xref: /openbmc/linux/drivers/video/fbdev/aty/aty128fb.c (revision c2cd9d04)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /* $Id: aty128fb.c,v 1.1.1.1.36.1 1999/12/11 09:03:05 Exp $
3  *  linux/drivers/video/aty128fb.c -- Frame buffer device for ATI Rage128
4  *
5  *  Copyright (C) 1999-2003, Brad Douglas <brad@neruo.com>
6  *  Copyright (C) 1999, Anthony Tong <atong@uiuc.edu>
7  *
8  *                Ani Joshi / Jeff Garzik
9  *                      - Code cleanup
10  *
11  *                Michel Danzer <michdaen@iiic.ethz.ch>
12  *                      - 15/16 bit cleanup
13  *                      - fix panning
14  *
15  *                Benjamin Herrenschmidt
16  *                      - pmac-specific PM stuff
17  *			- various fixes & cleanups
18  *
19  *                Andreas Hundt <andi@convergence.de>
20  *                      - FB_ACTIVATE fixes
21  *
22  *		  Paul Mackerras <paulus@samba.org>
23  *			- Convert to new framebuffer API,
24  *			  fix colormap setting at 16 bits/pixel (565)
25  *
26  *		  Paul Mundt
27  *		  	- PCI hotplug
28  *
29  *		  Jon Smirl <jonsmirl@yahoo.com>
30  * 			- PCI ID update
31  * 			- replace ROM BIOS search
32  *
33  *  Based off of Geert's atyfb.c and vfb.c.
34  *
35  *  TODO:
36  *		- monitor sensing (DDC)
37  *              - virtual display
38  *		- other platform support (only ppc/x86 supported)
39  *		- hardware cursor support
40  *
41  *    Please cc: your patches to brad@neruo.com.
42  */
43 
44 /*
45  * A special note of gratitude to ATI's devrel for providing documentation,
46  * example code and hardware. Thanks Nitya.	-atong and brad
47  */
48 
49 
50 #include <linux/module.h>
51 #include <linux/moduleparam.h>
52 #include <linux/kernel.h>
53 #include <linux/errno.h>
54 #include <linux/string.h>
55 #include <linux/mm.h>
56 #include <linux/vmalloc.h>
57 #include <linux/delay.h>
58 #include <linux/interrupt.h>
59 #include <linux/uaccess.h>
60 #include <linux/fb.h>
61 #include <linux/init.h>
62 #include <linux/pci.h>
63 #include <linux/ioport.h>
64 #include <linux/console.h>
65 #include <linux/backlight.h>
66 #include <asm/io.h>
67 
68 #ifdef CONFIG_PPC_PMAC
69 #include <asm/machdep.h>
70 #include <asm/pmac_feature.h>
71 #include <asm/prom.h>
72 #include "../macmodes.h"
73 #endif
74 
75 #ifdef CONFIG_PMAC_BACKLIGHT
76 #include <asm/backlight.h>
77 #endif
78 
79 #ifdef CONFIG_BOOTX_TEXT
80 #include <asm/btext.h>
81 #endif /* CONFIG_BOOTX_TEXT */
82 
83 #include <video/aty128.h>
84 
85 /* Debug flag */
86 #undef DEBUG
87 
88 #ifdef DEBUG
89 #define DBG(fmt, args...) \
90 	printk(KERN_DEBUG "aty128fb: %s " fmt, __func__, ##args);
91 #else
92 #define DBG(fmt, args...)
93 #endif
94 
95 #ifndef CONFIG_PPC_PMAC
96 /* default mode */
97 static const struct fb_var_screeninfo default_var = {
98 	/* 640x480, 60 Hz, Non-Interlaced (25.175 MHz dotclock) */
99 	640, 480, 640, 480, 0, 0, 8, 0,
100 	{0, 8, 0}, {0, 8, 0}, {0, 8, 0}, {0, 0, 0},
101 	0, 0, -1, -1, 0, 39722, 48, 16, 33, 10, 96, 2,
102 	0, FB_VMODE_NONINTERLACED
103 };
104 
105 #else /* CONFIG_PPC_PMAC */
106 /* default to 1024x768 at 75Hz on PPC - this will work
107  * on the iMac, the usual 640x480 @ 60Hz doesn't. */
108 static const struct fb_var_screeninfo default_var = {
109 	/* 1024x768, 75 Hz, Non-Interlaced (78.75 MHz dotclock) */
110 	1024, 768, 1024, 768, 0, 0, 8, 0,
111 	{0, 8, 0}, {0, 8, 0}, {0, 8, 0}, {0, 0, 0},
112 	0, 0, -1, -1, 0, 12699, 160, 32, 28, 1, 96, 3,
113 	FB_SYNC_HOR_HIGH_ACT | FB_SYNC_VERT_HIGH_ACT,
114 	FB_VMODE_NONINTERLACED
115 };
116 #endif /* CONFIG_PPC_PMAC */
117 
118 /* default modedb mode */
119 /* 640x480, 60 Hz, Non-Interlaced (25.172 MHz dotclock) */
120 static const struct fb_videomode defaultmode = {
121 	.refresh =	60,
122 	.xres =		640,
123 	.yres =		480,
124 	.pixclock =	39722,
125 	.left_margin =	48,
126 	.right_margin =	16,
127 	.upper_margin =	33,
128 	.lower_margin =	10,
129 	.hsync_len =	96,
130 	.vsync_len =	2,
131 	.sync =		0,
132 	.vmode =	FB_VMODE_NONINTERLACED
133 };
134 
135 /* Chip generations */
136 enum {
137 	rage_128,
138 	rage_128_pci,
139 	rage_128_pro,
140 	rage_128_pro_pci,
141 	rage_M3,
142 	rage_M3_pci,
143 	rage_M4,
144 	rage_128_ultra,
145 };
146 
147 /* Must match above enum */
148 static char * const r128_family[] = {
149 	"AGP",
150 	"PCI",
151 	"PRO AGP",
152 	"PRO PCI",
153 	"M3 AGP",
154 	"M3 PCI",
155 	"M4 AGP",
156 	"Ultra AGP",
157 };
158 
159 /*
160  * PCI driver prototypes
161  */
162 static int aty128_probe(struct pci_dev *pdev,
163                                const struct pci_device_id *ent);
164 static void aty128_remove(struct pci_dev *pdev);
165 static int aty128_pci_suspend(struct pci_dev *pdev, pm_message_t state);
166 static int aty128_pci_resume(struct pci_dev *pdev);
167 static int aty128_do_resume(struct pci_dev *pdev);
168 
169 /* supported Rage128 chipsets */
170 static const struct pci_device_id aty128_pci_tbl[] = {
171 	{ PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_LE,
172 	  PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_M3_pci },
173 	{ PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_LF,
174 	  PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_M3 },
175 	{ PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_MF,
176 	  PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_M4 },
177 	{ PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_ML,
178 	  PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_M4 },
179 	{ PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_PA,
180 	  PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128_pro },
181 	{ PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_PB,
182 	  PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128_pro },
183 	{ PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_PC,
184 	  PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128_pro },
185 	{ PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_PD,
186 	  PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128_pro_pci },
187 	{ PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_PE,
188 	  PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128_pro },
189 	{ PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_PF,
190 	  PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128_pro },
191 	{ PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_PG,
192 	  PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128_pro },
193 	{ PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_PH,
194 	  PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128_pro },
195 	{ PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_PI,
196 	  PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128_pro },
197 	{ PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_PJ,
198 	  PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128_pro },
199 	{ PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_PK,
200 	  PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128_pro },
201 	{ PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_PL,
202 	  PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128_pro },
203 	{ PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_PM,
204 	  PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128_pro },
205 	{ PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_PN,
206 	  PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128_pro },
207 	{ PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_PO,
208 	  PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128_pro },
209 	{ PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_PP,
210 	  PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128_pro_pci },
211 	{ PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_PQ,
212 	  PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128_pro },
213 	{ PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_PR,
214 	  PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128_pro_pci },
215 	{ PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_PS,
216 	  PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128_pro },
217 	{ PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_PT,
218 	  PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128_pro },
219 	{ PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_PU,
220 	  PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128_pro },
221 	{ PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_PV,
222 	  PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128_pro },
223 	{ PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_PW,
224 	  PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128_pro },
225 	{ PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_PX,
226 	  PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128_pro },
227 	{ PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_RE,
228 	  PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128_pci },
229 	{ PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_RF,
230 	  PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128 },
231 	{ PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_RG,
232 	  PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128 },
233 	{ PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_RK,
234 	  PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128_pci },
235 	{ PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_RL,
236 	  PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128 },
237 	{ PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_SE,
238 	  PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128 },
239 	{ PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_SF,
240 	  PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128_pci },
241 	{ PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_SG,
242 	  PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128 },
243 	{ PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_SH,
244 	  PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128 },
245 	{ PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_SK,
246 	  PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128 },
247 	{ PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_SL,
248 	  PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128 },
249 	{ PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_SM,
250 	  PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128 },
251 	{ PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_SN,
252 	  PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128 },
253 	{ PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_TF,
254 	  PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128_ultra },
255 	{ PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_TL,
256 	  PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128_ultra },
257 	{ PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_TR,
258 	  PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128_ultra },
259 	{ PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_TS,
260 	  PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128_ultra },
261 	{ PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_TT,
262 	  PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128_ultra },
263 	{ PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_TU,
264 	  PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128_ultra },
265 	{ 0, }
266 };
267 
268 MODULE_DEVICE_TABLE(pci, aty128_pci_tbl);
269 
270 static struct pci_driver aty128fb_driver = {
271 	.name		= "aty128fb",
272 	.id_table	= aty128_pci_tbl,
273 	.probe		= aty128_probe,
274 	.remove		= aty128_remove,
275 	.suspend	= aty128_pci_suspend,
276 	.resume		= aty128_pci_resume,
277 };
278 
279 /* packed BIOS settings */
280 #ifndef CONFIG_PPC
281 typedef struct {
282 	u8 clock_chip_type;
283 	u8 struct_size;
284 	u8 accelerator_entry;
285 	u8 VGA_entry;
286 	u16 VGA_table_offset;
287 	u16 POST_table_offset;
288 	u16 XCLK;
289 	u16 MCLK;
290 	u8 num_PLL_blocks;
291 	u8 size_PLL_blocks;
292 	u16 PCLK_ref_freq;
293 	u16 PCLK_ref_divider;
294 	u32 PCLK_min_freq;
295 	u32 PCLK_max_freq;
296 	u16 MCLK_ref_freq;
297 	u16 MCLK_ref_divider;
298 	u32 MCLK_min_freq;
299 	u32 MCLK_max_freq;
300 	u16 XCLK_ref_freq;
301 	u16 XCLK_ref_divider;
302 	u32 XCLK_min_freq;
303 	u32 XCLK_max_freq;
304 } __attribute__ ((packed)) PLL_BLOCK;
305 #endif /* !CONFIG_PPC */
306 
307 /* onboard memory information */
308 struct aty128_meminfo {
309 	u8 ML;
310 	u8 MB;
311 	u8 Trcd;
312 	u8 Trp;
313 	u8 Twr;
314 	u8 CL;
315 	u8 Tr2w;
316 	u8 LoopLatency;
317 	u8 DspOn;
318 	u8 Rloop;
319 	const char *name;
320 };
321 
322 /* various memory configurations */
323 static const struct aty128_meminfo sdr_128 = {
324 	.ML = 4,
325 	.MB = 4,
326 	.Trcd = 3,
327 	.Trp = 3,
328 	.Twr = 1,
329 	.CL = 3,
330 	.Tr2w = 1,
331 	.LoopLatency = 16,
332 	.DspOn = 30,
333 	.Rloop = 16,
334 	.name = "128-bit SDR SGRAM (1:1)",
335 };
336 
337 static const struct aty128_meminfo sdr_64 = {
338 	.ML = 4,
339 	.MB = 8,
340 	.Trcd = 3,
341 	.Trp = 3,
342 	.Twr = 1,
343 	.CL = 3,
344 	.Tr2w = 1,
345 	.LoopLatency = 17,
346 	.DspOn = 46,
347 	.Rloop = 17,
348 	.name = "64-bit SDR SGRAM (1:1)",
349 };
350 
351 static const struct aty128_meminfo sdr_sgram = {
352 	.ML = 4,
353 	.MB = 4,
354 	.Trcd = 1,
355 	.Trp = 2,
356 	.Twr = 1,
357 	.CL = 2,
358 	.Tr2w = 1,
359 	.LoopLatency = 16,
360 	.DspOn = 24,
361 	.Rloop = 16,
362 	.name = "64-bit SDR SGRAM (2:1)",
363 };
364 
365 static const struct aty128_meminfo ddr_sgram = {
366 	.ML = 4,
367 	.MB = 4,
368 	.Trcd = 3,
369 	.Trp = 3,
370 	.Twr = 2,
371 	.CL = 3,
372 	.Tr2w = 1,
373 	.LoopLatency = 16,
374 	.DspOn = 31,
375 	.Rloop = 16,
376 	.name = "64-bit DDR SGRAM",
377 };
378 
379 static const struct fb_fix_screeninfo aty128fb_fix = {
380 	.id		= "ATY Rage128",
381 	.type		= FB_TYPE_PACKED_PIXELS,
382 	.visual		= FB_VISUAL_PSEUDOCOLOR,
383 	.xpanstep	= 8,
384 	.ypanstep	= 1,
385 	.mmio_len	= 0x2000,
386 	.accel		= FB_ACCEL_ATI_RAGE128,
387 };
388 
389 static char *mode_option = NULL;
390 
391 #ifdef CONFIG_PPC_PMAC
392 static int default_vmode = VMODE_1024_768_60;
393 static int default_cmode = CMODE_8;
394 #endif
395 
396 static int default_crt_on = 0;
397 static int default_lcd_on = 1;
398 static bool mtrr = true;
399 
400 #ifdef CONFIG_FB_ATY128_BACKLIGHT
401 #ifdef CONFIG_PMAC_BACKLIGHT
402 static int backlight = 1;
403 #else
404 static int backlight = 0;
405 #endif
406 #endif
407 
408 /* PLL constants */
409 struct aty128_constants {
410 	u32 ref_clk;
411 	u32 ppll_min;
412 	u32 ppll_max;
413 	u32 ref_divider;
414 	u32 xclk;
415 	u32 fifo_width;
416 	u32 fifo_depth;
417 };
418 
419 struct aty128_crtc {
420 	u32 gen_cntl;
421 	u32 h_total, h_sync_strt_wid;
422 	u32 v_total, v_sync_strt_wid;
423 	u32 pitch;
424 	u32 offset, offset_cntl;
425 	u32 xoffset, yoffset;
426 	u32 vxres, vyres;
427 	u32 depth, bpp;
428 };
429 
430 struct aty128_pll {
431 	u32 post_divider;
432 	u32 feedback_divider;
433 	u32 vclk;
434 };
435 
436 struct aty128_ddafifo {
437 	u32 dda_config;
438 	u32 dda_on_off;
439 };
440 
441 /* register values for a specific mode */
442 struct aty128fb_par {
443 	struct aty128_crtc crtc;
444 	struct aty128_pll pll;
445 	struct aty128_ddafifo fifo_reg;
446 	u32 accel_flags;
447 	struct aty128_constants constants;  /* PLL and others      */
448 	void __iomem *regbase;              /* remapped mmio       */
449 	u32 vram_size;                      /* onboard video ram   */
450 	int chip_gen;
451 	const struct aty128_meminfo *mem;   /* onboard mem info    */
452 	int wc_cookie;
453 	int blitter_may_be_busy;
454 	int fifo_slots;                 /* free slots in FIFO (64 max) */
455 
456 	int crt_on, lcd_on;
457 	struct pci_dev *pdev;
458 	struct fb_info *next;
459 	int	asleep;
460 	int	lock_blank;
461 
462 	u8	red[32];		/* see aty128fb_setcolreg */
463 	u8	green[64];
464 	u8	blue[32];
465 	u32	pseudo_palette[16];	/* used for TRUECOLOR */
466 };
467 
468 
469 #define round_div(n, d) ((n+(d/2))/d)
470 
471 static int aty128fb_check_var(struct fb_var_screeninfo *var,
472 			      struct fb_info *info);
473 static int aty128fb_set_par(struct fb_info *info);
474 static int aty128fb_setcolreg(u_int regno, u_int red, u_int green, u_int blue,
475 			      u_int transp, struct fb_info *info);
476 static int aty128fb_pan_display(struct fb_var_screeninfo *var,
477 			   struct fb_info *fb);
478 static int aty128fb_blank(int blank, struct fb_info *fb);
479 static int aty128fb_ioctl(struct fb_info *info, u_int cmd, unsigned long arg);
480 static int aty128fb_sync(struct fb_info *info);
481 
482     /*
483      *  Internal routines
484      */
485 
486 static int aty128_encode_var(struct fb_var_screeninfo *var,
487                              const struct aty128fb_par *par);
488 static int aty128_decode_var(struct fb_var_screeninfo *var,
489                              struct aty128fb_par *par);
490 #if 0
491 static void aty128_get_pllinfo(struct aty128fb_par *par, void __iomem *bios);
492 static void __iomem *aty128_map_ROM(struct pci_dev *pdev,
493 				    const struct aty128fb_par *par);
494 #endif
495 static void aty128_timings(struct aty128fb_par *par);
496 static void aty128_init_engine(struct aty128fb_par *par);
497 static void aty128_reset_engine(const struct aty128fb_par *par);
498 static void aty128_flush_pixel_cache(const struct aty128fb_par *par);
499 static void do_wait_for_fifo(u16 entries, struct aty128fb_par *par);
500 static void wait_for_fifo(u16 entries, struct aty128fb_par *par);
501 static void wait_for_idle(struct aty128fb_par *par);
502 static u32 depth_to_dst(u32 depth);
503 
504 #ifdef CONFIG_FB_ATY128_BACKLIGHT
505 static void aty128_bl_set_power(struct fb_info *info, int power);
506 #endif
507 
508 #define BIOS_IN8(v)  	(readb(bios + (v)))
509 #define BIOS_IN16(v) 	(readb(bios + (v)) | \
510 			  (readb(bios + (v) + 1) << 8))
511 #define BIOS_IN32(v) 	(readb(bios + (v)) | \
512 			  (readb(bios + (v) + 1) << 8) | \
513 			  (readb(bios + (v) + 2) << 16) | \
514 			  (readb(bios + (v) + 3) << 24))
515 
516 
517 static struct fb_ops aty128fb_ops = {
518 	.owner		= THIS_MODULE,
519 	.fb_check_var	= aty128fb_check_var,
520 	.fb_set_par	= aty128fb_set_par,
521 	.fb_setcolreg	= aty128fb_setcolreg,
522 	.fb_pan_display = aty128fb_pan_display,
523 	.fb_blank	= aty128fb_blank,
524 	.fb_ioctl	= aty128fb_ioctl,
525 	.fb_sync	= aty128fb_sync,
526 	.fb_fillrect	= cfb_fillrect,
527 	.fb_copyarea	= cfb_copyarea,
528 	.fb_imageblit	= cfb_imageblit,
529 };
530 
531     /*
532      * Functions to read from/write to the mmio registers
533      *	- endian conversions may possibly be avoided by
534      *    using the other register aperture. TODO.
535      */
536 static inline u32 _aty_ld_le32(volatile unsigned int regindex,
537 			       const struct aty128fb_par *par)
538 {
539 	return readl (par->regbase + regindex);
540 }
541 
542 static inline void _aty_st_le32(volatile unsigned int regindex, u32 val,
543 				const struct aty128fb_par *par)
544 {
545 	writel (val, par->regbase + regindex);
546 }
547 
548 static inline u8 _aty_ld_8(unsigned int regindex,
549 			   const struct aty128fb_par *par)
550 {
551 	return readb (par->regbase + regindex);
552 }
553 
554 static inline void _aty_st_8(unsigned int regindex, u8 val,
555 			     const struct aty128fb_par *par)
556 {
557 	writeb (val, par->regbase + regindex);
558 }
559 
560 #define aty_ld_le32(regindex)		_aty_ld_le32(regindex, par)
561 #define aty_st_le32(regindex, val)	_aty_st_le32(regindex, val, par)
562 #define aty_ld_8(regindex)		_aty_ld_8(regindex, par)
563 #define aty_st_8(regindex, val)		_aty_st_8(regindex, val, par)
564 
565     /*
566      * Functions to read from/write to the pll registers
567      */
568 
569 #define aty_ld_pll(pll_index)		_aty_ld_pll(pll_index, par)
570 #define aty_st_pll(pll_index, val)	_aty_st_pll(pll_index, val, par)
571 
572 
573 static u32 _aty_ld_pll(unsigned int pll_index,
574 		       const struct aty128fb_par *par)
575 {
576 	aty_st_8(CLOCK_CNTL_INDEX, pll_index & 0x3F);
577 	return aty_ld_le32(CLOCK_CNTL_DATA);
578 }
579 
580 
581 static void _aty_st_pll(unsigned int pll_index, u32 val,
582 			const struct aty128fb_par *par)
583 {
584 	aty_st_8(CLOCK_CNTL_INDEX, (pll_index & 0x3F) | PLL_WR_EN);
585 	aty_st_le32(CLOCK_CNTL_DATA, val);
586 }
587 
588 
589 /* return true when the PLL has completed an atomic update */
590 static int aty_pll_readupdate(const struct aty128fb_par *par)
591 {
592 	return !(aty_ld_pll(PPLL_REF_DIV) & PPLL_ATOMIC_UPDATE_R);
593 }
594 
595 
596 static void aty_pll_wait_readupdate(const struct aty128fb_par *par)
597 {
598 	unsigned long timeout = jiffies + HZ/100; // should be more than enough
599 	int reset = 1;
600 
601 	while (time_before(jiffies, timeout))
602 		if (aty_pll_readupdate(par)) {
603 			reset = 0;
604 			break;
605 		}
606 
607 	if (reset)	/* reset engine?? */
608 		printk(KERN_DEBUG "aty128fb: PLL write timeout!\n");
609 }
610 
611 
612 /* tell PLL to update */
613 static void aty_pll_writeupdate(const struct aty128fb_par *par)
614 {
615 	aty_pll_wait_readupdate(par);
616 
617 	aty_st_pll(PPLL_REF_DIV,
618 		   aty_ld_pll(PPLL_REF_DIV) | PPLL_ATOMIC_UPDATE_W);
619 }
620 
621 
622 /* write to the scratch register to test r/w functionality */
623 static int register_test(const struct aty128fb_par *par)
624 {
625 	u32 val;
626 	int flag = 0;
627 
628 	val = aty_ld_le32(BIOS_0_SCRATCH);
629 
630 	aty_st_le32(BIOS_0_SCRATCH, 0x55555555);
631 	if (aty_ld_le32(BIOS_0_SCRATCH) == 0x55555555) {
632 		aty_st_le32(BIOS_0_SCRATCH, 0xAAAAAAAA);
633 
634 		if (aty_ld_le32(BIOS_0_SCRATCH) == 0xAAAAAAAA)
635 			flag = 1;
636 	}
637 
638 	aty_st_le32(BIOS_0_SCRATCH, val);	// restore value
639 	return flag;
640 }
641 
642 
643 /*
644  * Accelerator engine functions
645  */
646 static void do_wait_for_fifo(u16 entries, struct aty128fb_par *par)
647 {
648 	int i;
649 
650 	for (;;) {
651 		for (i = 0; i < 2000000; i++) {
652 			par->fifo_slots = aty_ld_le32(GUI_STAT) & 0x0fff;
653 			if (par->fifo_slots >= entries)
654 				return;
655 		}
656 		aty128_reset_engine(par);
657 	}
658 }
659 
660 
661 static void wait_for_idle(struct aty128fb_par *par)
662 {
663 	int i;
664 
665 	do_wait_for_fifo(64, par);
666 
667 	for (;;) {
668 		for (i = 0; i < 2000000; i++) {
669 			if (!(aty_ld_le32(GUI_STAT) & (1 << 31))) {
670 				aty128_flush_pixel_cache(par);
671 				par->blitter_may_be_busy = 0;
672 				return;
673 			}
674 		}
675 		aty128_reset_engine(par);
676 	}
677 }
678 
679 
680 static void wait_for_fifo(u16 entries, struct aty128fb_par *par)
681 {
682 	if (par->fifo_slots < entries)
683 		do_wait_for_fifo(64, par);
684 	par->fifo_slots -= entries;
685 }
686 
687 
688 static void aty128_flush_pixel_cache(const struct aty128fb_par *par)
689 {
690 	int i;
691 	u32 tmp;
692 
693 	tmp = aty_ld_le32(PC_NGUI_CTLSTAT);
694 	tmp &= ~(0x00ff);
695 	tmp |= 0x00ff;
696 	aty_st_le32(PC_NGUI_CTLSTAT, tmp);
697 
698 	for (i = 0; i < 2000000; i++)
699 		if (!(aty_ld_le32(PC_NGUI_CTLSTAT) & PC_BUSY))
700 			break;
701 }
702 
703 
704 static void aty128_reset_engine(const struct aty128fb_par *par)
705 {
706 	u32 gen_reset_cntl, clock_cntl_index, mclk_cntl;
707 
708 	aty128_flush_pixel_cache(par);
709 
710 	clock_cntl_index = aty_ld_le32(CLOCK_CNTL_INDEX);
711 	mclk_cntl = aty_ld_pll(MCLK_CNTL);
712 
713 	aty_st_pll(MCLK_CNTL, mclk_cntl | 0x00030000);
714 
715 	gen_reset_cntl = aty_ld_le32(GEN_RESET_CNTL);
716 	aty_st_le32(GEN_RESET_CNTL, gen_reset_cntl | SOFT_RESET_GUI);
717 	aty_ld_le32(GEN_RESET_CNTL);
718 	aty_st_le32(GEN_RESET_CNTL, gen_reset_cntl & ~(SOFT_RESET_GUI));
719 	aty_ld_le32(GEN_RESET_CNTL);
720 
721 	aty_st_pll(MCLK_CNTL, mclk_cntl);
722 	aty_st_le32(CLOCK_CNTL_INDEX, clock_cntl_index);
723 	aty_st_le32(GEN_RESET_CNTL, gen_reset_cntl);
724 
725 	/* use old pio mode */
726 	aty_st_le32(PM4_BUFFER_CNTL, PM4_BUFFER_CNTL_NONPM4);
727 
728 	DBG("engine reset");
729 }
730 
731 
732 static void aty128_init_engine(struct aty128fb_par *par)
733 {
734 	u32 pitch_value;
735 
736 	wait_for_idle(par);
737 
738 	/* 3D scaler not spoken here */
739 	wait_for_fifo(1, par);
740 	aty_st_le32(SCALE_3D_CNTL, 0x00000000);
741 
742 	aty128_reset_engine(par);
743 
744 	pitch_value = par->crtc.pitch;
745 	if (par->crtc.bpp == 24) {
746 		pitch_value = pitch_value * 3;
747 	}
748 
749 	wait_for_fifo(4, par);
750 	/* setup engine offset registers */
751 	aty_st_le32(DEFAULT_OFFSET, 0x00000000);
752 
753 	/* setup engine pitch registers */
754 	aty_st_le32(DEFAULT_PITCH, pitch_value);
755 
756 	/* set the default scissor register to max dimensions */
757 	aty_st_le32(DEFAULT_SC_BOTTOM_RIGHT, (0x1FFF << 16) | 0x1FFF);
758 
759 	/* set the drawing controls registers */
760 	aty_st_le32(DP_GUI_MASTER_CNTL,
761 		    GMC_SRC_PITCH_OFFSET_DEFAULT		|
762 		    GMC_DST_PITCH_OFFSET_DEFAULT		|
763 		    GMC_SRC_CLIP_DEFAULT			|
764 		    GMC_DST_CLIP_DEFAULT			|
765 		    GMC_BRUSH_SOLIDCOLOR			|
766 		    (depth_to_dst(par->crtc.depth) << 8)	|
767 		    GMC_SRC_DSTCOLOR			|
768 		    GMC_BYTE_ORDER_MSB_TO_LSB		|
769 		    GMC_DP_CONVERSION_TEMP_6500		|
770 		    ROP3_PATCOPY				|
771 		    GMC_DP_SRC_RECT				|
772 		    GMC_3D_FCN_EN_CLR			|
773 		    GMC_DST_CLR_CMP_FCN_CLEAR		|
774 		    GMC_AUX_CLIP_CLEAR			|
775 		    GMC_WRITE_MASK_SET);
776 
777 	wait_for_fifo(8, par);
778 	/* clear the line drawing registers */
779 	aty_st_le32(DST_BRES_ERR, 0);
780 	aty_st_le32(DST_BRES_INC, 0);
781 	aty_st_le32(DST_BRES_DEC, 0);
782 
783 	/* set brush color registers */
784 	aty_st_le32(DP_BRUSH_FRGD_CLR, 0xFFFFFFFF); /* white */
785 	aty_st_le32(DP_BRUSH_BKGD_CLR, 0x00000000); /* black */
786 
787 	/* set source color registers */
788 	aty_st_le32(DP_SRC_FRGD_CLR, 0xFFFFFFFF);   /* white */
789 	aty_st_le32(DP_SRC_BKGD_CLR, 0x00000000);   /* black */
790 
791 	/* default write mask */
792 	aty_st_le32(DP_WRITE_MASK, 0xFFFFFFFF);
793 
794 	/* Wait for all the writes to be completed before returning */
795 	wait_for_idle(par);
796 }
797 
798 
799 /* convert depth values to their register representation */
800 static u32 depth_to_dst(u32 depth)
801 {
802 	if (depth <= 8)
803 		return DST_8BPP;
804 	else if (depth <= 15)
805 		return DST_15BPP;
806 	else if (depth == 16)
807 		return DST_16BPP;
808 	else if (depth <= 24)
809 		return DST_24BPP;
810 	else if (depth <= 32)
811 		return DST_32BPP;
812 
813 	return -EINVAL;
814 }
815 
816 /*
817  * PLL informations retreival
818  */
819 
820 
821 #ifndef __sparc__
822 static void __iomem *aty128_map_ROM(const struct aty128fb_par *par,
823 				    struct pci_dev *dev)
824 {
825 	u16 dptr;
826 	u8 rom_type;
827 	void __iomem *bios;
828 	size_t rom_size;
829 
830     	/* Fix from ATI for problem with Rage128 hardware not leaving ROM enabled */
831     	unsigned int temp;
832 	temp = aty_ld_le32(RAGE128_MPP_TB_CONFIG);
833 	temp &= 0x00ffffffu;
834 	temp |= 0x04 << 24;
835 	aty_st_le32(RAGE128_MPP_TB_CONFIG, temp);
836 	temp = aty_ld_le32(RAGE128_MPP_TB_CONFIG);
837 
838 	bios = pci_map_rom(dev, &rom_size);
839 
840 	if (!bios) {
841 		printk(KERN_ERR "aty128fb: ROM failed to map\n");
842 		return NULL;
843 	}
844 
845 	/* Very simple test to make sure it appeared */
846 	if (BIOS_IN16(0) != 0xaa55) {
847 		printk(KERN_DEBUG "aty128fb: Invalid ROM signature %x should "
848 			" be 0xaa55\n", BIOS_IN16(0));
849 		goto failed;
850 	}
851 
852 	/* Look for the PCI data to check the ROM type */
853 	dptr = BIOS_IN16(0x18);
854 
855 	/* Check the PCI data signature. If it's wrong, we still assume a normal
856 	 * x86 ROM for now, until I've verified this works everywhere.
857 	 * The goal here is more to phase out Open Firmware images.
858 	 *
859 	 * Currently, we only look at the first PCI data, we could iteratre and
860 	 * deal with them all, and we should use fb_bios_start relative to start
861 	 * of image and not relative start of ROM, but so far, I never found a
862 	 * dual-image ATI card.
863 	 *
864 	 * typedef struct {
865 	 * 	u32	signature;	+ 0x00
866 	 * 	u16	vendor;		+ 0x04
867 	 * 	u16	device;		+ 0x06
868 	 * 	u16	reserved_1;	+ 0x08
869 	 * 	u16	dlen;		+ 0x0a
870 	 * 	u8	drevision;	+ 0x0c
871 	 * 	u8	class_hi;	+ 0x0d
872 	 * 	u16	class_lo;	+ 0x0e
873 	 * 	u16	ilen;		+ 0x10
874 	 * 	u16	irevision;	+ 0x12
875 	 * 	u8	type;		+ 0x14
876 	 * 	u8	indicator;	+ 0x15
877 	 * 	u16	reserved_2;	+ 0x16
878 	 * } pci_data_t;
879 	 */
880 	if (BIOS_IN32(dptr) !=  (('R' << 24) | ('I' << 16) | ('C' << 8) | 'P')) {
881 		printk(KERN_WARNING "aty128fb: PCI DATA signature in ROM incorrect: %08x\n",
882 		       BIOS_IN32(dptr));
883 		goto anyway;
884 	}
885 	rom_type = BIOS_IN8(dptr + 0x14);
886 	switch(rom_type) {
887 	case 0:
888 		printk(KERN_INFO "aty128fb: Found Intel x86 BIOS ROM Image\n");
889 		break;
890 	case 1:
891 		printk(KERN_INFO "aty128fb: Found Open Firmware ROM Image\n");
892 		goto failed;
893 	case 2:
894 		printk(KERN_INFO "aty128fb: Found HP PA-RISC ROM Image\n");
895 		goto failed;
896 	default:
897 		printk(KERN_INFO "aty128fb: Found unknown type %d ROM Image\n",
898 		       rom_type);
899 		goto failed;
900 	}
901  anyway:
902 	return bios;
903 
904  failed:
905 	pci_unmap_rom(dev, bios);
906 	return NULL;
907 }
908 
909 static void aty128_get_pllinfo(struct aty128fb_par *par,
910 			       unsigned char __iomem *bios)
911 {
912 	unsigned int bios_hdr;
913 	unsigned int bios_pll;
914 
915 	bios_hdr = BIOS_IN16(0x48);
916 	bios_pll = BIOS_IN16(bios_hdr + 0x30);
917 
918 	par->constants.ppll_max = BIOS_IN32(bios_pll + 0x16);
919 	par->constants.ppll_min = BIOS_IN32(bios_pll + 0x12);
920 	par->constants.xclk = BIOS_IN16(bios_pll + 0x08);
921 	par->constants.ref_divider = BIOS_IN16(bios_pll + 0x10);
922 	par->constants.ref_clk = BIOS_IN16(bios_pll + 0x0e);
923 
924 	DBG("ppll_max %d ppll_min %d xclk %d ref_divider %d ref clock %d\n",
925 			par->constants.ppll_max, par->constants.ppll_min,
926 			par->constants.xclk, par->constants.ref_divider,
927 			par->constants.ref_clk);
928 
929 }
930 
931 #ifdef CONFIG_X86
932 static void __iomem *aty128_find_mem_vbios(struct aty128fb_par *par)
933 {
934 	/* I simplified this code as we used to miss the signatures in
935 	 * a lot of case. It's now closer to XFree, we just don't check
936 	 * for signatures at all... Something better will have to be done
937 	 * if we end up having conflicts
938 	 */
939         u32  segstart;
940         unsigned char __iomem *rom_base = NULL;
941 
942         for (segstart=0x000c0000; segstart<0x000f0000; segstart+=0x00001000) {
943                 rom_base = ioremap(segstart, 0x10000);
944 		if (rom_base == NULL)
945 			return NULL;
946 		if (readb(rom_base) == 0x55 && readb(rom_base + 1) == 0xaa)
947 	                break;
948                 iounmap(rom_base);
949 		rom_base = NULL;
950         }
951 	return rom_base;
952 }
953 #endif
954 #endif /* ndef(__sparc__) */
955 
956 /* fill in known card constants if pll_block is not available */
957 static void aty128_timings(struct aty128fb_par *par)
958 {
959 #ifdef CONFIG_PPC
960 	/* instead of a table lookup, assume OF has properly
961 	 * setup the PLL registers and use their values
962 	 * to set the XCLK values and reference divider values */
963 
964 	u32 x_mpll_ref_fb_div;
965 	u32 xclk_cntl;
966 	u32 Nx, M;
967 	unsigned PostDivSet[] = { 0, 1, 2, 4, 8, 3, 6, 12 };
968 #endif
969 
970 	if (!par->constants.ref_clk)
971 		par->constants.ref_clk = 2950;
972 
973 #ifdef CONFIG_PPC
974 	x_mpll_ref_fb_div = aty_ld_pll(X_MPLL_REF_FB_DIV);
975 	xclk_cntl = aty_ld_pll(XCLK_CNTL) & 0x7;
976 	Nx = (x_mpll_ref_fb_div & 0x00ff00) >> 8;
977 	M  = x_mpll_ref_fb_div & 0x0000ff;
978 
979 	par->constants.xclk = round_div((2 * Nx * par->constants.ref_clk),
980 					(M * PostDivSet[xclk_cntl]));
981 
982 	par->constants.ref_divider =
983 		aty_ld_pll(PPLL_REF_DIV) & PPLL_REF_DIV_MASK;
984 #endif
985 
986 	if (!par->constants.ref_divider) {
987 		par->constants.ref_divider = 0x3b;
988 
989 		aty_st_pll(X_MPLL_REF_FB_DIV, 0x004c4c1e);
990 		aty_pll_writeupdate(par);
991 	}
992 	aty_st_pll(PPLL_REF_DIV, par->constants.ref_divider);
993 	aty_pll_writeupdate(par);
994 
995 	/* from documentation */
996 	if (!par->constants.ppll_min)
997 		par->constants.ppll_min = 12500;
998 	if (!par->constants.ppll_max)
999 		par->constants.ppll_max = 25000;    /* 23000 on some cards? */
1000 	if (!par->constants.xclk)
1001 		par->constants.xclk = 0x1d4d;	     /* same as mclk */
1002 
1003 	par->constants.fifo_width = 128;
1004 	par->constants.fifo_depth = 32;
1005 
1006 	switch (aty_ld_le32(MEM_CNTL) & 0x3) {
1007 	case 0:
1008 		par->mem = &sdr_128;
1009 		break;
1010 	case 1:
1011 		par->mem = &sdr_sgram;
1012 		break;
1013 	case 2:
1014 		par->mem = &ddr_sgram;
1015 		break;
1016 	default:
1017 		par->mem = &sdr_sgram;
1018 	}
1019 }
1020 
1021 
1022 
1023 /*
1024  * CRTC programming
1025  */
1026 
1027 /* Program the CRTC registers */
1028 static void aty128_set_crtc(const struct aty128_crtc *crtc,
1029 			    const struct aty128fb_par *par)
1030 {
1031 	aty_st_le32(CRTC_GEN_CNTL, crtc->gen_cntl);
1032 	aty_st_le32(CRTC_H_TOTAL_DISP, crtc->h_total);
1033 	aty_st_le32(CRTC_H_SYNC_STRT_WID, crtc->h_sync_strt_wid);
1034 	aty_st_le32(CRTC_V_TOTAL_DISP, crtc->v_total);
1035 	aty_st_le32(CRTC_V_SYNC_STRT_WID, crtc->v_sync_strt_wid);
1036 	aty_st_le32(CRTC_PITCH, crtc->pitch);
1037 	aty_st_le32(CRTC_OFFSET, crtc->offset);
1038 	aty_st_le32(CRTC_OFFSET_CNTL, crtc->offset_cntl);
1039 	/* Disable ATOMIC updating.  Is this the right place? */
1040 	aty_st_pll(PPLL_CNTL, aty_ld_pll(PPLL_CNTL) & ~(0x00030000));
1041 }
1042 
1043 
1044 static int aty128_var_to_crtc(const struct fb_var_screeninfo *var,
1045 			      struct aty128_crtc *crtc,
1046 			      const struct aty128fb_par *par)
1047 {
1048 	u32 xres, yres, vxres, vyres, xoffset, yoffset, bpp, dst;
1049 	u32 left, right, upper, lower, hslen, vslen, sync, vmode;
1050 	u32 h_total, h_disp, h_sync_strt, h_sync_wid, h_sync_pol;
1051 	u32 v_total, v_disp, v_sync_strt, v_sync_wid, v_sync_pol, c_sync;
1052 	u32 depth, bytpp;
1053 	u8 mode_bytpp[7] = { 0, 0, 1, 2, 2, 3, 4 };
1054 
1055 	/* input */
1056 	xres = var->xres;
1057 	yres = var->yres;
1058 	vxres   = var->xres_virtual;
1059 	vyres   = var->yres_virtual;
1060 	xoffset = var->xoffset;
1061 	yoffset = var->yoffset;
1062 	bpp   = var->bits_per_pixel;
1063 	left  = var->left_margin;
1064 	right = var->right_margin;
1065 	upper = var->upper_margin;
1066 	lower = var->lower_margin;
1067 	hslen = var->hsync_len;
1068 	vslen = var->vsync_len;
1069 	sync  = var->sync;
1070 	vmode = var->vmode;
1071 
1072 	if (bpp != 16)
1073 		depth = bpp;
1074 	else
1075 		depth = (var->green.length == 6) ? 16 : 15;
1076 
1077 	/* check for mode eligibility
1078 	 * accept only non interlaced modes */
1079 	if ((vmode & FB_VMODE_MASK) != FB_VMODE_NONINTERLACED)
1080 		return -EINVAL;
1081 
1082 	/* convert (and round up) and validate */
1083 	xres = (xres + 7) & ~7;
1084 	xoffset = (xoffset + 7) & ~7;
1085 
1086 	if (vxres < xres + xoffset)
1087 		vxres = xres + xoffset;
1088 
1089 	if (vyres < yres + yoffset)
1090 		vyres = yres + yoffset;
1091 
1092 	/* convert depth into ATI register depth */
1093 	dst = depth_to_dst(depth);
1094 
1095 	if (dst == -EINVAL) {
1096 		printk(KERN_ERR "aty128fb: Invalid depth or RGBA\n");
1097 		return -EINVAL;
1098 	}
1099 
1100 	/* convert register depth to bytes per pixel */
1101 	bytpp = mode_bytpp[dst];
1102 
1103 	/* make sure there is enough video ram for the mode */
1104 	if ((u32)(vxres * vyres * bytpp) > par->vram_size) {
1105 		printk(KERN_ERR "aty128fb: Not enough memory for mode\n");
1106 		return -EINVAL;
1107 	}
1108 
1109 	h_disp = (xres >> 3) - 1;
1110 	h_total = (((xres + right + hslen + left) >> 3) - 1) & 0xFFFFL;
1111 
1112 	v_disp = yres - 1;
1113 	v_total = (yres + upper + vslen + lower - 1) & 0xFFFFL;
1114 
1115 	/* check to make sure h_total and v_total are in range */
1116 	if (((h_total >> 3) - 1) > 0x1ff || (v_total - 1) > 0x7FF) {
1117 		printk(KERN_ERR "aty128fb: invalid width ranges\n");
1118 		return -EINVAL;
1119 	}
1120 
1121 	h_sync_wid = (hslen + 7) >> 3;
1122 	if (h_sync_wid == 0)
1123 		h_sync_wid = 1;
1124 	else if (h_sync_wid > 0x3f)        /* 0x3f = max hwidth */
1125 		h_sync_wid = 0x3f;
1126 
1127 	h_sync_strt = (h_disp << 3) + right;
1128 
1129 	v_sync_wid = vslen;
1130 	if (v_sync_wid == 0)
1131 		v_sync_wid = 1;
1132 	else if (v_sync_wid > 0x1f)        /* 0x1f = max vwidth */
1133 		v_sync_wid = 0x1f;
1134 
1135 	v_sync_strt = v_disp + lower;
1136 
1137 	h_sync_pol = sync & FB_SYNC_HOR_HIGH_ACT ? 0 : 1;
1138 	v_sync_pol = sync & FB_SYNC_VERT_HIGH_ACT ? 0 : 1;
1139 
1140 	c_sync = sync & FB_SYNC_COMP_HIGH_ACT ? (1 << 4) : 0;
1141 
1142 	crtc->gen_cntl = 0x3000000L | c_sync | (dst << 8);
1143 
1144 	crtc->h_total = h_total | (h_disp << 16);
1145 	crtc->v_total = v_total | (v_disp << 16);
1146 
1147 	crtc->h_sync_strt_wid = h_sync_strt | (h_sync_wid << 16) |
1148 	        (h_sync_pol << 23);
1149 	crtc->v_sync_strt_wid = v_sync_strt | (v_sync_wid << 16) |
1150                 (v_sync_pol << 23);
1151 
1152 	crtc->pitch = vxres >> 3;
1153 
1154 	crtc->offset = 0;
1155 
1156 	if ((var->activate & FB_ACTIVATE_MASK) == FB_ACTIVATE_NOW)
1157 		crtc->offset_cntl = 0x00010000;
1158 	else
1159 		crtc->offset_cntl = 0;
1160 
1161 	crtc->vxres = vxres;
1162 	crtc->vyres = vyres;
1163 	crtc->xoffset = xoffset;
1164 	crtc->yoffset = yoffset;
1165 	crtc->depth = depth;
1166 	crtc->bpp = bpp;
1167 
1168 	return 0;
1169 }
1170 
1171 
1172 static int aty128_pix_width_to_var(int pix_width, struct fb_var_screeninfo *var)
1173 {
1174 
1175 	/* fill in pixel info */
1176 	var->red.msb_right = 0;
1177 	var->green.msb_right = 0;
1178 	var->blue.offset = 0;
1179 	var->blue.msb_right = 0;
1180 	var->transp.offset = 0;
1181 	var->transp.length = 0;
1182 	var->transp.msb_right = 0;
1183 	switch (pix_width) {
1184 	case CRTC_PIX_WIDTH_8BPP:
1185 		var->bits_per_pixel = 8;
1186 		var->red.offset = 0;
1187 		var->red.length = 8;
1188 		var->green.offset = 0;
1189 		var->green.length = 8;
1190 		var->blue.length = 8;
1191 		break;
1192 	case CRTC_PIX_WIDTH_15BPP:
1193 		var->bits_per_pixel = 16;
1194 		var->red.offset = 10;
1195 		var->red.length = 5;
1196 		var->green.offset = 5;
1197 		var->green.length = 5;
1198 		var->blue.length = 5;
1199 		break;
1200 	case CRTC_PIX_WIDTH_16BPP:
1201 		var->bits_per_pixel = 16;
1202 		var->red.offset = 11;
1203 		var->red.length = 5;
1204 		var->green.offset = 5;
1205 		var->green.length = 6;
1206 		var->blue.length = 5;
1207 		break;
1208 	case CRTC_PIX_WIDTH_24BPP:
1209 		var->bits_per_pixel = 24;
1210 		var->red.offset = 16;
1211 		var->red.length = 8;
1212 		var->green.offset = 8;
1213 		var->green.length = 8;
1214 		var->blue.length = 8;
1215 		break;
1216 	case CRTC_PIX_WIDTH_32BPP:
1217 		var->bits_per_pixel = 32;
1218 		var->red.offset = 16;
1219 		var->red.length = 8;
1220 		var->green.offset = 8;
1221 		var->green.length = 8;
1222 		var->blue.length = 8;
1223 		var->transp.offset = 24;
1224 		var->transp.length = 8;
1225 		break;
1226 	default:
1227 		printk(KERN_ERR "aty128fb: Invalid pixel width\n");
1228 		return -EINVAL;
1229 	}
1230 
1231 	return 0;
1232 }
1233 
1234 
1235 static int aty128_crtc_to_var(const struct aty128_crtc *crtc,
1236 			      struct fb_var_screeninfo *var)
1237 {
1238 	u32 xres, yres, left, right, upper, lower, hslen, vslen, sync;
1239 	u32 h_total, h_disp, h_sync_strt, h_sync_dly, h_sync_wid, h_sync_pol;
1240 	u32 v_total, v_disp, v_sync_strt, v_sync_wid, v_sync_pol, c_sync;
1241 	u32 pix_width;
1242 
1243 	/* fun with masking */
1244 	h_total     = crtc->h_total & 0x1ff;
1245 	h_disp      = (crtc->h_total >> 16) & 0xff;
1246 	h_sync_strt = (crtc->h_sync_strt_wid >> 3) & 0x1ff;
1247 	h_sync_dly  = crtc->h_sync_strt_wid & 0x7;
1248 	h_sync_wid  = (crtc->h_sync_strt_wid >> 16) & 0x3f;
1249 	h_sync_pol  = (crtc->h_sync_strt_wid >> 23) & 0x1;
1250 	v_total     = crtc->v_total & 0x7ff;
1251 	v_disp      = (crtc->v_total >> 16) & 0x7ff;
1252 	v_sync_strt = crtc->v_sync_strt_wid & 0x7ff;
1253 	v_sync_wid  = (crtc->v_sync_strt_wid >> 16) & 0x1f;
1254 	v_sync_pol  = (crtc->v_sync_strt_wid >> 23) & 0x1;
1255 	c_sync      = crtc->gen_cntl & CRTC_CSYNC_EN ? 1 : 0;
1256 	pix_width   = crtc->gen_cntl & CRTC_PIX_WIDTH_MASK;
1257 
1258 	/* do conversions */
1259 	xres  = (h_disp + 1) << 3;
1260 	yres  = v_disp + 1;
1261 	left  = ((h_total - h_sync_strt - h_sync_wid) << 3) - h_sync_dly;
1262 	right = ((h_sync_strt - h_disp) << 3) + h_sync_dly;
1263 	hslen = h_sync_wid << 3;
1264 	upper = v_total - v_sync_strt - v_sync_wid;
1265 	lower = v_sync_strt - v_disp;
1266 	vslen = v_sync_wid;
1267 	sync  = (h_sync_pol ? 0 : FB_SYNC_HOR_HIGH_ACT) |
1268 		(v_sync_pol ? 0 : FB_SYNC_VERT_HIGH_ACT) |
1269 		(c_sync ? FB_SYNC_COMP_HIGH_ACT : 0);
1270 
1271 	aty128_pix_width_to_var(pix_width, var);
1272 
1273 	var->xres = xres;
1274 	var->yres = yres;
1275 	var->xres_virtual = crtc->vxres;
1276 	var->yres_virtual = crtc->vyres;
1277 	var->xoffset = crtc->xoffset;
1278 	var->yoffset = crtc->yoffset;
1279 	var->left_margin  = left;
1280 	var->right_margin = right;
1281 	var->upper_margin = upper;
1282 	var->lower_margin = lower;
1283 	var->hsync_len = hslen;
1284 	var->vsync_len = vslen;
1285 	var->sync  = sync;
1286 	var->vmode = FB_VMODE_NONINTERLACED;
1287 
1288 	return 0;
1289 }
1290 
1291 static void aty128_set_crt_enable(struct aty128fb_par *par, int on)
1292 {
1293 	if (on) {
1294 		aty_st_le32(CRTC_EXT_CNTL, aty_ld_le32(CRTC_EXT_CNTL) |
1295 			    CRT_CRTC_ON);
1296 		aty_st_le32(DAC_CNTL, (aty_ld_le32(DAC_CNTL) |
1297 			    DAC_PALETTE2_SNOOP_EN));
1298 	} else
1299 		aty_st_le32(CRTC_EXT_CNTL, aty_ld_le32(CRTC_EXT_CNTL) &
1300 			    ~CRT_CRTC_ON);
1301 }
1302 
1303 static void aty128_set_lcd_enable(struct aty128fb_par *par, int on)
1304 {
1305 	u32 reg;
1306 #ifdef CONFIG_FB_ATY128_BACKLIGHT
1307 	struct fb_info *info = pci_get_drvdata(par->pdev);
1308 #endif
1309 
1310 	if (on) {
1311 		reg = aty_ld_le32(LVDS_GEN_CNTL);
1312 		reg |= LVDS_ON | LVDS_EN | LVDS_BLON | LVDS_DIGION;
1313 		reg &= ~LVDS_DISPLAY_DIS;
1314 		aty_st_le32(LVDS_GEN_CNTL, reg);
1315 #ifdef CONFIG_FB_ATY128_BACKLIGHT
1316 		aty128_bl_set_power(info, FB_BLANK_UNBLANK);
1317 #endif
1318 	} else {
1319 #ifdef CONFIG_FB_ATY128_BACKLIGHT
1320 		aty128_bl_set_power(info, FB_BLANK_POWERDOWN);
1321 #endif
1322 		reg = aty_ld_le32(LVDS_GEN_CNTL);
1323 		reg |= LVDS_DISPLAY_DIS;
1324 		aty_st_le32(LVDS_GEN_CNTL, reg);
1325 		mdelay(100);
1326 		reg &= ~(LVDS_ON /*| LVDS_EN*/);
1327 		aty_st_le32(LVDS_GEN_CNTL, reg);
1328 	}
1329 }
1330 
1331 static void aty128_set_pll(struct aty128_pll *pll,
1332 			   const struct aty128fb_par *par)
1333 {
1334 	u32 div3;
1335 
1336 	unsigned char post_conv[] =	/* register values for post dividers */
1337         { 2, 0, 1, 4, 2, 2, 6, 2, 3, 2, 2, 2, 7 };
1338 
1339 	/* select PPLL_DIV_3 */
1340 	aty_st_le32(CLOCK_CNTL_INDEX, aty_ld_le32(CLOCK_CNTL_INDEX) | (3 << 8));
1341 
1342 	/* reset PLL */
1343 	aty_st_pll(PPLL_CNTL,
1344 		   aty_ld_pll(PPLL_CNTL) | PPLL_RESET | PPLL_ATOMIC_UPDATE_EN);
1345 
1346 	/* write the reference divider */
1347 	aty_pll_wait_readupdate(par);
1348 	aty_st_pll(PPLL_REF_DIV, par->constants.ref_divider & 0x3ff);
1349 	aty_pll_writeupdate(par);
1350 
1351 	div3 = aty_ld_pll(PPLL_DIV_3);
1352 	div3 &= ~PPLL_FB3_DIV_MASK;
1353 	div3 |= pll->feedback_divider;
1354 	div3 &= ~PPLL_POST3_DIV_MASK;
1355 	div3 |= post_conv[pll->post_divider] << 16;
1356 
1357 	/* write feedback and post dividers */
1358 	aty_pll_wait_readupdate(par);
1359 	aty_st_pll(PPLL_DIV_3, div3);
1360 	aty_pll_writeupdate(par);
1361 
1362 	aty_pll_wait_readupdate(par);
1363 	aty_st_pll(HTOTAL_CNTL, 0);	/* no horiz crtc adjustment */
1364 	aty_pll_writeupdate(par);
1365 
1366 	/* clear the reset, just in case */
1367 	aty_st_pll(PPLL_CNTL, aty_ld_pll(PPLL_CNTL) & ~PPLL_RESET);
1368 }
1369 
1370 
1371 static int aty128_var_to_pll(u32 period_in_ps, struct aty128_pll *pll,
1372 			     const struct aty128fb_par *par)
1373 {
1374 	const struct aty128_constants c = par->constants;
1375 	unsigned char post_dividers[] = {1,2,4,8,3,6,12};
1376 	u32 output_freq;
1377 	u32 vclk;        /* in .01 MHz */
1378 	int i = 0;
1379 	u32 n, d;
1380 
1381 	vclk = 100000000 / period_in_ps;	/* convert units to 10 kHz */
1382 
1383 	/* adjust pixel clock if necessary */
1384 	if (vclk > c.ppll_max)
1385 		vclk = c.ppll_max;
1386 	if (vclk * 12 < c.ppll_min)
1387 		vclk = c.ppll_min/12;
1388 
1389 	/* now, find an acceptable divider */
1390 	for (i = 0; i < ARRAY_SIZE(post_dividers); i++) {
1391 		output_freq = post_dividers[i] * vclk;
1392 		if (output_freq >= c.ppll_min && output_freq <= c.ppll_max) {
1393 			pll->post_divider = post_dividers[i];
1394 			break;
1395 		}
1396 	}
1397 
1398 	if (i == ARRAY_SIZE(post_dividers))
1399 		return -EINVAL;
1400 
1401 	/* calculate feedback divider */
1402 	n = c.ref_divider * output_freq;
1403 	d = c.ref_clk;
1404 
1405 	pll->feedback_divider = round_div(n, d);
1406 	pll->vclk = vclk;
1407 
1408 	DBG("post %d feedback %d vlck %d output %d ref_divider %d "
1409 	    "vclk_per: %d\n", pll->post_divider,
1410 	    pll->feedback_divider, vclk, output_freq,
1411 	    c.ref_divider, period_in_ps);
1412 
1413 	return 0;
1414 }
1415 
1416 
1417 static int aty128_pll_to_var(const struct aty128_pll *pll,
1418 			     struct fb_var_screeninfo *var)
1419 {
1420 	var->pixclock = 100000000 / pll->vclk;
1421 
1422 	return 0;
1423 }
1424 
1425 
1426 static void aty128_set_fifo(const struct aty128_ddafifo *dsp,
1427 			    const struct aty128fb_par *par)
1428 {
1429 	aty_st_le32(DDA_CONFIG, dsp->dda_config);
1430 	aty_st_le32(DDA_ON_OFF, dsp->dda_on_off);
1431 }
1432 
1433 
1434 static int aty128_ddafifo(struct aty128_ddafifo *dsp,
1435 			  const struct aty128_pll *pll,
1436 			  u32 depth,
1437 			  const struct aty128fb_par *par)
1438 {
1439 	const struct aty128_meminfo *m = par->mem;
1440 	u32 xclk = par->constants.xclk;
1441 	u32 fifo_width = par->constants.fifo_width;
1442 	u32 fifo_depth = par->constants.fifo_depth;
1443 	s32 x, b, p, ron, roff;
1444 	u32 n, d, bpp;
1445 
1446 	/* round up to multiple of 8 */
1447 	bpp = (depth+7) & ~7;
1448 
1449 	n = xclk * fifo_width;
1450 	d = pll->vclk * bpp;
1451 	x = round_div(n, d);
1452 
1453 	ron = 4 * m->MB +
1454 		3 * ((m->Trcd - 2 > 0) ? m->Trcd - 2 : 0) +
1455 		2 * m->Trp +
1456 		m->Twr +
1457 		m->CL +
1458 		m->Tr2w +
1459 		x;
1460 
1461 	DBG("x %x\n", x);
1462 
1463 	b = 0;
1464 	while (x) {
1465 		x >>= 1;
1466 		b++;
1467 	}
1468 	p = b + 1;
1469 
1470 	ron <<= (11 - p);
1471 
1472 	n <<= (11 - p);
1473 	x = round_div(n, d);
1474 	roff = x * (fifo_depth - 4);
1475 
1476 	if ((ron + m->Rloop) >= roff) {
1477 		printk(KERN_ERR "aty128fb: Mode out of range!\n");
1478 		return -EINVAL;
1479 	}
1480 
1481 	DBG("p: %x rloop: %x x: %x ron: %x roff: %x\n",
1482 	    p, m->Rloop, x, ron, roff);
1483 
1484 	dsp->dda_config = p << 16 | m->Rloop << 20 | x;
1485 	dsp->dda_on_off = ron << 16 | roff;
1486 
1487 	return 0;
1488 }
1489 
1490 
1491 /*
1492  * This actually sets the video mode.
1493  */
1494 static int aty128fb_set_par(struct fb_info *info)
1495 {
1496 	struct aty128fb_par *par = info->par;
1497 	u32 config;
1498 	int err;
1499 
1500 	if ((err = aty128_decode_var(&info->var, par)) != 0)
1501 		return err;
1502 
1503 	if (par->blitter_may_be_busy)
1504 		wait_for_idle(par);
1505 
1506 	/* clear all registers that may interfere with mode setting */
1507 	aty_st_le32(OVR_CLR, 0);
1508 	aty_st_le32(OVR_WID_LEFT_RIGHT, 0);
1509 	aty_st_le32(OVR_WID_TOP_BOTTOM, 0);
1510 	aty_st_le32(OV0_SCALE_CNTL, 0);
1511 	aty_st_le32(MPP_TB_CONFIG, 0);
1512 	aty_st_le32(MPP_GP_CONFIG, 0);
1513 	aty_st_le32(SUBPIC_CNTL, 0);
1514 	aty_st_le32(VIPH_CONTROL, 0);
1515 	aty_st_le32(I2C_CNTL_1, 0);         /* turn off i2c */
1516 	aty_st_le32(GEN_INT_CNTL, 0);	/* turn off interrupts */
1517 	aty_st_le32(CAP0_TRIG_CNTL, 0);
1518 	aty_st_le32(CAP1_TRIG_CNTL, 0);
1519 
1520 	aty_st_8(CRTC_EXT_CNTL + 1, 4);	/* turn video off */
1521 
1522 	aty128_set_crtc(&par->crtc, par);
1523 	aty128_set_pll(&par->pll, par);
1524 	aty128_set_fifo(&par->fifo_reg, par);
1525 
1526 	config = aty_ld_le32(CNFG_CNTL) & ~3;
1527 
1528 #if defined(__BIG_ENDIAN)
1529 	if (par->crtc.bpp == 32)
1530 		config |= 2;	/* make aperture do 32 bit swapping */
1531 	else if (par->crtc.bpp == 16)
1532 		config |= 1;	/* make aperture do 16 bit swapping */
1533 #endif
1534 
1535 	aty_st_le32(CNFG_CNTL, config);
1536 	aty_st_8(CRTC_EXT_CNTL + 1, 0);	/* turn the video back on */
1537 
1538 	info->fix.line_length = (par->crtc.vxres * par->crtc.bpp) >> 3;
1539 	info->fix.visual = par->crtc.bpp == 8 ? FB_VISUAL_PSEUDOCOLOR
1540 		: FB_VISUAL_DIRECTCOLOR;
1541 
1542 	if (par->chip_gen == rage_M3) {
1543 		aty128_set_crt_enable(par, par->crt_on);
1544 		aty128_set_lcd_enable(par, par->lcd_on);
1545 	}
1546 	if (par->accel_flags & FB_ACCELF_TEXT)
1547 		aty128_init_engine(par);
1548 
1549 #ifdef CONFIG_BOOTX_TEXT
1550 	btext_update_display(info->fix.smem_start,
1551 			     (((par->crtc.h_total>>16) & 0xff)+1)*8,
1552 			     ((par->crtc.v_total>>16) & 0x7ff)+1,
1553 			     par->crtc.bpp,
1554 			     par->crtc.vxres*par->crtc.bpp/8);
1555 #endif /* CONFIG_BOOTX_TEXT */
1556 
1557 	return 0;
1558 }
1559 
1560 /*
1561  *  encode/decode the User Defined Part of the Display
1562  */
1563 
1564 static int aty128_decode_var(struct fb_var_screeninfo *var,
1565 			     struct aty128fb_par *par)
1566 {
1567 	int err;
1568 	struct aty128_crtc crtc;
1569 	struct aty128_pll pll;
1570 	struct aty128_ddafifo fifo_reg;
1571 
1572 	if ((err = aty128_var_to_crtc(var, &crtc, par)))
1573 		return err;
1574 
1575 	if ((err = aty128_var_to_pll(var->pixclock, &pll, par)))
1576 		return err;
1577 
1578 	if ((err = aty128_ddafifo(&fifo_reg, &pll, crtc.depth, par)))
1579 		return err;
1580 
1581 	par->crtc = crtc;
1582 	par->pll = pll;
1583 	par->fifo_reg = fifo_reg;
1584 	par->accel_flags = var->accel_flags;
1585 
1586 	return 0;
1587 }
1588 
1589 
1590 static int aty128_encode_var(struct fb_var_screeninfo *var,
1591 			     const struct aty128fb_par *par)
1592 {
1593 	int err;
1594 
1595 	if ((err = aty128_crtc_to_var(&par->crtc, var)))
1596 		return err;
1597 
1598 	if ((err = aty128_pll_to_var(&par->pll, var)))
1599 		return err;
1600 
1601 	var->nonstd = 0;
1602 	var->activate = 0;
1603 
1604 	var->height = -1;
1605 	var->width = -1;
1606 	var->accel_flags = par->accel_flags;
1607 
1608 	return 0;
1609 }
1610 
1611 
1612 static int aty128fb_check_var(struct fb_var_screeninfo *var,
1613 			      struct fb_info *info)
1614 {
1615 	struct aty128fb_par par;
1616 	int err;
1617 
1618 	par = *(struct aty128fb_par *)info->par;
1619 	if ((err = aty128_decode_var(var, &par)) != 0)
1620 		return err;
1621 	aty128_encode_var(var, &par);
1622 	return 0;
1623 }
1624 
1625 
1626 /*
1627  *  Pan or Wrap the Display
1628  */
1629 static int aty128fb_pan_display(struct fb_var_screeninfo *var,
1630 				struct fb_info *fb)
1631 {
1632 	struct aty128fb_par *par = fb->par;
1633 	u32 xoffset, yoffset;
1634 	u32 offset;
1635 	u32 xres, yres;
1636 
1637 	xres = (((par->crtc.h_total >> 16) & 0xff) + 1) << 3;
1638 	yres = ((par->crtc.v_total >> 16) & 0x7ff) + 1;
1639 
1640 	xoffset = (var->xoffset +7) & ~7;
1641 	yoffset = var->yoffset;
1642 
1643 	if (xoffset+xres > par->crtc.vxres || yoffset+yres > par->crtc.vyres)
1644 		return -EINVAL;
1645 
1646 	par->crtc.xoffset = xoffset;
1647 	par->crtc.yoffset = yoffset;
1648 
1649 	offset = ((yoffset * par->crtc.vxres + xoffset) * (par->crtc.bpp >> 3))
1650 									  & ~7;
1651 
1652 	if (par->crtc.bpp == 24)
1653 		offset += 8 * (offset % 3); /* Must be multiple of 8 and 3 */
1654 
1655 	aty_st_le32(CRTC_OFFSET, offset);
1656 
1657 	return 0;
1658 }
1659 
1660 
1661 /*
1662  *  Helper function to store a single palette register
1663  */
1664 static void aty128_st_pal(u_int regno, u_int red, u_int green, u_int blue,
1665 			  struct aty128fb_par *par)
1666 {
1667 	if (par->chip_gen == rage_M3) {
1668 #if 0
1669 		/* Note: For now, on M3, we set palette on both heads, which may
1670 		 * be useless. Can someone with a M3 check this ?
1671 		 *
1672 		 * This code would still be useful if using the second CRTC to
1673 		 * do mirroring
1674 		 */
1675 
1676 		aty_st_le32(DAC_CNTL, aty_ld_le32(DAC_CNTL) |
1677 			    DAC_PALETTE_ACCESS_CNTL);
1678 		aty_st_8(PALETTE_INDEX, regno);
1679 		aty_st_le32(PALETTE_DATA, (red<<16)|(green<<8)|blue);
1680 #endif
1681 		aty_st_le32(DAC_CNTL, aty_ld_le32(DAC_CNTL) &
1682 			    ~DAC_PALETTE_ACCESS_CNTL);
1683 	}
1684 
1685 	aty_st_8(PALETTE_INDEX, regno);
1686 	aty_st_le32(PALETTE_DATA, (red<<16)|(green<<8)|blue);
1687 }
1688 
1689 static int aty128fb_sync(struct fb_info *info)
1690 {
1691 	struct aty128fb_par *par = info->par;
1692 
1693 	if (par->blitter_may_be_busy)
1694 		wait_for_idle(par);
1695 	return 0;
1696 }
1697 
1698 #ifndef MODULE
1699 static int aty128fb_setup(char *options)
1700 {
1701 	char *this_opt;
1702 
1703 	if (!options || !*options)
1704 		return 0;
1705 
1706 	while ((this_opt = strsep(&options, ",")) != NULL) {
1707 		if (!strncmp(this_opt, "lcd:", 4)) {
1708 			default_lcd_on = simple_strtoul(this_opt+4, NULL, 0);
1709 			continue;
1710 		} else if (!strncmp(this_opt, "crt:", 4)) {
1711 			default_crt_on = simple_strtoul(this_opt+4, NULL, 0);
1712 			continue;
1713 		} else if (!strncmp(this_opt, "backlight:", 10)) {
1714 #ifdef CONFIG_FB_ATY128_BACKLIGHT
1715 			backlight = simple_strtoul(this_opt+10, NULL, 0);
1716 #endif
1717 			continue;
1718 		}
1719 		if(!strncmp(this_opt, "nomtrr", 6)) {
1720 			mtrr = false;
1721 			continue;
1722 		}
1723 #ifdef CONFIG_PPC_PMAC
1724 		/* vmode and cmode deprecated */
1725 		if (!strncmp(this_opt, "vmode:", 6)) {
1726 			unsigned int vmode = simple_strtoul(this_opt+6, NULL, 0);
1727 			if (vmode > 0 && vmode <= VMODE_MAX)
1728 				default_vmode = vmode;
1729 			continue;
1730 		} else if (!strncmp(this_opt, "cmode:", 6)) {
1731 			unsigned int cmode = simple_strtoul(this_opt+6, NULL, 0);
1732 			switch (cmode) {
1733 			case 0:
1734 			case 8:
1735 				default_cmode = CMODE_8;
1736 				break;
1737 			case 15:
1738 			case 16:
1739 				default_cmode = CMODE_16;
1740 				break;
1741 			case 24:
1742 			case 32:
1743 				default_cmode = CMODE_32;
1744 				break;
1745 			}
1746 			continue;
1747 		}
1748 #endif /* CONFIG_PPC_PMAC */
1749 		mode_option = this_opt;
1750 	}
1751 	return 0;
1752 }
1753 #endif  /*  MODULE  */
1754 
1755 /* Backlight */
1756 #ifdef CONFIG_FB_ATY128_BACKLIGHT
1757 #define MAX_LEVEL 0xFF
1758 
1759 static int aty128_bl_get_level_brightness(struct aty128fb_par *par,
1760 		int level)
1761 {
1762 	struct fb_info *info = pci_get_drvdata(par->pdev);
1763 	int atylevel;
1764 
1765 	/* Get and convert the value */
1766 	/* No locking of bl_curve since we read a single value */
1767 	atylevel = MAX_LEVEL -
1768 		(info->bl_curve[level] * FB_BACKLIGHT_MAX / MAX_LEVEL);
1769 
1770 	if (atylevel < 0)
1771 		atylevel = 0;
1772 	else if (atylevel > MAX_LEVEL)
1773 		atylevel = MAX_LEVEL;
1774 
1775 	return atylevel;
1776 }
1777 
1778 /* We turn off the LCD completely instead of just dimming the backlight.
1779  * This provides greater power saving and the display is useless without
1780  * backlight anyway
1781  */
1782 #define BACKLIGHT_LVDS_OFF
1783 /* That one prevents proper CRT output with LCD off */
1784 #undef BACKLIGHT_DAC_OFF
1785 
1786 static int aty128_bl_update_status(struct backlight_device *bd)
1787 {
1788 	struct aty128fb_par *par = bl_get_data(bd);
1789 	unsigned int reg = aty_ld_le32(LVDS_GEN_CNTL);
1790 	int level;
1791 
1792 	if (bd->props.power != FB_BLANK_UNBLANK ||
1793 	    bd->props.fb_blank != FB_BLANK_UNBLANK ||
1794 	    !par->lcd_on)
1795 		level = 0;
1796 	else
1797 		level = bd->props.brightness;
1798 
1799 	reg |= LVDS_BL_MOD_EN | LVDS_BLON;
1800 	if (level > 0) {
1801 		reg |= LVDS_DIGION;
1802 		if (!(reg & LVDS_ON)) {
1803 			reg &= ~LVDS_BLON;
1804 			aty_st_le32(LVDS_GEN_CNTL, reg);
1805 			aty_ld_le32(LVDS_GEN_CNTL);
1806 			mdelay(10);
1807 			reg |= LVDS_BLON;
1808 			aty_st_le32(LVDS_GEN_CNTL, reg);
1809 		}
1810 		reg &= ~LVDS_BL_MOD_LEVEL_MASK;
1811 		reg |= (aty128_bl_get_level_brightness(par, level) <<
1812 			LVDS_BL_MOD_LEVEL_SHIFT);
1813 #ifdef BACKLIGHT_LVDS_OFF
1814 		reg |= LVDS_ON | LVDS_EN;
1815 		reg &= ~LVDS_DISPLAY_DIS;
1816 #endif
1817 		aty_st_le32(LVDS_GEN_CNTL, reg);
1818 #ifdef BACKLIGHT_DAC_OFF
1819 		aty_st_le32(DAC_CNTL, aty_ld_le32(DAC_CNTL) & (~DAC_PDWN));
1820 #endif
1821 	} else {
1822 		reg &= ~LVDS_BL_MOD_LEVEL_MASK;
1823 		reg |= (aty128_bl_get_level_brightness(par, 0) <<
1824 			LVDS_BL_MOD_LEVEL_SHIFT);
1825 #ifdef BACKLIGHT_LVDS_OFF
1826 		reg |= LVDS_DISPLAY_DIS;
1827 		aty_st_le32(LVDS_GEN_CNTL, reg);
1828 		aty_ld_le32(LVDS_GEN_CNTL);
1829 		udelay(10);
1830 		reg &= ~(LVDS_ON | LVDS_EN | LVDS_BLON | LVDS_DIGION);
1831 #endif
1832 		aty_st_le32(LVDS_GEN_CNTL, reg);
1833 #ifdef BACKLIGHT_DAC_OFF
1834 		aty_st_le32(DAC_CNTL, aty_ld_le32(DAC_CNTL) | DAC_PDWN);
1835 #endif
1836 	}
1837 
1838 	return 0;
1839 }
1840 
1841 static const struct backlight_ops aty128_bl_data = {
1842 	.update_status	= aty128_bl_update_status,
1843 };
1844 
1845 static void aty128_bl_set_power(struct fb_info *info, int power)
1846 {
1847 	if (info->bl_dev) {
1848 		info->bl_dev->props.power = power;
1849 		backlight_update_status(info->bl_dev);
1850 	}
1851 }
1852 
1853 static void aty128_bl_init(struct aty128fb_par *par)
1854 {
1855 	struct backlight_properties props;
1856 	struct fb_info *info = pci_get_drvdata(par->pdev);
1857 	struct backlight_device *bd;
1858 	char name[12];
1859 
1860 	/* Could be extended to Rage128Pro LVDS output too */
1861 	if (par->chip_gen != rage_M3)
1862 		return;
1863 
1864 #ifdef CONFIG_PMAC_BACKLIGHT
1865 	if (!pmac_has_backlight_type("ati"))
1866 		return;
1867 #endif
1868 
1869 	snprintf(name, sizeof(name), "aty128bl%d", info->node);
1870 
1871 	memset(&props, 0, sizeof(struct backlight_properties));
1872 	props.type = BACKLIGHT_RAW;
1873 	props.max_brightness = FB_BACKLIGHT_LEVELS - 1;
1874 	bd = backlight_device_register(name, info->dev, par, &aty128_bl_data,
1875 				       &props);
1876 	if (IS_ERR(bd)) {
1877 		info->bl_dev = NULL;
1878 		printk(KERN_WARNING "aty128: Backlight registration failed\n");
1879 		goto error;
1880 	}
1881 
1882 	info->bl_dev = bd;
1883 	fb_bl_default_curve(info, 0,
1884 		 63 * FB_BACKLIGHT_MAX / MAX_LEVEL,
1885 		219 * FB_BACKLIGHT_MAX / MAX_LEVEL);
1886 
1887 	bd->props.brightness = bd->props.max_brightness;
1888 	bd->props.power = FB_BLANK_UNBLANK;
1889 	backlight_update_status(bd);
1890 
1891 	printk("aty128: Backlight initialized (%s)\n", name);
1892 
1893 	return;
1894 
1895 error:
1896 	return;
1897 }
1898 
1899 static void aty128_bl_exit(struct backlight_device *bd)
1900 {
1901 	backlight_device_unregister(bd);
1902 	printk("aty128: Backlight unloaded\n");
1903 }
1904 #endif /* CONFIG_FB_ATY128_BACKLIGHT */
1905 
1906 /*
1907  *  Initialisation
1908  */
1909 
1910 #ifdef CONFIG_PPC_PMAC__disabled
1911 static void aty128_early_resume(void *data)
1912 {
1913         struct aty128fb_par *par = data;
1914 
1915 	if (!console_trylock())
1916 		return;
1917 	pci_restore_state(par->pdev);
1918 	aty128_do_resume(par->pdev);
1919 	console_unlock();
1920 }
1921 #endif /* CONFIG_PPC_PMAC */
1922 
1923 static int aty128_init(struct pci_dev *pdev, const struct pci_device_id *ent)
1924 {
1925 	struct fb_info *info = pci_get_drvdata(pdev);
1926 	struct aty128fb_par *par = info->par;
1927 	struct fb_var_screeninfo var;
1928 	char video_card[50];
1929 	u8 chip_rev;
1930 	u32 dac;
1931 
1932 	/* Get the chip revision */
1933 	chip_rev = (aty_ld_le32(CNFG_CNTL) >> 16) & 0x1F;
1934 
1935 	strcpy(video_card, "Rage128 XX ");
1936 	video_card[8] = ent->device >> 8;
1937 	video_card[9] = ent->device & 0xFF;
1938 
1939 	/* range check to make sure */
1940 	if (ent->driver_data < ARRAY_SIZE(r128_family))
1941 		strlcat(video_card, r128_family[ent->driver_data],
1942 			sizeof(video_card));
1943 
1944 	printk(KERN_INFO "aty128fb: %s [chip rev 0x%x] ", video_card, chip_rev);
1945 
1946 	if (par->vram_size % (1024 * 1024) == 0)
1947 		printk("%dM %s\n", par->vram_size / (1024*1024), par->mem->name);
1948 	else
1949 		printk("%dk %s\n", par->vram_size / 1024, par->mem->name);
1950 
1951 	par->chip_gen = ent->driver_data;
1952 
1953 	/* fill in info */
1954 	info->fbops = &aty128fb_ops;
1955 	info->flags = FBINFO_FLAG_DEFAULT;
1956 
1957 	par->lcd_on = default_lcd_on;
1958 	par->crt_on = default_crt_on;
1959 
1960 	var = default_var;
1961 #ifdef CONFIG_PPC_PMAC
1962 	if (machine_is(powermac)) {
1963 		/* Indicate sleep capability */
1964 		if (par->chip_gen == rage_M3) {
1965 			pmac_call_feature(PMAC_FTR_DEVICE_CAN_WAKE, NULL, 0, 1);
1966 #if 0 /* Disable the early video resume hack for now as it's causing problems,
1967        * among others we now rely on the PCI core restoring the config space
1968        * for us, which isn't the case with that hack, and that code path causes
1969        * various things to be called with interrupts off while they shouldn't.
1970        * I'm leaving the code in as it can be useful for debugging purposes
1971        */
1972 			pmac_set_early_video_resume(aty128_early_resume, par);
1973 #endif
1974 		}
1975 
1976 		/* Find default mode */
1977 		if (mode_option) {
1978 			if (!mac_find_mode(&var, info, mode_option, 8))
1979 				var = default_var;
1980 		} else {
1981 			if (default_vmode <= 0 || default_vmode > VMODE_MAX)
1982 				default_vmode = VMODE_1024_768_60;
1983 
1984 			/* iMacs need that resolution
1985 			 * PowerMac2,1 first r128 iMacs
1986 			 * PowerMac2,2 summer 2000 iMacs
1987 			 * PowerMac4,1 january 2001 iMacs "flower power"
1988 			 */
1989 			if (of_machine_is_compatible("PowerMac2,1") ||
1990 			    of_machine_is_compatible("PowerMac2,2") ||
1991 			    of_machine_is_compatible("PowerMac4,1"))
1992 				default_vmode = VMODE_1024_768_75;
1993 
1994 			/* iBook SE */
1995 			if (of_machine_is_compatible("PowerBook2,2"))
1996 				default_vmode = VMODE_800_600_60;
1997 
1998 			/* PowerBook Firewire (Pismo), iBook Dual USB */
1999 			if (of_machine_is_compatible("PowerBook3,1") ||
2000 			    of_machine_is_compatible("PowerBook4,1"))
2001 				default_vmode = VMODE_1024_768_60;
2002 
2003 			/* PowerBook Titanium */
2004 			if (of_machine_is_compatible("PowerBook3,2"))
2005 				default_vmode = VMODE_1152_768_60;
2006 
2007 			if (default_cmode > 16)
2008 				default_cmode = CMODE_32;
2009 			else if (default_cmode > 8)
2010 				default_cmode = CMODE_16;
2011 			else
2012 				default_cmode = CMODE_8;
2013 
2014 			if (mac_vmode_to_var(default_vmode, default_cmode, &var))
2015 				var = default_var;
2016 		}
2017 	} else
2018 #endif /* CONFIG_PPC_PMAC */
2019 	{
2020 		if (mode_option)
2021 			if (fb_find_mode(&var, info, mode_option, NULL,
2022 					 0, &defaultmode, 8) == 0)
2023 				var = default_var;
2024 	}
2025 
2026 	var.accel_flags &= ~FB_ACCELF_TEXT;
2027 //	var.accel_flags |= FB_ACCELF_TEXT;/* FIXME Will add accel later */
2028 
2029 	if (aty128fb_check_var(&var, info)) {
2030 		printk(KERN_ERR "aty128fb: Cannot set default mode.\n");
2031 		return 0;
2032 	}
2033 
2034 	/* setup the DAC the way we like it */
2035 	dac = aty_ld_le32(DAC_CNTL);
2036 	dac |= (DAC_8BIT_EN | DAC_RANGE_CNTL);
2037 	dac |= DAC_MASK;
2038 	if (par->chip_gen == rage_M3)
2039 		dac |= DAC_PALETTE2_SNOOP_EN;
2040 	aty_st_le32(DAC_CNTL, dac);
2041 
2042 	/* turn off bus mastering, just in case */
2043 	aty_st_le32(BUS_CNTL, aty_ld_le32(BUS_CNTL) | BUS_MASTER_DIS);
2044 
2045 	info->var = var;
2046 	fb_alloc_cmap(&info->cmap, 256, 0);
2047 
2048 	var.activate = FB_ACTIVATE_NOW;
2049 
2050 	aty128_init_engine(par);
2051 
2052 	par->pdev = pdev;
2053 	par->asleep = 0;
2054 	par->lock_blank = 0;
2055 
2056 #ifdef CONFIG_FB_ATY128_BACKLIGHT
2057 	if (backlight)
2058 		aty128_bl_init(par);
2059 #endif
2060 
2061 	if (register_framebuffer(info) < 0)
2062 		return 0;
2063 
2064 	fb_info(info, "%s frame buffer device on %s\n",
2065 		info->fix.id, video_card);
2066 
2067 	return 1;	/* success! */
2068 }
2069 
2070 #ifdef CONFIG_PCI
2071 /* register a card    ++ajoshi */
2072 static int aty128_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
2073 {
2074 	unsigned long fb_addr, reg_addr;
2075 	struct aty128fb_par *par;
2076 	struct fb_info *info;
2077 	int err;
2078 #ifndef __sparc__
2079 	void __iomem *bios = NULL;
2080 #endif
2081 
2082 	/* Enable device in PCI config */
2083 	if ((err = pci_enable_device(pdev))) {
2084 		printk(KERN_ERR "aty128fb: Cannot enable PCI device: %d\n",
2085 				err);
2086 		return -ENODEV;
2087 	}
2088 
2089 	fb_addr = pci_resource_start(pdev, 0);
2090 	if (!request_mem_region(fb_addr, pci_resource_len(pdev, 0),
2091 				"aty128fb FB")) {
2092 		printk(KERN_ERR "aty128fb: cannot reserve frame "
2093 				"buffer memory\n");
2094 		return -ENODEV;
2095 	}
2096 
2097 	reg_addr = pci_resource_start(pdev, 2);
2098 	if (!request_mem_region(reg_addr, pci_resource_len(pdev, 2),
2099 				"aty128fb MMIO")) {
2100 		printk(KERN_ERR "aty128fb: cannot reserve MMIO region\n");
2101 		goto err_free_fb;
2102 	}
2103 
2104 	/* We have the resources. Now virtualize them */
2105 	info = framebuffer_alloc(sizeof(struct aty128fb_par), &pdev->dev);
2106 	if (info == NULL) {
2107 		printk(KERN_ERR "aty128fb: can't alloc fb_info_aty128\n");
2108 		goto err_free_mmio;
2109 	}
2110 	par = info->par;
2111 
2112 	info->pseudo_palette = par->pseudo_palette;
2113 
2114 	/* Virtualize mmio region */
2115 	info->fix.mmio_start = reg_addr;
2116 	par->regbase = pci_ioremap_bar(pdev, 2);
2117 	if (!par->regbase)
2118 		goto err_free_info;
2119 
2120 	/* Grab memory size from the card */
2121 	// How does this relate to the resource length from the PCI hardware?
2122 	par->vram_size = aty_ld_le32(CNFG_MEMSIZE) & 0x03FFFFFF;
2123 
2124 	/* Virtualize the framebuffer */
2125 	info->screen_base = ioremap_wc(fb_addr, par->vram_size);
2126 	if (!info->screen_base)
2127 		goto err_unmap_out;
2128 
2129 	/* Set up info->fix */
2130 	info->fix = aty128fb_fix;
2131 	info->fix.smem_start = fb_addr;
2132 	info->fix.smem_len = par->vram_size;
2133 	info->fix.mmio_start = reg_addr;
2134 
2135 	/* If we can't test scratch registers, something is seriously wrong */
2136 	if (!register_test(par)) {
2137 		printk(KERN_ERR "aty128fb: Can't write to video register!\n");
2138 		goto err_out;
2139 	}
2140 
2141 #ifndef __sparc__
2142 	bios = aty128_map_ROM(par, pdev);
2143 #ifdef CONFIG_X86
2144 	if (bios == NULL)
2145 		bios = aty128_find_mem_vbios(par);
2146 #endif
2147 	if (bios == NULL)
2148 		printk(KERN_INFO "aty128fb: BIOS not located, guessing timings.\n");
2149 	else {
2150 		printk(KERN_INFO "aty128fb: Rage128 BIOS located\n");
2151 		aty128_get_pllinfo(par, bios);
2152 		pci_unmap_rom(pdev, bios);
2153 	}
2154 #endif /* __sparc__ */
2155 
2156 	aty128_timings(par);
2157 	pci_set_drvdata(pdev, info);
2158 
2159 	if (!aty128_init(pdev, ent))
2160 		goto err_out;
2161 
2162 	if (mtrr)
2163 		par->wc_cookie = arch_phys_wc_add(info->fix.smem_start,
2164 						  par->vram_size);
2165 	return 0;
2166 
2167 err_out:
2168 	iounmap(info->screen_base);
2169 err_unmap_out:
2170 	iounmap(par->regbase);
2171 err_free_info:
2172 	framebuffer_release(info);
2173 err_free_mmio:
2174 	release_mem_region(pci_resource_start(pdev, 2),
2175 			pci_resource_len(pdev, 2));
2176 err_free_fb:
2177 	release_mem_region(pci_resource_start(pdev, 0),
2178 			pci_resource_len(pdev, 0));
2179 	return -ENODEV;
2180 }
2181 
2182 static void aty128_remove(struct pci_dev *pdev)
2183 {
2184 	struct fb_info *info = pci_get_drvdata(pdev);
2185 	struct aty128fb_par *par;
2186 
2187 	if (!info)
2188 		return;
2189 
2190 	par = info->par;
2191 
2192 	unregister_framebuffer(info);
2193 
2194 #ifdef CONFIG_FB_ATY128_BACKLIGHT
2195 	aty128_bl_exit(info->bl_dev);
2196 #endif
2197 
2198 	arch_phys_wc_del(par->wc_cookie);
2199 	iounmap(par->regbase);
2200 	iounmap(info->screen_base);
2201 
2202 	release_mem_region(pci_resource_start(pdev, 0),
2203 			   pci_resource_len(pdev, 0));
2204 	release_mem_region(pci_resource_start(pdev, 2),
2205 			   pci_resource_len(pdev, 2));
2206 	framebuffer_release(info);
2207 }
2208 #endif /* CONFIG_PCI */
2209 
2210 
2211 
2212     /*
2213      *  Blank the display.
2214      */
2215 static int aty128fb_blank(int blank, struct fb_info *fb)
2216 {
2217 	struct aty128fb_par *par = fb->par;
2218 	u8 state;
2219 
2220 	if (par->lock_blank || par->asleep)
2221 		return 0;
2222 
2223 	switch (blank) {
2224 	case FB_BLANK_NORMAL:
2225 		state = 4;
2226 		break;
2227 	case FB_BLANK_VSYNC_SUSPEND:
2228 		state = 6;
2229 		break;
2230 	case FB_BLANK_HSYNC_SUSPEND:
2231 		state = 5;
2232 		break;
2233 	case FB_BLANK_POWERDOWN:
2234 		state = 7;
2235 		break;
2236 	case FB_BLANK_UNBLANK:
2237 	default:
2238 		state = 0;
2239 		break;
2240 	}
2241 	aty_st_8(CRTC_EXT_CNTL+1, state);
2242 
2243 	if (par->chip_gen == rage_M3) {
2244 		aty128_set_crt_enable(par, par->crt_on && !blank);
2245 		aty128_set_lcd_enable(par, par->lcd_on && !blank);
2246 	}
2247 
2248 	return 0;
2249 }
2250 
2251 /*
2252  *  Set a single color register. The values supplied are already
2253  *  rounded down to the hardware's capabilities (according to the
2254  *  entries in the var structure). Return != 0 for invalid regno.
2255  */
2256 static int aty128fb_setcolreg(u_int regno, u_int red, u_int green, u_int blue,
2257 			      u_int transp, struct fb_info *info)
2258 {
2259 	struct aty128fb_par *par = info->par;
2260 
2261 	if (regno > 255
2262 	    || (par->crtc.depth == 16 && regno > 63)
2263 	    || (par->crtc.depth == 15 && regno > 31))
2264 		return 1;
2265 
2266 	red >>= 8;
2267 	green >>= 8;
2268 	blue >>= 8;
2269 
2270 	if (regno < 16) {
2271 		int i;
2272 		u32 *pal = info->pseudo_palette;
2273 
2274 		switch (par->crtc.depth) {
2275 		case 15:
2276 			pal[regno] = (regno << 10) | (regno << 5) | regno;
2277 			break;
2278 		case 16:
2279 			pal[regno] = (regno << 11) | (regno << 6) | regno;
2280 			break;
2281 		case 24:
2282 			pal[regno] = (regno << 16) | (regno << 8) | regno;
2283 			break;
2284 		case 32:
2285 			i = (regno << 8) | regno;
2286 			pal[regno] = (i << 16) | i;
2287 			break;
2288 		}
2289 	}
2290 
2291 	if (par->crtc.depth == 16 && regno > 0) {
2292 		/*
2293 		 * With the 5-6-5 split of bits for RGB at 16 bits/pixel, we
2294 		 * have 32 slots for R and B values but 64 slots for G values.
2295 		 * Thus the R and B values go in one slot but the G value
2296 		 * goes in a different slot, and we have to avoid disturbing
2297 		 * the other fields in the slots we touch.
2298 		 */
2299 		par->green[regno] = green;
2300 		if (regno < 32) {
2301 			par->red[regno] = red;
2302 			par->blue[regno] = blue;
2303 			aty128_st_pal(regno * 8, red, par->green[regno*2],
2304 				      blue, par);
2305 		}
2306 		red = par->red[regno/2];
2307 		blue = par->blue[regno/2];
2308 		regno <<= 2;
2309 	} else if (par->crtc.bpp == 16)
2310 		regno <<= 3;
2311 	aty128_st_pal(regno, red, green, blue, par);
2312 
2313 	return 0;
2314 }
2315 
2316 #define ATY_MIRROR_LCD_ON	0x00000001
2317 #define ATY_MIRROR_CRT_ON	0x00000002
2318 
2319 /* out param: u32*	backlight value: 0 to 15 */
2320 #define FBIO_ATY128_GET_MIRROR	_IOR('@', 1, __u32)
2321 /* in param: u32*	backlight value: 0 to 15 */
2322 #define FBIO_ATY128_SET_MIRROR	_IOW('@', 2, __u32)
2323 
2324 static int aty128fb_ioctl(struct fb_info *info, u_int cmd, u_long arg)
2325 {
2326 	struct aty128fb_par *par = info->par;
2327 	u32 value;
2328 	int rc;
2329 
2330 	switch (cmd) {
2331 	case FBIO_ATY128_SET_MIRROR:
2332 		if (par->chip_gen != rage_M3)
2333 			return -EINVAL;
2334 		rc = get_user(value, (__u32 __user *)arg);
2335 		if (rc)
2336 			return rc;
2337 		par->lcd_on = (value & 0x01) != 0;
2338 		par->crt_on = (value & 0x02) != 0;
2339 		if (!par->crt_on && !par->lcd_on)
2340 			par->lcd_on = 1;
2341 		aty128_set_crt_enable(par, par->crt_on);
2342 		aty128_set_lcd_enable(par, par->lcd_on);
2343 		return 0;
2344 	case FBIO_ATY128_GET_MIRROR:
2345 		if (par->chip_gen != rage_M3)
2346 			return -EINVAL;
2347 		value = (par->crt_on << 1) | par->lcd_on;
2348 		return put_user(value, (__u32 __user *)arg);
2349 	}
2350 	return -EINVAL;
2351 }
2352 
2353 static void aty128_set_suspend(struct aty128fb_par *par, int suspend)
2354 {
2355 	u32	pmgt;
2356 	struct pci_dev *pdev = par->pdev;
2357 
2358 	if (!par->pdev->pm_cap)
2359 		return;
2360 
2361 	/* Set the chip into the appropriate suspend mode (we use D2,
2362 	 * D3 would require a complete re-initialisation of the chip,
2363 	 * including PCI config registers, clocks, AGP configuration, ...)
2364 	 *
2365 	 * For resume, the core will have already brought us back to D0
2366 	 */
2367 	if (suspend) {
2368 		/* Make sure CRTC2 is reset. Remove that the day we decide to
2369 		 * actually use CRTC2 and replace it with real code for disabling
2370 		 * the CRTC2 output during sleep
2371 		 */
2372 		aty_st_le32(CRTC2_GEN_CNTL, aty_ld_le32(CRTC2_GEN_CNTL) &
2373 			~(CRTC2_EN));
2374 
2375 		/* Set the power management mode to be PCI based */
2376 		/* Use this magic value for now */
2377 		pmgt = 0x0c005407;
2378 		aty_st_pll(POWER_MANAGEMENT, pmgt);
2379 		(void)aty_ld_pll(POWER_MANAGEMENT);
2380 		aty_st_le32(BUS_CNTL1, 0x00000010);
2381 		aty_st_le32(MEM_POWER_MISC, 0x0c830000);
2382 		msleep(100);
2383 
2384 		/* Switch PCI power management to D2 */
2385 		pci_set_power_state(pdev, PCI_D2);
2386 	}
2387 }
2388 
2389 static int aty128_pci_suspend(struct pci_dev *pdev, pm_message_t state)
2390 {
2391 	struct fb_info *info = pci_get_drvdata(pdev);
2392 	struct aty128fb_par *par = info->par;
2393 
2394 	/* Because we may change PCI D state ourselves, we need to
2395 	 * first save the config space content so the core can
2396 	 * restore it properly on resume.
2397 	 */
2398 	pci_save_state(pdev);
2399 
2400 	/* We don't do anything but D2, for now we return 0, but
2401 	 * we may want to change that. How do we know if the BIOS
2402 	 * can properly take care of D3 ? Also, with swsusp, we
2403 	 * know we'll be rebooted, ...
2404 	 */
2405 #ifndef CONFIG_PPC_PMAC
2406 	/* HACK ALERT ! Once I find a proper way to say to each driver
2407 	 * individually what will happen with it's PCI slot, I'll change
2408 	 * that. On laptops, the AGP slot is just unclocked, so D2 is
2409 	 * expected, while on desktops, the card is powered off
2410 	 */
2411 	return 0;
2412 #endif /* CONFIG_PPC_PMAC */
2413 
2414 	if (state.event == pdev->dev.power.power_state.event)
2415 		return 0;
2416 
2417 	printk(KERN_DEBUG "aty128fb: suspending...\n");
2418 
2419 	console_lock();
2420 
2421 	fb_set_suspend(info, 1);
2422 
2423 	/* Make sure engine is reset */
2424 	wait_for_idle(par);
2425 	aty128_reset_engine(par);
2426 	wait_for_idle(par);
2427 
2428 	/* Blank display and LCD */
2429 	aty128fb_blank(FB_BLANK_POWERDOWN, info);
2430 
2431 	/* Sleep */
2432 	par->asleep = 1;
2433 	par->lock_blank = 1;
2434 
2435 #ifdef CONFIG_PPC_PMAC
2436 	/* On powermac, we have hooks to properly suspend/resume AGP now,
2437 	 * use them here. We'll ultimately need some generic support here,
2438 	 * but the generic code isn't quite ready for that yet
2439 	 */
2440 	pmac_suspend_agp_for_card(pdev);
2441 #endif /* CONFIG_PPC_PMAC */
2442 
2443 	/* We need a way to make sure the fbdev layer will _not_ touch the
2444 	 * framebuffer before we put the chip to suspend state. On 2.4, I
2445 	 * used dummy fb ops, 2.5 need proper support for this at the
2446 	 * fbdev level
2447 	 */
2448 	if (state.event != PM_EVENT_ON)
2449 		aty128_set_suspend(par, 1);
2450 
2451 	console_unlock();
2452 
2453 	pdev->dev.power.power_state = state;
2454 
2455 	return 0;
2456 }
2457 
2458 static int aty128_do_resume(struct pci_dev *pdev)
2459 {
2460 	struct fb_info *info = pci_get_drvdata(pdev);
2461 	struct aty128fb_par *par = info->par;
2462 
2463 	if (pdev->dev.power.power_state.event == PM_EVENT_ON)
2464 		return 0;
2465 
2466 	/* PCI state will have been restored by the core, so
2467 	 * we should be in D0 now with our config space fully
2468 	 * restored
2469 	 */
2470 
2471 	/* Wakeup chip */
2472 	aty128_set_suspend(par, 0);
2473 	par->asleep = 0;
2474 
2475 	/* Restore display & engine */
2476 	aty128_reset_engine(par);
2477 	wait_for_idle(par);
2478 	aty128fb_set_par(info);
2479 	fb_pan_display(info, &info->var);
2480 	fb_set_cmap(&info->cmap, info);
2481 
2482 	/* Refresh */
2483 	fb_set_suspend(info, 0);
2484 
2485 	/* Unblank */
2486 	par->lock_blank = 0;
2487 	aty128fb_blank(0, info);
2488 
2489 #ifdef CONFIG_PPC_PMAC
2490 	/* On powermac, we have hooks to properly suspend/resume AGP now,
2491 	 * use them here. We'll ultimately need some generic support here,
2492 	 * but the generic code isn't quite ready for that yet
2493 	 */
2494 	pmac_resume_agp_for_card(pdev);
2495 #endif /* CONFIG_PPC_PMAC */
2496 
2497 	pdev->dev.power.power_state = PMSG_ON;
2498 
2499 	printk(KERN_DEBUG "aty128fb: resumed !\n");
2500 
2501 	return 0;
2502 }
2503 
2504 static int aty128_pci_resume(struct pci_dev *pdev)
2505 {
2506 	int rc;
2507 
2508 	console_lock();
2509 	rc = aty128_do_resume(pdev);
2510 	console_unlock();
2511 
2512 	return rc;
2513 }
2514 
2515 
2516 static int aty128fb_init(void)
2517 {
2518 #ifndef MODULE
2519 	char *option = NULL;
2520 
2521 	if (fb_get_options("aty128fb", &option))
2522 		return -ENODEV;
2523 	aty128fb_setup(option);
2524 #endif
2525 
2526 	return pci_register_driver(&aty128fb_driver);
2527 }
2528 
2529 static void __exit aty128fb_exit(void)
2530 {
2531 	pci_unregister_driver(&aty128fb_driver);
2532 }
2533 
2534 module_init(aty128fb_init);
2535 
2536 module_exit(aty128fb_exit);
2537 
2538 MODULE_AUTHOR("(c)1999-2003 Brad Douglas <brad@neruo.com>");
2539 MODULE_DESCRIPTION("FBDev driver for ATI Rage128 / Pro cards");
2540 MODULE_LICENSE("GPL");
2541 module_param(mode_option, charp, 0);
2542 MODULE_PARM_DESC(mode_option, "Specify resolution as \"<xres>x<yres>[-<bpp>][@<refresh>]\" ");
2543 module_param_named(nomtrr, mtrr, invbool, 0);
2544 MODULE_PARM_DESC(nomtrr, "bool: Disable MTRR support (0 or 1=disabled) (default=0)");
2545