an acceptable divider */
1352 	for (i = 0; i < ARRAY_SIZE(post_dividers); i++) {
1353 		output_freq = post_dividers[i] * vclk;
1354 		if (output_freq >= c.ppll_min && output_freq <= c.ppll_max) {
1355 			pll->post_divider = post_dividers[i];
1356 			break;
1357 		}
1358 	}
1359 
1360 	if (i == ARRAY_SIZE(post_dividers))
1361 		return -EINVAL;
1362 
1363 	/* calculate feedback divider */
1364 	n = c.ref_divider * output_freq;
1365 	d = c.ref_clk;
1366 
1367 	pll->feedback_divider = round_div(n, d);
1368 	pll->vclk = vclk;
1369 
1370 	DBG("post %d feedback %d vlck %d output %d ref_divider %d "
1371 	    "vclk_per: %d\n", pll->post_divider,
1372 	    pll->feedback_divider, vclk, output_freq,
1373 	    c.ref_divider, period_in_ps);
1374 
1375 	return 0;
1376 }
1377 
1378 
1379 static int aty128_pll_to_var(const struct aty128_pll *pll,
1380 			     struct fb_var_screeninfo *var)
1381 {
1382 	var->pixclock = 100000000 / pll->vclk;
1383 
1384 	return 0;
1385 }
1386 
1387 
1388 static void aty128_set_fifo(const struct aty128_ddafifo *dsp,
1389 			    const struct aty128fb_par *par)
1390 {
1391 	aty_st_le32(DDA_CONFIG, dsp->dda_config);
1392 	aty_st_le32(DDA_ON_OFF, dsp->dda_on_off);
1393 }
1394 
1395 
1396 static int aty128_ddafifo(struct aty128_ddafifo *dsp,
1397 			  const struct aty128_pll *pll,
1398 			  u32 depth,
1399 			  const struct aty128fb_par *par)
1400 {
1401 	const struct aty128_meminfo *m = par->mem;
1402 	u32 xclk = par->constants.xclk;
1403 	u32 fifo_width = par->constants.fifo_width;
1404 	u32 fifo_depth = par->constants.fifo_depth;
1405 	s32 x, b, p, ron, roff;
1406 	u32 n, d, bpp;
1407 
1408 	/* round up to multiple of 8 */
1409 	bpp = (depth+7) & ~7;
1410 
1411 	n = xclk * fifo_width;
1412 	d = pll->vclk * bpp;
1413 	x = round_div(n, d);
1414 
1415 	ron = 4 * m->MB +
1416 		3 * ((m->Trcd - 2 > 0) ? m->Trcd - 2 : 0) +
1417 		2 * m->Trp +
1418 		m->Twr +
1419 		m->CL +
1420 		m->Tr2w +
1421 		x;
1422 
1423 	DBG("x %x\n", x);
1424 
1425 	b = 0;
1426 	while (x) {
1427 		x >>= 1;
1428 		b++;
1429 	}
1430 	p = b + 1;
1431 
1432 	ron <<= (11 - p);
1433 
1434 	n <<= (11 - p);
1435 	x = round_div(n, d);
1436 	roff = x * (fifo_depth - 4);
1437 
1438 	if ((ron + m->Rloop) >= roff) {
1439 		printk(KERN_ERR "aty128fb: Mode out of range!\n");
1440 		return -EINVAL;
1441 	}
1442 
1443 	DBG("p: %x rloop: %x x: %x ron: %x roff: %x\n",
1444 	    p, m->Rloop, x, ron, roff);
1445 
1446 	dsp->dda_config = p << 16 | m->Rloop << 20 | x;
1447 	dsp->dda_on_off = ron << 16 | roff;
1448 
1449 	return 0;
1450 }
1451 
1452 
1453 /*
1454  * This actually sets the video mode.
1455  */
1456 static int aty128fb_set_par(struct fb_info *info)
1457 {
1458 	struct aty128fb_par *par = info->par;
1459 	u32 config;
1460 	int err;
1461 
1462 	if ((err = aty128_decode_var(&info->var, par)) != 0)
1463 		return err;
1464 
1465 	if (par->blitter_may_be_busy)
1466 		wait_for_idle(par);
1467 
1468 	/* clear all registers that may interfere with mode setting */
1469 	aty_st_le32(OVR_CLR, 0);
1470 	aty_st_le32(OVR_WID_LEFT_RIGHT, 0);
1471 	aty_st_le32(OVR_WID_TOP_BOTTOM, 0);
1472 	aty_st_le32(OV0_SCALE_CNTL, 0);
1473 	aty_st_le32(MPP_TB_CONFIG, 0);
1474 	aty_st_le32(MPP_GP_CONFIG, 0);
1475 	aty_st_le32(SUBPIC_CNTL, 0);
1476 	aty_st_le32(VIPH_CONTROL, 0);
1477 	aty_st_le32(I2C_CNTL_1, 0);         /* turn off i2c */
1478 	aty_st_le32(GEN_INT_CNTL, 0);	/* turn off interrupts */
1479 	aty_st_le32(CAP0_TRIG_CNTL, 0);
1480 	aty_st_le32(CAP1_TRIG_CNTL, 0);
1481 
1482 	aty_st_8(CRTC_EXT_CNTL + 1, 4);	/* turn video off */
1483 
1484 	aty128_set_crtc(&par->crtc, par);
1485 	aty128_set_pll(&par->pll, par);
1486 	aty128_set_fifo(&par->fifo_reg, par);
1487 
1488 	config = aty_ld_le32(CNFG_CNTL) & ~3;
1489 
1490 #if defined(__BIG_ENDIAN)
1491 	if (par->crtc.bpp == 32)
1492 		config |= 2;	/* make aperture do 32 bit swapping */
1493 	else if (par->crtc.bpp == 16)
1494 		config |= 1;	/* make aperture do 16 bit swapping */
1495 #endif
1496 
1497 	aty_st_le32(CNFG_CNTL, config);
1498 	aty_st_8(CRTC_EXT_CNTL + 1, 0);	/* turn the video back on */
1499 
1500 	info->fix.line_length = (par->crtc.vxres * par->crtc.bpp) >> 3;
1501 	info->fix.visual = par->crtc.bpp == 8 ? FB_VISUAL_PSEUDOCOLOR
1502 		: FB_VISUAL_DIRECTCOLOR;
1503 
1504 	if (par->chip_gen == rage_M3) {
1505 		aty128_set_crt_enable(par, par->crt_on);
1506 		aty128_set_lcd_enable(par, par->lcd_on);
1507 	}
1508 	if (par->accel_flags & FB_ACCELF_TEXT)
1509 		aty128_init_engine(par);
1510 
1511 #ifdef CONFIG_BOOTX_TEXT
1512 	btext_update_display(info->fix.smem_start,
1513 			     (((par->crtc.h_total>>16) & 0xff)+1)*8,
1514 			     ((par->crtc.v_total>>16) & 0x7ff)+1,
1515 			     par->crtc.bpp,
1516 			     par->crtc.vxres*par->crtc.bpp/8);
1517 #endif /* CONFIG_BOOTX_TEXT */
1518 
1519 	return 0;
1520 }
1521 
1522 /*
1523  *  encode/decode the User Defined Part of the Display
1524  */
1525 
1526 static int aty128_decode_var(struct fb_var_screeninfo *var,
1527 			     struct aty128fb_par *par)
1528 {
1529 	int err;
1530 	struct aty128_crtc crtc;
1531 	struct aty128_pll pll;
1532 	struct aty128_ddafifo fifo_reg;
1533 
1534 	if ((err = aty128_var_to_crtc(var, &crtc, par)))
1535 		return err;
1536 
1537 	if ((err = aty128_var_to_pll(var->pixclock, &pll, par)))
1538 		return err;
1539 
1540 	if ((err = aty128_ddafifo(&fifo_reg, &pll, crtc.depth, par)))
1541 		return err;
1542 
1543 	par->crtc = crtc;
1544 	par->pll = pll;
1545 	par->fifo_reg = fifo_reg;
1546 	par->accel_flags = var->accel_flags;
1547 
1548 	return 0;
1549 }
1550 
1551 
1552 static int aty128_encode_var(struct fb_var_screeninfo *var,
1553 			     const struct aty128fb_par *par)
1554 {
1555 	int err;
1556 
1557 	if ((err = aty128_crtc_to_var(&par->crtc, var)))
1558 		return err;
1559 
1560 	if ((err = aty128_pll_to_var(&par->pll, var)))
1561 		return err;
1562 
1563 	var->nonstd = 0;
1564 	var->activate = 0;
1565 
1566 	var->height = -1;
1567 	var->width = -1;
1568 	var->accel_flags = par->accel_flags;
1569 
1570 	return 0;
1571 }
1572 
1573 
1574 static int aty128fb_check_var(struct fb_var_screeninfo *var,
1575 			      struct fb_info *info)
1576 {
1577 	struct aty128fb_par par;
1578 	int err;
1579 
1580 	par = *(struct aty128fb_par *)info->par;
1581 	if ((err = aty128_decode_var(var, &par)) != 0)
1582 		return err;
1583 	aty128_encode_var(var, &par);
1584 	return 0;
1585 }
1586 
1587 
1588 /*
1589  *  Pan or Wrap the Display
1590  */
1591 static int aty128fb_pan_display(struct fb_var_screeninfo *var,
1592 				struct fb_info *fb)
1593 {
1594 	struct aty128fb_par *par = fb->par;
1595 	u32 xoffset, yoffset;
1596 	u32 offset;
1597 	u32 xres, yres;
1598 
1599 	xres = (((par->crtc.h_total >> 16) & 0xff) + 1) << 3;
1600 	yres = ((par->crtc.v_total >> 16) & 0x7ff) + 1;
1601 
1602 	xoffset = (var->xoffset +7) & ~7;
1603 	yoffset = var->yoffset;
1604 
1605 	if (xoffset+xres > par->crtc.vxres || yoffset+yres > par->crtc.vyres)
1606 		return -EINVAL;
1607 
1608 	par->crtc.xoffset = xoffset;
1609 	par->crtc.yoffset = yoffset;
1610 
1611 	offset = ((yoffset * par->crtc.vxres + xoffset) * (par->crtc.bpp >> 3))
1612 									  & ~7;
1613 
1614 	if (par->crtc.bpp == 24)
1615 		offset += 8 * (offset % 3); /* Must be multiple of 8 and 3 */
1616 
1617 	aty_st_le32(CRTC_OFFSET, offset);
1618 
1619 	return 0;
1620 }
1621 
1622 
1623 /*
1624  *  Helper function to store a single palette register
1625  */
1626 static void aty128_st_pal(u_int regno, u_int red, u_int green, u_int blue,
1627 			  struct aty128fb_par *par)
1628 {
1629 	if (par->chip_gen == rage_M3) {
1630 #if 0
1631 		/* Note: For now, on M3, we set palette on both heads, which may
1632 		 * be useless. Can someone with a M3 check this ?
1633 		 *
1634 		 * This code would still be useful if using the second CRTC to
1635 		 * do mirroring
1636 		 */
1637 
1638 		aty_st_le32(DAC_CNTL, aty_ld_le32(DAC_CNTL) |
1639 			    DAC_PALETTE_ACCESS_CNTL);
1640 		aty_st_8(PALETTE_INDEX, regno);
1641 		aty_st_le32(PALETTE_DATA, (red<<16)|(green<<8)|blue);
1642 #endif
1643 		aty_st_le32(DAC_CNTL, aty_ld_le32(DAC_CNTL) &
1644 			    ~DAC_PALETTE_ACCESS_CNTL);
1645 	}
1646 
1647 	aty_st_8(PALETTE_INDEX, regno);
1648 	aty_st_le32(PALETTE_DATA, (red<<16)|(green<<8)|blue);
1649 }
1650 
1651 static int aty128fb_sync(struct fb_info *info)
1652 {
1653 	struct aty128fb_par *par = info->par;
1654 
1655 	if (par->blitter_may_be_busy)
1656 		wait_for_idle(par);
1657 	return 0;
1658 }
1659 
1660 #ifndef MODULE
1661 static int aty128fb_setup(char *options)
1662 {
1663 	char *this_opt;
1664 
1665 	if (!options || !*options)
1666 		return 0;
1667 
1668 	while ((this_opt = strsep(&options, ",")) != NULL) {
1669 		if (!strncmp(this_opt, "lcd:", 4)) {
1670 			default_lcd_on = simple_strtoul(this_opt+4, NULL, 0);
1671 			continue;
1672 		} else if (!strncmp(this_opt, "crt:", 4)) {
1673 			default_crt_on = simple_strtoul(this_opt+4, NULL, 0);
1674 			continue;
1675 		} else if (!strncmp(this_opt, "backlight:", 10)) {
1676 #ifdef CONFIG_FB_ATY128_BACKLIGHT
1677 			backlight = simple_strtoul(this_opt+10, NULL, 0);
1678 #endif
1679 			continue;
1680 		}
1681 #ifdef CONFIG_MTRR
1682 		if(!strncmp(this_opt, "nomtrr", 6)) {
1683 			mtrr = 0;
1684 			continue;
1685 		}
1686 #endif
1687 #ifdef CONFIG_PPC_PMAC
1688 		/* vmode and cmode deprecated */
1689 		if (!strncmp(this_opt, "vmode:", 6)) {
1690 			unsigned int vmode = simple_strtoul(this_opt+6, NULL, 0);
1691 			if (vmode > 0 && vmode <= VMODE_MAX)
1692 				default_vmode = vmode;
1693 			continue;
1694 		} else if (!strncmp(this_opt, "cmode:", 6)) {
1695 			unsigned int cmode = simple_strtoul(this_opt+6, NULL, 0);
1696 			switch (cmode) {
1697 			case 0:
1698 			case 8:
1699 				default_cmode = CMODE_8;
1700 				break;
1701 			case 15:
1702 			case 16:
1703 				default_cmode = CMODE_16;
1704 				break;
1705 			case 24:
1706 			case 32:
1707 				default_cmode = CMODE_32;
1708 				break;
1709 			}
1710 			continue;
1711 		}
1712 #endif /* CONFIG_PPC_PMAC */
1713 		mode_option = this_opt;
1714 	}
1715 	return 0;
1716 }
1717 #endif  /*  MODULE  */
1718 
1719 /* Backlight */
1720 #ifdef CONFIG_FB_ATY128_BACKLIGHT
1721 #define MAX_LEVEL 0xFF
1722 
1723 static int aty128_bl_get_level_brightness(struct aty128fb_par *par,
1724 		int level)
1725 {
1726 	struct fb_info *info = pci_get_drvdata(par->pdev);
1727 	int atylevel;
1728 
1729 	/* Get and convert the value */
1730 	/* No locking of bl_curve since we read a single value */
1731 	atylevel = MAX_LEVEL -
1732 		(info->bl_curve[level] * FB_BACKLIGHT_MAX / MAX_LEVEL);
1733 
1734 	if (atylevel < 0)
1735 		atylevel = 0;
1736 	else if (atylevel > MAX_LEVEL)
1737 		atylevel = MAX_LEVEL;
1738 
1739 	return atylevel;
1740 }
1741 
1742 /* We turn off the LCD completely instead of just dimming the backlight.
1743  * This provides greater power saving and the display is useless without
1744  * backlight anyway
1745  */
1746 #define BACKLIGHT_LVDS_OFF
1747 /* That one prevents proper CRT output with LCD off */
1748 #undef BACKLIGHT_DAC_OFF
1749 
1750 static int aty128_bl_update_status(struct backlight_device *bd)
1751 {
1752 	struct aty128fb_par *par = bl_get_data(bd);
1753 	unsigned int reg = aty_ld_le32(LVDS_GEN_CNTL);
1754 	int level;
1755 
1756 	if (bd->props.power != FB_BLANK_UNBLANK ||
1757 	    bd->props.fb_blank != FB_BLANK_UNBLANK ||
1758 	    !par->lcd_on)
1759 		level = 0;
1760 	else
1761 		level = bd->props.brightness;
1762 
1763 	reg |= LVDS_BL_MOD_EN | LVDS_BLON;
1764 	if (level > 0) {
1765 		reg |= LVDS_DIGION;
1766 		if (!(reg & LVDS_ON)) {
1767 			reg &= ~LVDS_BLON;
1768 			aty_st_le32(LVDS_GEN_CNTL, reg);
1769 			aty_ld_le32(LVDS_GEN_CNTL);
1770 			mdelay(10);
1771 			reg |= LVDS_BLON;
1772 			aty_st_le32(LVDS_GEN_CNTL, reg);
1773 		}
1774 		reg &= ~LVDS_BL_MOD_LEVEL_MASK;
1775 		reg |= (aty128_bl_get_level_brightness(par, level) <<
1776 			LVDS_BL_MOD_LEVEL_SHIFT);
1777 #ifdef BACKLIGHT_LVDS_OFF
1778 		reg |= LVDS_ON | LVDS_EN;
1779 		reg &= ~LVDS_DISPLAY_DIS;
1780 #endif
1781 		aty_st_le32(LVDS_GEN_CNTL, reg);
1782 #ifdef BACKLIGHT_DAC_OFF
1783 		aty_st_le32(DAC_CNTL, aty_ld_le32(DAC_CNTL) & (~DAC_PDWN));
1784 #endif
1785 	} else {
1786 		reg &= ~LVDS_BL_MOD_LEVEL_MASK;
1787 		reg |= (aty128_bl_get_level_brightness(par, 0) <<
1788 			LVDS_BL_MOD_LEVEL_SHIFT);
1789 #ifdef BACKLIGHT_LVDS_OFF
1790 		reg |= LVDS_DISPLAY_DIS;
1791 		aty_st_le32(LVDS_GEN_CNTL, reg);
1792 		aty_ld_le32(LVDS_GEN_CNTL);
1793 		udelay(10);
1794 		reg &= ~(LVDS_ON | LVDS_EN | LVDS_BLON | LVDS_DIGION);
1795 #endif
1796 		aty_st_le32(LVDS_GEN_CNTL, reg);
1797 #ifdef BACKLIGHT_DAC_OFF
1798 		aty_st_le32(DAC_CNTL, aty_ld_le32(DAC_CNTL) | DAC_PDWN);
1799 #endif
1800 	}
1801 
1802 	return 0;
1803 }
1804 
1805 static int aty128_bl_get_brightness(struct backlight_device *bd)
1806 {
1807 	return bd->props.brightness;
1808 }
1809 
1810 static const struct backlight_ops aty128_bl_data = {
1811 	.get_brightness	= aty128_bl_get_brightness,
1812 	.update_status	= aty128_bl_update_status,
1813 };
1814 
1815 static void aty128_bl_set_power(struct fb_info *info, int power)
1816 {
1817 	if (info->bl_dev) {
1818 		info->bl_dev->props.power = power;
1819 		backlight_update_status(info->bl_dev);
1820 	}
1821 }
1822 
1823 static void aty128_bl_init(struct aty128fb_par *par)
1824 {
1825 	struct backlight_properties props;
1826 	struct fb_info *info = pci_get_drvdata(par->pdev);
1827 	struct backlight_device *bd;
1828 	char name[12];
1829 
1830 	/* Could be extended to Rage128Pro LVDS output too */
1831 	if (par->chip_gen != rage_M3)
1832 		return;
1833 
1834 #ifdef CONFIG_PMAC_BACKLIGHT
1835 	if (!pmac_has_backlight_type("ati"))
1836 		return;
1837 #endif
1838 
1839 	snprintf(name, sizeof(name), "aty128bl%d", info->node);
1840 
1841 	memset(&props, 0, sizeof(struct backlight_properties));
1842 	props.type = BACKLIGHT_RAW;
1843 	props.max_brightness = FB_BACKLIGHT_LEVELS - 1;
1844 	bd = backlight_device_register(name, info->dev, par, &aty128_bl_data,
1845 				       &props);
1846 	if (IS_ERR(bd)) {
1847 		info->bl_dev = NULL;
1848 		printk(KERN_WARNING "aty128: Backlight registration failed\n");
1849 		goto error;
1850 	}
1851 
1852 	info->bl_dev = bd;
1853 	fb_bl_default_curve(info, 0,
1854 		 63 * FB_BACKLIGHT_MAX / MAX_LEVEL,
1855 		219 * FB_BACKLIGHT_MAX / MAX_LEVEL);
1856 
1857 	bd->props.brightness = bd->props.max_brightness;
1858 	bd->props.power = FB_BLANK_UNBLANK;
1859 	backlight_update_status(bd);
1860 
1861 	printk("aty128: Backlight initialized (%s)\n", name);
1862 
1863 	return;
1864 
1865 error:
1866 	return;
1867 }
1868 
1869 static void aty128_bl_exit(struct backlight_device *bd)
1870 {
1871 	backlight_device_unregister(bd);
1872 	printk("aty128: Backlight unloaded\n");
1873 }
1874 #endif /* CONFIG_FB_ATY128_BACKLIGHT */
1875 
1876 /*
1877  *  Initialisation
1878  */
1879 
1880 #ifdef CONFIG_PPC_PMAC__disabled
1881 static void aty128_early_resume(void *data)
1882 {
1883         struct aty128fb_par *par = data;
1884 
1885 	if (!console_trylock())
1886 		return;
1887 	pci_restore_state(par->pdev);
1888 	aty128_do_resume(par->pdev);
1889 	console_unlock();
1890 }
1891 #endif /* CONFIG_PPC_PMAC */
1892 
1893 static int aty128_init(struct pci_dev *pdev, const struct pci_device_id *ent)
1894 {
1895 	struct fb_info *info = pci_get_drvdata(pdev);
1896 	struct aty128fb_par *par = info->par;
1897 	struct fb_var_screeninfo var;
1898 	char video_card[50];
1899 	u8 chip_rev;
1900 	u32 dac;
1901 
1902 	/* Get the chip revision */
1903 	chip_rev = (aty_ld_le32(CNFG_CNTL) >> 16) & 0x1F;
1904 
1905 	strcpy(video_card, "Rage128 XX ");
1906 	video_card[8] = ent->device >> 8;
1907 	video_card[9] = ent->device & 0xFF;
1908 
1909 	/* range check to make sure */
1910 	if (ent->driver_data < ARRAY_SIZE(r128_family))
1911 		strlcat(video_card, r128_family[ent->driver_data],
1912 			sizeof(video_card));
1913 
1914 	printk(KERN_INFO "aty128fb: %s [chip rev 0x%x] ", video_card, chip_rev);
1915 
1916 	if (par->vram_size % (1024 * 1024) == 0)
1917 		printk("%dM %s\n", par->vram_size / (1024*1024), par->mem->name);
1918 	else
1919 		printk("%dk %s\n", par->vram_size / 1024, par->mem->name);
1920 
1921 	par->chip_gen = ent->driver_data;
1922 
1923 	/* fill in info */
1924 	info->fbops = &aty128fb_ops;
1925 	info->flags = FBINFO_FLAG_DEFAULT;
1926 
1927 	par->lcd_on = default_lcd_on;
1928 	par->crt_on = default_crt_on;
1929 
1930 	var = default_var;
1931 #ifdef CONFIG_PPC_PMAC
1932 	if (machine_is(powermac)) {
1933 		/* Indicate sleep capability */
1934 		if (par->chip_gen == rage_M3) {
1935 			pmac_call_feature(PMAC_FTR_DEVICE_CAN_WAKE, NULL, 0, 1);
1936 #if 0 /* Disable the early video resume hack for now as it's causing problems,
1937        * among others we now rely on the PCI core restoring the config space
1938        * for us, which isn't the case with that hack, and that code path causes
1939        * various things to be called with interrupts off while they shouldn't.
1940        * I'm leaving the code in as it can be useful for debugging purposes
1941        */
1942 			pmac_set_early_video_resume(aty128_early_resume, par);
1943 #endif
1944 		}
1945 
1946 		/* Find default mode */
1947 		if (mode_option) {
1948 			if (!mac_find_mode(&var, info, mode_option, 8))
1949 				var = default_var;
1950 		} else {
1951 			if (default_vmode <= 0 || default_vmode > VMODE_MAX)
1952 				default_vmode = VMODE_1024_768_60;
1953 
1954 			/* iMacs need that resolution
1955 			 * PowerMac2,1 first r128 iMacs
1956 			 * PowerMac2,2 summer 2000 iMacs
1957 			 * PowerMac4,1 january 2001 iMacs "flower power"
1958 			 */
1959 			if (of_machine_is_compatible("PowerMac2,1") ||
1960 			    of_machine_is_compatible("PowerMac2,2") ||
1961 			    of_machine_is_compatible("PowerMac4,1"))
1962 				default_vmode = VMODE_1024_768_75;
1963 
1964 			/* iBook SE */
1965 			if (of_machine_is_compatible("PowerBook2,2"))
1966 				default_vmode = VMODE_800_600_60;
1967 
1968 			/* PowerBook Firewire (Pismo), iBook Dual USB */
1969 			if (of_machine_is_compatible("PowerBook3,1") ||
1970 			    of_machine_is_compatible("PowerBook4,1"))
1971 				default_vmode = VMODE_1024_768_60;
1972 
1973 			/* PowerBook Titanium */
1974 			if (of_machine_is_compatible("PowerBook3,2"))
1975 				default_vmode = VMODE_1152_768_60;
1976 
1977 			if (default_cmode > 16)
1978 				default_cmode = CMODE_32;
1979 			else if (default_cmode > 8)
1980 				default_cmode = CMODE_16;
1981 			else
1982 				default_cmode = CMODE_8;
1983 
1984 			if (mac_vmode_to_var(default_vmode, default_cmode, &var))
1985 				var = default_var;
1986 		}
1987 	} else
1988 #endif /* CONFIG_PPC_PMAC */
1989 	{
1990 		if (mode_option)
1991 			if (fb_find_mode(&var, info, mode_option, NULL,
1992 					 0, &defaultmode, 8) == 0)
1993 				var = default_var;
1994 	}
1995 
1996 	var.accel_flags &= ~FB_ACCELF_TEXT;
1997 //	var.accel_flags |= FB_ACCELF_TEXT;/* FIXME Will add accel later */
1998 
1999 	if (aty128fb_check_var(&var, info)) {
2000 		printk(KERN_ERR "aty128fb: Cannot set default mode.\n");
2001 		return 0;
2002 	}
2003 
2004 	/* setup the DAC the way we like it */
2005 	dac = aty_ld_le32(DAC_CNTL);
2006 	dac |= (DAC_8BIT_EN | DAC_RANGE_CNTL);
2007 	dac |= DAC_MASK;
2008 	if (par->chip_gen == rage_M3)
2009 		dac |= DAC_PALETTE2_SNOOP_EN;
2010 	aty_st_le32(DAC_CNTL, dac);
2011 
2012 	/* turn off bus mastering, just in case */
2013 	aty_st_le32(BUS_CNTL, aty_ld_le32(BUS_CNTL) | BUS_MASTER_DIS);
2014 
2015 	info->var = var;
2016 	fb_alloc_cmap(&info->cmap, 256, 0);
2017 
2018 	var.activate = FB_ACTIVATE_NOW;
2019 
2020 	aty128_init_engine(par);
2021 
2022 	par->pdev = pdev;
2023 	par->asleep = 0;
2024 	par->lock_blank = 0;
2025 
2026 #ifdef CONFIG_FB_ATY128_BACKLIGHT
2027 	if (backlight)
2028 		aty128_bl_init(par);
2029 #endif
2030 
2031 	if (register_framebuffer(info) < 0)
2032 		return 0;
2033 
2034 	fb_info(info, "%s frame buffer device on %s\n",
2035 		info->fix.id, video_card);
2036 
2037 	return 1;	/* success! */
2038 }
2039 
2040 #ifdef CONFIG_PCI
2041 /* register a card    ++ajoshi */
2042 static int aty128_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
2043 {
2044 	unsigned long fb_addr, reg_addr;
2045 	struct aty128fb_par *par;
2046 	struct fb_info *info;
2047 	int err;
2048 #ifndef __sparc__
2049 	void __iomem *bios = NULL;
2050 #endif
2051 
2052 	/* Enable device in PCI config */
2053 	if ((err = pci_enable_device(pdev))) {
2054 		printk(KERN_ERR "aty128fb: Cannot enable PCI device: %d\n",
2055 				err);
2056 		return -ENODEV;
2057 	}
2058 
2059 	fb_addr = pci_resource_start(pdev, 0);
2060 	if (!request_mem_region(fb_addr, pci_resource_len(pdev, 0),
2061 				"aty128fb FB")) {
2062 		printk(KERN_ERR "aty128fb: cannot reserve frame "
2063 				"buffer memory\n");
2064 		return -ENODEV;
2065 	}
2066 
2067 	reg_addr = pci_resource_start(pdev, 2);
2068 	if (!request_mem_region(reg_addr, pci_resource_len(pdev, 2),
2069 				"aty128fb MMIO")) {
2070 		printk(KERN_ERR "aty128fb: cannot reserve MMIO region\n");
2071 		goto err_free_fb;
2072 	}
2073 
2074 	/* We have the resources. Now virtualize them */
2075 	info = framebuffer_alloc(sizeof(struct aty128fb_par), &pdev->dev);
2076 	if (info == NULL) {
2077 		printk(KERN_ERR "aty128fb: can't alloc fb_info_aty128\n");
2078 		goto err_free_mmio;
2079 	}
2080 	par = info->par;
2081 
2082 	info->pseudo_palette = par->pseudo_palette;
2083 
2084 	/* Virtualize mmio region */
2085 	info->fix.mmio_start = reg_addr;
2086 	par->regbase = pci_ioremap_bar(pdev, 2);
2087 	if (!par->regbase)
2088 		goto err_free_info;
2089 
2090 	/* Grab memory size from the card */
2091 	// How does this relate to the resource length from the PCI hardware?
2092 	par->vram_size = aty_ld_le32(CNFG_MEMSIZE) & 0x03FFFFFF;
2093 
2094 	/* Virtualize the framebuffer */
2095 	info->screen_base = ioremap(fb_addr, par->vram_size);
2096 	if (!info->screen_base)
2097 		goto err_unmap_out;
2098 
2099 	/* Set up info->fix */
2100 	info->fix = aty128fb_fix;
2101 	info->fix.smem_start = fb_addr;
2102 	info->fix.smem_len = par->vram_size;
2103 	info->fix.mmio_start = reg_addr;
2104 
2105 	/* If we can't test scratch registers, something is seriously wrong */
2106 	if (!register_test(par)) {
2107 		printk(KERN_ERR "aty128fb: Can't write to video register!\n");
2108 		goto err_out;
2109 	}
2110 
2111 #ifndef __sparc__
2112 	bios = aty128_map_ROM(par, pdev);
2113 #ifdef CONFIG_X86
2114 	if (bios == NULL)
2115 		bios = aty128_find_mem_vbios(par);
2116 #endif
2117 	if (bios == NULL)
2118 		printk(KERN_INFO "aty128fb: BIOS not located, guessing timings.\n");
2119 	else {
2120 		printk(KERN_INFO "aty128fb: Rage128 BIOS located\n");
2121 		aty128_get_pllinfo(par, bios);
2122 		pci_unmap_rom(pdev, bios);
2123 	}
2124 #endif /* __sparc__ */
2125 
2126 	aty128_timings(par);
2127 	pci_set_drvdata(pdev, info);
2128 
2129 	if (!aty128_init(pdev, ent))
2130 		goto err_out;
2131 
2132 #ifdef CONFIG_MTRR
2133 	if (mtrr) {
2134 		par->mtrr.vram = mtrr_add(info->fix.smem_start,
2135 				par->vram_size, MTRR_TYPE_WRCOMB, 1);
2136 		par->mtrr.vram_valid = 1;
2137 		/* let there be speed */
2138 		printk(KERN_INFO "aty128fb: Rage128 MTRR set to ON\n");
2139 	}
2140 #endif /* CONFIG_MTRR */
2141 	return 0;
2142 
2143 err_out:
2144 	iounmap(info->screen_base);
2145 err_unmap_out:
2146 	iounmap(par->regbase);
2147 err_free_info:
2148 	framebuffer_release(info);
2149 err_free_mmio:
2150 	release_mem_region(pci_resource_start(pdev, 2),
2151 			pci_resource_len(pdev, 2));
2152 err_free_fb:
2153 	release_mem_region(pci_resource_start(pdev, 0),
2154 			pci_resource_len(pdev, 0));
2155 	return -ENODEV;
2156 }
2157 
2158 static void aty128_remove(struct pci_dev *pdev)
2159 {
2160 	struct fb_info *info = pci_get_drvdata(pdev);
2161 	struct aty128fb_par *par;
2162 
2163 	if (!info)
2164 		return;
2165 
2166 	par = info->par;
2167 
2168 	unregister_framebuffer(info);
2169 
2170 #ifdef CONFIG_FB_ATY128_BACKLIGHT
2171 	aty128_bl_exit(info->bl_dev);
2172 #endif
2173 
2174 #ifdef CONFIG_MTRR
2175 	if (par->mtrr.vram_valid)
2176 		mtrr_del(par->mtrr.vram, info->fix.smem_start,
2177 			 par->vram_size);
2178 #endif /* CONFIG_MTRR */
2179 	iounmap(par->regbase);
2180 	iounmap(info->screen_base);
2181 
2182 	release_mem_region(pci_resource_start(pdev, 0),
2183 			   pci_resource_len(pdev, 0));
2184 	release_mem_region(pci_resource_start(pdev, 2),
2185 			   pci_resource_len(pdev, 2));
2186 	framebuffer_release(info);
2187 }
2188 #endif /* CONFIG_PCI */
2189 
2190 
2191 
2192     /*
2193      *  Blank the display.
2194      */
2195 static int aty128fb_blank(int blank, struct fb_info *fb)
2196 {
2197 	struct aty128fb_par *par = fb->par;
2198 	u8 state;
2199 
2200 	if (par->lock_blank || par->asleep)
2201 		return 0;
2202 
2203 	switch (blank) {
2204 	case FB_BLANK_NORMAL:
2205 		state = 4;
2206 		break;
2207 	case FB_BLANK_VSYNC_SUSPEND:
2208 		state = 6;
2209 		break;
2210 	case FB_BLANK_HSYNC_SUSPEND:
2211 		state = 5;
2212 		break;
2213 	case FB_BLANK_POWERDOWN:
2214 		state = 7;
2215 		break;
2216 	case FB_BLANK_UNBLANK:
2217 	default:
2218 		state = 0;
2219 		break;
2220 	}
2221 	aty_st_8(CRTC_EXT_CNTL+1, state);
2222 
2223 	if (par->chip_gen == rage_M3) {
2224 		aty128_set_crt_enable(par, par->crt_on && !blank);
2225 		aty128_set_lcd_enable(par, par->lcd_on && !blank);
2226 	}
2227 
2228 	return 0;
2229 }
2230 
2231 /*
2232  *  Set a single color register. The values supplied are already
2233  *  rounded down to the hardware's capabilities (according to the
2234  *  entries in the var structure). Return != 0 for invalid regno.
2235  */
2236 static int aty128fb_setcolreg(u_int regno, u_int red, u_int green, u_int blue,
2237 			      u_int transp, struct fb_info *info)
2238 {
2239 	struct aty128fb_par *par = info->par;
2240 
2241 	if (regno > 255
2242 	    || (par->crtc.depth == 16 && regno > 63)
2243 	    || (par->crtc.depth == 15 && regno > 31))
2244 		return 1;
2245 
2246 	red >>= 8;
2247 	green >>= 8;
2248 	blue >>= 8;
2249 
2250 	if (regno < 16) {
2251 		int i;
2252 		u32 *pal = info->pseudo_palette;
2253 
2254 		switch (par->crtc.depth) {
2255 		case 15:
2256 			pal[regno] = (regno << 10) | (regno << 5) | regno;
2257 			break;
2258 		case 16:
2259 			pal[regno] = (regno << 11) | (regno << 6) | regno;
2260 			break;
2261 		case 24:
2262 			pal[regno] = (regno << 16) | (regno << 8) | regno;
2263 			break;
2264 		case 32:
2265 			i = (regno << 8) | regno;
2266 			pal[regno] = (i << 16) | i;
2267 			break;
2268 		}
2269 	}
2270 
2271 	if (par->crtc.depth == 16 && regno > 0) {
2272 		/*
2273 		 * With the 5-6-5 split of bits for RGB at 16 bits/pixel, we
2274 		 * have 32 slots for R and B values but 64 slots for G values.
2275 		 * Thus the R and B values go in one slot but the G value
2276 		 * goes in a different slot, and we have to avoid disturbing
2277 		 * the other fields in the slots we touch.
2278 		 */
2279 		par->green[regno] = green;
2280 		if (regno < 32) {
2281 			par->red[regno] = red;
2282 			par->blue[regno] = blue;
2283 			aty128_st_pal(regno * 8, red, par->green[regno*2],
2284 				      blue, par);
2285 		}
2286 		red = par->red[regno/2];
2287 		blue = par->blue[regno/2];
2288 		regno <<= 2;
2289 	} else if (par->crtc.bpp == 16)
2290 		regno <<= 3;
2291 	aty128_st_pal(regno, red, green, blue, par);
2292 
2293 	return 0;
2294 }
2295 
2296 #define ATY_MIRROR_LCD_ON	0x00000001
2297 #define ATY_MIRROR_CRT_ON	0x00000002
2298 
2299 /* out param: u32*	backlight value: 0 to 15 */
2300 #define FBIO_ATY128_GET_MIRROR	_IOR('@', 1, __u32)
2301 /* in param: u32*	backlight value: 0 to 15 */
2302 #define FBIO_ATY128_SET_MIRROR	_IOW('@', 2, __u32)
2303 
2304 static int aty128fb_ioctl(struct fb_info *info, u_int cmd, u_long arg)
2305 {
2306 	struct aty128fb_par *par = info->par;
2307 	u32 value;
2308 	int rc;
2309 
2310 	switch (cmd) {
2311 	case FBIO_ATY128_SET_MIRROR:
2312 		if (par->chip_gen != rage_M3)
2313 			return -EINVAL;
2314 		rc = get_user(value, (__u32 __user *)arg);
2315 		if (rc)
2316 			return rc;
2317 		par->lcd_on = (value & 0x01) != 0;
2318 		par->crt_on = (value & 0x02) != 0;
2319 		if (!par->crt_on && !par->lcd_on)
2320 			par->lcd_on = 1;
2321 		aty128_set_crt_enable(par, par->crt_on);
2322 		aty128_set_lcd_enable(par, par->lcd_on);
2323 		return 0;
2324 	case FBIO_ATY128_GET_MIRROR:
2325 		if (par->chip_gen != rage_M3)
2326 			return -EINVAL;
2327 		value = (par->crt_on << 1) | par->lcd_on;
2328 		return put_user(value, (__u32 __user *)arg);
2329 	}
2330 	return -EINVAL;
2331 }
2332 
2333 #if 0
2334     /*
2335      *  Accelerated functions
2336      */
2337 
2338 static inline void aty128_rectcopy(int srcx, int srcy, int dstx, int dsty,
2339 				   u_int width, u_int height,
2340 				   struct fb_info_aty128 *par)
2341 {
2342 	u32 save_dp_datatype, save_dp_cntl, dstval;
2343 
2344 	if (!width || !height)
2345 		return;
2346 
2347 	dstval = depth_to_dst(par->current_par.crtc.depth);
2348 	if (dstval == DST_24BPP) {
2349 		srcx *= 3;
2350 		dstx *= 3;
2351 		width *= 3;
2352 	} else if (dstval == -EINVAL) {
2353 		printk("aty128fb: invalid depth or RGBA\n");
2354 		return;
2355 	}
2356 
2357 	wait_for_fifo(2, par);
2358 	save_dp_datatype = aty_ld_le32(DP_DATATYPE);
2359 	save_dp_cntl     = aty_ld_le32(DP_CNTL);
2360 
2361 	wait_for_fifo(6, par);
2362 	aty_st_le32(SRC_Y_X, (srcy << 16) | srcx);
2363 	aty_st_le32(DP_MIX, ROP3_SRCCOPY | DP_SRC_RECT);
2364 	aty_st_le32(DP_CNTL, DST_X_LEFT_TO_RIGHT | DST_Y_TOP_TO_BOTTOM);
2365 	aty_st_le32(DP_DATATYPE, save_dp_datatype | dstval | SRC_DSTCOLOR);
2366 
2367 	aty_st_le32(DST_Y_X, (dsty << 16) | dstx);
2368 	aty_st_le32(DST_HEIGHT_WIDTH, (height << 16) | width);
2369 
2370 	par->blitter_may_be_busy = 1;
2371 
2372 	wait_for_fifo(2, par);
2373 	aty_st_le32(DP_DATATYPE, save_dp_datatype);
2374 	aty_st_le32(DP_CNTL, save_dp_cntl);
2375 }
2376 
2377 
2378     /*
2379      * Text mode accelerated functions
2380      */
2381 
2382 static void fbcon_aty128_bmove(struct display *p, int sy, int sx, int dy,
2383 			       int dx, int height, int width)
2384 {
2385 	sx     *= fontwidth(p);
2386 	sy     *= fontheight(p);
2387 	dx     *= fontwidth(p);
2388 	dy     *= fontheight(p);
2389 	width  *= fontwidth(p);
2390 	height *= fontheight(p);
2391 
2392 	aty128_rectcopy(sx, sy, dx, dy, width, height,
2393 			(struct fb_info_aty128 *)p->fb_info);
2394 }
2395 #endif /* 0 */
2396 
2397 static void aty128_set_suspend(struct aty128fb_par *par, int suspend)
2398 {
2399 	u32	pmgt;
2400 	struct pci_dev *pdev = par->pdev;
2401 
2402 	if (!par->pdev->pm_cap)
2403 		return;
2404 
2405 	/* Set the chip into the appropriate suspend mode (we use D2,
2406 	 * D3 would require a complete re-initialisation of the chip,
2407 	 * including PCI config registers, clocks, AGP configuration, ...)
2408 	 *
2409 	 * For resume, the core will have already brought us back to D0
2410 	 */
2411 	if (suspend) {
2412 		/* Make sure CRTC2 is reset. Remove that the day we decide to
2413 		 * actually use CRTC2 and replace it with real code for disabling
2414 		 * the CRTC2 output during sleep
2415 		 */
2416 		aty_st_le32(CRTC2_GEN_CNTL, aty_ld_le32(CRTC2_GEN_CNTL) &
2417 			~(CRTC2_EN));
2418 
2419 		/* Set the power management mode to be PCI based */
2420 		/* Use this magic value for now */
2421 		pmgt = 0x0c005407;
2422 		aty_st_pll(POWER_MANAGEMENT, pmgt);
2423 		(void)aty_ld_pll(POWER_MANAGEMENT);
2424 		aty_st_le32(BUS_CNTL1, 0x00000010);
2425 		aty_st_le32(MEM_POWER_MISC, 0x0c830000);
2426 		mdelay(100);
2427 
2428 		/* Switch PCI power management to D2 */
2429 		pci_set_power_state(pdev, PCI_D2);
2430 	}
2431 }
2432 
2433 static int aty128_pci_suspend(struct pci_dev *pdev, pm_message_t state)
2434 {
2435 	struct fb_info *info = pci_get_drvdata(pdev);
2436 	struct aty128fb_par *par = info->par;
2437 
2438 	/* Because we may change PCI D state ourselves, we need to
2439 	 * first save the config space content so the core can
2440 	 * restore it properly on resume.
2441 	 */
2442 	pci_save_state(pdev);
2443 
2444 	/* We don't do anything but D2, for now we return 0, but
2445 	 * we may want to change that. How do we know if the BIOS
2446 	 * can properly take care of D3 ? Also, with swsusp, we
2447 	 * know we'll be rebooted, ...
2448 	 */
2449 #ifndef CONFIG_PPC_PMAC
2450 	/* HACK ALERT ! Once I find a proper way to say to each driver
2451 	 * individually what will happen with it's PCI slot, I'll change
2452 	 * that. On laptops, the AGP slot is just unclocked, so D2 is
2453 	 * expected, while on desktops, the card is powered off
2454 	 */
2455 	return 0;
2456 #endif /* CONFIG_PPC_PMAC */
2457 
2458 	if (state.event == pdev->dev.power.power_state.event)
2459 		return 0;
2460 
2461 	printk(KERN_DEBUG "aty128fb: suspending...\n");
2462 
2463 	console_lock();
2464 
2465 	fb_set_suspend(info, 1);
2466 
2467 	/* Make sure engine is reset */
2468 	wait_for_idle(par);
2469 	aty128_reset_engine(par);
2470 	wait_for_idle(par);
2471 
2472 	/* Blank display and LCD */
2473 	aty128fb_blank(FB_BLANK_POWERDOWN, info);
2474 
2475 	/* Sleep */
2476 	par->asleep = 1;
2477 	par->lock_blank = 1;
2478 
2479 #ifdef CONFIG_PPC_PMAC
2480 	/* On powermac, we have hooks to properly suspend/resume AGP now,
2481 	 * use them here. We'll ultimately need some generic support here,
2482 	 * but the generic code isn't quite ready for that yet
2483 	 */
2484 	pmac_suspend_agp_for_card(pdev);
2485 #endif /* CONFIG_PPC_PMAC */
2486 
2487 	/* We need a way to make sure the fbdev layer will _not_ touch the
2488 	 * framebuffer before we put the chip to suspend state. On 2.4, I
2489 	 * used dummy fb ops, 2.5 need proper support for this at the
2490 	 * fbdev level
2491 	 */
2492 	if (state.event != PM_EVENT_ON)
2493 		aty128_set_suspend(par, 1);
2494 
2495 	console_unlock();
2496 
2497 	pdev->dev.power.power_state = state;
2498 
2499 	return 0;
2500 }
2501 
2502 static int aty128_do_resume(struct pci_dev *pdev)
2503 {
2504 	struct fb_info *info = pci_get_drvdata(pdev);
2505 	struct aty128fb_par *par = info->par;
2506 
2507 	if (pdev->dev.power.power_state.event == PM_EVENT_ON)
2508 		return 0;
2509 
2510 	/* PCI state will have been restored by the core, so
2511 	 * we should be in D0 now with our config space fully
2512 	 * restored
2513 	 */
2514 
2515 	/* Wakeup chip */
2516 	aty128_set_suspend(par, 0);
2517 	par->asleep = 0;
2518 
2519 	/* Restore display & engine */
2520 	aty128_reset_engine(par);
2521 	wait_for_idle(par);
2522 	aty128fb_set_par(info);
2523 	fb_pan_display(info, &info->var);
2524 	fb_set_cmap(&info->cmap, info);
2525 
2526 	/* Refresh */
2527 	fb_set_suspend(info, 0);
2528 
2529 	/* Unblank */
2530 	par->lock_blank = 0;
2531 	aty128fb_blank(0, info);
2532 
2533 #ifdef CONFIG_PPC_PMAC
2534 	/* On powermac, we have hooks to properly suspend/resume AGP now,
2535 	 * use them here. We'll ultimately need some generic support here,
2536 	 * but the generic code isn't quite ready for that yet
2537 	 */
2538 	pmac_resume_agp_for_card(pdev);
2539 #endif /* CONFIG_PPC_PMAC */
2540 
2541 	pdev->dev.power.power_state = PMSG_ON;
2542 
2543 	printk(KERN_DEBUG "aty128fb: resumed !\n");
2544 
2545 	return 0;
2546 }
2547 
2548 static int aty128_pci_resume(struct pci_dev *pdev)
2549 {
2550 	int rc;
2551 
2552 	console_lock();
2553 	rc = aty128_do_resume(pdev);
2554 	console_unlock();
2555 
2556 	return rc;
2557 }
2558 
2559 
2560 static int aty128fb_init(void)
2561 {
2562 #ifndef MODULE
2563 	char *option = NULL;
2564 
2565 	if (fb_get_options("aty128fb", &option))
2566 		return -ENODEV;
2567 	aty128fb_setup(option);
2568 #endif
2569 
2570 	return pci_register_driver(&aty128fb_driver);
2571 }
2572 
2573 static void __exit aty128fb_exit(void)
2574 {
2575 	pci_unregister_driver(&aty128fb_driver);
2576 }
2577 
2578 module_init(aty128fb_init);
2579 
2580 module_exit(aty128fb_exit);
2581 
2582 MODULE_AUTHOR("(c)1999-2003 Brad Douglas <brad@neruo.com>");
2583 MODULE_DESCRIPTION("FBDev driver for ATI Rage128 / Pro cards");
2584 MODULE_LICENSE("GPL");
2585 module_param(mode_option, charp, 0);
2586 MODULE_PARM_DESC(mode_option, "Specify resolution as \"<xres>x<yres>[-<bpp>][@<refresh>]\" ");
2587 #ifdef CONFIG_MTRR
2588 module_param_named(nomtrr, mtrr, invbool, 0);
2589 MODULE_PARM_DESC(nomtrr, "bool: Disable MTRR support (0 or 1=disabled) (default=0)");
2590 #endif
2591 
2592